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Abstract: The traditional method for determining wine grape total soluble solid (TSS) is destructive
laboratory analysis, which is time consuming and expensive. In this study, we explore the potential
of using different predictor variables from various advanced techniques to predict the grape TSS in a
non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation
indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation
between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning
models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector
regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial
neural network (ANN) are used to build the prediction models. The predictor variables include the
unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized
difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECa) measured by
proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date.
When using 23 VIs and other ancillary variables as input variables, the results show that ensemble
learning models (RFR, and XGBoost) outperform other regression models when predicting grape
TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 ◦Brix, and coefficient of
determination (R2) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition,
this study examines the prediction performance of using optimized soil adjusted vegetation index
(OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine
learning models with other ancillary variables. When using OSAVI-based models, the best prediction
model is RFR with an average R2 of 0.51 and RMSE of 1.19 ◦Brix, respectively. For NGBDI-based
model, the RFR model showed the best average result of predicting TSS were a R2 of 0.54 and a RMSE
of 1.16 ◦Brix, respectively. The approach proposed in this study provides an opportunity to grape
growers to estimate the whole vineyard grape TSS in a non-destructive way.

Keywords: wine grape; vegetation indices; UAV multispectral imagery; sugar content

1. Introduction

Viticulture is an important sector within the New Zealand horticultural system, with a
total vineyard production area extending over 41,000 ha [1]. In New Zealand, conventional
vineyards typically employ uniform management practices. However, studies have demon-
strated the spatial and temporal variation in vine vigor, grape yield, and quality within
the vineyard scale [2,3]. With uniform management, a single application rate of fertilizers,
pesticides and irrigation are used for the entire vineyard. As a consequence of uniform
management, parts of the field are likely to receive too little and others too much input.
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This could have negative impacts on the environment, such as groundwater pollution, soil
degradation and increase pressure from weeds and pests [4]. Precision viticulture (PV)
provides an opportunity for grape growers to understand and manage the vineyard spatial
variability by using remote sensing data and geostatistical analysis. Remote sensing allows
viticulturists to continuously monitor spatial and temporal variation in soil properties and
vine growth status [5]. This is particularly relevant for New Zealand wine growers who
need to understand and manage vineyard variability to increase grape quality and achieve
sustainable viticulture.

Remote sensing is the process of acquiring spectral data remotely from several plat-
forms including ground vehicles, aircraft, uncrewed aerial vehicles (UAV), and satellites.
In recent years, remote sensing has been widely applied in PV to evaluate the vineyard
spatial variability of vine vigor, nutrient status, wine water status, and grape yield and
quality [5–7]. Satellite platforms with multispectral cameras, such as Sentinel-2 with 10 m
pixel resolution and Landsat 8 with 30 m pixel resolution, have been used on a regional
scale to predict grape yield [8,9]. However, low spatial resolution satellite imagery makes it
difficult to monitor vine growth status on a vineyard block scale without bias, as a single
pixel of satellite imagery often mixes inter-row crops and bare soil. UAV and aircraft
sensors carrying multispectral or hyperspectral cameras have provided high spatial resolu-
tion imagery on a vineyard scale. For example, Carrillo et al. found a linear relationship
between berry weight and NDVI derived from multispectral airborne imagery [10]. In
addition, Lamb et al. found a strong correlation between berry quality parameters and
multispectral airborne imagery obtained at veraison [7]. However, the operational cost
of aircraft is very expensive. Compared to other platforms, UAV provide an interesting
alternative approach for PV, as it can provide high spatial resolution images at a lower
cost [11]. For example, García-Fernández et al. found a significant correlation between
RGB-based vegetation indices derived from UAV imagery and berry quality [12]. Wei et al.
found the VIs-derived UAV multispectral imagery combined with other environmental
variables can predict grapevine water status (stem water potential Ψstem), with the RMSE
of 138 kPa [13]. In addition to remote sensing, proximal sensors have demonstrated their
capability to explore the spatial and temporal variation of vine growth status within the
vineyard scale. Bramley et al. used a handheld proximal sensor (Crop Circle™, Holland
Scientific, Lincoln, Nebraska, USA) and an EM38 electromagnetic soil sensor (Geonics Ltd,
Mississauga, Ontario, Canada) to explore the spatial variability of vine vigor and yield
as well as soil texture on a vineyard block scale, while neither ECa nor VIs derived from
proximal sensor were good predictors of grape yield [3]. Their result also indicated that
ECa and VIs significantly correlated with vine vigor. Furthermore, a portable hyperspectral
spectroradiometer can be used to predicted the vine growth status and grape quality within
the vineyard scale [14,15].

One of the main objectives of PV is selective harvesting. A major reason for wishing
to do this, considering the variability of vineyards, is to harvest berries with consistent
quality during the harvest stage resulting in higher profit margins from wine [16]. In New
Zealand, sugar content commonly describes the quality of wine grapes at harvest. The
sugar content relates to the alcohol level of wine during the fermentation process. The
traditional method used in monitoring wine grape sugar content is to perform sample-
based laboratory destructive analysis which can be time consuming and an expensive
process. In recent years, remote and proximal sensors have been used to monitor grape
sugar content [12,17,18]. For example, Benelli et al. used a push broom hyperspectral
camera mounted on a vehicle to predict the sugar content of wine grapes [17]. In addition,
Kasimati et al. used NDVI obtained from proximal and remote sensing during different
growing stages to predict grape sugar content with R2 values of 0.61. Presently, the increase
in computing power and advanced sensing techniques enable more accurate prediction of
grape quality, helping grape growers assess grape quality before harvest and thus develop
a selective harvesting plan.
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Previous research has been conducted using Pearson’s correlation coefficient and
machine learning techniques to explore the relationship between spectral index data and
vine growth status, yield, and berry quality parameters. Pearson’s correlation coefficients
have been constructed to select key spectra indices relevant to the grape sugar content [12].
Machine learning techniques have been constructed to model both linear and non-linear
relationships between spectral index data and vine growth status, yield, and berry quality.
One study used an artificial neural network (ANN) to predict the table grape yield through
different vegetation indices (VIs) obtained from satellite remote sensing [9]. In regard to
studies conducted in predicting berry quality parameters, many studies used hyperspectral
imaging systems to predict various quality parameters such as sugar content, pH, and
titratable acidity through different machine learning techniques [19]. However, most of
these studies used remote or proximal sensing to directly measure berries or clusters. Few
studies have predicted grape quality through the VIs derived from canopy or leaf level. For
example, Kasimati et al. achieved good prediction accuracy with R2 values of 0.65 for grape
sugar content using NDVI and automated machine learning [20]. The VIs measured from
vine canopy or leaves can reflect the vine vigor, water status, and nutrient status [5,14,21].
Thus, it is important to explore the possibility of using the combination of VIs and machine
learning techniques to predict grape quality parameters.

