
Citation: Fan, X.; Chen, Z.; Liu, P.;

Pan, W. Simultaneous Vehicle

Localization and Roadside Tree

Inventory Using Integrated

LiDAR-Inertial-GNSS System. Remote

Sens. 2023, 15, 5057. https://

doi.org/10.3390/rs15205057

Academic Editors: Luis A. Ruiz,

Juha Hyyppä, Chinsu Lin and

Chi-Kuei Wang

Received: 20 June 2023

Revised: 15 September 2023

Accepted: 17 September 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Simultaneous Vehicle Localization and Roadside Tree Inventory
Using Integrated LiDAR-Inertial-GNSS System
Xianghua Fan 1, Zhiwei Chen 2,*, Peilin Liu 1 and Wenbo Pan 2

1 School of Economics and Management, Changsha University, 98 Hongshan Road, Changsha 410022, China;
z20200816@ccsu.edu.cn (X.F.); liu_peilin@126.com (P.L.)

2 CRRC Zhuzhou Institute Co., Ltd., 169 Shidai Road, Zhuzhou 412001, China; panwb1@csrzic.com
* Correspondence: chenzw6@csrzic.com

Abstract: Autonomous driving systems rely on a comprehensive understanding of the surrounding
environment, and trees, as important roadside features, have a significant impact on vehicle position-
ing and safety analysis. Existing methods use mobile LiDAR systems (MLS) to collect environmental
information and automatically generate tree inventories based on dense point clouds, providing
accurate geometric parameters. However, the use of MLS systems requires expensive survey-grade
laser scanners and high-precision GNSS/IMU systems, which limits their large-scale deployment
and results in poor real-time performance. Although LiDAR-based simultaneous localization and
mapping (SLAM) techniques have been widely applied in the navigation field, to the best of my
knowledge, there has been no research conducted on simultaneous real-time localization and road-
side tree inventory. This paper proposes an innovative approach that uses LiDAR technology to
achieve vehicle positioning and a roadside tree inventory. Firstly, a front-end odometry based on an
error-state Kalman filter (ESKF) and a back-end optimization framework based on factor graphs are
employed. The updated poses from the back-end are used for establishing point-to-plane residual
constraints for the front-end in the local map. Secondly, a two-stage approach is adopted to minimize
global mapping errors, refining accumulated mapping errors through GNSS-assisted registration
to enhance system robustness. Additionally, a method is proposed for creating a tree inventory
that extracts line features from real-time LiDAR point cloud data and projects them onto a global
map, providing an initial estimation of possible tree locations for further tree detection. This method
uses shared feature extraction results and data pre-processing results from SLAM to reduce the
computational load of simultaneous vehicle positioning and roadside tree inventory. Compared to
methods that directly search for trees in the global map, this approach benefits from fast perception of
the initial tree position, meeting real-time requirements. Finally, our system is extensively evaluated
on real datasets covering various road scenarios, including urban and suburban areas. The evaluation
metrics are divided into two parts: the positioning accuracy of the vehicle during operation and
the detection accuracy of trees. The results demonstrate centimeter-level positioning accuracy and
real-time automatic creation of a roadside tree inventory.

Keywords: trees inventory; multi-sensor integration; simultaneous localization and mapping; road safety

1. Introduction

Trees play a significant role in urban, interurban, and suburban road environments by
enhancing the natural landscape, mitigating erosion, and improving air quality [1]. How-
ever, they also present challenges for autonomous driving systems as they can interfere
with satellite positioning signals and obstruct sensor visibility, leading to decreased local-
ization accuracy and potential missed or false detections. Moreover, even relatively small
trees with diameters as little as 10.2 cm (4 inches) can pose safety risks, with a considerable
number of fatal accidents involving fixed obstacles being attributed to trees [2]. Hence, it is

Remote Sens. 2023, 15, 5057. https://doi.org/10.3390/rs15205057 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15205057
https://doi.org/10.3390/rs15205057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5527-2914
https://doi.org/10.3390/rs15205057
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/15/20/5057?type=check_update&version=2

Remote Sens. 2023, 15, 5057 2 of 20

crucial to develop an effective method for real-time localization, accurate 3D mapping, and
identification and classification of roadside trees to enhance driving safety.

Traditional ground surveying techniques are time-consuming, cumbersome, and
expensive. Therefore, remote sensing data such as aerial imagery or light detection and
ranging (LiDAR) point clouds are valuable resources for creating tree inventories [3]. Mobile
laser scanning (MLS) systems have gained prominence in road environment modeling due
to their ability to safely and efficiently acquire accurate 3D information [4]. These systems
generate dense point clouds by collecting coordinates of 3D points using laser pulses at a
rate exceeding one million points per second. The proven capabilities of MLS systems have
led to their widespread use in extracting information about the road environment, including
trees, traffic signs, and other features [5,6]. However, MLS systems require high-precision
GNSS/IMU measurements and survey-grade laser scanners. While they achieve high-
precision 3D mapping, the associated costs hinder their large-scale deployment, making
widespread applications challenging. Moreover, MLS systems exhibit lower mapping
and perception efficiency, posing difficulties in meeting the real-time requirements of
autonomous driving.

Simultaneous Localization and Mapping (SLAM) technology, as it continues to mature,
holds promise for vehicle positioning and real-time tree inventory creation. However,
there is currently a lack of methods that achieve simultaneous vehicle positioning and tree
inventory creation. The primary technical challenges can be summarized as follows:

(1) Long-distance tree canopies, buildings and overpasses obstruct GNSS signals, signifi-
cantly reducing the accuracy of satellite navigation. Inertial Navigation Systems rely
on Inertial Measurement Units (IMUs) for vehicle positioning, which can accumulate
errors over time.

(2) Running SLAM algorithms and tree extraction algorithms separately incurs a high
computational resource cost. Existing SLAM feature extraction algorithms and tree fea-
ture extraction algorithms differ significantly, making it challenging to adopt a unified
algorithm for simultaneous vehicle positioning and real-time tree inventory creation.

(3) In regions with complex road conditions, fast tree detection algorithms that use
shared SLAM feature information are prone to false positives due to environmental
interference.

Motivated by tree inventory construction and SLAM algorithms, this paper proposes
an accurate and robust vehicle positioning and tree inventory creation system that tightly
integrates multi-modal sensor information. Our design offers the following contributions:

(1) We introduce a positioning and mapping scheme suitable for long-distance occlusion
scenarios. This scheme presents a front-end odometry based on an error-state kalman
filter (ESKF) and a back-end optimization framework based on factor graphs. The
updated poses from the back-end are used for establishing point-to-plane residual
constraints for the front-end in the local map.

(3) We adopt a two-stage approach to minimize global mapping errors, refining accumu-
lated mapping errors through GNSS-assisted registration.

(3) In this paper, we propose an innovative approach that uses shared feature extrac-
tion results and data preprocessing results from SLAM to create a tree inventory.
With this method, we are able to reduce the computational cost of the system while
simultaneously achieving vehicle positioning and tree detection.

(4) Additionally, we introduce a method that uses azimuth angle feature information to
further mitigate false positives.

(5) The system is extensively evaluated in urban and suburban areas. The evaluation
results demonstrate the accuracy and robustness of our system, which can effectively
handle positioning and tree inventory creation tasks in various scenarios.

The remaining sections of this paper are organized as follows. Section 2 reviews
related work. Section 3 presents the specific algorithms for pose estimation, mapping,
and tree inventory generation used in our system. The experimental results are presented

Remote Sens. 2023, 15, 5057 3 of 20

in Section 4. Finally, Section 5 summarizes the paper and provides an outlook on future
research directions.

2. Related Work

Methods for creating tree inventories using MLS point clouds can be classified into
manual and automated approaches. However, manual methods are time-consuming and
labor-intensive. To overcome these limitations, recent research has primarily focused on
developing automated methods to optimize the cost and time involved in tree inventory
creation. Over the past decade, several automated methods have been developed to extract
trees from laser point clouds, and they have found extensive applications in urban road
planning, 3D tree modeling, tree monitoring, and structural feature quantification [7–11].
The individual tree segmentation from point cloud data has also received significant atten-
tion, such as capturing tree height, trunk diameter, breast diameter, and other attributes
from dense point cloud information [12–16], as well as 3D object detection based on point
cloud data [17,18]. Additionally, studies incorporating image sensors to add RGB informa-
tion have also received considerable attention. For example, integrating panoramic images
with MLS point clouds and adding color information from images to point clouds during
segmentation as an action criterion for tree identification [19]. Similar methods include inte-
grating multispectral image information with MLS point clouds for tree identification [20].
Most existing methods can effectively segment and extract trees [19–22]. However, these
methods that rely on MLS systems require expensive high-precision GNSS/IMU position-
ing and survey-grade laser scanners, which limit their large-scale deployment. Moreover,
the real-time performance of automatically identifying and delineating trees based on
high-precision point cloud data (PCD) is low.

