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Abstract: Small object detection in remote sensing enables the identification and analysis of unappar-
ent but important information, playing a crucial role in various ground monitoring tasks. Due to the
small size, the available feature information contained in small objects is very limited, making them
more easily buried by the complex background. As one of the research hotspots in remote sensing,
although many breakthroughs have been made, there still exist two significant shortcomings for the
existing approaches: first, the down-sampling operation commonly used for feature extraction can
barely preserve weak features of objects in a tiny size; second, the convolutional neural network
methods have limitations in modeling global context to address cluttered backgrounds. To tackle
these issues, a high-resolution network with transformer embedding parallel detection (HRTP-Net) is
proposed in this paper. A high-resolution feature fusion network (HR-FFN) is designed to solve the
first problem by maintaining high spatial resolution features with enhanced semantic information.
Furthermore, a Swin-transformer-based mixed attention module (STMA) is proposed to augment the
object information in the transformer block by establishing a pixel-level correlation, thereby enabling
global background–object modeling, which can address the second shortcoming. Finally, a parallel
detection structure for remote sensing is constructed by integrating the attentional outputs of STMA
with standard convolutional features. The proposed method effectively mitigates the impact of the
intricate background on small objects. The comprehensive experiment results on three representative
remote sensing datasets with small objects (MASATI, VEDAI and DOTA datasets) demonstrate that
the proposed HRTP-Net achieves a promising and competitive performance.

Keywords: remote sensing; object detection; feature extraction; high-resolution; Swin transformer

1. Introduction

With the rapid development of remote sensing (RS), RS images with higher-resolution
are able to show richer earth information, such as planes and ships under 20 m in length.
Therefore, small object detection has become a hot topic in the RS field, which is of great sig-
nificance to military object identification, traffic management, marine regulation, etc. [1–4].
Differently from detecting general objects with visually salient features in RS images, the
task of small object detection is highly challenging: small objects often consist of only a
few pixels, as shown in Figure 1a, while they may be easily obscured by intricate back-
grounds, further increasing the difficulty of small object detection, as shown in Figure 1b–d.
In Figure 1b, the small ship is surrounded by a complex background. The small objects
in Figure 1c are disturbed by background illumination, and there is similar interference
around the framed object in Figure 1d. The frameworks based on deep learning, such as
faster R-CNN [5], SSD [6], and YOLO [7], have high efficiency in general object detection,
but introducing these approaches directly into remote sensing tasks can hardly produce a
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satisfactory performance. Therefore, detecting small objects in RS images requires more
effort than the general object detection approaches.

Currently, most CNN-based detection approaches adopt a one-stream feature learning
network that incorporates multiple down-sampling and up-sampling operations for context
aggregation, such as U-Net [8] and FPN [9]. However, these networks discard details vital
for small object detection. The proposed HRNET in [10] can compensate for the feature
loss by maintaining the high-resolution feature representation in the forward propagation.
HRNet is a representative method that is applied to tasks with complex information, such as
general object detection [11], image segmentation [12], object tracking [13], etc. Differently
from U-Net and FPN, HRNet utilizes parallel multi-resolution sub-networks for multi-scale
repeated fusion. This approach enables HRNet to effectively fuse low-level information for
precise localization and high-level semantic information to achieve strong robustness in
occlusions and scale changes.

Figure 1. Examples of challenges in object detection in remote sensing images. (a) An extremely
small object is in the bottom left corner of the image. (b) The ship object is surrounded by complex
water waves. (c) Objects are disturbed by illumination variation and shadows. (d) There is similar
interference around objects.

The methods based on CNN have shown excellent representation performance due
to the locality and translation equivariance of the convolution operation. However, they
struggle to model the global context information. In contrast, the self-attention approaches
based on the transformer [14] have recently shown remarkable success for global modeling
characteristics, which solve the locality limitation caused by the convolution. Ref. [15]
explored the potential of the transformer in visual tasks and proposed a visual transformer
(ViT) that completely discards the structure of CNN. Ref. [16] combined the transformer
with YOLO for object detection in aerial images, which demonstrated the effectiveness
of the transformer approach in small object detection. Liu et al. [17] proposed the Swin
transformer and designed a multi-stage transformer that leverages a sliding window to
reduce computational costs, which also proves the effectiveness of multi-scale features
in the transformer. Although numerous studies have highlighted the effectiveness of the
transformer in the remote sensing field [18–21], they lack the exploration between context
information and local features.

Last but not least, many researchers are trying to combine the global modeling ability of
the transformer with spatial or channel attention mechanisms to enhance the effectiveness
of features [18,22]. However, when facing small targets, the global attention is more
powerful when focusing on the limited receptive field, and these algorithms ignore the
computational cost of the transformer. Therefore, we proposed a Swin-transformer-based
mixed attention module (STMA) that leverages only the window-based transformer (W-
trans) part [17], and a pixel-level attention module is attached to the W-trans to achieve
background eliminating.

In this paper, to achieve the accurate detection of small objects in remote sensing
images, a novel high-resolution network with transformer embedding parallel detection
structure (HRTP-Net) is proposed. Differently from the existing small object detection
methods, we abandon the traditional multi-sample operations. Instead, we proposed a
high-resolution feature fusion network (HR-FFN) to maintain coordinates in space for
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extremely small objects and tackle the drift location and preserve the weak features of
small-scale objects during down-sampling. To alleviate the intricate obstruction elements in
the complex background around the object, we further introduce STMA, which leverages
a mixed attention module while generating a global connection to compensate for the
correlation of multi-scale features generated by HR-FFN. In addition, we take the attentional
features from the auxiliary detection structure with STMAs as a clue to guide the main
detection structure, consisting of convolution layers. The main contributions of our work
are given as follows:

1. A new multi-scale feature extraction network—HR-FFN—is proposed to retain more
semantic information about small objects while achieving an accurate location, and
we utilize the shallow and deep features simultaneously to alleviate the oversight of
small-scale features during convolution operations.

