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Abstract: Understanding the response of vegetation to temperature extremes is crucial for inves-
tigating vegetation growth and guiding ecosystem conservation. North China is a vital hub for
China’s economy and food supplies, and its vegetation is highly vulnerable to complex heatwaves.
In this study, based on remote sensing data, i.e., the normalized difference vegetation index (NDVI),
spatio-temporal variations in vegetation and extreme high temperatures are investigated by using the
methods of trend analysis, linear detrending, Pearson correlation and ridge regression. The impacts
of extreme-high-temperature events on different vegetation types in North China from 1982 to 2015
are explored on multiple time scales. The results indicate that the NDVI in North China exhibits
an overall increasing trend on both annual and monthly scales, with the highest values for forest
vegetation and the fastest growth trend for cropland. Meanwhile, extreme-high-temperature events
in North China also display an increasing trend. Before detrending, the correlations between the
NDVI and certain extreme-high-temperature indices are not significant, while significant negative
correlations are observed after detrending. On an annual scale, the NDVI is negatively correlated
with extreme temperature indices, except for the number of warm nights, whereas, on a monthly
scale, these negative correlations are only found from June to September. Grassland vegetation shows
relatively strong correlations with all extreme temperature indices, while forests show nonsignificant
correlations with the indices. This study offers new insight into vegetation dynamic variations and
their responses to climate in North China.

Keywords: normalized differential vegetation index (NDVI); extreme climate events; extreme high
temperatures; North China

1. Introduction

Climate is fundamentally related to the probability of certain weather events, and
events that, statistically, deviate considerably from the mean state are defined as extreme
climate events [1]. Compared with the climatic state, extreme climate events are more
anomalous and unpredictable [2]. The Sixth Assessment Report of the Intergovernmental
Panel on Climate Change indicates that global temperatures have obviously increased, and
the increase in temperatures will continue to impact the natural environment and human
society in the future [3]. In the context of global warming, the frequency, intensity and
duration of extreme climate events have increased worldwide [4–8].

These extreme climate events have profound impacts on ecological stability, social
development, people’s production and livelihoods [6–10]. Frequent extreme heatwave
events can cause water scarcity, soil drying, an increase in pests and diseases and a reduction
in agricultural and fishery yields [11]. Drought events caused by extreme heatwaves
frequently trigger forest pests, forest fires and other disasters, leading to increased mortality
rates in trees [12,13]. However, warming within the photosynthetic threshold can increase
the rate of photosynthesis [14], while an increase in the number of warm nights can reduce
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frost damage to animals and plants in temperate regions [15]. Therefore, the impacts of
extreme high temperatures can be both positive and negative, and different extreme-high-
temperature events have diverse impacts on different regions.

As one of the determining factors of land ecosystem responses to climate change [9],
vegetation has been increasingly studied in relation to extreme climate events based on
indices such as the leaf area index, normalized difference vegetation index (NDVI) and
enhanced vegetation index [16,17]. The remote sensing index, NDVI, can reflect changes
in vegetation coverage on the Earth’s surface, which is commonly used to investigate
vegetation cover variations and responses to climate change [16,18]. Scholars at home
and abroad have conducted corresponding studies on the relationship between extreme
temperature conditions and vegetation phenology, as well as the correlation of the NDVI
with vegetation coverage, etc. Results have shown that the effects of temperature extremes
on vegetation vary with regions, seasons and scales [19,20].

For example, Piao [21] analyzed the leaf unfolding dates of vegetation in Europe and
the United States and found that the impact of the increase in daily maximum temperature
on the advancement of the leaf unfolding dates was obviously greater than that of the
increase in daily mean temperature. In an analysis of the NDVI and extreme climate events
in northwestern China, it was found that the increase in temperature extremes can lead to
the evaporation of soil moisture, thereby affecting vegetation growth [22]. Wang et al. [23]
found that correlations of the NDVI with extreme-high-temperature indices in the coastal
area of China vary significantly across the Huang-Huai region, with marked differences
between the northern and southern regions. In Guangxi Province, the correlation between
strengthened vegetation activity and increased temperature indices is positive on an annual
scale, whereas the positive correlation only appears in spring and summer on a seasonal
or monthly scale [24]. Understanding the responses of terrestrial vegetation to extreme
climate events, such as extreme heat stress at different spatio-temporal scales, is crucial
for predicting the responses of global terrestrial ecosystems to future climate changes,
particularly in the context of the potential exacerbation of climatic extremes [25–27].

North China, a core region of the Chinese economy and of grain production, expe-
riences a variable climate and is particularly sensitive to climate change [28]. In the past,
North China has had a warming and drying trend in terms of climate and has experi-
enced several large-scale drought disasters [29,30]. Notably, extreme-high-temperature
events in North China have exhibited an obvious increasing trend [31,32]. By the end
of the 21st century, it is expected that the North China Plain will be subjected to deadly
heatwaves, with the wet-bulb temperature exceeding the threshold for outdoor agricultural
labor [29,33]. Against the backdrop of frequent extreme climate events, vegetation coverage
in North China shows an overall increasing trend [34]. Therefore, it is of great importance
to research the relationship between extreme-high-temperature events and vegetation cover
in this region to provide scientific guidance for ecological construction and sustainable
development in the future.

The interaction between extreme-high-temperature events and the NDVI has been
extensively investigated by domestic and foreign scholars. However, previous studies on
North China have focused primarily on a single type of vegetation. Less attention has
been paid to horizontal comparisons of vegetation types and the implications of climate
extremes for vegetation at multiple temporal scales [35–38]. Additionally, in previous
studies exploring the relationship between vegetation and climate factors in North China,
correlation analyses were commonly employed [35,39]. However, this method only reveals
the degree of correlation between independent and dependent variables, but not the degree
of influence of the independent variables on the dependent variables. Therefore, this study
aims to conduct a cross-sectional comparison of different vegetation types by employing
correlation and ridge regression (RR) models at multiple time scales. In addition, the
historical variation characteristics and spatial differences of extreme-high-temperature
events in North China are investigated, and the impacts of extreme-high-temperature
events on vegetation cover are explored.
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The remainder of this paper is arranged as follows. Section 2 introduces the data and
methods used in this study. Section 3 shows the results, including the spatio-temporal
variabilities of vegetation dynamics, the spatio-temporal variabilities of extreme-high-
temperature indices and the correlations and RRs between the NDVI and extreme-high-
temperature indices. A discussion is provided in Section 4. Conclusions are presented in
Section 5.