Lidar, with its resistance to lighting variations and precise distance measurement, has
been widely used not only for object perception but also in navigation tasks [23]. Lidar
sensors are becoming increasingly common in various robotic applications, such as au-
tonomous vehicles [24,25], drones [26,27], and more. Lu et al. first transformed SLAM pose
estimation into a least squares optimization problem. They linearized the nonlinear objec-
tive function using Taylor expansion and solved it using gradient descent, Gauss-Newton,
or Levenberg-Marquardt methods [28]. The most classic 3D Lidar SLAM algorithm, Lidar
Odometry and Mapping in Real-time (LOAM), extracts corner and planar points from each
frame based on curvature and constructs feature lines based on corner points and feature
planes based on planar points. By performing point cloud registration and solving the
pose using a least squares method, LOAM ensures both accurate positioning and good
mapping results through the use of low-frequency mapping and high-frequency localiza-
tion. However, this method lacks a loop closure detection module [29]. Shan et al. made
improvements to LOAM by first performing point cloud clustering and segmentation,
successfully separating ground points from other points. Based on the clustering approach,
unreliable point clouds were filtered out, improving the quality of feature points. They also
proposed a two-step optimization method to accelerate pose estimation and convergence
speed. Additionally, they introduced a loop closure detection method based on Euclidean
distance to eliminate cumulative errors. This method is more efficient than LOAM and is
better suited for deployment in autonomous driving systems while also surpassing LOAM
in terms of system completeness [30]. Chen et al. proposed a surface-based mapping
method that uses 3D point clouds combined with semantic information to improve map-
ping quality. Furthermore, data association is performed on objects with semantic labels,
establishing a constraint relationship with geometric information to solve the pose, thereby
improving mapping quality [31]. However, this method has poor real-time performance. In
2021, Wang et al. proposed a novel SLAM solution that uses both geometric and intensity
information from Lidar point clouds. They designed a frontend odometry estimation based
on intensity information and a backend optimization based on intensity. Their method
outperforms SLAM approaches that solely rely on geometric information [32]. Ye et al. ap-
plied the Vins-Mono concept to Lidar SLAM by proposing a tightly coupled fusion method

Remote Sens. 2023, 15, 5057 4 of 20

that integrates Lidar and IMU. The high-frequency data from the IMU is used for Lidar
point cloud calibration through integration, and a rotation constraint method is introduced
to estimate the rotation extrinsics between the IMU and Lidar. This method significantly
improves accuracy compared to single Lidar positioning [33]. Lin et al. introduced a novel
Lidar-Inertial-Visual sensor fusion framework called R3LIVE. It uses measurements from
Lidar, inertial, and visual sensors for robust and accurate state estimation. The frame-
work also incorporates data from visual-inertial sensors and renders map textures [34].
Wang et al. proposed a real-time, accurate, and robust positioning and mapping using Lidar
SLAM. Their framework tightly couples a non-repeating scanning Lidar with IMU, wheel
odometry, and GNSS for position estimation and synchronized global map generation [35].
Although current Lidar-based SLAM algorithms have demonstrated sufficient accuracy
and robustness in many scenarios, they still face challenges in degraded and large-scale
environments. Furthermore, the feature extraction algorithms in the aforementioned SLAM
methods do not consider the requirements of tree detection and identification, making it
difficult to simultaneously achieve vehicle positioning and tree inventory creation.

3. Materials and Methods

This paper presents a multi-sensor fusion solution aiming to achieve simultaneous
vehicle localization and roadside tree inventory generation. The proposed solution is
designed to operate reliably in challenging scenarios such as long-distance tree occlusion
of satellite signals and unfavorable lighting conditions. Common options for selecting
positioning, mapping, and target perception sensors include GNSS, IMU, LiDAR, and
cameras. However, cameras are susceptible to lighting effects, and GNSS+IMU accumulates
significant errors in long-distance occlusion scenarios. Therefore, this study primarily
adopts LiDAR and integrated navigation units as the main sensors. The workflow of the
system is illustrated in Figure 1.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 21

semantic labels, establishing a constraint relationship with geometric information to solve
the pose, thereby improving mapping quality [31]. However, this method has poor real-
time performance. In 2021, Wang et al. proposed a novel SLAM solution that uses both
geometric and intensity information from Lidar point clouds. They designed a frontend
odometry estimation based on intensity information and a backend optimization based
on intensity. Their method outperforms SLAM approaches that solely rely on geometric
information [32]. Ye et al. applied the Vins-Mono concept to Lidar SLAM by proposing a
tightly coupled fusion method that integrates Lidar and IMU. The high-frequency data
from the IMU is used for Lidar point cloud calibration through integration, and a rotation
constraint method is introduced to estimate the rotation extrinsics between the IMU and
Lidar. This method significantly improves accuracy compared to single Lidar positioning
[33]. Lin et al. introduced a novel Lidar-Inertial-Visual sensor fusion framework called
R3LIVE. It uses measurements from Lidar, inertial, and visual sensors for robust and ac-
curate state estimation. The framework also incorporates data from visual-inertial sensors
and renders map textures [34]. Wang et al. proposed a real-time, accurate, and robust po-
sitioning and mapping using Lidar SLAM. Their framework tightly couples a non-repeat-
ing scanning Lidar with IMU, wheel odometry, and GNSS for position estimation and
synchronized global map generation [35]. Although current Lidar-based SLAM algo-
rithms have demonstrated sufficient accuracy and robustness in many scenarios, they still
face challenges in degraded and large-scale environments. Furthermore, the feature ex-
traction algorithms in the aforementioned SLAM methods do not consider the require-
ments of tree detection and identification, making it difficult to simultaneously achieve
vehicle positioning and tree inventory creation.

3. Materials and Methods
This paper presents a multi-sensor fusion solution aiming to achieve simultaneous

vehicle localization and roadside tree inventory generation. The proposed solution is de-
signed to operate reliably in challenging scenarios such as long-distance tree occlusion of
satellite signals and unfavorable lighting conditions. Common options for selecting posi-
tioning, mapping, and target perception sensors include GNSS, IMU, LiDAR, and cam-
eras. However, cameras are susceptible to lighting effects, and GNSS+IMU accumulates
significant errors in long-distance occlusion scenarios. Therefore, this study primarily
adopts LiDAR and integrated navigation units as the main sensors. The workflow of the
system is illustrated in Figure 1.

Lidar

RTK
IMU

Preintegration

 Preprocessing
• Synchronize with

GNSS time
• Remove Outliers
• Motion Compensation

Feature Extraction
• Planar
• Edge

ESKF
Residual Computation

 State Update

Trees detection
• tree feature

extraction
• Clustering

 Converged?

N

Odometry

 Updated Points

Global Map
(History Feature Points)

Sub-Map

Retrieve

Attribute
Information

Y

Back-end
• GPS
• ICP
• Landmarks

Figure 1. Overvierw of the proposed system.

In order to reduce the computational load of the algorithm, the proposed system first
performs the extraction of edge feature points and planar feature points from the point
cloud data collected by LiDAR. Subsequently, the data of these feature points is combined

Figure 1. Overvierw of the proposed system.

In order to reduce the computational load of the algorithm, the proposed system first
performs the extraction of edge feature points and planar feature points from the point
cloud data collected by LiDAR. Subsequently, the data of these feature points is combined
with the measurement data from the navigation unit to perform processes such as motion
compensation and distortion removal on the feature point cloud. The motion-compensated
and distortion-removed feature points are then used separately in the tree detection module
and the ESKF module. The tree detection module clusters and detects trunk features, and
it sends the attribute information of tree feature points to the global map to enhance the
tree attribute information of the feature points. The ESKF module uses the feature points
and the local map to construct a residual equation and updates the pose state with IMU
preintegration. If the error state converges, the position is output; otherwise, the iteration

Remote Sens. 2023, 15, 5057 5 of 20

continues. Then, based on the position output by the ESKF module, the feature points
are updated and added to the global map, and the odometry position is passed to the
back-end optimization module. The back-end optimization module further refines the pose
of keyframes using information such as RTK and landmarks before sending it to the global
map. Finally, in the global map, the orientation information of the tree feature points is
used to further filter false positives of tree crowns.

3.1. Feature Extraction
3.1.1. Candidate Point Calculation

LiDAR perceives the surrounding environmental information and forms a three-
dimensional point cloud. A single frame of point cloud often contains tens of thousands to
hundreds of thousands of points. Using all of them for calculations would greatly consume
computational resources and fail to meet real-time requirements. In reality, as shown in
Figure 2, there are a large number of feature point clouds in space, such as plane points
and line points. By extracting this type of point cloud, the number of points used in the
calculation process can be significantly reduced, saving computation time [29,30].

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 21

with the measurement data from the navigation unit to perform processes such as motion
compensation and distortion removal on the feature point cloud. The motion-compen-
sated and distortion-removed feature points are then used separately in the tree detection
module and the ESKF module. The tree detection module clusters and detects trunk fea-
tures, and it sends the attribute information of tree feature points to the global map to
enhance the tree attribute information of the feature points. The ESKF module uses the
feature points and the local map to construct a residual equation and updates the pose
state with IMU preintegration. If the error state converges, the position is output; other-
wise, the iteration continues. Then, based on the position output by the ESKF module, the
feature points are updated and added to the global map, and the odometry position is
passed to the back-end optimization module. The back-end optimization module further
refines the pose of keyframes using information such as RTK and landmarks before send-
ing it to the global map. Finally, in the global map, the orientation information of the tree
feature points is used to further filter false positives of tree crowns.

3.1. Feature Extraction
3.1.1. Candidate Point Calculation

LiDAR perceives the surrounding environmental information and forms a three-di-
mensional point cloud. A single frame of point cloud often contains tens of thousands to
hundreds of thousands of points. Using all of them for calculations would greatly con-
sume computational resources and fail to meet real-time requirements. In reality, as
shown in Figure 2, there are a large number of feature point clouds in space, such as plane
points and line points. By extracting this type of point cloud, the number of points used
in the calculation process can be significantly reduced, saving computation time [29,30].

Figure 2. LiDAR point cloud

Existing algorithms for calculating feature points, such as LOAM and Lego-LOAM,
calculate the spatial distance between neighboring points in the same line of laser points
to obtain the line curvature of that point. The line curvature is used as the criterion for
classifying feature points. This method can effectively calculate plane points and line
points. However, it is not suitable for tree detection, and the feature extraction becomes
unstable when the incidence angle and distance of the laser change. For example, existing
SLAM feature extraction methods are prone to filtering out dense tree leaves as invalid
feature points, leading to the loss of points in the subsequent tree crown based on feature
points. For instance, when the laser is incident at a suitable angle and distance on the tree
leaves, some of the laser point cloud is reflected by the surface leaves, and a considerable
portion passes through the surface leaves and is reflected back by the leaves or branches
behind. In this case, corner points can be extracted well. When the incident distance is

Figure 2. LiDAR point cloud.