The aims of this study are to (1) create an alternative method to predict grape sugar
content thorough VIs, derived from proximal and remote sensing, and other ancillary
environmental variables during different growth stages, and (2) to determine the ability of
different machine learning techniques in predicting grape sugar content.

2. Methods
2.1. Study Sites

The study research sites were conducted in two commercial wine grape vineyard
blocks on the Palliser Estate located in Martinborough, New Zealand (175.45235◦E
41.21119◦S, WGS 84). The study vineyards are named Hua Nui (HN) and Pencarrow
(PN). The variety used in the study areas was Pinot Noir which were planted in 1998–2000
for winemaking. The research sites selected for data collection were 3.31 ha for HN and
7.51 ha for PN. The wine grapes in study sites were trained with two-cane vertical shoot
positioning. Inter- and intra-row planting space is 2.2 and 1.7 m for HN, and 2.2 and
1.8 m for PN. The region of Martinborough has a mild coastal climate with an average
temperature of 18 ◦C. The soil in the vineyards are mostly clay and silty loams, which are
known to have moderate soil water holding capacity. Vine phenology in research vineyards
is shown in Table 1. The vineyard manager is responsible for managing the vines and
applied all inputs.

Table 1. Vine phenology in the study vineyards.

Vine Phenology Date

Budburst September, October
Leaf development October, November

Inflorescence emergence November
Flowering November, Early December

Fruit set and fruiting December, January
Veraison Late January, February
Harvest March, April

2.2. Grape Sugar Content Data Acquisition

Wine grapes were manually harvested between 20 February and 14 March 2023 (from
veraison to harvest time). Three berries from a single bunch were randomly selected from
each sampling vine. Table 2 shows the number of sampling vines from each measurement
date. During each measurement, the location of the sampling vine’s trunk was recorded
by a global navigation satellite system (GNSS) with real-time kinematic (RTK) correction
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(model: GPS1200+, Leica Geosystems AG., Heerbrugg, Switzerland). Figure 1 shows the
sampling locations in each vineyard. After acquiring grape berries, total soluble solids (TSS)
expressed in ◦Brix, was chosen as a proxy for grape sugar content and measured by using
a portable digital refractometer (PAL-ALPHA Digital Refractometer, ATAGO CO., LTD,
Tokyo, Japan). The sugar content of each sampling vine was determined by calculating the
mean of the three measurements taken per sampled vine. The weather during collecting
samples period is shown in Figure 2.

Table 2. The number of sampling vines in each measurement day.

Vineyard 20 February 26 February 2 March 6 March 14 March

Pencarrow 6 25 37 32 18
Hua Nui 25 36 14 30 13
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2.3. Canopy and Leaf Reflectance Data Acquisition

Multispectral imagery was acquired by DJI P4 Multispectral (Da-Jiang Innovations,
Shenzhen, China) between 11.00 and 14.00 under stable weather conditions and a clear sky
on the 14 December 2022. The DJI P4 Multispectral was gimbal equipped, with a 6-camera
array, one camera is an RGB camera, designed for visible light and capturing standard pho-
tos, while the remaining five cameras are dedicated to capturing 2 MP images, at various
wavelengths: near-infrared, red-edge, red, green, and blue, with centre wavelengths at
840 nm, 730 nm, 650 nm, 560 nm, and 450 nm, and bandwidth of ±26 nm, ±16 nm,
±16 nm, ±16 nm, and ±16 nm, respectively. The DJI P4 flew at 80 m height capturing
images with a spatial resolution of 4.2 cm for PN, and some at 84.9 m resulting in 4.5 cm
spatial resolution imagery for HN. The DJI P4 is equipped with an integrated sunlight
sensor that records irradiance during flight. This sensor captures data in the same bands as
the multispectral sensor, which is used for radiometric calibration purposes. In addition, ra-
diometric calibration was performed on the image blocks, using reference images acquired
from a calibrated reflectance panel (Seattle, WA, USA). To assure the accuracy of the image,
several ground control points were recorded by GNSS-RTK correction in each vineyard
during flight for geometric correction. Photogrammetric processing was applied to the geo-
referenced multispectral images using Pix4Dmapper (Pix4D SA, Lausanne, Switzerland).
The digital surface models (DSM), digital terrain models (DTM), and reflectance maps of
the study sites were created by Pix4Dmapper.

Due to discontinuous vegetation surfaces for the vineyard features, it becomes essential
to differentiate between the pixels belonging to the vine canopy and those in the inter-row
spacing. The process of detecting vine rows consists of the following steps: (1) NDVI
were calculated by band math function in ENVI 5.6 (Research Systems Inc., Boulder, CO,
USA), producing a greyscale image for each study site; (2) then, a global threshold was
implemented on the NDVI images to generate a binary image based on Otsu’s method
(Otsu threshold value is 0.535); (3) a single greyscale image was calculated from subtraction
of the DTM to the DSM for each study site; (4) then, a height threshold of 0.9 m was
implemented on the greyscale images to generate a binary image [13]. The height threshold
was dependent on the vineyards’ architecture; (5) then these two binary images were
converted to a feature map by ArcGIS Pro 2.9 (ESRI, Redlands, CA, USA); (6) then, using
the “Clip” tool in ArcGIS pro to extract the overlapping portion of these two features;
(7) using the vine row feature map as a mask layer to retain the original multispectral
images (Figure 3).