2. Data and Methods
2.1. Study Area and Data

North China is located in the area of 34.59◦N–53.33◦N, 97.17◦E–126.28◦E and covers
approximately 1.52 × 106 km2 (Figure 1a), encompassing the Inner Mongolia Autonomous
Region, Beijing, Hebei Province, Tianjing and Shanxi Province [31]. North China, a core
area of China’s economy and agriculture, has a fragile ecological environment. Its climate
in summer is hot and relatively humid, occupying about 60% of the annual precipitation.
Its winter is cold and dry (Figure 1d). The average annual temperature ranges from 13.7 ◦C
in the southwest to −5.7 ◦C in the northeast (Figure 1c). Similarly, annual precipitation
exhibits a visible decreasing gradient from the southwest to the northeast, ranging between
664.7 mm and 60.3 mm (Figure 1b). The southeastern part of North China belongs to
the temperate monsoon zone, while the northwestern part of this area is categorized as a
semi-arid zone [13]. In the context of frequent climate extremes, recurrent and consecutive
heatwaves have led to uncertainty for agriculture and its sustainability in North China [40].
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Figure 1. Geographic characteristics of North China: (a) location and elevation; (b) annual precip-
itation; (c) mean temperature; (d) monthly mean normalized difference vegetation index (NDVI),
temperature and precipitation; (e) main land cover types in 2020.
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All datasets used in this study are described in Table 1, including the reliable Global
Inventory Modeling and Mapping Studies (GIMMS) NDVI3g version 1.0 dataset, which
is derived from the GIMMS of the National Aeronautics and Space Administration. The
GIMMS NDVI3g version 1.0 dataset has a spatial resolution of 1/12◦ × 1/12◦ and a
temporal interval of 15 days. Although the spatial resolution of this dataset is relatively
low, this dataset has the longest time series, available for the 34-year period from 1982 to
2015 [41–43]. The dataset has been verified to be reliable through comparisons with ground-
based validations and other NDVI products. The monthly NDVI values are obtained
by using the maximum-value composites method, which minimizes the influences of
sun altitude, clouds, water vapor, aerosols and directional surface reflectance [44,45].
Moreover, the pixel values of >0.1 in the raster maps are selected as valid units to explore
the vegetation dynamics.

Table 1. Datasets used in this study.

Datasets Source Spatial Resolution

CN05.1 Chinese Academy of Sciences, Climate Change Research
Center (https://ccrc.iap.ac.cn/, accessed on 11 April 2022) 1/4◦

Global Inventory Modeling and Mapping
Studies NDVI3g

National Aeronautics and Space Administration
(https://www.nasa.gov/nex, accessed on 11 March 2022) 1/12◦

China Land Use/Cover Resource and Environment Science and Data Center
(https://www.resdc.cn/, accessed on 25 October 2022) 1 km

The long-term climate data employed in this study are from a gridded daily observa-
tion dataset, CN05.1, which is constructed by an anomaly approach during the interpolation
with more station observations (~2400) in China [46,47]. Three variables are used in this
study, i.e., daily minimum temperature, daily maximum temperature and daily mean
temperature. This dataset is available for the period of 1961–2022, with a spatial resolution
of 1/4◦ × 1/4◦. The CN05.1 dataset has been widely used to investigate the effects of
climate factors on vegetation growth. The climate data are first subjected to a basic cropping
process, and the extreme-high-temperature indices are calculated by using the climate data
from 1 January 1982 to 31 December 2015 to correspond to the time length of the NDVI data.

To effectively promote the detection of variations in extreme weather events in various
countries around the world, the Expert Team on Climate Change Detection and Indices
has defined 27 extreme indices, which are now widely used in extreme climate research
around the world [24,35,36,48,49]. In this research, we select six extreme-high-temperature
indices, namely the maximum (TXX) and minimum values (TXN) of the daily maximum
temperature, the maximum (TNX) and minimum values (TNN) of the daily minimum
temperature and the number of warm days (TX90) and warm nights (TN90). The selected
indices involve the calculations of extreme values and thresholds, which can quantify the
variations in extreme temperature more fully.

Most current studies of vegetation responses to extreme climate events have adopted
a direct correlation approach based on raw data [35,36]. However, it is undeniable that a
simple correlation analysis directly using raw data confounds the influences of multiple
factors (not just extreme temperature) on vegetation [48]. To minimize the effect of these
factors on the results, we discuss the response of the daily mean temperature (TM) in this
study to compare with the vegetation responses to the extreme temperature indices. Table 2
provides more information on the extreme-high-temperature indices.

Land use and cover data with a spatial resolution of 1 km are downloaded from the
Resource and Environment Science and Data Center, China Land Use/Cover Datasets.
They are interpreted based on the Landsat TM image of the United States by artificial
virtualization [50,51]. The sub-regions of the three vegetation types (farmlands, forests and
grasslands) are extracted from land use and land cover data. In this research, the data of
the most recent available year (2020) are used (Figure 1e).

https://ccrc.iap.ac.cn/
https://www.nasa.gov/nex
https://www.resdc.cn/
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Table 2. Definitions of extreme climate indices used in this study.

Name Index Definition

Mean Tmean TM (◦C) Mean value of daily mean temperature
Max Tmax TXX (◦C) Maximum value of daily maximum temperature
Min Tmax TXN (◦C) Minimum value of daily maximum temperature
Max Tmin TNX (◦C) Maximum value of daily minimum temperature
Min Tmin TNN (◦C) Minimum value of daily minimum temperature

Warm days TX90 (d) Number of days with a daily maximum
temperature of >90th percentile

Warm nights TN90 (d) Number of days with a daily minimum
temperature of >90th percentile

All data are cropped by using the Aeronautical Reconnaissance Coverage Geographic
Information System 10.7 and are then synthesized by using Python 3.11, and the trilinear
interpolation is applied to unify the resolution to 0.25◦ for the subsequent analysis.

2.2. Methods

Figure 2 provides the flowchart of the approaches used in this study.
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Figure 2. The framework for analyzing the impacts of extreme-high-temperature events on vegetation
in North China.

2.2.1. Linear Regression

We calculate the regional average value of each variable based on the mean of all
pixels distributed in the study area. The linear regression method is used to characterize
the temporal trends of the NDVI and extreme-high-temperature indices [36,52]. The slope
of the linear regression based on least-squares fitting indicates the annual change rate of
the variable, with positive values representing an increasing trend and negative values
representing a decreasing trend. The slope is calculated according to Equation (1).

θslope =
n ∑n

i=1(i× Ii)−∑n
i=1 i×∑n

i=1 Ii

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where θslope denotes the variation rate of a variable, n the period length (34 years), i the
serial number of years and Ii the value of the variable in the ith year.
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Moreover, the variation trends of the elements are classified into three groups based
on the results of the F-test method, i.e., significant decreasing trend (p < 0.05, θslope < 0),
significant increasing trend (p < 0.05, θslope > 0) and nonsignificant variation trend (p > 0.05).