Existing algorithms for calculating feature points, such as LOAM and Lego-LOAM,
calculate the spatial distance between neighboring points in the same line of laser points
to obtain the line curvature of that point. The line curvature is used as the criterion for
classifying feature points. This method can effectively calculate plane points and line points.
However, it is not suitable for tree detection, and the feature extraction becomes unstable
when the incidence angle and distance of the laser change. For example, existing SLAM
feature extraction methods are prone to filtering out dense tree leaves as invalid feature
points, leading to the loss of points in the subsequent tree crown based on feature points.
For instance, when the laser is incident at a suitable angle and distance on the tree leaves,
some of the laser point cloud is reflected by the surface leaves, and a considerable portion
passes through the surface leaves and is reflected back by the leaves or branches behind.
In this case, corner points can be extracted well. When the incident distance is relatively
close and the tree leaves are dense, multiple points reflected by the surface leaves may
appear consecutively on the same beam. The calculated line curvature will be significantly
reduced, and it may even be misjudged as plane points.

In this paper, an adaptive spatial geometry candidate feature calculation method is
used to perform preliminary screening on the candidate sets of plane points (Q1) and line
points (L1).

Let S represent a complete point cloud frame, and qi represent the point to be evaluated.
Firstly, the point cloud is preprocessed to remove invalid points. Based on the row and

Remote Sens. 2023, 15, 5057 6 of 20

column indices of the points in the point cloud, the point cloud is mapped onto a sequence
image, as shown in Figure 3. Each valid point in the point cloud is mapped onto the
sequence image, facilitating subsequent queries and operations. If the row attribute of
point qi is m and the column attribute is n, it will be mapped to the m-th row and n-th
column of the sequence image, denoted as indexm,n.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 21

relatively close and the tree leaves are dense, multiple points reflected by the surface
leaves may appear consecutively on the same beam. The calculated line curvature will be
significantly reduced, and it may even be misjudged as plane points.

In this paper, an adaptive spatial geometry candidate feature calculation method is
used to perform preliminary screening on the candidate sets of plane points (Q1) and line
points (L1).

Let S represent a complete point cloud frame, and qi represent the point to be evalu-
ated. Firstly, the point cloud is preprocessed to remove invalid points. Based on the row
and column indices of the points in the point cloud, the point cloud is mapped onto a
sequence image, as shown in Figure 3. Each valid point in the point cloud is mapped onto
the sequence image, facilitating subsequent queries and operations. If the row attribute of
point qi is m and the column attribute is n, it will be mapped to the m-th row and n-th
column of the sequence image, denoted as 𝑖𝑛𝑑𝑒𝑥,.

1
1

2

2

3 4 5

.

.

.
m
.
.
.

. . . n−1 n n+1 . . .6

iq

dΔ

i jq − i kq +

dΔleft right

Points to be computedPoints from the same beam

Figure 3. Point cloud sequence mapping image.

By indexing the points using the sequence image, we obtain point qi. When perform-
ing preliminary feature judgment on point qi, we no longer calculate the curvature by se-
lecting a fixed number of neighboring points. Instead, we use a distance threshold dd to
filter the surrounding points. For the points qi ~ qi-j and qi ~ qi+k on the same line as qi with
a distance of Δௗ, we construct the feature judgment function as follows: 𝑐 = ଵேೕ ∑ ∥(శೕି)ା(షೕି)∥൫∥(శೕି)||,||(షೕି)∥൯ேೕୀଵ (1)

where ci is the candidate point judgment value, and the calculation formulas for 𝑁 are as
follows: 𝑁௧ = 𝑚𝑖𝑛வ(𝑚)𝑠. 𝑡. ‖𝑞ି − 𝑞‖ ≥ Δௗ (2)

𝑁௧ = 𝑚𝑖𝑛வ (𝑛)𝑠. 𝑡. ‖𝑞ା − 𝑞‖ ≥ Δௗ (3)

𝑁 = 𝑚𝑎𝑥(𝑁௧, 𝑁௧) (4)

After calculating, we classify it as either a candidate plane point set Q1 or a candidate
line point set 𝐿ଵ based on the following judgment:

if 𝑐 ≤ Δ𝑐 𝑞 ∈ 𝑄ଵ

else 𝑞 ∈ 𝐿ଵ
(5)

where Δ𝑐 represents the threshold for point curvature. In experiments, Δ𝑐 is typically set
to 0.6.

Figure 3. Point cloud sequence mapping image.

By indexing the points using the sequence image, we obtain point qi. When performing
preliminary feature judgment on point qi, we no longer calculate the curvature by selecting
a fixed number of neighboring points. Instead, we use a distance threshold dd to filter
the surrounding points. For the points qi ~ qi-j and qi ~ qi+k on the same line as qi with a
distance of ∆d, we construct the feature judgment function as follows:

ci =
1
Nj

∑
Nj
j=1

∆d ‖
(
qi+j − qi

)
+
(
qi−j − qi

)
‖

min
(
‖
(
qi+j − qi

)∣∣∣∣, ∣∣∣∣(qi−j − qi
)
‖
) (1)

where ci is the candidate point judgment value, and the calculation formulas for Nj are
as follows:

Nle f t
j = min

m>0
(m)s.t.‖qi−m − qi‖ ≥ ∆d (2)

Nright
j = min

n>0
(n)s.t.‖qi+n − qi‖ ≥ ∆d (3)

Nj = max(Nle f t
j , Nright

j

)
(4)

After calculating, we classify it as either a candidate plane point set Q1 or a candidate
line point set L1 based on the following judgment:

if ci ≤ ∆c qi ∈ Q1

else qi ∈ L1
(5)

where ∆c represents the threshold for point curvature. In experiments, ∆c is typically set
to 0.6.

3.1.2. Feature Point Selection

Based on equations 1 to 5, the candidate sets Q1 and L1 for surface points and line
points are obtained. Further filtering is performed on the line feature set L1 to obtain L2,
and a voxel grid is established. Dense point clouds are sampled to complete the selection

Remote Sens. 2023, 15, 5057 7 of 20

of surface feature point set Q and line feature point set L. For the line feature set L1, a
classification graph is constructed as follows:

Let qli be a line point in the candidate line feature set L1, and the number of line feature
points in its surrounding a × b neighborhood is denoted as k. According to the equation,
qli is filtered as follows:

if k ≤ ∆k, delete qli

else qli ∈ L2
(6)

As shown in the above Figure 4, where the orange index represents the current point
qli to be filtered, the points in the 5 × 3 neighborhood are queried. For example, for the
point with index index3,5, 6 points of the same type are found in its surrounding, while for
the point with index indexm,n, only one point of the same type is found in its surrounding.
Setting ∆K = 5 and substituting it into Equation (6), the point with index indexm,n is removed
and the point with index index3,5 is added to L2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 21

3.1.2. Feature Point Selection
Based on equations 1 to 5, the candidate sets Q1 and L1 for surface points and line

points are obtained. Further filtering is performed on the line feature set L1 to obtain L2,
and a voxel grid is established. Dense point clouds are sampled to complete the selection
of surface feature point set Q and line feature point set L. For the line feature set L1, a
classification graph is constructed as follows:

Let 𝑞 be a line point in the candidate line feature set L1, and the number of line
feature points in its surrounding a × b neighborhood is denoted as k. According to the
equation, 𝑞 is filtered as follows:

if 𝑘 ≤ 𝛥𝑘, delete 𝑞𝑙𝑖
else 𝑞𝑙𝑖 ∈ 𝐿ଶ

(6)

As shown in the above Figure 4, where the orange index represents the current point 𝑞 to be filtered, the points in the 5 × 3 neighborhood are queried. For example, for the
point with index index3,5, 6 points of the same type are found in its surrounding, while for
the point with index indexm,n, only one point of the same type is found in its surrounding.
Setting ∆K = 5 and substituting it into Equation (6), the point with index indexm,n is re-
moved and the point with index index3,5 is added to L2.

Points to be filteredPoints of the same type
1

1
2

2

3 4 5

3.
.
.
m
.
.
.

. . . n−1 n n+1 . . .6

5x3 neighborhood

 The point with index
index3,5 is added to L2.

Figure 4. Classification and filtering of line feature point cloud set.

Voxel grid sampling is performed on the point sets Q1 and L2. First, the voxel grid
coordinates for each point are calculated based on their respective coordinates (x, y, z).
Assuming the voxel grid dimensions are a, b, c, respectively: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑋 = (𝑖𝑛𝑡) 𝑥/𝑎 (7)𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑌 = (𝑖𝑛𝑡) 𝑦/𝑏 (8)𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑍 = (𝑖𝑛𝑡) 𝑧/𝑐 (9)

Multiple feature points may exist within a single voxel grid. If all these clustered fea-
ture points are used for pose estimation, it not only does not improve the localization ac-
curacy but also increases the computational time. If the point cloud cluster within a voxel
grid is too dense, voxel sampling is performed to retain a single feature point per voxel
grid for position estimation. By using voxel sampling, the problem of clustered point
clouds can be addressed, and the final feature point sets Q and L are obtained.

Figure 4. Classification and filtering of line feature point cloud set.

Voxel grid sampling is performed on the point sets Q1 and L2. First, the voxel grid
coordinates for each point are calculated based on their respective coordinates (x, y, z).
Assuming the voxel grid dimensions are a, b, c, respectively:

coordinate X = (int)x/a (7)

coordinate Y = (int)y/b (8)

coordinate Z = (int)z/c (9)

Multiple feature points may exist within a single voxel grid. If all these clustered
feature points are used for pose estimation, it not only does not improve the localization
accuracy but also increases the computational time. If the point cloud cluster within a voxel
grid is too dense, voxel sampling is performed to retain a single feature point per voxel grid
for position estimation. By using voxel sampling, the problem of clustered point clouds
can be addressed, and the final feature point sets Q and L are obtained.