We located the image pixels that corresponded to the 236 sampling points by selecting
pixels on both sides of each sampling point, considering the vine spacing within each vine-
yard. From these pixels, we extracted reflectance values, averaged them, and subsequently
calculated the VIs using the formulas outlined in Table 3.

Leaf reflectance data was measured during 17 February 2023 to record the NDVI of
the grapevines’ leaves. Three leaves in each sampling vine were randomly selected and
scanned using a handheld RapidSCAN CS-45 (Holland Scientific Inc., Lincoln, NE, USA)
to record these three leaves NDVI value (NDVI_proximal). The average of the three leaves
NDVI values (NDVI_proximal) was used to represent the sampling vine growth status
during veraison.
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Table 3. The spectral indices used in this study.

Vegetation Indices Formula Reference

PCD NIR/Red [22]
NDVI (NIR − Red)/(NIR + Red) [23]

GNDVI (NIR − Green)/(NIR + Green) [24]

MSR
((

NIR
Red

)
− 1
)

/
√((

NIR
Red

)
+ 1
)

[25]

MSAVI 2 × NIR + 1 −
√
(2 × NIR + 1)2 − 8 × (NIR − Red)

2
[25]

RDVI (NIR − Red)/
√
(NIR + Red) [25]

OSAVI (1 + 0.16) NIR − Red
NIR + Red + 0.16 [25]

R/B index Red/Blue [26]
R/G index Red/Green [26]

NGRDI (Green − Red)/(Green + Red) [26]
NPCI (Blue − Red)/(Blue + Red) [26]
VARI (Green − Red)/(Green + Red − Blue) [27]

Clgreen NIR/Green − 1 [26]
ARI Green−1 − Rededge−1 [28]

MARI
(

Green−1 − Rededge−1
)
× NIR [28]

CLREDEDGE (NIR/Rededge)− 1 [29]

MCARI ((Rededge − Red)− 0.2 × (Rededge − Green))×
(Rededge/Red)

[29]

NDRE (NIR − Rededge)/(NIR + Rededge) [29]

EVI 2.5 ×
(NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)

[30]

NGBDI (Green − Blue)/(Green + Blue) [31]
G% Green/(Red + Green + Blue) [31]

REGI (Rededge − Green)/(Rededge + Green) [32]
RERI (Rededge − Red)/(Rededge + Red) [32]
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2.4. Vine Vigour Parameter Acquisition

The trunk circumference (TC) was chosen as a proxy for vine vigor. The trunk circum-
ference of all of the vines was measured 10 cm above the graft union and 10 cm below the
head of the vine with the paper ruler during the bud and leaf growing stage. These two
measurements per sampled vine were averaged to represent the vine vigor [33].

2.5. Soil and Terrain Data Acquisition

Many studies indicated that soil electrical conductivity (ECa) can be used to assess
soil texture types and water content [34,35]. Soil ECa is widely used to explore the spatial
variation in soil properties within the vineyards [33]. In addition, one study showed that
soil ECa is directly related to vine water status, berry weight, and sugar content [36]. In this
study, an electromagnetic induction sensor EM38-MK2 (Geonics Ltd., Mississauga, ON,
Canada) was used to assess the soil ECa in the study area during 27 May 2021. The EM38-
MK2 was operated in the vertical dipole mode, capturing integrated ECa measurements at
a depth of approximately 1.5 m. The EM38-MK2 was towed at the back of an all-terrain
vehicle, maintaining a distance of less than 0.2 m between the instrument and the vehicle.
To ensure accurate georeferencing of all point data from the ECa (mS/m) survey, a Trimble
Yuma tablet equipped with an onboard GPS receiver (model: Yuma, Trimble) accurate to
2–4 m, was utilized. Soil ECa points were measured at intervals of approximately 3–10 m
along transects, with a 10 m spacing between individual measurements.

The elevation (m) and slope (degree) data for the study site were obtained from the
‘Wellington LiDAR 1 m DEM (2013–2014)’ layer. This dataset was made accessible through
the Land Information New Zealand data service (https://data.linz.govt.nz/, accessed
on 28 July 2023). This digital elevation model (DEM) has a resolution of 1 m and was
created using aerial LiDAR data captured between 2013 and 2014, encompassing the
study vineyards.

2.6. Geostatistical Analysis

The application of geostatistics in PV has been undertaken in many studies [3,33]. The
purpose of geostatistics is describing spatial autocorrelation of a regionalized variable (the
georeferenced data) and uses this information to predict the values of the variable across
an entire field by Kriging. The central tool in geostatistics is the variogram, which is a set
of semi-variances plotted against the lag distances between the measurements to describe
the way in which a property varies from place to place. Experimental variograms were
computed using R statistical software (R Core Team, version 4.2.2) with the package “gstat”
by the Matheron’s method of moments, as in the following formula:

γ(h) =
1

2m(h)

m(h)

∑
i=1

[
Zx − Z(x+h)]

2

where 2m(h) is the number of paired comparisons at the lag interval h, Zx, and Z(x+h) are
the values of the property at two locations separated by distance h.