2.2.2. Pearson Correlation Analysis

Pearson correlation analysis is applied to measure the degree of the correlations be-
tween the vegetation dynamics and the extreme-high-temperature indices at both regional
average and pixel scales [53].

Rx,y =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1 (xi − x)2 ×∑n
i=1 (yi − y)2

(2)

where Rx,y indicates the correlation coefficient, denoting the degree of the correlations
between the extreme-high-temperature indices (xi) and the NDVI (yi). x and y represent
corresponding mean values in the period length (34 years).

Moreover, the coefficients between the NDVI and the temperature indices are classified
into three groups based on the results of the F-test method, namely significantly negative
(p < 0.05, Rx,y < 0), significantly positive (p < 0.05, Rx,y > 0) and nonsignificant (p > 0.05).

In order to investigate the impacts of extreme-high-temperature events on vegetation,
Pearson correlation analyses are conducted between the NDVI and the extreme-high-
temperature indices. In our study, the extreme-high-temperature indices and the NDVI
are detrended, and Pearson correlation analyses are subsequently performed between the
detrended extreme-high-temperature indices and the NDVI.

2.2.3. Linear Detrending

Vegetation growth is strongly influenced by climate, and it can also affect the climate
system through a series of bio-physical processes [54,55]. Hence, it is difficult to analyze
the changes directly from the original time series, and the raw data need to be detrended.

Detrending decouples interannual variation in vegetation and climate from long-term
directional variations [56,57]. Linear detrending is the process of obtaining a new time
series from the original time series by removing the corresponding linear trend [58]. This
approach avoids the confounding influence of long-term variations, such as the fertilization
effects of rising atmospheric CO2 concentration, atmospheric nitrogen deposition [55] and
anthropogenic activities [20]. Consequently, the linear detrending method is utilized in this
study with the following calculation method.

For a sequence X = {X[1], . . . X [n]} and its linear trend function g(k), the linear
detrending sequence of X is defined as X = {X[1], . . . , X[n]}, where X[k] = X[k]− g(k)
and k = 1, . . . , n [56].

2.2.4. Ridge Regression

The least-square approach is widely used to describe the impacts of a number of
variables on the response variable. However, in the presence of multi-collinearity, the
least-square technique may show poor performance as a solution method [59]. The results
of numerous studies have indicated significant linear cross-correlations in extreme climatic
indices, especially for the correlation between the maximum temperature and the minimum
temperature [60].

To avoid the multicollinearity, ridge regression (RR) is used to quantify the relationship
between the extreme temperature indices and the NDVI. When there is collinearity, the
parameters estimated by RR are more robust than those by the least-square approach [59,61].
Specifically, the RR method solves the matrix inverse problem by adding a nonzero value of
k (ridge or shrinkage parameter) to the diagonal elements of X′X. Thus, the ridge estimator
for the linear coefficients is expressed by Equation (3) [62,63]:

β =
(
X′X + kIn

)−1X′y (3)
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where In represents an identity matrix. k denotes the ridge or shrinkage parameter, which
determines the strength of the penalty imposed on the regression coefficients. In this study,
the parameter k is estimated by using the leave-one-out cross-validation method [64], which
employs the entire dataset to calibrate the model, and thus can obtain unbiased regression
coefficient estimations.

Firstly, the NDVI and the extreme-high-temperature indices are detrended and stan-
dardized. Then, RR is employed to supplement the Pearson correlation analysis to obtain
the best fitting regression equation, and the regression coefficient of each extreme-high-
temperature index is quantified to assess the degree of its influence on the NDVI.

3. Results
3.1. Spatio-Temporal Variability of Vegetation Dynamics
3.1.1. Temporal Variations in Vegetation Dynamics

Figure 3a reveals the time series of the annual NDVI. The multi-year mean of the
annual NDVI over the past 34 years is 0.285. The maximum value is observed in 2015,
reaching 0.299. The minimum value is found in 1982, namely 0.276. From 1982–2015, the
regional average NDVI increases significantly, with an annual rate of 0.0004 year−1, and the
trend exhibits several fluctuations. These observations suggest that the vegetation cover
increased in North China from 1982 to 2015. The regional average annual NDVI values for
the three vegetation types (cropland, forest and grassland) are also calculated to further
investigate the differences in the greenness in different vegetation type areas (Figure 3b).
The forest consistently exhibits the highest NDVI values, while the grassland displays
the lowest NDVI values throughout the year. The three vegetation types show increasing
multi-year trends, similar to that of the entire North China region. Note that the cropland
shows the highest growth trend (0.0008 year−1), whereas the grassland demonstrates the
lowest growth trend (0.0003 year−1).
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Figure 3c computes the correlation between different monthly NDVI values and
annual NDVI values from 1982 to 2015, reflecting the intra-annual heterogeneity and the
periodic variation between different months of the NDVI. The correlations are positive
from January to October but negative in November and December, indicating an increasing
trend of vegetation cover from January to October but a decreasing trend in November and
December. The strong correlation between April and October (correlation > 0.5, p < 0.01)
indicates that the growth of the NDVI is mainly concentrated in these months.

Table 3 further analyzes the NDVI values on a monthly scale. The regional mean
NDVI values on a monthly scale in North China range from 0.155 to 0.478, with the highest
value appearing in August and the lowest in February (Figure 1d). The cropland, forest
and grassland vegetation generally show similar trends to that of North China as a whole,
with an increasing trend from March to October and a decreasing trend from November to
February. The month with the fastest growth rate for all types is October. For North China
as a whole, the highest rate is 0.0016 year−1 in October. The greenness rate of cropland is
generally the highest in each month, with the highest value of 0.0026 year−1 in October.

Table 3. Monthly variation trends in the regional average NDVI for different vegetation types in
North China from 1982 to 2015.

Month North China Cropland Forest Grassland

January −0.0004 ** −0.0003 −0.0010 ** −0.0005 **
February −0.0001 −0.0001 −0.0006 * 0.0000

March 0.0000 0.0003 −0.0004 0.0000
April 0.0008 ** 0.0013 ** 0.0013 ** 0.0005 **
May 0.0011 ** 0.0011 ** 0.0019 ** 0.0012 **
June 0.0004 0.0005 0.0004 0.0005
July 0.0006 * 0.0012 ** 0.0002 0.0006

August 0.0006 ** 0.0013 ** 0.0001 0.0006
September 0.0009 ** 0.0018 ** 0.0011 * 0.0005

October 0.0016 ** 0.0026 ** 0.0025 ** 0.0012 **
November 0.0000 0.0002 0.0001 −0.0001
December −0.0006 ** −0.0001 −0.0013 ** −0.0007 **

Note: “*” denotes that the value passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes
that the value passes the significance test at a significance level of 0.01 (p < 0.01).