3.2. Tree Detection

To ensure the safety of autonomous driving vehicles, it is necessary to detect tree
information in real-time, especially the position of tree trunks. Therefore, this paper
proposes for the first time to directly use feature points from SLAM for tree detection to
improve detection efficiency. Most of the tree feature points are located in the feature
point set L. Therefore, we perform clustering and extract trunk features from the set L.
Before extracting the trunk, we directly filter out the points below the ground and close

Remote Sens. 2023, 15, 5057 8 of 20

to the ground based on the vehicle’s pose and the installation height of the LiDAR. This
can further reduce the computational load. In addition, these points close to the ground
often represent shrubs and roadside equipment, which may cause problems in the trunk
extraction step.

The trunk can be defined as the main stem of a tree that extends upward from the root
or the horizon close to the ground to one or more uncertain points. Specifically, the points
between the lowest point and the starting point of the tree crown are defined as trunk
points [36]. Trunk extraction is divided into two steps: clustering and trunk identification.

The density-based clustering method (DBSCAN) groups feature points with similar
distances and angles into the same cluster. In this paper, the DBSCAN algorithm is im-
proved for trunk feature extraction. The improvements are mainly reflected in two aspects.
First, considering that the trunk mainly grows upward (in the z-direction), the distance
between points measured by the LiDAR in the z-direction is larger, while it is denser in
the x and y directions. Therefore, different weights a, b, and c are assigned to the x, y, and
z directions respectively, and the search distance in the improved clustering algorithm is
calculated as shown in Equation (10):

Distij =
√

a (x i − xj
)2

+ b(y i − yj
)2

+ c(z i − zj
)2 (10)

where Distij is the search distance between target i and target j, xi, yi, zi are the coordinates
of target i, and xj, yj, zj are the coordinates of target j. a, b, and c are the weight coefficients
for the x, y, and z directions, respectively.

The weight coefficients are adjusted such that a = b > c, so that Distij is more influenced
by the distance in the x and y directions than in the z direction. This is in accordance with
the characteristics of tree trunks and the differences in reflections in the x, y, and z directions.

Second, to meet the real-time requirements, trunk clustering needs to be performed
quickly. Initially, feature points with a height of approximately 1.5 m are selected as the
initial points for DBSCAN clustering. In addition, the point cloud of the trunk is denser
than the tree crown, especially in terms of distance differences in the x and y directions,
as shown in the Figure 5. Therefore, the trunk can be separately clustered based on the
differences in feature points between the tree crown and the trunk.

The LiDAR points reflected by the trunk have unique shape features that can dis-
tinguish them from other objects. To identify tree trunks comprehensively, we employ
shape estimation following clus-tering. A key component of our approach is the bounding
box algorithm. The bounding box algorithm encloses a cluster of LiDAR points within a
rectangular box by calculat-ing the minimum and maximum coordinates in each dimension
(typically X, Y, and Z). The resulting rectangular bounding box provides an essential shape
descriptor. Specif-ically, we utilize the aspect ratio of this rectangle, which is the ratio
of its longer side to its shorter side, as a decisive criterion for classifying objects as tree
trunks. The aspect ratio serves as a distinctive indicator because objects like tree trunks
often exhibit spe-cific aspect ratios in their geometry. At the same time, we consider the
line feature points within a certain range above the trunk as the tree crown point cloud.
Since the tree crown point cloud is relatively sparse, we use the accumulation of multiple
frames of feature points during the map building process to further identify the tree crown.

Remote Sens. 2023, 15, 5057 9 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21

Figure 5. Illustrates the point cloud processing steps for tree detection. The different colors represent
varying reflectance intensities of the point cloud data. (a) shows a single frame of raw point cloud

Remote Sens. 2023, 15, 5057 10 of 20

data. (b) illustrates the results of extracting line features and plane features from a single frame of
raw point cloud data.; (c) shows the trunk detection results after removing ground plane features
and performing cluster analysis. In the figure, 1 represents line features, and 2 represents detected
tree trunks.

3.3. Front-End Odometry

To meet the localization and mapping requirements in scenarios with long-distance
tree occlusions, an improved method based on the ESKF was proposed for the front-end
odometry algorithm, known as LIO tightly coupled with ESKF [37]. The process begins
by inputting the data obtained after feature extraction from the LiDAR point cloud into
the LiDAR point cloud preprocessing module, as shown in Figure 1. The point cloud data
is synchronized with the Global Navigation Satellite System (GNSS) time and the points
are sorted in ascending order based on their sampling time. This facilitates the subsequent
compensation for point cloud distortion using the pre-integration results from the IMU.
The pre-integration method is employed to perform inertial navigation solution on the raw
IMU data. Based on the inertial navigation solution, compensation for point cloud motion
distortion and the prediction stage of the ESKF filter are carried out. The flow of lidar and
IMU data over time is illustrated in Figure 6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 21

Figure 5. illustrates the point cloud processing steps for tree detection. The different colors represent
varying reflectance intensities of the point cloud data. (a) shows a single frame of raw point cloud
data. (b) illustrates the results of extracting line features and plane features from a single frame of
raw point cloud data.; (c) shows the trunk detection results after removing ground plane features
and performing cluster analysis. In the figure, 1 represents line features, and 2 represents detected
tree trunks.

The LiDAR points reflected by the trunk have unique shape features that can distin-
guish them from other objects. To identify tree trunks comprehensively, we employ shape
estimation following clus-tering. A key component of our approach is the bounding box
algorithm. The bounding box algorithm encloses a cluster of LiDAR points within a rec-
tangular box by calculat-ing the minimum and maximum coordinates in each dimension
(typically X, Y, and Z). The resulting rectangular bounding box provides an essential
shape descriptor. Specif-ically, we utilize the aspect ratio of this rectangle, which is the
ratio of its longer side to its shorter side, as a decisive criterion for classifying objects as
tree trunks. The aspect ratio serves as a distinctive indicator because objects like tree
trunks often exhibit spe-cific aspect ratios in their geometry. At the same time, we consider
the line feature points within a certain range above the trunk as the tree crown point cloud.
Since the tree crown point cloud is relatively sparse, we use the accumulation of multiple
frames of feature points during the map building process to further identify the tree
crown.

3.3. Front-End Odometry
To meet the localization and mapping requirements in scenarios with long-distance

tree occlusions, an improved method based on the ESKF was proposed for the front-end
odometry algorithm, known as LIO tightly coupled with ESKF [37]. The process begins
by inputting the data obtained after feature extraction from the LiDAR point cloud into
the LiDAR point cloud preprocessing module, as shown in Figure 1. The point cloud data
is synchronized with the Global Navigation Satellite System (GNSS) time and the points
are sorted in ascending order based on their sampling time. This facilitates the subsequent
compensation for point cloud distortion using the pre-integration results from the IMU.
The pre-integration method is employed to perform inertial navigation solution on the
raw IMU data. Based on the inertial navigation solution, compensation for point cloud
motion distortion and the prediction stage of the ESKF filter are carried out. The flow of
lidar and IMU data over time is illustrated in Figure 6.

Figure 6. Illustration of point cloud motion distortion compensation and ESKF prediction time.

Figure 6 depicts two consecutive lidar scans, labeled as 𝑇ଵ and 𝑇ଶ, with the start time
and end time of the lidar scan indicated. During a single scan, the pose transformation of
the lidar from 𝑇ଵ௦௧௧ to 𝑇ଵௗ is obtained as 𝑃ଵ and 𝑅ଵ . Therefore, all the point clouds
within the time interval from 𝑇ଵ௦௧௧ to 𝑇ଵௗ are transformed to 𝑇ଵௗ , completing the
compensation for the motion distortion of the original point cloud. At the same time, the

Figure 6. Illustration of point cloud motion distortion compensation and ESKF prediction time.

Figure 6 depicts two consecutive lidar scans, labeled as T1 and T2, with the start time
and end time of the lidar scan indicated. During a single scan, the pose transformation of
the lidar from Tstart

1 to Tend
1 is obtained as P1 and R1. Therefore, all the point clouds within

the time interval from Tstart
1 to Tend

1 are transformed to Tend
1 , completing the compensation

for the motion distortion of the original point cloud. At the same time, the front-end
odometry needs to output the inter-frame pose transformation between the two scans. In
the prediction stage of the ESKF filter, the inertial navigation solution results P1−2 and R1−2
obtained from the time interval between Tend

1 and Tend
2 are directly used as the input for the

filter’s prediction.
The state variables and kinematic equations used in the ESKF filter are shown in

Equations (11) and (12), where the superscripts I, and G denote the IMU coordinate system,
and earth coordinate system, respectively.

x =
[
RG

I pG
I vG

I bω ba Gg
]

(11)

Remote Sens. 2023, 15, 5057 11 of 20

.
pG

I = vG
I

.
vG

I = RG
I (am − ba − na) + Gg

G .
g = 0

.
R

G
I = RG

I bωm − bω − nωc∧
.
bω = nbω
.
ba = nba

(12)

In the equations: pG
I represents the position in the earth coordinate system, vG

I rep-
resents the velocity in the earth coordinate system, RG

I represents the rotation matrix for
attitude in the earth coordinate system, ma represents the accelerometer measurement, ba
represents the accelerometer bias, na represents the accelerometer noise, g represents the
gravity vector, mω represents the gyroscope measurement, bω represents the gyroscope bias,
nω represents the gyroscope noise, nbω

represents the random walk noise of the gyroscope
bias, nba represents the random walk noise of the accelerometer bias.