After computing the experimental variogram, the experimental variogram based on a
suitable mathematical model. The best fitting mathematical model was selected based on
the lowest residual sum of squares (RSS). The parameters of the fitted variogram were used
to interpolate the soil ECa, slope, and elevation value based on ordinary Kriging by using
ArcGIS Pro 2.9 (ESRI, Redlands, CA, USA). The soil ECa values less than 0 mS/m were
removed before doing geostatistical analysis. The Kriging interpolation images were then
exported to a raster layer with the same gride size as used by the multispectral UAV image.
For each sampling vine, the mean values of soil ECa, elevation, and slope were computed
using “zonal statistics as table” in ArcGIS Pro 2.9.

https://data.linz.govt.nz/
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2.7. Machine Learning Model

Different machine learning models were performed to predict the sugar content. The
input variables include, canopy reflectance data, leaf reflectance data, TC, soil ECa, eleva-
tion, slope, and day of year for sampling date (DOY). The machine learning models used;
included regularized regression, k-Nearest Neighbors (KNN), support vector regression
(SVR), random forest regression (RFR), XGBoost, and ANN.

Regularized regression: regularized regression is used to explore the linear relation-
ship between input and output variable, when the data set contain more features than
observations. In addition, it is suitable for the analysis of multicollinearity among the
features. The objective function of a regularized regression is in the following formula:

minimize

(
n

∑
i=1

(yi − ŷi)
2 + P

)

where n is the sample number, yi is the measured truth value of the ith sample, ŷi is the
predicted value of the ith sample, P is the penalty term.

In this study, we used ridge penalty and lasso penalty to build the linear relationship
between input and output variables. When using the ridge penalty, the formula of penalty
parameters is

P = λ
p

∑
j=1

β2
j

When using the lasso penalty, the formula of penalty parameters is

P = λ
p

∑
j=1

∣∣β j
∣∣

where λ ≥ 0 is a tuning parameter, p is the feature number, β j is the regression coefficient
of the jth feature.

KNN: It aims to identify the k most similar instances from a training dataset to predict
the target value of a new data point. The Euclidean distance metric are commonly used to
determine the similarity between observations. The formula of Euclidean distance is√√√√ p

∑
j=1

(
xaj − xbj

)2

where xa and xb represent the observations, j represents the feature, p represents the
feature number.

SVR: Support vector machine (SVM) try to find a hyperplane in an N-dimensional
space (N-the number of features) that “best” classify the two classes. Hyperplane represents
a decision boundary that help classify the data points. SVR is an extended tool of SVM to
solve regression problems.

RFR: It is an ensemble learning model which combines the multiple decision trees
on different subsets of the training data (bootstrap samples), and then averaging their
predictions to achieve more accurate and robust regression results.

XGBoost: It combines gradient boosting with regularization techniques, creating
a boosted ensemble of decision trees. XGBoost optimizes model predictions by fitting
negative gradients of the loss function during each boosting iteration.

ANN: It consists of interconnected nodes called neurons organized into layers: an
input layer, one or more hidden layers, and an output layer. Each neuron receives input
data, performs computations, and passes the results to the next layer through weighted
connections. Activation functions introduce non-linearity and enable ANN to learn complex
relationships in data. In this study, we use a single layer neural network to predict the TSS
based on input variables.
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To evaluate the model’s prediction performance, the dataset is divided into training
and test sets with the ratio of 7:3. This process was repeated 20 times with different data
splits to improve the estimated performance of study models. The performance of machine
learning models is affected by their hyperparameters. Thus, it was important to tune the
hyperparameters. Bayesian hyperparameter optimization was used on the training set with
10-fold cross-validation to search for the best combination of hyperparameters based on
the root mean square error (RMSE). In addition, the coefficient of determination (R2) and
RMSE were selected to compare the performance of different machine learning models on
the test set. The Waller–Duncan test was used to conduct multiple comparisons between
different machine learning models. The formula of R2 and RMSE was as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

where n is the number of sampling vines, yi is the measured TSS value of the ith vine
sample, y is the mean measured TSS value, ŷi is the model predicted TSS value of the ith
vine sample.

3. Results
3.1. Variation in Total Soluble Solids

Both vineyards were measured five times from veraison in late February to harvest in
middle March. Measuring TSS in this period is crucial for assessing grape maturity and,
consequently, making informed decisions about selecting the optimal harvest day. Figure 4
showed the variation in TSS collected from 236 vines across two distinct vineyards, along
with the distribution of these measurements for each sampling date. The grape TSS values
ranged from 12.8 to 21.2 ◦Brix during the study period. The extensive range of data within
the dataset facilitated the construction of a robust calibration model. The grape TSS values
increased rapidly from 2–14 March suggesting a gradual progression towards ripeness as
TSS accumulate. It is worth noting that the TSS measured on 20 and 26 February were
higher compared to those of 2 March. One possible explanation is the variability of sample
collection locations lead to spatial variation in grape TSS. In addition, the height of the
boxplot and the magnitude of the interquartile range represent the spatial variability of
TSS within each vineyard during different measurement dates (Figure 4).
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3.2. Pearson’s Correlation Coefficient between VIs and TSS

In this study, 23 VIs frequently used in viticulture were calculated based on the red,
red edge, green, blue, and near infrared (NIR) bands of the UAV multispectral images.
The Pearson’s correlation coefficient was used to explore the relationship between VIs
and grape TSS, to check the potential of using UAV multispectral images to predict the
grape quality. In order to mitigate the influence of different sampling dates on grape
TSS content, we calculated the Pearson’s correlation coefficient between VIs and grape
TSS for each respective sampling date (Figure 5). When the grapes reached the harvest
stage, most of VIs showed a strong correlation with grape TSS with the absolute value of
the Pearson’s correlation coefficient, greater than 0.5. Among all the VIs, optimized soil
adjusted vegetation index (OSAVI) had the maximum correlation with grape TSS, with a
coefficient of 0.64 during the harvest stage. This was followed by renormalized difference
vegetation index (RDVI), enhanced vegetation index (EVI), and anthrocyanin reflectance
index (ARI) with the absolute value of the Pearson’s coefficient greater than 0.62 during the
harvest stage. The NDVI and PCD which are widely used in assessing vine vigor growth
status show a negative correlation with grape TSS from veraison to harvest stage. This is
because vine vigor has an negative impact on grape quality [33]. However, most of VIs
show a weak correlation with grape TSS during veraison stage. In addition, the simple
linear relationship between each of the 23 VIs and grape TSS were explored. The result
showed that OSAVI had the best linear correlation with grape TSS with a R2 of 0.4 and
RMSE of 0.89 ◦Brix (Appendix A). This was followed by RDVI, ARI, EVI, MSAVI, and
NGBDI (Appendix A). The OSAVI is calculated based on NIR and red bands; this suggests
that OSAVI is a promising candidate to predict the grape TSS when multispectral sensors
are available. The promising performance of NGBDI implies that, when only RGB sensors
are available, NGBDI may serve as a spectral indicator for grape TSS.
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3.3. Spatial Variability of Soil ECa, Elevation and Vine Vigour Status