3.1.2. Spatial Variations in Vegetation Dynamics

From 1982 to 2015, the spatial distributions of the annual average NDVI values are
quite different in North China (Figure 4a). In general, the mean NDVI demonstrates a
gradual increasing trend from the southwest to the northeast. Annual mean NDVI values
are high (0.6–0.7) in northeastern and southeastern North China, such as the Beijing–Tianjin–
Hebei Plain and Shanxi Province, while annual mean values are low (0–0.1) in western
North China, which is covered predominantly by deserts.
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The spatial variation in the NDVI has been highly heterogeneous across North China
during the past 34 years. As illustrated in Figure 4b, the NDVI increases in most areas
(70% region) but decreases in some areas (30% region). Statistical analysis reveals that 47.4%
of the study area has experienced significant (p < 0.05) greening and 11.7% has experienced
significant (p < 0.05) browning. Spatially, the areas with substantially increasing NDVI
values are primarily in the south, where croplands and forests predominate. Conversely,
the regions with decreasing NDVI values are primarily located in the central grassland of
Inner Mongolia and the forest areas in the northeast of North China.

3.2. Spatio-Temporal Variabilities of Extreme-High-Temperature Indices
3.2.1. Temporal Variations in Extreme-High-Temperature Indices

The regional average temporal variations in the extreme-high-temperature indices are
displayed in Figure 5, where the TM shows a significant increasing trend (0.036 year−1,
p < 0.01).
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From 1982 to 2015, both the TXX and TNX values exhibit significant upward trends,
with increasing rates of 0.058 year−1 and 0.056 year−1, respectively, which are much higher
than that of TM. Meanwhile, the TNN and TXN values show nonsignificant trends. Addi-
tionally, the TX90, TN90 values increase significantly. These findings collectively indicate a
significant increase in temperature in North China from 1982 to 2015, accompanied by an
increase in the number of high-temperature events.

The multi-year trends for three vegetation regions are shown in Table 4. In the regions
with all three vegetation types (cropland, forest, grassland), the TM and all extreme-high-
temperature indices show increasing trends, with significant increases in TM, TXN, TNX,
TX90 and TN90.
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Table 4. Inter-annual trends in regional average extreme-high-temperature indices for different
vegetation types in North China from 1982 to 2015.

Index Cropland Forest Grassland

TM 0.0344 ** 0.0301 ** 0.0377 **
TXX 0.0469 * 0.0709 ** 0.0605 *
TXN 0.0096 0.0016 0.0004
TNX 0.0498 ** 0.0457 ** 0.0592 **
TNN 0.0369 0.0209 0.0094
TX90 0.4840 ** 0.6131 ** 0.6204 **
TN90 0.5655 ** 0.4837 ** 0.6089 **

Note: “*” denotes that the value passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes
that the value passes the significance test at a significance level of 0.01 (p < 0.01).

The trends of the extreme-high-temperature indices for each month are shown in
Table 5, where TM shows significant increasing trends from March to September. The
monthly TXX and TNX values show more obvious increasing trends, with trends in more
than half of the months passing the significance test (p < 0.05), while the TXN and TNN
values show nonsignificant trends in all months except for June and July. In addition, TX90
and TN90 generally show an increasing trend in the months where values are available.
On a monthly scale, the characteristics of the extreme-high-temperature indices are slightly
different from those on an annual scale. Among them, in the analyses of the extreme-
high-temperature indices, the temperature still shows a general increase; high-temperature
events also increase, with certain seasonal differences, such as a decreasing trend in cold
January and December.

Table 5. Monthly trends in regional average extreme-high-temperature indices in North China from
1982 to 2015.

Index January February March April May June July August September October November December

TM 0.0161 0.048 0.0668 * 0.0412 0.0330 * 0.0459 ** 0.0513 ** 0.0374 ** 0.0422 ** 0.032 0.0267 −0.003
TXX 0.0101 0.0988 * 0.1272 ** 0.0846 * 0.0224 0.0565 * 0.0618 * 0.0453 * 0.0564 * 0.0143 0.0226 −0.0582
TXN −0.0005 0.0301 −0.0036 −0.0077 0.044 0.0108 0.0476 ** 0.0338 0.011 0.0488 0.0122 −0.0008
TNX 0.0176 0.0628 0.1111 ** 0.0760 ** 0.0507 ** 0.0643 ** 0.0565 ** 0.0468 ** 0.0299 0.0331 0.0717 ** 0.012
TNN 0.0181 0.0481 0.0065 0.0197 0.0519 * 0.0627 ** 0.0591 ** 0.007 0.0407 0.0493 0.0263 0.012
TX90 0 0 0 0.0093 * 0.0178 0.1404 * 0.2107 ** 0.1651 ** 0.0302 −0.0005 0 0
TN90 0 0 0 0 0.0126 * 0.1897 ** 0.2871 ** 0.1221 * 0.005 0 0 0

Note: “*” denotes that the value passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes
that the value passes the significance test at a significance level of 0.01 (p < 0.01).

3.2.2. Spatial Variations in Extreme-High-Temperature Indices

The spatial distributions in Figure 6 indicate that TM in North China has a gener-
ally increasing trend throughout the region, while extreme-high-temperature variations
are heterogeneous.

TXX, TNX, TX90 and TN90 all show upward trends in the whole region of North
China, which are much higher than TM and generally significant (p < 0.05). The area with
significantly increasing TN90 values even reaches 93.2%, and the region with significantly
increasing TX90 values reaches 91.7%. In contrast, the overall TXN and TNN variations are
not significant. The spatio-temporal variations in the TXN and TNN values show similar
distributions, with both increases and decreases by area. Areas with increasing trends are
mainly in central North China, and those with decreasing trends are in the western and
northeastern regions of North China.

In summary, the results of the examination on spatial and temporal scales are similar,
revealing a prevailing ascending tendency in extreme-high-temperature indices throughout
the whole area.
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Figure 6. Variations in the spatial patterns of the extreme-high-temperature indices of (a) TM, (b) TXX,
(c) TXN, (d) TNN, (e) TNX, (f) TX90 and (g) TN90 in North China from 1982 to 2015. Dots indicate
that the values pass the significance test at a significance level of 0.05 (p < 0.05).