In the map maintenance module, a sliding window is maintained based on the current
position of the lidar. The output of this module is a local map that is used for scan-to-map
matching. The lidar’s raw point cloud undergoes motion compensation, voxel filtering,
and downsampling. In the ESKF filter, the establishment of point-to-plane constraints is
accomplished [37]. Finally, the ESKF filter is updated based on the residual constraints from
point-to-plane and point-to-line associations. The optimal estimate of the state variables is
obtained as the output of the front-end odometry between frames. The covariance matrix
is updated, and the ESKF filter is iterated.

3.4. Backend Optimization

In the backend optimization problem based on the pose graph, each node in the
factor graph represents a position to be optimized, and the edges between any two nodes
represent spatial constraints between two positions (relative position relationships and
corresponding covariances). The relative pose relationships between nodes can be obtained
from odometry, IMU, and inter-frame matching calculations. Since a lidar-IMU tightly
coupled approach is used in the frontend odometry, frame-to-frame IMU preintegration
constraints are not used in the backend optimization. The main constraints used in the
backend framework proposed in this paper include inter-frame odometry factors, GPS
factors, ICP factors, and Landmarks factors [38]. The factor graph constructed is shown in
Figure 7. In the optimization process after adding a new keyframe, the initial values for the
optimization are provided by the frontend odometry.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21

Figure 7. Flowchart of the backend graph optimization algorithm.

3.4.1. GPS Factors
In degraded scenarios, relying solely on long-term position estimation from IMU and

lidar will accumulate errors. To address this issue, the backend optimization system needs
to incorporate sensors that provide absolute pose measurements to eliminate accumulated
errors. In this paper, GPS absolute position correction factors are used. The current pose
is obtained using GPS sensors and transformed into the local Cartesian coordinate system.
As shown in Figure 7, a GPS factor is already added at the keyframe 𝑥ଵ. After adding new
keyframes and other constraints to the factor graph, due to the slow growth of accumu-
lated errors in the frontend tightly coupled odometry, adding absolute pose constraints
too frequently for backend optimization can lead to difficulties in constraint solving and
poor algorithm real-time performance. Therefore, a new GPS factor is only added to the
keyframe 𝑥ଷ and an incremental global optimization is performed when the positional
change between keyframes 𝑥ଷ and 𝑥ଵ exceeds a threshold. The covariance matrix of the
absolute position depends on the sensor accuracy and satellite visibility, with generally
smaller variances in the x and y directions than in the height z direction. Considering that
the GPS signal is not hardware-synchronized with the lidar, linear interpolation of GPS
data is performed based on the lidar timestamps to achieve soft time synchronization.

3.4.2. ICP Factors
ICP factors involve solving the relative pose transformation between point clouds

corresponding to two keyframes using the ICP algorithm. In the factor graph shown in
Figure 7, when keyframe 𝑥 is added to the factor graph, a set of ICP constraints is con-
structed between keyframes 𝑥ଷ and 𝑥. The backend optimization factor graph adds ICP
factors in the following two situations:
(1) Loop closure detection: When a new keyframe 𝑥ାଵ is added to the factor graph, the

keyframe 𝑥 closest to 𝑥ାଵ in Euclidean space is searched. Only when 𝑥 and 𝑥ାଵ
are within a spatial distance threshold ∆𝑑1 and a temporal threshold ∆𝑡1, an ICP
factor is added to the factor graph. In the experiments, ∆𝑑1 is usually set to 2 m, and ∆𝑡1 is typically set to 15 s.

(2) Low-speed stationary state: In a degenerate scenario, the zero bias estimation of the
IMU in the frontend odometry can have significant errors over a long period, causing
drift in the frontend odometry when the vehicle is moving slowly or at a standstill.
Therefore, in such cases, additional constraints need to be added to prevent pose drift
during prolonged stops. When the vehicle comes to a stop, and the surrounding point
cloud features are relatively abundant, they can provide sufficient geometric infor-
mation for ICP constraint solving. When the system detects that it is in a low-speed
or stationary state, it will re-cache every keyframe acquired during this low-speed
stationary state. Each time a new keyframe, denoted as x_(I + 1), is added to the factor
graph, constraints are established between x_(i + 1) and the keyframe x_k that is fur-
thest in time from the current moment.

Figure 7. Flowchart of the backend graph optimization algorithm.

Remote Sens. 2023, 15, 5057 12 of 20

3.4.1. GPS Factors

In degraded scenarios, relying solely on long-term position estimation from IMU and
lidar will accumulate errors. To address this issue, the backend optimization system needs
to incorporate sensors that provide absolute pose measurements to eliminate accumulated
errors. In this paper, GPS absolute position correction factors are used. The current pose is
obtained using GPS sensors and transformed into the local Cartesian coordinate system.
As shown in Figure 7, a GPS factor is already added at the keyframe x1. After adding new
keyframes and other constraints to the factor graph, due to the slow growth of accumulated
errors in the frontend tightly coupled odometry, adding absolute pose constraints too
frequently for backend optimization can lead to difficulties in constraint solving and
poor algorithm real-time performance. Therefore, a new GPS factor is only added to the
keyframe x3 and an incremental global optimization is performed when the positional
change between keyframes x3 and x1 exceeds a threshold. The covariance matrix of the
absolute position depends on the sensor accuracy and satellite visibility, with generally
smaller variances in the x and y directions than in the height z direction. Considering that
the GPS signal is not hardware-synchronized with the lidar, linear interpolation of GPS
data is performed based on the lidar timestamps to achieve soft time synchronization.

3.4.2. ICP Factors

ICP factors involve solving the relative pose transformation between point clouds
corresponding to two keyframes using the ICP algorithm. In the factor graph shown
in Figure 7, when keyframe xn is added to the factor graph, a set of ICP constraints is
constructed between keyframes x3 and xn. The backend optimization factor graph adds
ICP factors in the following two situations:

(1) Loop closure detection: When a new keyframe xi+1 is added to the factor graph, the
keyframe xk closest to xi+1 in Euclidean space is searched. Only when xk and xi+1 are
within a spatial distance threshold ∆d1 and a temporal threshold ∆t1, an ICP factor is
added to the factor graph. In the experiments, ∆d1 is usually set to 2 m, and ∆t1 is
typically set to 15 s.

(2) Low-speed stationary state: In a degenerate scenario, the zero bias estimation of
the IMU in the frontend odometry can have significant errors over a long period,
causing drift in the frontend odometry when the vehicle is moving slowly or at
a standstill. Therefore, in such cases, additional constraints need to be added to
prevent pose drift during prolonged stops. When the vehicle comes to a stop, and the
surrounding point cloud features are relatively abundant, they can provide sufficient
geometric information for ICP constraint solving. When the system detects that it is in
a low-speed or stationary state, it will re-cache every keyframe acquired during this
low-speed stationary state. Each time a new keyframe, denoted as x_(I + 1), is added
to the factor graph, constraints are established between x_(i + 1) and the keyframe x_k
that is furthest in time from the current moment.

3.4.3. Landmarks Factors

The establishment and solution of Landmarks factors in visual SLAM follow the
principles of Bundle Adjustment (BA) optimization. As shown in Figure 7, when keyframes
x0, x1, and x2 observe the same landmark point Land, the absolute coordinates of L1 are
known to be fixed and will not change. Therefore, based on Equation (13), constraint
relationships can be established between x0 and x1, x1 and x2, and x0 and x2.

PL1 = R0 × Pr0 + Pl0

= R1 × Pr1 + Pl1

= R2 × Pr2 + Pl2

(13)

Remote Sens. 2023, 15, 5057 13 of 20

In the equations: PL1 represents the absolute coordinates of landmark point L1, which
do not need to be directly solved during the process; Ri denotes the pose rotation matrix
of keyframe xi from LiDAR; Pri represents the relative coordinates of the landmark point
in the LiDAR frame of keyframe xi; Pli represents the absolute coordinates of keyframe xi
from LiDAR.

Therefore, the key to adding landmark factors lies in obtaining real-time position
and position observations for the same landmark point. The selection of landmarks is
crucial, ensuring continuous observation of multiple frames within a short period while
maintaining a stable shape and size throughout the observation process to avoid sudden
shifts in the center of gravity. In urban scenes, road signs are chosen as landmarks, while
mile markers alongside tracks are chosen as landmarks in railway tunnel scenes.

3.5. Map Update and Canopy Detection

After completing the backend optimization for each keyframe, the stored global map is
updated based on the optimized keyframe poses. A local feature map is extracted from the
global map based on the lidar’s pose and input to the frontend odometry for scan-to-map
matching. In this paper, a sliding window-based approach is used for the update process
of the local feature map. It extracts the plane point cloud information from the nearest n
sub-keyframes, concatenates them, and then applies voxel filtering and downsampling to
reduce the computational load during the matching process.

Since the point cloud corresponding to the canopy in a single frame is very sparse,
the optimized point clouds from multiple keyframes are added to the global map before
processing. Line feature points within a certain region above the canopy are clustered, and
the height and distance from the ground of the canopy are calculated using the bounding
box algorithm.

Since a few scenes may cause minor false detections, such as windows or doors above
pole-like objects, in non-occluded situations, good line feature points can be extracted from
the canopy at various incidence angles, and stable line feature points are observed within
a certain azimuth range [39,40], with few plane feature points. In contrast, objects like
windows or doors only exhibit stable line feature points in a small azimuth range and
are mixed with plane feature points, so false detections can be eliminated by considering
information from different azimuth angles. To reduce computational costs and considering
the low probability of severe collision accidents caused by canopies, the detection frequency
of canopies can be set relatively low.

4. Experimental Results and Discussion

To evaluate the performance of the proposed method, extensive testing was conducted
in urban and suburban road environments. This section discusses the testing platform, test
results, accuracy assessment, and further discussions.