The geostatistical analysis was used to map the spatial variation in soil ECa, elevation,
and vine vigor status within the vineyard. Soil ECa was measured at 0.5 m depth by
an EM38-MK2. The kriging interpolation maps showed the spatial variability of soil
ECa, elevation, and vine vigour status within the vineyard (Figures 6 and 7). In the PN
vineyard, soil ECa values showed lower values in the northeastern portion, higher values in
a small portion of the eastern region, and the south-western border (Figure 6a). In the HN
vineyard, soil ECa values were low in the south-western section of the vineyard, and in the
north-eastern section showed high soil ECa values (Figure 7a). When it turns to elevation,
elevation values were high in the south-eastern region and low in the north-western region
in PN (Figure 6b). In the HN vineyard, elevation values were higher in the middle region
and lower in the north-eastern region. The trunk circumference, NDVI and PCD were
used to represent the vine vigour status in many studies [21]. Figures 6c and 7c show
the spatial variation in TC within study sites. In the PN vineyard, TC values were lower
in the south-eastern boundary region and higher in the north-western region (Figure 6c).
In HN vineyard, TC values were low in the north-eastern boundary region and high in
the northern region (Figure 7c). When it turns to NDVI and PCD, the spatial pattern of
these two VIs is similar in each vineyard (Figures 6 and 7). In PN, NDVI and PCD showed
high value in the south-western and north-eastern corner, while the low value show in
middle region (Figure 6d,e). In HN, NDVI and PCD showed high value in the south-eastern
boundary, and low value in the northern region. (Figure 7d,e)
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3.4. Prediction Model Performance of Grape TSS

The machine learning models used both linear and nonlinear regression analysis to
predict grape TSS. The input variable includes all 23 VIs obtained from UAV imagery,
NDVI_proximal, and soil ECa obtained from proximal sensor, elevation, and slope obtained
from a LiDAR camera, as well as TC obtained directly in the vineyards. In order to ensure
the robustness and generalization of the models used in this study, the model evaluation
process was repeated 20 times with different data splits. When using linear regression
models, the best prediction model is ridge regression with an average R2 of 0.31 and RMSE
of 1.43 ◦Brix, respectively (Table 4). For lasso regression, the average result of predicting
TSS were a R2 of 0.3 and a RMSE of 1.44 ◦Brix, respectively (Table 4).

Table 4. The prediction performance of study machine learning models (bold represents the best
prediction performance).

Method R2 RMSE

Lasso regression 0.3 ± 0.08 1.44 ± 0.1
Ridge regression 0.31 ± 0.08 1.43 ± 0.1

KNN 0.24 ± 0.08 1.5 ± 0.1
SVR 0.37 ± 0.08 1.38 ± 0.09
RFR 0.52 ± 0.06 1.19 ± 0.07

XGBoost 0.52 ± 0.06 1.2 ± 0.09
ANN 0.31 ± 0.11 1.43 ± 0.13

Among the nonlinear methods, this study evaluated the prediction performance of
the individual machine learning models (KNN, SVR), ensemble learning methods (RFR,
XGBoost), and deep learning method (ANN) to estimate grape TSS. The ensemble ma-
chine learning methods including RFR and XGBoost improved the prediction performance
(Table 4). The best prediction performance for the nonlinear methods was the RFR al-
gorithm with an average R2 of 0.52 and RMSE of 1.19 ◦Brix, respectively (Table 4). The
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result of using XGBoost showed a similar prediction performance with RFR (R2 = 0.52,
RMSE = 1.2 ◦Brix). RFR and XGBoost aggregated the predictions from multiple decision
trees together, to significantly improve the estimation accuracy than the other machine
learning models (Figure 8). However, the KNN model showed a significantly poor pre-
diction accuracy compared with other linear and nonlinear regression models with an
average R2 of 0.24 and RMSE of 1.2 ◦Brix (Table 4 and Figure 8). Compared with the linear
regression models, SVR significantly improved the prediction performance with an average
R2 of 0.37 and RMSE of 1.38 ◦Brix (Table 4 and Figure 8). However, ANN showed a similar
prediction performance as linear regression model with an average R2 of 0.31 and RMSE of
1.43 ◦Brix (Table 4 and Figure 8).
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In order to reduce redundant information from the 23 VIs, OSAVI and NGBDI were
used as the main input for different machine learning models with other ancillary variables.
OSAVI and NGBDI consider the different scenarios of available sensors, in order to better
target practical applications. Compared to regression using all 23 VIs, the result of most of
the machine learning models increased when using OSAVI-based model or NGBDI-based
model (Tables 4–6). When using OSAVI-based models, the best prediction model is RFR
with an average R2 of 0.51 and RMSE of 1.19 ◦Brix, respectively (Table 5). For NGBDI-based
model, the RFR model showed the best average result predicting TSS with an R2 of 0.54 and
a RMSE of 1.16 ◦Brix, respectively (Table 6). Figures 9 and 10 showed that the variation of
different machine learning models’ performance during the repeated 20 times different data
splits strategies. The result of Waller–Duncan showed that using ensemble learning models
(RFR and XGBoost) demonstrated greater capability than that of lasso, ridge, KNN, and
SVR (Figures 9 and 10). Figure A1 (Appendix A) plots the regression relationship between
the best predicted values and actual values for the best performance model (NGBDI-based
RFR model).
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Table 5. The predicted performance of OSAVI-based models (bold represents the best prediction
performance).