3.3. Correlations between the NDVI and Extreme-High-Temperature Indices
3.3.1. Temporal Correlations between the NDVI and Extreme-High-Temperature Indices

The correlation analyses in Table 6 show that TM is significantly and positively corre-
lated with the NDVI before and after detrending, with higher significance after detrending
(p < 0.01).
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Table 6. Correlations between the regional average NDVI and extreme-high-temperature indices in
North China from 1982–2015 before and after the data detrending.

Indices Correlation Coefficients
(Before Detrending)

Correlation Coefficients
(After Detrending)

TM 0.434 * 0.094 **
TXX 0.104 −0.254 *
TXN 0.257 −0.146 *
TNX 0.038 −0.014
TNN −0.023 −0.012
TX90 0.185 −0.276 *
TN90 0.506 ** 0.141

Note: “*” denotes that the value passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes
that the value passes the significance test at a significance level of 0.01 (p < 0.01).

Before detrending, TN90 shows a significant positive (p < 0.05) correlation with the
NDVI, with a correlation coefficient of 0.506, while the correlations of the other extreme-
high-temperature indices are not significant. Specifically, TXX, TNX and TXN are positively
correlated with the NDVI, and TX90 and TN90 are also positively correlated with the NDVI.
Conversely, TNN is negatively correlated with the NDVI.

After detrending, except for TN90, all extreme-high-temperature indices (TXX, TXN,
TNX, TNN, TX90) show negative correlations with the NDVI, among which the correlations
for TXX, TNX and TX90 are significant (p < 0.05). It is different from the positive correlations
before detrending. TN90 is significantly correlated with the NDVI before detrending,
but not significant after detrending. Almost all high-temperature indices are negatively
correlated with the NDVI, indicating that vegetation in North China is negatively affected
by extreme high temperatures.

The annual correlation distributions for each vegetation type show general compa-
rability in terms of all vegetation types for most indices, although some differences are
observed (Table 7). Specifically, in forest areas, the extreme-high-temperature indices are
nonsignificantly correlated before and after detrending. It is indicated that extreme high
temperatures have less impact on vegetation in the forest areas. The forest areas are less
vulnerable to high temperatures than cropland and grassland areas and can better cope
with extreme-high-temperature events.

Table 7. Correlations between the regional average NDVI and extreme-high-temperature indices in
North China from 1982–2015 before and after data detrending for different vegetation types.

Indices

Cropland Forest Grassland

Before
Detrending

After
Detrending

Before
Detrending

After
Detrending

Before
Detrending

After
Detrending

TM 0.474 ** 0.084 0.468 ** 0.315 0.242 −0.001
TXX 0.052 −0.397 * 0.367 * 0.185 −0.121 −0.382 *
TXN 0.088 0.075 0.061 0.064 −0.112 −0.125
TNX 0.384 −0.101 0.156 −0.087 0.083 −0.201
TNN 0.229 0.115 0.067 0.019 −0.068 −0.101
TX90 −0.498 ** −0.153 −0.044 0.032 −0.508 ** −0.442 **
TN90 −0.095 −0.052 −0.210 −0.219 −0.010 0.026

Note: “*” denotes that the value passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes
that the value passes the significance test at a significance level of 0.01 (p < 0.01).

In contrast, the extreme-high-temperature indices in grassland areas are negatively
correlated before and after detrending, with correlation coefficients much lower than
those of the regional average, indicating that grassland vegetation is sensitive to high
temperatures and more affected by high-temperature events. Moreover, it is worth noting
that TX90 in grassland regions shows significant negative correlations both before and after
detrending, with correlation coefficients much higher than those of the other vegetation
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types. This result indicates that the increase in the number of hot days has a significant
negative impact on grassland vegetation. In cropland areas, the responses of the NDVI to
extreme high temperatures are inconsistent, but they are significantly negatively correlated
with the detrended TXX. The correlations with the other detrended indices are not strong.

The monthly correlations are calculated in Figure 7. Before detrending, TM is positively
correlated with the NDVI in all months except for December and June. The distributions of
the extreme-high-temperature indices are similar to those of TM. With respect to January–
May, the TXX, TXN, TNN and TNX indices are positively correlated with the NDVI,
especially in March, April and May. However, from June to December, the correlations
are not significant, and TXX, TXN and TNN show negative correlations. The correlation
distributions for TX90 and TN90 are similar, with negative correlations in June, September
and October and positive correlations in other months.
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Figure 7. Correlations between the NDVI and extreme-high-temperature indices on a monthly scale
(a) before and (b) after data detrending in North China from 1982 to 2015. “*” denotes that the value
passes the significance test at a significance level of 0.05 (p < 0.05), and “**” denotes that the value
passes the significance test at a significance level of 0.01 (p < 0.01).

After detrending, the distribution characteristics of all high-temperature indices are
similar. Similar to the distribution before detrending, the correlations with the NDVI
are positive for January–May and October, with a large correlation coefficient in March.
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However, from June to September, all high-temperature indices are generally negatively
correlated with the NDVI, with a large correlation coefficient in June, indicating that high
temperatures have a negative impact on plant growth during the growing season in North
China. Nevertheless, during other colder months, the increase in temperature can facilitate
vegetation growth to a certain extent.

3.3.2. Spatial Correlations between the NDVI and Extreme-High-Temperature Indices

Figures 8 and 9 illustrate the coexistence of positive and negative correlations between
the extreme-high-temperature indices and the NDVI across spatial regions, indicating spa-
tial heterogeneity in vegetation responses to extreme-high-temperature events. The results
reveal that the majority of the correlations between TM and NDVI in North China are posi-
tive before detrending, whereas the majority turn to negative correlations after detrending.
The negatively correlated region before detrending is distributed in the central grassland
and northeastern forest of North China, while those in the southern Beijing–Tianjin–Hebei
Plain show a significant positive correlation. However, after detrending, the regions with
negative correlations are distributed in most of the central and western regions.
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Figure 8. Spatial patterns of the correlations between the NDVI and extreme-high-temperature
indices before data detrending in North China from 1982 to 2015: (a) TM, (b) TXX, (c) TXN, (d) TNN,
(e) TNX, (f) TX90 and (g) TN90. Dots indicate that the values pass the significance test at a significance
level of 0.05 (p < 0.05).
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some areas and promote vegetation growth to some extent. 

The regions with negative correlations between the extreme temperature indices 
and the NDVI are similar to the distributions of TM, mainly in the central grassland 
area. This is consistent with the results of the regional average correlation analysis 

Figure 9. Spatial patterns of the correlations between the NDVI and the extreme-high-temperature
indices after data detrending in North China from 1982 to 2015: (a) TM, (b) TXX, (c) TXN, (d) TNN,
(e) TNX, (f) TX90 and (g) TN90. Dots indicate that the values pass the significance test at a significance
level of 0.05 (p < 0.05).