2. To address the semantic ambiguity caused by background confusion, a mixed attention
mechanism named STMA is proposed to enhance the distinguishable features by
modeling global information to enhance the object saliency and establishing a pixel-
level correlation to suppress the complex background.

3. A detection approach for small objects in remote sensing scenes, called HRTP-Net,
is presented in this paper. Extensive ablation experiments show both the effec-
tiveness and advantages of the HRTP-Net. The results on several representative
datasets demonstrate that our approach brings significant improvement in small
object detection.

2. Related Work
2.1. Multi-Resolution Feature Learning

Feature learning is one of the most necessary steps in general computer vision tasks,
mainly based on two processes: (1) high-to-low process, which generates high-level but
low-resolution representations; (2) low-to-high process, which recovers high-resolution rep-
resentations from low-resolution representations. The feature learning networks could en-
hance the discriminability of objects by continuously repeating these two processes [10,23].

For the small object detection, multi-scale feature representation is the mainstream
idea that is commonly used. The feature pyramid network (FPN) [9] was first proposed
to learn multi-resolution features for multi-scale object detection. The path aggregation
network (PANet) [24] extended FPN with a new down-top path that captures deeper
features while exploiting the shallow features of the network. Additionally, the U-Net,
which was originally designed for segmentation tasks, has also shown a great performance
in detecting objects [25–27]. However, the down-sample operation often leads to the loss of
semantic information when facing small objects in remote sensing images.

Hence, Sun et al. [10] proposed a high-resolution network (HRNet). Differently from
recovering a high-resolution representation from a low-resolution representation, as dis-
cussed above, it can maintain a high-resolution representation during forward propagation.
To implement remote sensing image segmentation, ref. [12] introduced HRNet as the
backbone, and a feature-selection convolution (FSConv) layer was proposed for fusing
the multi-resolution features, allowing adaptive feature selection based on object features.
Ref. [28] added a csAG module consisting of spatial attention and channel attention to
the HRNetv2 [11] network to minimize the error rate. The existing algorithms have taken
advantage of the high-resolution representation of HRNet. Therefore, we generate the
hypothesis that the high-resolution network will also be effective in small object detection.

2.2. Attention Mechanism in Deep Learning Network

The attention mechanism, drawing inspiration from human cognition, has already
played an important role in computer vision [14,29]. Currently, the attention mechanism
can mainly be divided into two branches: (1) use the pooling operation to extract salient
information in the channel or spatial dimensions [29]; (2) use self-attention mechanisms to
model global information and construct long-range dependencies [15].
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The most representative approach in the first branch is the squeeze-and-excitation
network (SENet) [30], which uses a global pooling and a fully connected layer to establish
relationships between channels. Efficient channel attention (ECA) [29], based on the
SENet, used 1D convolution instead of fully connected layers to avoid the compression
of the channel dimension. In the convolutional block attention module (CBAM) [31], a
spatial domain relevance calculation module was further proposed for selectively assigning
importance to different features. Due to the lightweight and plug-and-play advantages,
these methods are already widely used; however, their drawbacks in long-distance regions
lead to the feature loss of small objects.

The transformer [14] is the most representative structure in the second branch and
is able to extract features well in long-distance regions. To explore the potential of the
transformer in computer vision, Alexey et al. [15] proposed a vision transformer (ViT)
that turns images into tokens of sequences. However, the ViT still suffers from excessive
computational effort and a low-resolution feature map. To solve these problems, the Swin
transformer [17] is proposed to incorporate a window strategy to limit the computation
cost of the self-attention system and adopt the window sliding mechanism of convolutional
operations to realize the interaction between different windows, thus, achieving global
attention. Although the Swin transformer has achieved remarkable results in a variety of
tasks, this algorithm still has a large amount of computation; therefore, we simplify part
of the Swin transformer structure. Zhang et al. [32] proposed ViT-YOLO, which combines
YOLO with self-attention, leveraging its ability to process global object information. To
address the challenge of fuzzy boundaries in remote sensing images, Xu et al. [18] added
the dilated convolution module as a new backbone network based on the Swin transformer
for a bigger receptive field. The above research explored the ability of the Swin transformer
in modeling global information for object localization but disregarded the influence of
a complicated background in remote sensing images. Therefore, we proposed a novel
STMA structure to achieve a balance between performance and computational cost while
alleviating the impact of the complex background.

2.3. Remote Sensing Images Object Detection

Currently, the CNN framework remains the mainstream framework for remote sensing
object detection. The same as the generic object detection methods, object detection in
remote sensing can also be divided into one-stage [6,7,33–37], and two-stage [5,38] algo-
rithms. Specifically, the one-stage algorithms can achieve a faster detection with lightweight
models. As the most representative approach in general detection tasks, YOLO is also the
most widely used framework in remote sensing detection.

The small objects that only occupy a few pixels in satellite remote sensing images
can easily be disturbed by complex backgrounds. Several studies have demonstrated
that enhancing the multi-scale features can significantly improve small object detection.
Etten et al. [39] proposed the You Only Look Twice (YOLT) algorithm, which applied
YOLO to the remote sensing field for the first time. Han et al. [40] designed a multi-scale
receptive field enhancement module (MRFEM) for small objects. Zhang et al. [41] proposed
a multi-stage feature enhancement pyramid network to fuse features at varying scales for
small objects with blurry edges. Popular attention mechanisms have also shown significant
improvements in remote sensing detection. Kim et al. [42] proposed an efficient channel
attention pyramid module based on YOLOv5 to improve the saliency of features for small
objects. Hu et al. [43] proposed a spatial attention mechanism to optimize the feature
representation of small objects and combined it with YOLOv5 for fast and accurate object
detection. SuperYOLO [44] employed the super resolution learning and a symmetric
compact multimodal fusion based on YOLOv5 to extract supplementary information
from the various data. Taking advantage of the multi-scale feature fusion and attention
mechanisms, Shi et al. [45] proposed FE-CenterNet, which uses a feature-enhanced module
to extract multi-scale features and an attention-generation module to improve small object
perception capability.
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However, the existing studies have shown little attention to the resolution of feature
maps and lack global modeling capabilities. In this approach, we aim to propose a new
one-stage detection framework that better inherits the strengths of multi-scale features
and attention mechanisms to handle small object detection under complex backgrounds in
remote sensing images.