Method R2 RMSE

Lasso regression 0.3 ± 0.08 1.44 ± 0.1
Ridge regression 0.32 ± 0.1 1.38 ± 0.1

KNN 0.4 ± 0.07 1.3 ± 0.1
SVR 0.36 ± 0.07 1.39 ± 0.1
RFR 0.51 ± 0.07 1.19 ± 0.07

XGBoost 0.5 ± 0.07 1.21 ± 0.08
ANN 0.45 ± 0.12 1.26 ± 0.14

Table 6. The predicted performance of NGBDI-based models (bold represents the best prediction
performance).

Method R2 RMSE

Lasso regression 0.3 ± 0.08 1.43 ± 0.09
Ridge regression 0.32 ± 0.1 1.43 ± 0.09

KNN 0.4 ± 0.06 1.31 ± 0.1
SVR 0.4 ± 0.07 1.33 ± 0.12
RFR 0.54 ± 0.07 1.16 ± 0.07

XGBoost 0.52 ± 0.06 1.19 ± 0.07
ANN 0.39 ± 0.11 1.31 ± 0.11
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4. Discussion

In this study, we explored the potential to use VIs, soil ECa, elevation, slope, and TC
data as input variables to predict the grape sugar content in a non-destructive way. A total
of 236 samples from Pinot Noir cultivars had the TSS measured values based on destructive
methods from two commercial vineyards and used as output variable in the regression
model. The grape TSS was measured on five different days in the period from veraison to
harvest. During the veraison stage, the berries start to mature changing color, softening,
accumulating sugar, and reducing acid [37]. From veraison, grape growers start to measure
the grape quality parameters such as TSS, pH, and titratable acidity in order to determine
the best harvest day. Among them, the TSS is an important parameter to assess the grape
maturity as it can determine the alcohol concentration and flavor of the subsequent wine.
Figure 4 shows that the sugar content of grapes initially decreased and then increased
during the study period. However, in a previous study, the sugar concentration of grapes
exhibited a strong increase starting from veraison and eventually reached a plateau during
harvest stage [38]. One possible reason is that the sampling vines were randomly selected
during each of the five-measurement days, without repeating the selection. This differed
from the sampling strategy used in the previous study. Several studies have shown that
there is considerable spatial and temporal variation in grape TSS [2,39]. Thus, the grapes
in different geographic locations may accumulate sugar at different rates [2]. On each
measurement day, the large magnitude of the interquartile range and the outlier in Figure 4
showed the large spatial variability in grape TSS within the vineyard blocks. Thus, it
is inappropriate to take a single or average measurements, collected in the vineyard to
represent the grape maturity stage.

Due to the spatial variability of grape quality at the vineyard scale, it is important to
measure the grape quality across the entire vineyard. However, the traditional method
relies on destructive measurement, which makes it impossible to measure each grape
berry’s quality. Thus many studies have explored the potential of using advanced sensing
techniques to measure the grape quality with a non-destructive method [15,17,18,40].
However, most of these studies used direct measurements of berries or clusters to estimate
grape quality parameters [15,17,31]. Few studies have predicted grape quality by canopy
or at the leaf level [18]. In this study we propose an alternative method to predict grape
TSS based on VIs and other ancillary data. Different biological stress conditions can cause
changes in canopy status such as heightened pigment levels or canopy structure change,
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which will affect the quality of subsequent berries. These changes can affect the way plants
interact with light of different wavelengths [41]. Based on these characteristics, many
studies have used hyperspectral and multispectral images to predict the crop growth status,
yield and quality [14]. Compared with hyperspectral cameras, this study used a cheaper
multispectral UAV imaging system to acquire the canopy reflectance data in the red, red
edge, blue, green, and near-infrared bands. The red, red edge, and near infrared bands
have been reported to be related with the chlorophyll content and leaf structure. The blue
and green bands have been proven to be associated with the canopy pigments change. In
this study, we calculated 23 VIs based on different bands reflectance data values. Due to the
grape TSS being measured from different locations without a repeat at each sampling date,
the data was grouped based on measurement date, and the Pearson’s coefficient calculated
between VIs and grape TSS in each group (Figure 5). A previous study calculated the
Pearson’s correlation coefficient between spectral indices acquired from UAV RGB imagery
and grape quality parameters [12]. The result found significant correlations between berry
weight, malic acid, alpha amino nitrogen, phenolic maturation index, total polyphenol
index, and spectral indices. However, the spectral indices calculated from RGB imagery
show a poor correlation with TSS in their study. In this study, multispectral cameras
can provide additional spectral values in the near infrared and red-edge band. The VIs
including OSAVI, RDVI, EVI, ARI, and MSAVI which are computed based on the spectral
bands including near infrared and red edge, which showed a strong correlation between
grape TSS during the harvest stage (Figure 5). Furthermore, the simple linear regression
between each of the 23 VIs and grape TSS during harvest stage was examined. It is apparent
that the prediction performance of using only RGB bands was lower than that of using the
VIs which combined with near infrared and red edge bands.