The negative correlations between the extreme-high-temperature indices and the
NDVI are more widespread before and after detrending, but they are not significant.
For example, TXX has negative correlations with the NDVI for 9.4% and 27.8% of pixels
before and after detrending, respectively, and 11.1% and 28.38% of pixels show negative
correlations between TX90 and the NDVI before and after detrending, respectively. The
results before and after detrending jointly indicate that extreme high temperatures have
caused widespread damage to the vegetation in North China, affecting vegetation growth.
However, in comparison, TN90 is positively correlated with the NDVI for 74.4% of pixels
before detrending, indicating that warm nights can alleviate frost damage in some areas
and promote vegetation growth to some extent.

The regions with negative correlations between the extreme temperature indices and
the NDVI are similar to the distributions of TM, mainly in the central grassland area. This
is consistent with the results of the regional average correlation analysis mentioned above.
It is noteworthy that in the spatial distribution patterns, the correlation coefficients of TXX
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and TX90 with the NDVI are mostly positive in the northeastern forest area. However, the
results are different for other temperature indices.

3.4. Ridge Regressions between the NDVI and Extreme-High-Temperature Indices

The ridge regression fitted model in Table 8 has a high and significant correlation with
the original data (p < 0.01), indicating that the results are credible. The regression coefficients
of TM in all regions before and after detrending are all positive, which is consistent with the
results of the correlation analysis. Only TXX shows a negative regression coefficient with
the NDVI in the cropland areas, and the coefficient is not large in North China. However,
the coefficients of TXX are up to 0.971 and 0.955 before and after detrending in the forest
areas. The regression coefficients of TXN and TNX are negative in almost all areas. The
regression coefficients of TNN are basically positive in all areas, but they are negative in
the forest areas.

Table 8. Simulated impacts of extreme-high-temperature indices on the regional average NDVI in the
ridge regression model in North China from 1982–2015 for different vegetation types.

Indices
North China Cropland Forest Grassland

Before
Detrending

After
Detrending

Before
Detrending

After
Detrending

Before
Detrending

After
Detrending

Before
Detrending

After
Detrending

Intercept −1.49 × 10−15 −3.88 × 10−19 −1.78 × 10−15 2.40 × 10−17 7.13 × 10−17 −6.83 × 10−17 −7.84 × 10−15 −3.36 × 10−18

Correlation 0.755 ** 0.622 ** 0.690 ** 0.485 ** 0.761 ** 0.695 ** 0.766 ** 0.746 **
TM 0.394 0.185 0.33 0.071 0.382 0.34 0.298 0.177
TXX 0.226 0.195 −0.238 −0.177 0.971 0.955 0.074 0.115
TXN −0.185 −0.097 −0.15 −0.001 0.548 0.639 −0.317 −0.322
TNX −0.082 −0.11 0.267 0.017 −0.381 −0.37 0.002 −0.022
TNN 0.117 0.061 0.219 0.042 −0.549 −0.635 0.146 0.135
TX90 −0.983 −0.848 −0.224 −0.119 −0.845 −0.806 −1.12 −1.065
TN90 1.007 0.676 0.335 0.075 0.708 0.571 1.072 0.787

Note: “**” denotes that the value passes the significance test at a significance level of 0.01 (p < 0.01).

The regression coefficients of TX90 are negative, while those of TN90 are positive for
all vegetation types. The absolute values of the regression coefficients are large, especially
in the grassland areas, reaching −1.065 (TX90) and 0.787 (TN90). The absolute values of
the regression coefficients are also large in North China as a whole and in the forest areas,
with values of −0.848 (North China) and −0.806 (forest areas) for TX90, and values of 0.676
(North China) and 0.571 (forest areas) for TN90. This result indicates that an increase in
TX90 can cause certain negative effects for all vegetation types, while an increase in TN90
has a positive impact on vegetation.

4. Discussion
4.1. Variations in the NDVI

This study finds that the regional average NDVI in North China gradually increases
from 1982 to 2015, at a rate of 0.0004 year−1. Previous studies have investigated the trends
in NDVI variations in northern China from 2000 to 2016 and the agro-pastoral transitional
zone of northern China from 1986 to 2015 [35,65]. The results all indicated an increasing
trend in the NDVI in North China, with a more obvious increase in the east and a less
obvious increase in the west. Therefore, the findings in this paper are consistent with
previous findings.

The trend chart of the NDVI shows that the NDVI drops after 1990 and 1998, with
large fluctuations in the average NDVI in North China before 2000, followed by a gradual
increase after 2000. It is speculated that this phenomenon is related to a series of ecological
restoration projects implemented in the study area around 2000 [37,66], such as the Grain for
Green Program, the Natural Forest Conservation Program and the Sand Control Programs.
These projects have achieved influential results, restored damaged ecological environments
and largely increased the vegetation coverage in North China [67].

Based on the comparison of the NDVI trends and spatial distribution maps among
different vegetation types, it is found that the forest areas have the highest average vegeta-
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tion cover throughout the year. This result is correlated with the forest area in the northeast
Greater Khingan Mountains, which is mainly composed of evergreen coniferous forest and
maintains a relatively high coverage level even during non-growing seasons. The NDVI
increase rate in North China is slower than the rate at the national scale (0.0006 year−1) [68],
but the NDVI growth rate in the cropland areas exceeds the national level. Among the
three vegetation types studied in this paper, the farmland type shows the fastest NDVI
growth rate (0.0008 year−1), which could be attributed to economic development and
population growth in North China [69], leading to more cultivated farmland areas and
higher vegetation cover.

The most widely distributed vegetation type in North China is grassland, but its
vegetation coverage is consistently low, and the growth rate is also slow (0.0003 year−1).
Some grassland areas even show decreasing trends in the NDVI according to the spatial
trend maps (Figure 4). Similar studies [36] found that desertification and land expansion
are the main causes of significant degradation of the grassland NDVI in Inner Mongolia.
The results of this study also show that, among the three vegetation types in North China,
grassland is the most vulnerable to extreme-high-temperature factors, which collectively
affect the development of grassland ecosystems.

The trend analyses of the NDVI for different months indicate that monthly NDVI
variation trends are heterogeneous. Cold months, such as January and December, show de-
creasing trends in the NDVI (Table 3). This finding of seasonal NDVI variation unevenness
has also been frequently observed in previous studies [24,70], suggesting that focusing on
variations at different time scales is necessary.