3. Proposed Method
3.1. Overall Structure

The framework of the proposed HRTP-Net is shown in Figure 2. We divide the overall
model into four components, namely, the backbone, the high-resolution feature fusion
network (HR-FFN), the auxiliary detection structure, and the main detection structure.

Given an input image X ∈ RH1×W1×3, the spatial resolution of the image is reduced
to 1/8 through the backbone to alleviate the computational pressure of the network. The
output of the backbone is utilized to retain the semantic information in the HR-FFN module,
which is described in detail in Section 3.2. In addition, during forward propagation, the
high-resolution features interact with the lower-resolution features to convey object infor-
mation. Then, the fused high-resolution (HR) features with abundant semantic information
are passed to the auxiliary detection structure consisting of three STMA modules, which
are described in detail in Section 3.4. The attention features obtained from the STMA are
concatenated with HR features, and the C3 module is employed to aggregate features
with different characteristics. Finally, the candidate boxes generated by the main detection
structure are then subjected to non-max suppression (NMS) to obtain the detection results.

Figure 2. Overview of the proposed method HRTP-Net, which contains four main components,
including: (1) the backbone for extracting basic high-resolution feature information; (2) HR-FFN
for retaining the semantic information of high-resolution features, shown in Figure 3; (3) the aux-
iliary detection structure consist with the attention module STMA for enhancing feature effective-
ness, shown in Figure 4; (4) the main detection structure for aggregating different features and
final detection.

3.2. High-Resolution Feature Fusion Network (HR-FFN)

Considering the importance of semantic information in small object detection, the
high-resolution feature fusion network (HR-FFN) is proposed, shown in Figure 3a, to better
locate small objects. HR-FFN retains robust semantic information by employing parallel
branches of multiple resolutions, maintaining the high resolution throughout the network.
Additionally, the continuous information interaction between these branches further en-
hances its performance and compensates for the information loss caused by the decreasing
channel dimensions. We divide the HR-FFN into three stages, with each stage adding one
diverse resolution of the feature map over the previous stage as the forward propagation.
The resolution of subnetwork n can be expressed as Hn ∈ R(H/2n+2)×(W/2n+2)×(2n−1C) where
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n = 1, 2, 3, and C = 256. The network generates high-resolution images by nearest neighbor
sampling and obtains low-resolution images by a convolution operation with a 3× 3 kernel.

In the HR-FFN, the input of the basic block is Bin ∈ RH×W×C, and the output
Bout ∈ RH×W×C can be expressed by the following equation:

Bout = Bin + f ( f (Bin)), (1)

where f (·) denotes the convolutional layer with batch normalization and the ReLU ac-
tivation function. With the fuse layer, the multi-resolution features first go through a
concatenation operation to obtain a feature map F. The feature map F is handled with
convolution and batch normalization operations to generate the output, where the output
channel varies with the position of the fuse layer.

Figure 3. (a) Proposed structure of HR-FFN. HR-FFN consists of a basic block, fuse layer, and E-SPP.
The black arrow represents the network forward propagation. The red arrow in the figure indicates
the residual connection that combines the shallow and deep features. (b) Structure of ECA Spatial
Pyramid Pooling (E-SPP), which consists of an ECA module and an SPP module.

We found that the down-sampling operation in the HRNet still results in feature loss
for small objects, so we added the ECA spatial pyramid pooling (E-SPP) module in the
third stage to mitigate feature weakening. We reweight the multi-channel information
contained in feature maps by ECA. Then, the SPP module facilitates the retrieval of spatial
features with different scales, thereby enhancing the robustness of the model to spatial
layout and object variability. The E-SPP module can focus on the relevant information
and prevent the loss of the fine-grained details. As shown in Figure 3b, the E-SPP module
consists of two parts, the efficient channel attention (ECA) [29] mechanism and the spatial
pyramid pooling (SPP) [46] module. In ECA, the input feature map is I ∈ RH×W×C, and a
global average pooling and a 1D convolution of kernel size k = 3 are performed to generate
channel weights. Then, an activation function sigmoid is used to obtain a feature map
P ∈ R1×1×C. Finally, the input feature map I and the feature map P are multiplied by � to
obtain the channel attentional output Z ∈ RH×W×C, where � stands for position-wise dot
production. The ECA is lightweight and efficient; therefore, we also use the ECA in the
STMA module, which is detailed in Section 3.4.

The output of the ECA is used as the input for the SPP. In the SPP, the input Z goes
through max pooling with three different kernel sizes (5, 9, and 13), respectively. After-
wards, these feature maps are concatenated with the input Z. In small object detection, we
found that shallow features in the network are equally important compared to maintaining
high-resolution forward propagation. Therefore, we fused the shallow features in the
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network with the deep features of stage 3 to obtain feature maps with rich information, as
shown in red dashed arrows.

3.3. Window-Based Transformer (W-Trans)

The transformer is able to obtain global information and long-distance connections
in one single operation. In the self-attention process, the input matrix is first expanded in
the channel dimension and sliced by a linear layer to obtain three matrices, query (Q), key
(K), and value (V); each of them can be expressed as Q, K, V ∈ RH×W×C. The output of the
self-attention module is given by the following equation:

Attention(Q, K, V) = So f tmax(
QKT
√
(dk)

)V, (2)

where dk is the number of channels of matrix K. Dividing the inner product value with√
(dk) is to prevent the vectors from being too large.