4.1. Testing Platform

The selected LiDAR model for the system was the RS-Ruby-80 line LiDAR, capable
of a maximum range of 200 m. The integrated navigation system with GNSS and RTK
boards used is the Huace CGI-610, which can provide positioning accuracy of 1 cm+10 ppm
in open areas. The SPAN-ISA-100 was employed as the ground truth for evaluating the
positioning performance of our system. The onboard computer was equipped with an Intel
i7-6820HQ processor running at a frequency of 2.7 GHz and 16 GB of RAM. Additionally,
all algorithms were implemented in C++ and executed using ROS on Ubuntu Linux. The
installation and arrangement of the test platform vehicle and sensors are illustrated in
Figure 8.

Remote Sens. 2023, 15, 5057 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21

4.1. Testing Platform
The selected LiDAR model for the system was the RS-Ruby-80 line LiDAR, capable

of a maximum range of 200 m. The integrated navigation system with GNSS and RTK
boards used is the Huace CGI-610, which can provide positioning accuracy of 1 cm+10
ppm in open areas. The SPAN-ISA-100 was employed as the ground truth for evaluating
the positioning performance of our system. The onboard computer was equipped with an
Intel i7-6820HQ processor running at a frequency of 2.7 GHz and 16 GB of RAM. Addi-
tionally, all algorithms were implemented in C++ and executed using ROS on Ubuntu
Linux. The installation and arrangement of the test platform vehicle and sensors are illus-
trated in Figure 8.

Figure 8. shows the physical installation and arrangement of the autonomous driving platform ve-
hicle and sensors.

4.2. Test Results
A series of experiments were conducted on an autonomous driving vehicle platform

in urban and suburban road environments. The visualized maps in Figure 9 were collected
and constructed in downtown Zhaozhou and suburban highways. The autonomous vehi-
cle operated for 2300 s, covering a distance of 12.95 km. Even in areas where trees or tree
canopies partially obstruct the field of view of the LiDAR sensor and hinder the reception
of satellite positioning signals by positioning antennas, our maps align well with satellite
imagery. This demonstrates the high accuracy of our method in map construction. Fur-
thermore, in the original point cloud map, trees and vehicles alongside the road were
clearly visible, indicating the high precision of our algorithm in local areas, as shown in
the magnified inset in Figure 9b.

Figure 8. Shows the physical installation and arrangement of the autonomous driving platform
vehicle and sensors.

4.2. Test Results

A series of experiments were conducted on an autonomous driving vehicle platform
in urban and suburban road environments. The visualized maps in Figure 9 were collected
and constructed in downtown Zhaozhou and suburban highways. The autonomous
vehicle operated for 2300 s, covering a distance of 12.95 km. Even in areas where trees
or tree canopies partially obstruct the field of view of the LiDAR sensor and hinder the
reception of satellite positioning signals by positioning antennas, our maps align well with
satellite imagery. This demonstrates the high accuracy of our method in map construction.
Furthermore, in the original point cloud map, trees and vehicles alongside the road were
clearly visible, indicating the high precision of our algorithm in local areas, as shown in the
magnified inset in Figure 9b.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21

4.1. Testing Platform
The selected LiDAR model for the system was the RS-Ruby-80 line LiDAR, capable

of a maximum range of 200 m. The integrated navigation system with GNSS and RTK
boards used is the Huace CGI-610, which can provide positioning accuracy of 1 cm+10
ppm in open areas. The SPAN-ISA-100 was employed as the ground truth for evaluating
the positioning performance of our system. The onboard computer was equipped with an
Intel i7-6820HQ processor running at a frequency of 2.7 GHz and 16 GB of RAM. Addi-
tionally, all algorithms were implemented in C++ and executed using ROS on Ubuntu
Linux. The installation and arrangement of the test platform vehicle and sensors are illus-
trated in Figure 8.

Figure 8. shows the physical installation and arrangement of the autonomous driving platform ve-
hicle and sensors.

4.2. Test Results
A series of experiments were conducted on an autonomous driving vehicle platform

in urban and suburban road environments. The visualized maps in Figure 9 were collected
and constructed in downtown Zhaozhou and suburban highways. The autonomous vehi-
cle operated for 2300 s, covering a distance of 12.95 km. Even in areas where trees or tree
canopies partially obstruct the field of view of the LiDAR sensor and hinder the reception
of satellite positioning signals by positioning antennas, our maps align well with satellite
imagery. This demonstrates the high accuracy of our method in map construction. Fur-
thermore, in the original point cloud map, trees and vehicles alongside the road were
clearly visible, indicating the high precision of our algorithm in local areas, as shown in
the magnified inset in Figure 9b.

Figure 9. Shows the visualized map results. (a) represents the trajectory plotted on a satellite map,
while (b) represents the original point cloud map.

Figure 10 presents the results of 3D point cloud map construction and tree detec-
tion using the proposed algorithm. Figure 10a showcases the original point cloud map
constructed by the algorithm. Figure 10b visualizes the detected tree trunks, with the
red-colored point clouds representing the detected trunk segments. Figure 10c illustrates
the detected tree crowns, with green-colored point clouds denoting the crown segments.
Figure 10d depicts the extracted trees, with green-colored point clouds representing the
extracted tree segments.

Remote Sens. 2023, 15, 5057 15 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 21

Figure 9. shows the visualized map results. (a) represents the trajectory plotted on a satellite map,
while (b) represents the original point cloud map.

Figure 10 presents the results of 3D point cloud map construction and tree detection
using the proposed algorithm. Figure 10a showcases the original point cloud map con-
structed by the algorithm. Figure 10b visualizes the detected tree trunks, with the red-
colored point clouds representing the detected trunk segments. Figure 10c illustrates the
detected tree crowns, with green-colored point clouds denoting the crown segments. Fig-
ure 10d depicts the extracted trees, with green-colored point clouds representing the ex-
tracted tree segments.

Figure 10. Experimental results of single-row trees along the road. (a) Raw point cloud, (b) Extracted
trunks, (c) Extracted tree crowns, and (d) Extracted trees.

4.3. Results and Analysis
4.3.1. Localization Accuracy Evaluation

Trajectory curves in the x, y, and z directions are plotted as shown in Figure 11. The
gray dashed line represents the ground truth trajectory provided by the SPAN-ISA-100C
device, while the blue curve represents the keyframe trajectory output by the algorithm.
It can be observed that the trajectory errors are relatively small in both the horizontal and
vertical directions, and they exhibit a similar trend to the ground truth.

Figure 10. Experimental results of single-row trees along the road. (a) Raw point cloud, (b) Extracted
trunks, (c) Extracted tree crowns, and (d) Extracted trees.

4.3. Results and Analysis
4.3.1. Localization Accuracy Evaluation

Trajectory curves in the x, y, and z directions are plotted as shown in Figure 11. The
gray dashed line represents the ground truth trajectory provided by the SPAN-ISA-100C
device, while the blue curve represents the keyframe trajectory output by the algorithm. It
can be observed that the trajectory errors are relatively small in both the horizontal and
vertical directions, and they exhibit a similar trend to the ground truth.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21

Figure 11. The true trajectory and keyframe trajectory in the x, y, and z directions.

For the quantitative evaluation of algorithm accuracy, we have chosen the Absolute
Pose Error (APE) of the trajectory as the evaluation metric. APE represents the difference
between the positioning values output by our system and the ground truth poses pro-
vided by SPAN-ISA-100. Only the positional errors are considered, while the orientation
errors are ignored, resulting in APE values in meters. The calculated APE results are
shown in Figure 12. The highest APE value occurs at the turning point. The larger errors
at the turning point are attributed to calibration errors between the LiDAR and IMU. Fur-
thermore, as the turning speed increases, the calibration errors become more pronounced,
leading to noticeable APE errors in the trajectory.

Figure 12. The APE trajectory curve.

The algorithm proposed in this paper aims to optimize positioning performance
based on existing SLAM algorithms while incorporating tree detection capabilities, thus
achieving real-time positioning and generating a roadside tree inventory. As far as our

Figure 11. The true trajectory and keyframe trajectory in the x, y, and z directions.

Remote Sens. 2023, 15, 5057 16 of 20

For the quantitative evaluation of algorithm accuracy, we have chosen the Absolute
Pose Error (APE) of the trajectory as the evaluation metric. APE represents the difference
between the positioning values output by our system and the ground truth poses provided
by SPAN-ISA-100. Only the positional errors are considered, while the orientation errors
are ignored, resulting in APE values in meters. The calculated APE results are shown in
Figure 12. The highest APE value occurs at the turning point. The larger errors at the
turning point are attributed to calibration errors between the LiDAR and IMU. Furthermore,
as the turning speed increases, the calibration errors become more pronounced, leading to
noticeable APE errors in the trajectory.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21

Figure 11. The true trajectory and keyframe trajectory in the x, y, and z directions.

For the quantitative evaluation of algorithm accuracy, we have chosen the Absolute
Pose Error (APE) of the trajectory as the evaluation metric. APE represents the difference
between the positioning values output by our system and the ground truth poses pro-
vided by SPAN-ISA-100. Only the positional errors are considered, while the orientation
errors are ignored, resulting in APE values in meters. The calculated APE results are
shown in Figure 12. The highest APE value occurs at the turning point. The larger errors
at the turning point are attributed to calibration errors between the LiDAR and IMU. Fur-
thermore, as the turning speed increases, the calibration errors become more pronounced,
leading to noticeable APE errors in the trajectory.

Figure 12. The APE trajectory curve.

The algorithm proposed in this paper aims to optimize positioning performance
based on existing SLAM algorithms while incorporating tree detection capabilities, thus
achieving real-time positioning and generating a roadside tree inventory. As far as our

Figure 12. The APE trajectory curve.