4.2. Variations in Extreme-High-Temperature Events

Trend analysis of the time series shows an increasing trend in all extreme-high-
temperature indices from 1982–2015, and the spatial distribution pattern confirms that
basically all extreme-high-temperature events exhibit increasing trends across the entire
region. These trends have also been detected in Inner Mongolia [36], the Mongolian
Plateau [33,39] and Southwest China [71]. In addition, in North China, historical long-term
average climate change shows a warming and drying trend in the last 30 years [35,65],
and the warming rate is much higher than in the Northern Hemisphere [72]. Moreover, in
the next three decades, the temperature in this region is more likely to increase at an even
higher rate [29,32].

The amplitudes of increase in TXX and TNX are much greater than that of the average
temperature, confirming that, compared with the climatic mean state, extreme climate
responds more sensitively to climate change [2]. Moreover, in the three vegetation types,
all extreme-high-temperature indices show upward trends, especially in grassland areas,
which have experienced stronger impacts from climate change.

Similar to the NDVI, heterogeneity is observed in the time trend analyses of different
months. The decreasing trends appear in the cold months of December and January, sug-
gesting a relationship between the NDVI variation and extreme-high-temperature indices.
However, the extreme-high-temperature indices exhibit the most obvious increasing trend
in July, while the most obvious increasing trend of the NDVI appears in October, indicating
a certain lag between these trends. The time lag cross-correlation between the NDVI and
extreme-high-temperature indices also indicates that the NDVI responds to the extreme
temperature indices unequally, with a lag of mostly 2–3 months (Table S1). These findings
underscore the significance of conducting research on a monthly scale.

4.3. Impacts of Extreme-High-Temperature Events on the NDVI

The vegetation–climate interactions are complex and highly heterogeneous [19,73].
Understanding the relationship between vegetation and extreme climate can help further
protect and restore terrestrial vegetation systems and respond to climate change [74].
This investigation concludes that from 1982 to 2015, there was a significant negative
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correlation between the annual NDVI and most of the extreme-high-temperature indices in
North China.

Extreme-high-temperature indices that represent the highest (TXX, TNX) and lowest
(TXN, TNN) temperatures exhibit differences. Notably, TXX shows a significantly negative
correlation with the NDVI, with a correlation coefficient of −0.254. The negative correla-
tions of TXN and TNN with the NDVI are not significant (Table 6). Since photosynthesis in
most plants occurs during the daytime and pauses at night, the temperature during the day
has a greater impact on carbon fixation and energy capture in plants than the nighttime
temperature, thereby exerting a stronger influence on greening [21,75]. TN90 exhibits a
positive correlation, while TX90 exhibits a significant negative correlation with the NDVI.
This can be attributed to the fact that the increasing TX90 improves the average temperature
at night and reduces the risk of frost for specific plant species [43,76].

The finding of negative correlations between the NDVI and most extreme-high-
temperature events is consistent with the conclusions of several studies. According to
Wei [77], high-temperature extremes have adverse effects on vegetation growth in some
arid areas of Central Asia and the Mongolian Plateau, which are mostly covered by sparse
vegetation and grasses. Similarly, heatwaves significantly reduce the rate of vegetation
growth on the Tibetan Plateau [78]. However, the correlations between the NDVI and
extreme-high-temperature events in some regions, such as Guangdong Province [70], the
Yangtze River Basin [49] and Southwest China [71], differ from this negative correlation.
The vegetation dynamics display strong and positive correlations with the temperature
extremes in most months in Guangdong [70], while the NDVI is closely correlated with
temperature extremes in the Yangtze River Basin [49], and the sum of the relative contri-
bution proportions of the extreme temperature indices to ecosystem metrics is largest in
Southwest China [71]. In these regions, the increase in extreme high temperatures can
stimulate vegetation growth.

These results highlight the regional differences in the impacts of extreme high tem-
peratures. A widely accepted viewpoint is that, within a specific temperature range, a
temperature increase can intensify soil microbial activity, hasten the rate of photosynthesis
in vegetation, extend the growing season, facilitate the accrual of plant organic material
and, thus, help ameliorate the NDVI [24,35,79,80]. However, when ambient temperature ex-
ceeds the optimal photosynthetic temperature, vegetation growth can be inhibited; i.e., high
temperatures can induce evaporation and decrease soil moisture, which can exacerbate soil
drought conditions [24,72]. Heatwaves affect vegetation by combining temperature stress
and water scarcity. Therefore, sufficient precipitation can mitigate the impacts of extreme
high temperatures [14,24,70]. Some regions, such as Guangdong Province and Southwest
China, have abundant precipitation that reduces the stress of high temperatures [70,71],
whereas many regions in North China are characterized by limited precipitation and are
more susceptible to the negative effects of high-temperature stress when temperatures
exceed the optimal photosynthetic temperature [19,36,68].

For different vegetation types, the responses of the NDVI to extreme high temperatures
are different, and this could be attributed to the differences in the adaptability of vegetation
types within North China. This difference in vegetation can be observed from the spatial
distributions and temporal analyses. Spatial heterogeneity is noted in the correlations be-
tween the NDVI and extreme-high-temperature indices, as well as TM. Positive correlations
between extreme high temperatures and the NDVI are observed in the northeastern and
southeastern regions of the study area, while significant negative correlations are observed
in certain areas in the central region. The central region, mainly composed of temperate
grassland [36], with a relatively simple ecosystem structure and limited self-regulation
ability, is subject to the negative impacts of rising temperatures. Such impacts include in-
creased evaporation rates, soil water loss and intensified drought, which, in turn, lead to an
inhibition of normal plant activity and vegetation growth [11]. In contrast, the northeastern
region contains coniferous and broad-leaved forests with abundant water resources [13],
where the conservative water use of forests helps mitigate the impacts of extreme heat
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events. The increase in the maximum temperature in high-latitude forest areas extends
the growing season of plants and enhances photosynthesis, resulting in the promotion of
vegetation growth [27,81].

Conversely, the southeastern region is characterized by croplands that are affected by
farm management, irrigation as well as the use of pesticides and fertilizers [82,83]. Such
agricultural practices prevent the growth of cultivated vegetation from being influenced by
climatic fluctuations [65,84,85].

Simultaneously, temporal analyses of different vegetation types also show that coeffi-
cients for grasslands are always the highest and negative, indicating higher sensitivity to
high temperatures. In contrast, the coefficients of forests and croplands are generally lower,
implying better adaptability to high temperatures. In the context of a warming climate,
arid regions are expected to experience increased aridity due to heightened soil moisture
evaporation caused by high-temperature extremes [86]. This phenomenon is expected to
limit the physiological activities of vegetation, with semi-arid grassland ecosystems in
North China being more sensitive to such changes than forest ecosystems [35].