Figure 4. (a) Standard Swin transformer block [17]. (b) Structure of STMA, consisting of window-
based transformer block and mixed attention module (MAM). Differently from the standard Swin
transformer block, we replace the shifted window-based transformer block with our proposed MAM
to enhance the interaction between windows.

Recently, the Swin transformer achieved an advanced performance in various vision
tasks such as image classification, object detection, and semantic segmentation [22,47,48].
The Swin transformer proposes an efficient modeling solution with two window con-
figurations, namely, the window-based multi head self-attention (W-MSA) and shifted
window-based multi head self-attention (SW-MSA) models, as shown in Figure 4a. First, the
Swin transformer divides the input feature map into windows in the window-based trans-
former block (W-trans). Then, in the shifted window-based transformer block (SW-trans),
the windows are translated to enable the information interaction between the windows in
W-trans. Each window is subjected to the operation of the self-attention mechanism, where
each window covers only D× D pixels of the image. In our experiments, we set D to 8 for
the computational convenience. W-trans and SW-trans are executed alternately in succes-
sive Swin transformer blocks to enhance the information connectivity across windows. We
express the basic blocks of the Swin transformer in the following equation:
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f̂ l = W-MSA(LN( f l−1)) + f l−1,

f l = MLP(LN( f̂ l)) + f̂ l ,

f̂ l+1 = SW-MSA(LN( f l)) + f l ,

f l+1 = MLP(LN( f̂ l+1)) + f̂ l+1.

(3)

The Swin transformer employs a uniform-size window to establish connections among
its internal pixels, thereby effectively reducing memory consumption compared to the ViT.
However, the W-trans and SW-trans still require a huge amount of computational resources
compared to regular convolutional operations. Additionally, in small object detection in
remote sensing images, there is often a significant size difference between the object and
the entire image. Therefore, we leverage the window mechanism in the Swin transformer
to localized regions for self-attention instead of processing the entire image. We simplify
the original Swin transformer by retaining only the W-trans structure as part of the STMA,
as shown in Figure 4b. Additionally, we implemented a mixed attention module (MAM) to
reduce the influence of intricate background information. The W-trans and MAM enable
the proposed STMA to effectively model the background–object information, which is
described in the next section.

3.4. Swin-Transformer-Based Mixed Attention Module (STMA)

Remote sensing images often contain complex background information that can inter-
fere with object detection, which requires some spatial information to alleviate the impact.
Therefore, we propose STMA, consisting of a W-trans and mixed attention module (MAM),
as shown in Figure 4b. The W-trans is responsible for encoding the global information
features and accurately localizing small objects. The mixed attention module (MAM) is
able to suppress background interference by making full use of the attention mechanism
to create a pixel-level correlation and highlight important and representative channels
from the whole feature map. In STMA, the input feature map is initially processed by the
W-trans and MAM modules to model the object and background information separately.
Afterwards, the outputs of the W-trans and MAM modules are combined through element-
wise addition to obtain the background–object modeling. Through this process, the STMA
helps to suppress complex information from the background, enhancing the discriminative
power for object detection.

The CNN-based feature extraction modules extract local information in the spatial
dimension limited by convolutional kernels but lack modeling of the relationships in the
channel dimension [30]. Several approaches (e.g., [29,31]) have demonstrated that encoding
the dependencies in the channel dimension can improve the feature extraction. Therefore,
we designed a mixed attention module via two other attention modules, channel and
spatial. The experiments in this research [31] demonstrated that a sequential arrangement
of attention modules gives better results than a parallel arrangement. In STMA, the input
expressed as H ∈ Rh×w×c goes through a convolutional operation and is split into two
branches, one through the MAM module and the other through the transformer block.

In the previous section, we described the structure of ECA, and in this section, ECA is
also used for information aggregation in the channel dimension. The output of the feature
map after ECA processing is Z ∈ Rh×w×c. Then, the output Z is applied to obtain the spatial
statistics of the feature map. In computing the spatial attention, we first apply the average
pooling and max pooling operations with a 3× 3 kernel along the channel dimension—the
resulting feature maps are EA ∈ Rh×w×1 and EM ∈ Rh×w×1—and connect them to generate
a valid descriptive feature. Applying the pooling operation along the channel axis can
effectively highlight the information region, and the output of the pixel-level MAM is
S ∈ Rh×w×c. This process can be represented by the following equation:

S = ϕ(cat(EA, EM))� Z, (4)
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where cat denotes the concatenate operation of the feature map along the channel after the
pooling operation. ϕ(·) denotes a convolution operation and a ReLU activation function. �
stands for matrix multiplication. For a given input feature map H, the output is A ∈ Rh×w×c

via the window-based transformer block. Finally, the global feature of self-attention is
combined with the local feature of the MAM to form the output of STMA, which can be
expressed as:

Tout = S⊕ A, (5)

where ⊕ stands for element-wise addition. Eventually, the global cues with the channel
information extracted from the auxiliary detection structure composed of STMA modules
are used to guide the main detection structure composed of convolutional layers, achieving
a complementary performance by the attention mechanism and the convolutional layers.

4. Experiments

In this section, we test the proposed method on the MASATI [49], VEDAI [50], and
DOTA [51] datasets. Precision (P), recall (R), average precision (AP), and frames per second
(FPS) are selected as evaluation metrics. In addition, we performed ablation experiments to
verify the effectiveness of each module. Finally, the experimental results demonstrate the
superiority of the proposed method.

4.1. Datasets
4.1.1. MASATI Dataset

The MASATI dataset [49] contains a total of 7389 images and 3951 objects, including
different marine scenes such as pure sea, reef, and port. These images include single or
multiple ships under varying background conditions with a size of 512 × 512 pixels. In the
experiments, 2368 images containing objects are selected and classified into three categories
according to their characteristics, namely, multi-ship, single-ship, and coast.