The MSAVI, RDVI, and OSAVI were calculated from different wavelength reflectance
in the red and near infrared bands. Red and near infrared band are the most common
band combination to monitor biomass and vegetation density as well as biophysical pa-
rameters [42]. PCD and NDVI calculated based on the reflectance value in red and near
infrared band were widely used in PV [18,21,43,44]. For example, one study used PCD as
an indicator to represent the vine vigor and explore their spatial variability within vine-
yard [43]. In addition, the NDVI are commonly used to identify the vine row space using
high spatial resolution imagery [45]. Due to the discontinuity of the vegetation surface in
the vineyard, it is necessary to extract the vegetation information from the vine canopy
under the high-resolution images, to reduce the influence of soil and weeds between rows.
In this study, a simple threshold method on NDVI and DSM-DTM was used to identify the
vine row area. However, the Pearson’s correlation coefficient between NDVI and grape
TSS is low in this study. A previous study showed that the NDVI obtained at veraison
stage to have a strong correlation with grape TSS [18]. One possible reason is that the UAV
imagery was acquired during the flowering stage. Most studies showed that there was a
strong correlation between NDVI and grape quality parameters at the late development
stages of vine growing [46,47]. It is worth noting that the vineyard will use the antibird
net to protect the grapes after veraison. This makes it difficult to use UAV and satellites to
obtain accurate canopy reflection data during this period.

Furthermore, the potential of using machine learning models to predict the grape TSS
was evaluated. In addition to the VIs collected during flowering, the input variables in the
machine learning includes the NDVI_proximal value measured on a handheld proximal
sensor during the post veraison stage, the soil ECa value measured from EM38-MK2, el-
evation and slope value obtained from LiDAR data, and TC measured in the field. The
dataset was used to train and test machine learning models, evaluating the performance of
linear and nonlinear regression models including lasso regression, ridge regression, KNN,
SVR, RFR, XGBoost, and ANN. When we used all input variables in machine learning
models, the ensemble method, which included RFR and XGBoost showed similar predic-
tion accuracy for grape TSS prediction, with the best-fitted model achieving R2 = 0.52 and
RMSE = 1.19 ◦Brix. These results confirm the findings of [18], who compared the linear and
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nonlinear regression models in predicting grape TSS, and they concluded that the AdaBoost-
ing, RFR, and Extra Trees model outperform the other machine learning models [18]. In
addition, another study showed that the XGBoost and RFR demonstrated greater capability
for modeling crop yield than linear regression model and ANN [48]. Compared with [48],
this study tested different machine learning models, 20 times with different test sets, and
used Waller–Duncan to analyze the differences between the performance of each model.
Furthermore, this study used OSAVI or NGBDI as main input variables with other ancillary
data to predict grape TSS based on different machine learning models. We chose OSAVI
and NGBDI as the main input variables, as they represent the Vis that can be obtained when
different sensors are available. Similar results were obtained with 23 VIs used as input
variables, the RFR showed the best prediction performance (Tables 4–6). Therefore, the
implementation of ensemble learning techniques provide potential to predict the grape TSS
in a non-destructive way, based on remote sensed data. However, it should be noted that
berry quality was affected by the environmental conditions during the harvest stage (e.g.,
radiation, temperature). A further study should continue to explore relationships, using
different input variables to predict grape TSS. In addition, the berry samples were only
3 berries per vine which cannot represent the whole vine grapes’ TSS value but was used
to return a range of TSS values. The sample size may influence the prediction performance
when using different machine learning models. Thus, further study should increase the
berry sampling numbers.

5. Conclusions

This study investigates the possibility of using the combination of remote and proximal
sensed data and machine learning techniques to predict the wine grape quality parameter
used as a proxy for TSS. The Pearson’s correlation coefficient showed that the VIs obtained
from the UAV during the flowering stage have a strong correlation with the grape TSS
during the harvest stage. The input variables, which include VIs obtained from UAV, NDVI,
and soil ECa obtained from proximal sensors, elevation, and slope obtained from a LiDAR
camera, as well as TC obtained directly in the vineyard, was used to build regression
models to estimate grape TSS in a non-destructive way. This study evaluates the prediction
performance of seven machine learning techniques: ridge regression, lasso regression,
KNN, SVR, RFR, XGBoost, and ANN. The result shows that ensemble learning models
(RFR and XGBoost) outperform other regression models when predicting grape TSS. This
study develops an alternative approach to predict the grape TSS by different predictor
values through various advanced techniques. For grape growers, the approach developed
in this study could help them assess the whole vineyard grape TSS in a non-destructive
way, in order to make the harvest decision.
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Appendix A

Table A1. R2 and RMSE based on a linear regression between TSS and each Vis during 14 March.

Vis R2 RMSE Date

OSAVI 0.40 0.89 14 March
RDVI 0.38 0.90 14 March
ARI 0.38 0.90 14 March
EVI 0.38 0.90 14 March
MSAVI 0.38 0.90 14 March
NGBDI 0.35 0.92 14 March
NDRE 0.34 0.93 14 March
CLREDEDGE 0.33 0.93 14 March
G% 0.33 0.94 14 March
R_G_index 0.31 0.95 14 March
GNDVI 0.31 0.95 14 March
MCARI 0.30 0.96 14 March
NGRDI 0.30 0.96 14 March
VARI 0.28 0.97 14 March
Clgreen 0.28 0.97 14 March
REGI 0.27 0.97 14 March
MARI 0.27 0.98 14 March
RERI 0.02 1.13 14 March
PCD 0.01 1.14 14 March
MSR 0.01 1.14 14 March
R_B_index 0.01 1.14 14 March
NDVI 0.01 1.14 14 March
OSAVI 0.40 0.89 14 March

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure A1. Measured TSS value comparison against predicted TSS value for the best NGBDI-based 
RFR model. 

References 
1. Vineyard Report 2022 New Zealand Winegrowers; New Zealand Winegrowers: Auckland, New Zealand, 2022; pp. 1–22. 
2. Baluja, J.; Tardaguila, J.; Ayestaran, B.; Diago, M.P. Spatial Variability of Grape Composition in a Tempranillo (Vitis vinifera L.) 