The analyses conducted on a monthly scale indicate that vegetation responses to
extreme high temperatures exhibit significant temporal heterogeneity across different
months. Specifically, the NDVI exhibits negative correlations with all high-temperature
indices in summer, i.e., June, July, August and September, while positive correlations are
noted from February to May. Notably, the negative correlation is highest in June and the
positive correlation is highest in March. High temperatures in spring provide optimal
growing conditions, while extreme high temperatures in summer may exceed the ideal
range, leading to increased evaporation and reduced soil moisture levels. This phenomenon,
observed on a monthly scale, highlights that extreme temperatures may restrict vegetation
growth during summer months while promoting it from February to May. This may not
be discerned on annual and seasonal scales. Therefore, a holistic understanding of how
vegetation responds to climate extremes during different growing periods is essential for
the effective management of these ecosystems.

In addition, the correlations between the NDVI and certain extreme-high-temperature
indices are not significantly positive before detrending, while significant negative correla-
tions are observed after detrending, which confirms the importance of detrending in this
study. The extreme-high-temperature series and the NDVI series have a similar long-term
increasing linear trend, and a direct correlation reflects the positive correlation between
the two trends. After linear detrending, the short-term correlation is negative, indicating
opposite variations on an annual scale. The linear detrending decouples the sequence of
NDVI and climate factors from the long-term effects of changes, removes the trends in
correlation analysis and makes the analysis results more realistic and reliable [56].

This study provides valuable insights into potential prevention measures aimed at
safeguarding the North China ecosystem, which can aid government managers in taking
effective action to protect local ecosystems and minimize the eco-economic losses caused
by climate extremes. Moreover, given the anticipated long-term warming trend and
its associated proliferation of heatwaves that adversely influence vegetation [29,32,87],
local authorities are advised to proactively implement adaptive mitigation strategies to
prevent the potential negative effects of extreme high temperatures during summer months,
particularly in June. Furthermore, our findings further underscore the vulnerability of
semi-arid and arid grassland ecosystems to extreme high temperatures. In order to mitigate
these effects, the timely introduction of high-heat-tolerant and drought-resistant vegetation
species is warranted. Additionally, implementing adequate irrigation practices can help
alleviate the adverse impacts of high temperatures on agriculture.

4.4. Limitations and Uncertainties

We note that this study is subject to some limitations and uncertainties. Firstly, al-
though it has been proved that the GIMMS NDVI data can accurately capture extreme
vegetation states [49,78] and are reliable for investigating the impacts of extreme climate



Remote Sens. 2023, 15, 4542 20 of 24

events on vegetation, there are still some limitations and uncertainties that need to be
acknowledged [88]. As the GIMMS NDVI data are indirect remote sensing data, errors
may arise in the modeled NDVI due to the fragmented terrain and saturation issues. In
particular, high-density vegetation areas may experience the NDVI saturation when the
vegetation cover surpasses a certain threshold [89]. Although the maximum value compos-
ite method has been utilized to reduce the influence, the uncertainty associated with remote
sensing datasets may still affect the results of this study [43,90]. Moreover, the interpola-
tion method also brings uncertainties to the analysis results. Secondly, linear detrending
can only remove the linear trend, but cannot deal with the interdecadal fluctuations and
nonlinear relationship. In addition, detrending may introduce errors, noise or outliers that
can lead to inaccurate fits, and detrending can also lead to loss of some of the signal.

Thirdly, two primary drivers may influence the vegetation growth, namely climate-
related factors [55,91], which provide necessary conditions for vegetation growth, and the
disturbances caused by human activities, including land use changes, agricultural irrigation,
forest development and restoration projects [69,92–94]. As the primary objective of this
study is to systematically assess the impact characteristics of extreme high temperatures
on vegetation in North China, this study does not discuss other climate-related factors
and human influences [95]. Hence, in future research, it would be prudent to consider
the impacts of other variables on vegetation greenness and to explore the primary driving
forces of vegetation dynamics in different climate conditions.

Lastly, the interactions between temperature and vegetation are complex, and this
study does not strictly consider the feedback of vegetation to high-temperature extremes.
More information is required to understand vegetation–climate interactions in the future.
In addition, due to the lags in the adjustment of soil moisture content and biological pro-
cesses [74,96], vegetation properties take time to respond to environmental change [97].
Therefore, the impact of temperature on vegetation often exhibits a time lag. This study
focuses on the synchronous responses of vegetation to climate, without considering sub-
sequent reactions after extreme events. In the future, it is necessary for researchers to
comprehensively consider these factors and conduct more detailed analyses.

5. Conclusions

By using the NDVI to capture vegetation activities, this study analyzes the varia-
tion characteristics of vegetation and extreme high temperatures from 1982 to 2015 in
North China. The trend analysis, linear detrending and correlation analysis are performed,
and a ridge regression model is constructed to investigate the impacts of extreme-high-
temperature events on vegetation in North China. Multiple vegetation types (forest, grass-
land and farmland) and multiple time scales (annual and monthly) are considered. The
main conclusions are as follows:

(1) The NDVI in North China shows an overall fluctuating upward trend (0.0004 year−1,
p < 0.01). The forest type has the highest NDVI values, and the farmland type has the
fastest NDVI increasing trend (0.0008 year−1, p < 0.01) from 1982–2015. On a monthly
scale, the fastest greening trends appear in October. Extreme-high-temperature indices
in North China show increasing trends on both annual and monthly scales, except
for the TXN and TNN. However, these indices exhibit a coexistence of increase and
decrease spatially.

(2) Before detrending, the regionally averaged annual NDVI is positively correlated
only with TN90, whereas, after detrending, correlations between the regional av-
erage NDVI and all the extreme-high-temperature indices except for TN90 are all
significantly negative. On a monthly scale, before detrending, only TNX shows a
positive correlation in the months of June to September. After detrending, all indices
exhibit negative correlations. Grassland has more significant negative correlations
with all high-temperature indices, while forests display nonsignificant positive cor-
relations with the indices. The impacts of temperature extremes on vegetation vary
with vegetation types and time scales.
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This research highlights the necessity of a multi-time and multi-vegetation scale analy-
sis. The detailed analysis can help better understand the response mechanism of vegetation
dynamics to extreme high temperatures and improve the investigation of vegetation–
climate interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15184542/s1, Table S1: Correlation coefficients between the regional
mean NDVI and the extreme high temperature indices for different time lags in the North China
during 1982–2015.
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