4.1.2. VEDAI Dataset

The VEDAI dataset [50] includes small objects from remote sensing images in a wide
variety of environments. In the VEDAI dataset, the objects are small and present varying
degrees of variability. In addition, different types of backgrounds can be found in this
dataset, including urban, peri-urban, rural areas, etc. The images with a resolution of
512 × 512 pixels have a spatial resolution of 25 cm, while the object size ranges between 8
to 20 pixels. The dataset contains 3757 objects belonging to 9 different categories: plane,
boat, camping car, car, pick up, tractor, truck, van, and others.

4.1.3. DOTA Dataset

The images in the DOTA dataset [51] are collected from Google Earth, GF-2, and the
JL-1 satellite provided by the China Center for Resources Satellite 585 Data and Application.
The image size varies from 800 × 800 pixels to 20,000 × 20,000 pixels, and DOTAv1.5 is
used in the experiments, which contains a total of 403,318 instances, including 16 categories
such as plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground
track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball
field, swimming pool, and container crane. In this paper, two of these categories (i.e., small
vehicle and ship) are chosen to train the models, and the images are horizontally cropped
by 1000 pixels with a 10% overlap.

Following [52], we use the “object image ratio” to describe the relative size of an object
in the image, which is Ratio = Os/Is, where Os is the area of the object, Is is the area of
the image, Os = Ow ×Oh pixels, and Is = Iw × Ih pixels. We refer to Ratio ∈ (0, 0.001) as
a small object and Ratio ∈ (0, 0.01) as a medium object. As shown in Figure 5, we count
the object-to-image ratios in different datasets. In the MASATI and VEDAI datasets, the
percentage of small objects and medium objects is approximate, with slightly more medium
objects in the VEDAI dataset. In DOTA, on the other hand, more than 80% of the objects
are small objects, which makes it more difficult for object detection.
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0% 20% 40% 60% 80% 100%

DOTA

VEDAI

MASATI Ratio<0.001

0.001<Ratio<0.01

others

Figure 5. The proportion of images with different “object image ratio” in the MASATI, VEDAI, and
DOTA datasets.

4.2. Implementation Details
4.2.1. Evaluation Metrics

We quantitatively evaluate the performance of the proposed method through several
key evaluation metrics, including precision (P), recall (R), mean average precision (mAP),
and frames per second (FPS). These evaluation indexes are considered to be the most widely
used metrics in object detection applications. The P and R are defined as:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

(6)

where TP, FP, and FN stand for the number of accurately detected objects (true positive),
false alarms (false positive), and missing objects (false negative). Additionally, mAP denotes
the average precision value over different recalls, which is obtained by calculating the area
under the precision–recall curve based on the corresponding precision and recall values.

mAP =
∫ 1

0
P(R)d R, (7)

where P(R) is a function of P and R. Furthermore, we apply the frames per second (FPS)
indicator to evaluate the real-time detection efficiency.

4.2.2. Training Settings

In this paper, all experiments and models are built using the PyTorch framework
with Intel i9-13900k, GeForce RTX4090 GPU, and Ubuntu 22.04. In the experiments, the
optimizer is stochastic gradient descent (SGD), which utilizes an initial learning rate of
1 × 10−2, a weight decay parameter of 5 × 10−4, and a momentum of 0.937. In the initial
stage of model training, 3 epochs are used for the warm-up training. Moreover, to enhance
the data diversity and enrich the background information of the images, a mosaic data
enhancement method is utilized to combine four images into one, thus, increasing the batch
size. We selected 60% of the data from MASATI for training, 20% for validation, and the
final 20% for the test. We sampled the same training and testing process in the DOTA and
VEDAI datasets as well. In addition, we set the threshold for intersection over union (IoU)
to 0.6 for a fair comparison of the methods.

4.3. Ablation Experiments

In this section, to measure the contribution of each proposed structure to the results,
we conducted ablation experiments on the MASATI dataset. Compared with the DOTA
and VEDAI datasets, the MASATI dataset includes single-object and multi-objects with
complex scenarios, which can better evaluate the effect of the proposed modules. The
baseline used in the experiments is the YOLOv5 algorithm. The contribution to the final
results is analyzed by assessing the detection performance before and after the use of the
module. The results of our ablation experiments are presented in Table 1. “X” indicates
that the module is used in the HRTP-Net, while “-” indicates that the module is not used in
the HRTP-Net.
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Table 1. Ablation experiment of the proposed modules on the MASATI dataset (The best performance
is highlighted with bold font).

Model

Structure Multi-
Ship

Single-
Ship Coast All Classes

HR-FFN STMA
Auxiliary
Detection
Structure

mAP (%) Precision
(%)

Recall
(%) mAP (%)

Baseline1 1 - - - 80.7 72.9 62.4 78.1 70.0 70.9

HRTP-Net

X - - 81.3 81.4 65.0 82.5 72.5 75.0
- X - 78.8 80.2 64.7 82.2 67.4 73.4
- X X 80.9 80.6 68.768.768.7 80.3 71.1 75.6
X X - 79.8 85.785.785.7 65.3 82.0 74.074.074.0 75.7
X X X 84.384.384.3 82.8 67.0 84.684.684.6 72.0 77.377.377.3

1 The baseline1 in Table 1 denotes the YOLOv5 algorithm.

4.3.1. Effect of High-Resolution Feature Fusion Network

The HR-FFN is proposed to address the problem of small objects with loss of detail
during feature extraction. The second row in Table 1 shows the effect of HR-FFN on the
detection performance when added to the baseline. The improvement in mAP is 0.6%
for multi-ship, 8.5% for single-ship, and 2.6% for coast. Eventually, there is an effective
improvement of 4.5%, 1.9%, and 4.1% on precision, recall, and mAP in the detection
performance of these categories compared to the baseline for all categories. The detection
of these small objects can be influenced by network down-sampling. Figure 6 shows
comparison of the detection results before and after using HR-FFN in the HRTP-Net.