The algorithm proposed in this paper aims to optimize positioning performance based
on existing SLAM algorithms while incorporating tree detection capabilities, thus achieving
real-time positioning and generating a roadside tree inventory. As far as our knowl-
edge goes, existing SLAM algorithms do not inherently possess tree detection capabilities.
Therefore, the primary focus of this paper is on conducting a comparative analysis of the
proposed algorithm’s positioning performance. The widely recognized Fast-Lio algorithm
has been chosen as the benchmark for comparing our positioning results. As depicted in
Figure 13, our algorithm and Fast-Lio demonstrate comparable positioning performance.
Notably, our approach utilizes a front-end odometry based on the error-state Kalman filter
(ESKF) and a back-end optimization framework based on factor graphs. The updated
poses from the back-end are employed to establish point-to-line residual constraints for
the front-end within the local map. Additionally, the proposed algorithm enhances the
weighting of point cloud constraints related to trees and minimizes false matches, thereby
augmenting its robustness. Consequently, the maximum error of the proposed algorithm
is 6cm smaller than that of Fast-Lio. As indicated by the red curve in Figure 13, statistical
results demonstrate that the maximum Absolute Pose Error (APE) value is max = 0.223 m,
and the minimum value is min = 0.001. These quantitative analytical results substantiate
the high positioning accuracy of the algorithm proposed in this paper.

Remote Sens. 2023, 15, 5057 17 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21

knowledge goes, existing SLAM algorithms do not inherently possess tree detection ca-
pabilities. Therefore, the primary focus of this paper is on conducting a comparative anal-
ysis of the proposed algorithm’s positioning performance. The widely recognized Fast-
Lio algorithm has been chosen as the benchmark for comparing our positioning results.
As depicted in Figure 13, our algorithm and Fast-Lio demonstrate comparable positioning
performance. Notably, our approach utilizes a front-end odometry based on the error-
state Kalman filter (ESKF) and a back-end optimization framework based on factor
graphs. The updated poses from the back-end are employed to establish point-to-line re-
sidual constraints for the front-end within the local map. Additionally, the proposed al-
gorithm enhances the weighting of point cloud constraints related to trees and minimizes
false matches, thereby augmenting its robustness. Consequently, the maximum error of
the proposed algorithm is 6cm smaller than that of Fast-Lio. As indicated by the red curve
in Figure 13, statistical results demonstrate that the maximum Absolute Pose Error (APE)
value is max = 0.223m, and the minimum value is min = 0.001. These quantitative analyti-
cal results substantiate the high positioning accuracy of the algorithm proposed in this
paper.

Figure 13. Accuracy comparison of Fast-Lioi and the proposed method.

4.3.2. Evaluation of Tree Detection Accuracy
To assess the accuracy of tree detection, the trees extracted using our proposed

method were compared to the actual trees [3]. The actual trees were scanned from multi-
ple directions and manually analyzed to ensure capturing every detail of the trees. The
following table illustrates the level of difference between the manually extracted trees and
the trees extracted using our method.

From the Table 1, it can be observed that our proposed method obtains relatively
accurate parameters. The largest errors are observed in tree height and tree crown diam-
eter. This is mainly due to the fact that the LiDAR used in autonomous driving systems
primarily focuses on detecting the ground and objects around the vehicle, resulting in
sparse point clouds when scanning upward. As a result, the upper part of the tree crown
has very few points, leading to a noticeable decrease in detection accuracy. The error in
tree crown height is attributed to the indistinct transition between the tree trunk and the
tree crown, which introduces significant segmentation errors. However, the accuracy of
tree height and tree crown height is relatively high, indicating that the fusion of map in-
formation from multiple frames provides richer information compared to individual
point clouds, resulting in more accurate tree shape information in the final generated map.
Moreover, the distance between trees and the road edge is also relatively accurate, as the

Figure 13. Accuracy comparison of Fast-Lioi and the proposed method.

4.3.2. Evaluation of Tree Detection Accuracy

To assess the accuracy of tree detection, the trees extracted using our proposed method
were compared to the actual trees [3]. The actual trees were scanned from multiple direc-
tions and manually analyzed to ensure capturing every detail of the trees. The following
table illustrates the level of difference between the manually extracted trees and the trees
extracted using our method.

From the Table 1, it can be observed that our proposed method obtains relatively
accurate parameters. The largest errors are observed in tree height and tree crown diameter.
This is mainly due to the fact that the LiDAR used in autonomous driving systems primarily
focuses on detecting the ground and objects around the vehicle, resulting in sparse point
clouds when scanning upward. As a result, the upper part of the tree crown has very few
points, leading to a noticeable decrease in detection accuracy. The error in tree crown height
is attributed to the indistinct transition between the tree trunk and the tree crown, which
introduces significant segmentation errors. However, the accuracy of tree height and tree
crown height is relatively high, indicating that the fusion of map information from multiple
frames provides richer information compared to individual point clouds, resulting in more
accurate tree shape information in the final generated map. Moreover, the distance between
trees and the road edge is also relatively accurate, as the LiDAR observations mainly focus
on the direction from the road towards the trees, providing more abundant information
compared to the backside of the trees relative to the road. In Table 2, we conducted a
statistical analysis on 1376 trees. The algorithm detected a total of 1178 trees (predicted
positive), of which 19 were misrecognized (false positive), 1159 were correctly recognized
(true positive) and 217 trees were missed (false negative), which resulted in the true positive
rate of 0.8423 and the accuracy of 0.8308.

Remote Sens. 2023, 15, 5057 18 of 20

Table 1. The differences (in centimeters) between the parameters extracted using the proposed
method and manual measurements are as follows.

ID dXc dYc dDBH dCBH dCD dCW dDRE dTH

Urban Area

1 11 9 4 23 16 35 6 55
2 6 6 2 16 12 51 10 83
3 8 12 2 21 9 26 9 75
4 8 7 4 21 13 33 12 93
5 7 11 5 14 11 36 5 21
6 13 12 2 25 9 47 6 45
7 9 10 3 18 13 29 8 67
8 10 6 6 16 12 30 9 38
9 6 7 2 13 11 44 9 56

10 7 8 4 21 14 28 6 38

1 7 8 3 12 11 37 8 53
2 8 13 4 15 7 18 9 22
3 12 4 5 16 22 31 11 92
4 5 6 3 8 13 19 6 34
5 6 9 2 22 9 28 8 41

suburban Data 6 12 10 6 16 12 52 11 97
7 11 8 5 22 21 38 9 68
8 8 9 3 17 15 29 8 102
9 6 11 4 15 16 37 7 34

10 10 12 5 19 21 34 9 56

min 5 4 2 8 7 18 5 21

max 13 13 6 25 22 52 12 102

avg 9 9 4 18 13 34 8 59

Note: difference (d), planimetric coordinates (Xc, Yc), trunk diameter at breast height (DBH), crown base height
(CBH), crown depth (CD), crown width (CW), distance from the road edge (DRE), and tree height (TH).

Table 2. Tree Detection and Recognition Statistics. Total number of trees (TNT), predicted posi-
tive (PP), false positive (FP), true positive (TP), false negative (FN), true positive rate (TPR), accu-
racy (ACC).

TNT PP FP TP FN TPR ACC

1376 1178 19 1159 217 0.84 0.83

Overall, our proposed method demonstrates satisfactory accuracy in tree detection,
despite the observed errors in tree height and tree crown diameter. The results highlight
the effectiveness of leveraging multiple frame map information and the directional nature
of LiDAR observations to improve tree detection accuracy in the context of autonomous
driving systems.

5. Conclusions

In this paper, we have proposed a novel approach that uses an integrated LiDAR-
Inertial Navigation- GNSS to achieve simultaneous vehicle positioning and roadside tree
inventory creation. By tightly integrating LiDAR, Inertial Measurement Units, and GNSS in-
formation, we have achieved accurate pose estimation in environments with long-distance
tree occlusion. Additionally, we have proposed a tree detection method that uses shared
feature extraction and data preprocessing results from SLAM, reducing the computational
load and enabling real-time simultaneous vehicle positioning and tree inventory creation.
Through evaluations conducted in various road scenarios, including urban and suburban
areas, our system has demonstrated centimeter-level positioning accuracy, with a root mean
square error of less than 5 cm. Furthermore, it has enabled real-time automatic creation of a
roadside tree inventory, highlighting the effectiveness of our method in addressing tree
detection in autonomous driving systems. In conclusion, our integrated LiDAR-Inertial

Remote Sens. 2023, 15, 5057 19 of 20

Navigation-GNSS system provides a promising solution for simultaneous vehicle posi-
tioning and roadside tree inventory generation. It contributes to enhancing driving safety
and understanding of road environments, paving the way for safer and more reliable
autonomous driving systems.

Author Contributions: Conceptualization, W.P., Z.C., X.F. and P.L.; methodology, W.P. and P.L.;
software, Z.C.; validation, X.F. and Z.C.; formal analysis, Z.C.; investigation, X.F. and P.L.; data
curation, Z.C.; writing—original draft preparation, X.F. and W.P.; writing—review and editing,
Z.C. and X.F.; visualization, Z.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (42071195);
The first batch of New Liberal Arts Research and Reform projects of the Ministry of Education of
China (2021-148); Higher Education Reform Project of Hunan Province (HNJG-2020-0987); Talent
Introduction Research Fund Project of Changsha University(SF2149).

Data Availability Statement: Not applicable.