Figure 6. Comparison of the detection results before and after using HR-FFN in the HRTP-Net.
(a) Baseline. (b) Baseline + HR-FFN.

We also designed an ablation experiment on the HR-FFN to test the effects of our
proposed E-SPP and the residual connection on the model, respectively. From the second
row of Table 2, we can see that the model rises by 2.4% for precision, 0.7% for recall, and
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1.9% for mAP when E-SPP is added compared to the baseline. The E-SPP module is able
to reassign weights to channel dimensions and extract information from feature maps
with different receptive fields, thus, achieving a significant improvement in the precision
index. After adding the residual connections, as in the third row of Table 2, there is a
0.8% improvement on recall and a 0.3% increase in mAP but a decrease in the precision
metric. We suspect that the residual connections bring in small object features as well as
interference information. Finally, the combination of the E-SPP module and the residual
connectivity effectively improved the HR-FFN by 3.6%, 1.8%, and 1.7% for precision, recall,
and mAP.

Table 2. Ablation experiment for the HR-FFN (The best performance is highlighted with bold font).

Model

Structure All Classes

E-SPP Residual
Connection

Precision
(%) Recall (%) mAP (%)

Baseline2 1 - - 78.9 70.7 73.3

HRTP-Net
X - 81.3 71.4 75.275.275.2
- X 76.7 71.5 73.6
X X 82.582.582.5 72.572.572.5 75.0

1 The baseline2 in Table 2 denotes the proposed method HRTP-Net without E-SPP and residual connection.

4.3.2. Effect of Swin-Transformer-Based Mixed Attention Module

The STMA proposed in HRTP-Net aims to enhance the global information in the
transformer block by establishing a pixel-level correlation to strengthen local feature effec-
tiveness. It is important to mention here that when the model does not use an auxiliary
detection structure but uses STMA, we replace the C3 module in the main detection struc-
ture with STMA for the experiment. Based on this explanation, there is only the main
detection structure consisting of STMA existing in the model in the third and fifth rows
of Table 1. Ultimately, when the STMA is used in the network, the detection results show
a 4.1% improvement in precision and a 2.5% improvement in mAP. We also visualize
the effect of STMA, as shown in Figure 7; for single-object, multi-object, and complex
background cases, the model with STMA achieves a more effective feature extraction than
without the inclusion of STMA.

We also analyze the effectiveness of the MAM module. We use models with the
addition of HR-FFN and the auxiliary detection structure for comparison; the difference is
whether or not we add MAM to the STMA module. In the first row of Table 3, the model
using the basic window-based transformer block structure achieves 82.9%, 70.9%, and
75.4% in precision, recall, and mAP. The model in the second row of the table uses the
full STMA module. It can be seen that with the addition of the MAM module, the model
outperforms the W-trans structure by a large amount in the precision with 1.7%, in the
recall with 1.1%, and the mAP with 1.9%.

Table 3. Ablation experiment for the STMA (The best performance is highlighted with bold font).

Model
Structure All Classes

MAM Precision (%) Recall (%) mAP (%)

HRTP-Net - 82.9 70.9 75.4
X 84.684.684.6 72.072.072.0 77.377.377.3

4.3.3. Effect of Auxiliary Detection Structure

In our design, the auxiliary detection structure serves the STMA module, so when
the auxiliary detection structure is employed, the STMA module is also employed. As
shown in the third and fourth rows of Table 1, the model has a 2.2% improvement in mAP
after adopting the auxiliary detection structure. Similarly, comparing the fifth row with
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the sixth row, the model has a significant improvement in mAP by 1.6% after adopting the
auxiliary detection structure. We find that the adoption of the auxiliary detection structure
effectively improves the model’s mAP but has the opposite effect on the precision and recall
metrics. From the experimental results in Table 1, we conclude that the auxiliary detection
structure using STMA is able to compensate for the limitations of the convolutional layer
in the main detection structure through the attention mechanism, resulting in a significant
improvement in the overall detection effectiveness of the network by the mAP index.

The joint effect between the modules in the HRTP-Net framework is shown in Table 1.
With the simultaneous introduction of STMA and the auxiliary detection structure, preci-
sion, recall, and mAP increased by 2.2%, 1.1%, and 4.7%, respectively. When HR-FFN and
STMA are considered simultaneously, the detection results improved by 3.9% for precision,
4.0% for recall, and 4.8% for mAP. Our HRTP-Net with three components (HR-FFN, STMA,
the auxiliary detection structure) brings an increase of 6.5% in precision, 2.0% in recall,and
6.4% in mAP compared with the baseline.

Figure 7. Visualization of feature maps and detection results. (a) Visualization of feature maps
produced by the model without STMA. (b) Visualization of feature maps produced by the model
with STMA. It can be seen that STMA can eliminate most obstructed backgrounds. (c) Detection
results with baseline+auxiliary detection structure.

4.4. Comparison With Other Methods

We compare the proposed HRTP-Net with a number of existing methods, including
YOLOR [33], YOLOv4 [34],YOLOv5 [37], YOLOv7 [35], PicoDet [36], SuperYOLO [44], PAG-
YOLO [43], THP-YOLOv5 [16], Faster R-CNN [5], Cascade R-CNN [38], and HRNet [11].
The first eight methods are one-stage approaches and the last three methods are two-stage
approaches. Our proposed HRTP-Net is a one-stage method. PAG-YOLO [43] and TPH-
YOLOv5 [16] are algorithms using spatial and self-attention mechanisms, respectively. In
addition, we do not use the extra prediction head to run the TPH-YOLOv5. Both the Faster
R-CNN and Cascade R-CNN use RetNet50 as the backbone, and the two-stage models use
a pre-trained backbone network in order to reduce the training time.
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4.4.1. Results on MASATI Dataset

We compare our method with some of the most advanced detectors, as shown in
Table 4. The improved HRTP-Net achieves an mAP of 77.3% in the MASATI dataset, which
exceeds many of the current state-of-the-art methods. Figure 8 shows the objects detected
by our method with different backgrounds on the MASATI dataset. As we expected, HRNet
achieved the highest mAP in the single ship category with 83.9%, but its performance is
comparatively lower in classes such as multi-ship and coast, which entail multiple objects
and land disturbances. This validates our hypothesis in the previous section that HRNet
is able to retain more detailed features, which is better for small object detection but also
introduces more background information to the interference. In the results for all categories,
our proposed algorithm in this paper far outperforms the other algorithms in precision and
mAP, but the recall metric is slightly worse than HRNet, which is a problem we will have
to address in the future.

Figure 8. Examples of detection results on the MASATI dataset using different methods involving
YOLOv5, HRNet, PAG-YOLO, TPH-YOLOv5, and the proposed method.

Table 4. Comparison of detection results from the MASATI dataset (The best performance is high-
lighted with bold font).

Model
Multi-Ship Single-Ship Coast All Classes

mAP (%) Precision (%) Recall (%) mAP (%)

YOLOR [33] 75.7 64.1 52.7 75.9 66.4 63.1
YOLOv4 [34] 79.4 74.0 61.5 76.8 69.0 70.5
YOLOv5 [37] 80.7 72.9 62.4 78.1 70.0 70.9
YOLOv7 [35] 77.7 81.2 59.3 79.6 70.5 71.3
PicoDet [36] 81.7 61.1 68.4 80.1 64.3 70.1

Faster R-CNN [5] 70.0 77.2 38.7 77.6 64.4 59.2
Cascade R-CNN [38] 77.4 76.8 58.5 77.5 62.1 67.2

HRNet [11] 69.4 83.983.983.9 49.1 70.4 74.174.174.1 66.3
SuperYOLO [44] 80.3 73.4 65.5 76.7 70.5 72.7
PAG-YOLO [43] 82.8 81.9 65.8 83.3 71.3 75.5

TPH-YOLOv5 [16] 80.8 82.2 66.8 79.5 71.6 75.2
Proposed 84.384.384.3 82.8 67.067.067.0 84.684.684.6 72.0 77.377.377.3
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4.4.2. Results from the VEDAI Dataset

The VEDAI dataset contains a variety of small objects in remote sensing images with
different light and angular transformations. In our experiments, we compare the proposed
HRTP-Net algorithm with other state-of-the-art algorithms, and the results are shown in
Table 5. Our algorithm reaches the highest in the classes of plane, pick_up, tractor, truck and
in the mAP of all classes compared to YOLOv5 as the baseline with a 6.8% improvement.
The pick_up and tractor class objects are very similar to the truck category objects, but
HRTP-Net is also able to identify these two classes effectively with mAPs of 76.1% and
58.6%, respectively. Figure 9 shows some of the detection results of our algorithm in the
VEDAI dataset.

Table 5. Comparison of detection results from the VEDAI dataset (The best performance is highlighted
with bold font).

Model
Plane Boat Camping_car Car Pick_up Tractor Truck Van Others All Classes

mAP (%) mAP (%)

YOLOR [33] 45.8 10.5 54.7 74.0 64.4 30.3 17.4 11.1 13.1 35.7
YOLOv4 [34] 67.0 38.7 61.0 85.5 74.0 48.6 60.4 15.0 28.7 53.2
YOLOv5 [37] 78.4 25.3 68.3 82.6 74.1 40.4 53.3 27.3 30.5 53.4
YOLOv7 [35] 25.6 11.4 56.2 87.987.987.9 75.9 56.0 30.5 10.5 11.5 36.5
PicoDet [36] 44.6 19.1 61.7 79.1 61.0 31.1 32.7 13.5 18.2 40.1

Faster R-CNN [5] 65.9 53.2 68.0 60.6 61.8 45.5 55.8 17.3 51.751.751.7 53.3
Cascade R-CNN [38] 53.2 68.468.468.4 70.3 72.0 67.5 40.8 49.0 39.739.739.7 50.8 56.9

HRNet [11] 42.3 62.9 65.5 77.4 74.0 44.0 45.9 17.9 42.4 52.5
Super YOLO [44] 58.7 28.5 73.373.373.3 87.5 80.180.180.1 52.3 51.7 37.8 21.8 52.5
PAG-YOLO [43] 74.7 37.7 68.4 82.5 72.8 43.3 53.8 14.0 31.8 53.2

TPH-YOLOv5 [16] 71.8 31.1 62.1 81.9 70.6 41.4 55.4 40.2 35.6 54.5
Proposed 88.288.288.2 47.5 61.6 83.9 76.1 58.658.658.6 62.962.962.9 36.8 26.5 60.260.260.2

Figure 9. Selected examples from the detection results from the VEDAI dataset obtained by HRTP-Net.

4.4.3. Results from the DOTA Dataset

In the DOTA dataset, there are many very small and dense objects. Compared with
other algorithms, HRTP-Net is able to outperform the other algorithms and achieve an
mAP value of 73.7%, shown in Table 6. Our algorithm achieves the highest mAP in the
small-vehicle class with 61.6% because this class contains more small objects. Figure 10
shows the visualization of the proposed algorithm in the DOTA dataset, and we find
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that the HRTP-Net still encounters issues with missed and false detections when faced
with dense objects. This may be due to the fact that the window operation in the W-trans
structure separates the dense objects. Meanwhile, for rotating objects, the horizontal bound
boxes can make it difficult for the model to learn accurate features. These are the problems
we need to focus on in our future work.

Table 6. Comparison of detection results inn the DOTA dataset (The best performance is highlighted
with bold font).