Acknowledgments: All authors would like to thank the editors and anonymous reviewers for their
valuable comments and suggestions which improved the quality of the manuscript. Additionally, we
would like to express our gratitude to Shanghai Huace Navigation Technology Co., Ltd. for their
technical assistance and support during testing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute

to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2020, 269, 116104. [CrossRef]
2. Eck, R.W.; McGee, H.W. Vegetation Control for Safety: A Guide for Local Highway and Street Maintenance Personnel: Revised August

2008; United States, Federal Highway Administration, Office of Safety: Washington, DC, USA, 2008.
3. Safaie, A.H.; Rastiveis, H.; Shams, A.; Sarasua, W.A.; Li, J. Automated street tree inventory using mobile LiDAR point clouds

based on Hough transform and active contours. ISPRS J. Photogramm. Remote Sens. 2021, 174, 19–34. [CrossRef]
4. Williams, J.; Schonlieb, C.-B.; Swinfield, T.; Lee, J.; Cai, X.; Qie, L.; Coomes, D.A. 3D Segmentation of Trees Through a Flexible

Multiclass Graph Cut Algorithm. IEEE Trans. Geosci. Remote Sens. 2019, 58, 754–776. [CrossRef]
5. Soilán, M.; González-Aguilera, D.; del-Campo-Sánchez, A.; Hernández-López, D.; Hernández-López, D. Road Marking Degrada-

tion Analysis Using 3D Point Cloud Data Acquired with a Low-Cost Mobile Mapping System. Autom. Constr. 2022, 141, 104446.
[CrossRef]

6. Rastiveis, H.; Shams, A.; Sarasua, W.A.; Li, J. Automated extraction of lane markings from mobile LiDAR point clouds based on
fuzzy inference. ISPRS J. Photogramm. Remote Sens. 2019, 160, 149–166. [CrossRef]

7. Yadav, M.; Lohani, B. Identification of trees and their trunks from mobile laser scanning data of roadway scenes. Int. J. Remote
Sens. 2019, 41, 1233–1258. [CrossRef]

8. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and
Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [CrossRef]

9. Luo, Z.; Zhang, Z.; Li, W.; Chen, Y.; Wang, C.; Nurunnabi, A.A.M.; Li, J. Detection of Individual Trees in UAV LiDAR Point
Clouds Using a Deep Learning Framework Based on Multichannel Representation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15.
[CrossRef]

10. Cabo, C.; Ordoñez, C.; García-Cortés, S.; Martínez, J. An algorithm for automatic detection of pole-like street furniture objects
from Mobile Laser Scanner point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 87, 47–56. [CrossRef]

11. Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the shape of urban street trees and evaluating its
influence on their aesthetic functions based on mobile lidar data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 203–214. [CrossRef]

12. Oveland, I.; Hauglin, M.; Giannetti, F.; Kjørsvik, N.S.; Gobakken, T. Comparing Three Different Ground Based Laser Scanning
Methods for Tree Stem Detection. Remote Sens. 2018, 10, 538. [CrossRef]

13. Ning, X.; Ma, Y.; Hou, Y.; Lv, Z.; Jin, H.; Wang, Z.; Wang, Y. Trunk-Constrained and Tree Structure Analysis Method for Individual
Tree Extraction from Scanned Outdoor Scenes. Remote Sens. 2023, 15, 1567. [CrossRef]

14. Kolendo, Ł.; Kozniewski, M.; Ksepko, M.; Chmur, S.; Neroj, B. Parameterization of the Individual Tree Detection Method Using
Large Dataset from Ground Sample Plots and Airborne Laser Scanning for Stands Inventory in Coniferous Forest. Remote Sens.
2021, 13, 2753. [CrossRef]

15. Gollob, C.; Ritter, T.; Wassermann, C.; Nothdurft, A. Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection
and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots. Remote Sens. 2019, 11, 1602. [CrossRef]

https://doi.org/10.1016/j.envpol.2020.116104
https://doi.org/10.1016/j.isprsjprs.2021.01.026
https://doi.org/10.1109/TGRS.2019.2940146
https://doi.org/10.1016/j.autcon.2022.104446
https://doi.org/10.1016/j.isprsjprs.2019.12.009
https://doi.org/10.1080/01431161.2019.1662966
https://doi.org/10.3390/f7060127
https://doi.org/10.1109/TGRS.2021.3130725
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.isprsjprs.2022.01.002
https://doi.org/10.3390/rs10040538
https://doi.org/10.3390/rs15061567
https://doi.org/10.3390/rs13142753
https://doi.org/10.3390/rs11131602

Remote Sens. 2023, 15, 5057 20 of 20

16. Husain, A.; Vaishya, R.C. Detection and thinning of street trees for calculation of morphological parameters using mobile laser
scanner data. Remote Sens. Appl. Soc. Environ. 2018, 13, 375–388. [CrossRef]

17. Yang, B.; Fang, L.; Li, J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point
clouds. ISPRS J. Photogramm. Remote Sens. 2013, 79, 80–93. [CrossRef]

18. Lv, Z.; Li, G.; Jin, Z.; Benediktsson, J.A.; Foody, G.M. Iterative Training Sample Expansion to Increase and Balance the Accuracy of
Land Classification from VHR Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 139–150. [CrossRef]

19. Zhang, C.; Zhou, Y.; Qiu, F. Individual tree segmentation from LiDAR point clouds for urban forest inventory. Remote Sens. 2015,
7, 7892–7913. [CrossRef]

20. Xu, S.; Xu, S.; Ye, N.; Zhu, F. Automatic extraction of street trees’ nonphotosynthetic components from MLS data. Int. J. Appl.
Earth Obs. Geoinf. 2018, 69, 64–77. [CrossRef]

21. Dersch, S.; Heurich, M.; Krueger, N.; Krzystek, P. Combining graph-cut clustering with object-based stem detection for tree
segmentation in highly dense airborne lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 172, 207–222. [CrossRef]

22. Tusa, E.; Monnet, J.-M.; Barre, J.-B.; Mura, M.D.; Dalponte, M.; Chanussot, J. Individual Tree Segmentation Based on Mean Shift
and Crown Shape Model for Temperate Forest. IEEE Geosci. Remote Sens. Lett. 2020, 18, 2052–2056. [CrossRef]

23. Yang, S.; Zhu, X.; Nian, X.; Feng, L.; Qu, X.; Mal, T. A Robust Pose Graph Approach for City Scale LiDAR Mapping. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 1175–1182.

24. Liu, H.; Pan, W.; Hu, Y.; Li, C.; Yuan, X.; Long, T. A Detection and Tracking Method Based on Heterogeneous Multi-Sensor Fusion
for Unmanned Mining Trucks. Sensors 2022, 22, 5989. [CrossRef] [PubMed]

25. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards fully
autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden,
Germany, 5–9 June 2011; pp. 163–168.

26. Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments. J. Field Robot. 2018, 36, 710–733. [CrossRef]

27. Kong, F.; Xu, W.; Cai, Y.; Zhang, F. Avoiding Dynamic Small Obstacles with Onboard Sensing and Computation on Aerial Robots.
IEEE Robot. Autom. Lett. 2021, 6, 7869–7876. [CrossRef]

28. Lu, F.; Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton. Robot. 1997, 4, 333–349. [CrossRef]
29. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems,

Berkeley, CA, USA, 12–16 July 2014; pp. 1–9.
30. Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

31. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. SuMa++: Efficient LiDAR-based Semantic SLAM. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 4–8 November 2019.

32. Wang, H.; Wang, C.; Xie, L. Intensity-SLAM: Intensity Assisted Localization and Mapping for Large Scale Environment. IEEE
Robot. Autom. Lett. 2021, 6, 1715–1721. [CrossRef]

33. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

34. Lin, J.; Zhang, F. R 3 LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping
package. In Proceedings of the 2022 IEEE International Conference on Robotics and Automation (ICRA 2022), Philadelphia, PA,
USA, 23–27 May 2022.

35. Wang, Y.; Lou, Y.; Song, W.; Huang, F. Simultaneous Localization of Rail Vehicles and Mapping of Surroundings with LiDAR-
Inertial-GNSS Integration. IEEE Sens. J. 2022, 22, 14501–14512. [CrossRef]

36. Yue, G.; Liu, R.; Zhang, H.; Zhou, M. A Method for Extracting Street Trees from Mobile LiDAR Point Clouds. Open Cybern. Syst. J.
2015, 9, 204–209. [CrossRef]

37. Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated Kalman filter. IEEE Robot.
Autom. Lett. 2021, 6, 3317–3324. [CrossRef]

38. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24–30 October 2020; pp. 5135–5142.

39. Pan, W.; Huang, C.; Chen, P.; Ma, X.; Hu, C.; Luo, X. A Low-RCS and High-Gain Partially Reflecting Surface Antenna. IEEE Trans.
Antennas Propag. 2013, 62, 945–949. [CrossRef]

40. Pan, W.; Fan, X.; Li, H.; He, K. Long-Range Perception System for Road Boundaries and Objects Detection in Trains. Remote Sens.
2023, 15, 3473. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rsase.2018.12.007
https://doi.org/10.1016/j.isprsjprs.2013.01.016
https://doi.org/10.1109/TGRS.2020.2996064
https://doi.org/10.3390/rs70607892
https://doi.org/10.1016/j.jag.2018.02.016
https://doi.org/10.1016/j.isprsjprs.2020.11.016
https://doi.org/10.1109/LGRS.2020.3012718
https://doi.org/10.3390/s22165989
https://www.ncbi.nlm.nih.gov/pubmed/36015750
https://doi.org/10.1002/rob.21842
https://doi.org/10.1109/LRA.2021.3101877
https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1109/LRA.2021.3059567
https://doi.org/10.1109/JSEN.2022.3181264
https://doi.org/10.2174/1874110X01509010204
https://doi.org/10.1109/LRA.2021.3064227
https://doi.org/10.1109/TAP.2013.2291008
https://doi.org/10.3390/rs15143473

	Introduction
	Related Work
	Materials and Methods
	Feature Extraction
	Candidate Point Calculation
	Feature Point Selection

	Tree Detection
	Front-End Odometry
	Backend Optimization
	GPS Factors
	ICP Factors
	Landmarks Factors

	Map Update and Canopy Detection

	Experimental Results and Discussion
	Testing Platform
	Test Results
	Results and Analysis
	Localization Accuracy Evaluation
	Evaluation of Tree Detection Accuracy

	Conclusions
	References