Model
Small Vehicle Ship All Classes

mAP (%) Precision (%) Recall (%) mAP (%)

YOLOR [33] 60.4 84.3 85.3 68.5 72.3
YOLOv4 [34] 59.3 86.786.786.7 84.4 67.0 73.0
YOLOv5 [37] 58.5 86.2 84.0 68.5 72.4
YOLOv7 [35] 59.7 86.5 86.1 67.1 73.1
PicoDet [36] 59.9 84.9 85.9 65.9 72.4

Faster R-CNN [5] 26.0 53.3 64.6 41.8 39.6
Cascade R-CNN [38] 42.0 53.4 62.2 48.7 44.7

HRNet [11] 26.4 53.9 71.9 43.4 40.1
SuperYOLO [44] 62.962.962.9 83.5 85.9 68.9 73.2
PAG-YOLO [43] 58.4 86.5 84.3 68.8 72.4

TPH-YOLOv5 [16] 59.8 86.2 87.487.487.4 65.0 73.0
Proposed 61.6 85.7 84.5 69.869.869.8 73.773.773.7

Figure 10. Selected examples from the detection results in the DOTA dataset obtained by HRTP-Net.

4.4.4. Efficiency Analysis

For a comprehensive comparison, Table 7 shows the speeds and parameters for all
models in the same operating environment. Frames per second (FPS) in the table indicates
the number of images processed by the model per second. Generally speaking, two-stage
models such as Faster R-CNN, Cascade R-CNN, and HRNet are lower on FPS than one-
stage models, and our proposed HRTP-Net is faster than the three two-stage models. In
terms of the number of parameters, the smallest one is PicoDet with only 1.35 M. In terms
of time complexity, our model contains more convolution operations and, therefore, has a
higher GFLOPs than the existing one-stage models but still has less computational time
compared to the two-stage models. The fastest detection speed is YOLOv5 with 256 FPS in
the MASATI dataset. Our model is larger than the fastest YOLOv5 model in terms of the
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number of parameters, which may limit the application of our proposed model in certain
scenarios as small mobile devices.

Table 7. Performance comparison of different methods in the MASATI dataset.

Methods GFLOPs Params (M) FPS

YOLOR [33] 119.3 52.49 84
YOLOv4 [34] 20.9 9.11 152
YOLOv5 [37] 16.3 7.05 256
YOLOv7 [35] 103.2 36.48 109
PicoDet [36] 13.7 1.35 175

Faster R-CNN [5] 91.0 41.12 109
Cascade R-CNN [38] 118.81 68.93 73

HRNet [11] 83.19 27.08 56
SuperYOLO [44] 31.59 7.051 84
PAG-YOLO [43] 16.4 7.10 222

TPH-YOLOv5 [16] 15.5 7.07 192
Proposed 81.9 16.58 119

5. Discussion

Through ablation experiments and comparisons with state-of-the-art models, our
model’s advancements in the task of small object detection in remote sensing images are
demonstrated. We present the detection performance of HRTP-Net in various challenging
scenarios. In Figure 11a, the object occupies only a few pixels with insignificant visual
features. Our model utilizes HR-FFN to preserve detailed information during forward
propagation, resulting in excellent recognition performance for small objects. In Figure 11b,
the complex water around the object significantly affects feature extraction. However, our
proposed STMA structure effectively highlights the object and suppresses the influence
of complex backgrounds, leading to accurate detection. In Figure 11c, the objects are cov-
ered by different illumination conditions and backgrounds, degrading the visual features.
Nevertheless, our algorithm effectively handles the detection task in complex backgrounds,
enabling precise recognition of the objects. In Figure 11d, the large number of objects and
the presence of similar objects pose a significant challenge to detection precision. However,
our proposed algorithm performs well in handling complex backgrounds and accurately
identifying small-scale car targets in urban scenes.

Figure 11. Test results of the algorithm under different challenges. (a) An extremely small object is
in the bottom left corner of the image. (b) The ship object is surrounded by complex water waves.
(c) Objects are disturbed by illumination variation and shadows. (d) There is similar interference
around objects.

However, our algorithm still has certain limitations. First, our algorithm currently
can only detect objects with horizontal bounding boxes. This limitation leads to decreased
recognition accuracy when dealing with a large number of dense objects or rotated bound-
ing box objects due to overlapping detection boxes. Second, when facing multi-scale objects,
particularly large-scale objects, the proposed STMA in our algorithm employs the window-
based mechanism to segment feature maps, resulting in incomplete object features and
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ultimately causing failures in object detection. These two shortcomings will be the direction
of our future research, as we aim to delve deeper into addressing these limitations.

In addition, we have also applied the research findings of this paper to other algorithms
in different domains. For the task of multi-object tracking in remote sensing videos, the
algorithm achieves object tracking through a two-stage process: first, detecting the objects
in each frame and, then, tracking them based on the detection results. We propose an
algorithm called “HRMOT: Two-step association-based Multi-object Tracking in Satellite
Videos Enhanced by High-Resolution Feature Fusion”, which was published in BICS 2023.
This algorithm combines YOLOv5 with the high-resolution network (HRNet) to enhance
the tracking performance by improving the accuracy of small object detection, leveraging
the research findings from our HRTP-Net model. Therefore, we believe that the research on
HRTP-Net in this paper can also be applied to other tasks in the remote sensing field.

6. Conclusions

In this paper, we aim to obtain accurate details in remote sensing images to improve
the feature effectiveness of small objects. We propose an approach called HRTP-Net with
a high-resolution network and a parallel detection structure by combining self-attention
and spatial attention mechanisms. Specifically, the proposed HR-FFN is capable of gener-
ating a more accurate object location with enhanced features by maintaining multi-scale
high-resolution features with rich semantic information. Moreover, in STMA, the Swin
transformer is utilized to calculate the global information and attached with a pixel-level
attention mechanism to achieve background–object modeling. In addition, the parallel
detection structure leverages the attentional outputs of STMA to guide the main detection
structure to obtain discriminative features. We conducted experiments on three extensively
used datasets. The experimental results demonstrate that our method outperforms widely
used methods with a real-time detection in the MASATI dataset, the VEDAI dataset, and
the DOTA dataset.
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