Vineyard over a 3-Year Survey. Precis. Agric. 2013, 14, 40–58. 
3. Bramley, R.G.V.; Trought, M.C.; Praat, J.-P. Vineyard Variability in Marlborough, New Zealand: Characterising Variation in 

Vineyard Performance and Options for the Implementation of Precision Viticulture. Aust. J. Grape Wine Res. 2011, 17, 72–78. 
4. Froment, M.; Dampney, P.; Goodlass, G.; Dawson, C.; Clarke, J. A Review of Spatial Variation of Nutrients in Soil; MAFF final 

report for project CE0139; ministry of agriculture, Fisheries and Food: London, UK, 1995. 
5. Wei, H.-E.; Grafton, M.; Bretherton, M.; Irwin, M.; Sandoval, E. Evaluation of the Use of Two-Stage Calibrated PlanetScope 

Images and Environmental Variables for the Development of the Grapevine Water Status Prediction Model. Technol. Agron. 2023, 
3, 6. 

6. Rey-Caramés, C.; Diago, M.P.; Martín, M.P.; Lobo, A.; Tardaguila, J. Using RPAS Multi-Spectral Imagery to Characterise Vigour, 
Leaf Development, Yield Components and Berry Composition Variability within a Vineyard. Remote Sens. 2015, 7, 14458–14481. 

7. Lamb, D.W.; Weedon, M.M.; Bramley, R.G.V. Using Remote Sensing to Predict Grape Phenolics and Colour at Harvest in a 
Cabernet Sauvignon Vineyard: Timing Observations against Vine Phenology and Optimising Image Resolution. Aust. J. Grape 
Wine Res. 2004, 10, 46–54. 

8. Arab, S.T.; Ahamed, T. Land Suitability Analysis for Potential Vineyards Extension in Afghanistan at Regional Scale Using 
Remote Sensing Datasets. Remote Sens. 2022, 14, 4450. 

9. Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of Grape Yields from Time-Series Vegetation Indices Using 
Satellite Remote Sensing and a Machine-Learning Approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. 

10. Carrillo, E.; Matese, A.; Rousseau, J.; Tisseyre, B. Use of Multi-Spectral Airborne Imagery to Improve Yield Sampling in 
Viticulture. Precis. Agric. 2016, 17, 74–92. 

11. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. 
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–
2990. 

12. García-Fernández, M.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. High-Resolution Drone-Acquired RGB Imagery to Estimate 
Spatial Grape Quality Variability. Agronomy 2021, 11, 655. 

13. Wei, H.-E.; Grafton, M.; Bretherton, M.; Irwin, M.; Sandoval, E. Evaluation of the Use of UAV-Derived Vegetation Indices and 
Environmental Variables for Grapevine Water Status Monitoring Based on Machine Learning Algorithms and SHAP Analysis. 
Remote Sens. 2022, 14, 5918. 

14. Lyu, H.; Grafton, M.; Ramilan, T.; Irwin, M.; Sandoval, E. Assessing the Leaf Blade Nutrient Status of Pinot Noir Using 
Hyperspectral Reflectance and Machine Learning Models. Remote Sens. 2023, 15, 1497. 

Figure A1. Measured TSS value comparison against predicted TSS value for the best NGBDI-based
RFR model.

References
1. Vineyard Report 2022 New Zealand Winegrowers; New Zealand Winegrowers: Auckland, New Zealand, 2022; pp. 1–22.
2. Baluja, J.; Tardaguila, J.; Ayestaran, B.; Diago, M.P. Spatial Variability of Grape Composition in a Tempranillo (Vitis vinifera L.)

Vineyard over a 3-Year Survey. Precis. Agric. 2013, 14, 40–58. [CrossRef]
3. Bramley, R.G.V.; Trought, M.C.; Praat, J.-P. Vineyard Variability in Marlborough, New Zealand: Characterising Variation in

Vineyard Performance and Options for the Implementation of Precision Viticulture. Aust. J. Grape Wine Res. 2011, 17, 72–78.
[CrossRef]

https://doi.org/10.1007/s11119-012-9282-5
https://doi.org/10.1111/j.1755-0238.2010.00119.x


Remote Sens. 2023, 15, 5412 19 of 20

4. Froment, M.; Dampney, P.; Goodlass, G.; Dawson, C.; Clarke, J. A Review of Spatial Variation of Nutrients in Soil; MAFF final report
for project CE0139; Ministry of Agriculture, Fisheries and Food: London, UK, 1995.

5. Wei, H.-E.; Grafton, M.; Bretherton, M.; Irwin, M.; Sandoval, E. Evaluation of the Use of Two-Stage Calibrated PlanetScope Images
and Environmental Variables for the Development of the Grapevine Water Status Prediction Model. Technol. Agron. 2023, 3, 6.
[CrossRef]

6. Rey-Caramés, C.; Diago, M.P.; Martín, M.P.; Lobo, A.; Tardaguila, J. Using RPAS Multi-Spectral Imagery to Characterise Vigour,
Leaf Development, Yield Components and Berry Composition Variability within a Vineyard. Remote Sens. 2015, 7, 14458–14481.
[CrossRef]

7. Lamb, D.W.; Weedon, M.M.; Bramley, R.G.V. Using Remote Sensing to Predict Grape Phenolics and Colour at Harvest in a
Cabernet Sauvignon Vineyard: Timing Observations against Vine Phenology and Optimising Image Resolution. Aust. J. Grape
Wine Res. 2004, 10, 46–54. [CrossRef]

8. Arab, S.T.; Ahamed, T. Land Suitability Analysis for Potential Vineyards Extension in Afghanistan at Regional Scale Using Remote
Sensing Datasets. Remote Sens. 2022, 14, 4450. [CrossRef]

9. Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of Grape Yields from Time-Series Vegetation Indices Using Satellite
Remote Sensing and a Machine-Learning Approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [CrossRef]

10. Carrillo, E.; Matese, A.; Rousseau, J.; Tisseyre, B. Use of Multi-Spectral Airborne Imagery to Improve Yield Sampling in Viticulture.
Precis. Agric. 2016, 17, 74–92. [CrossRef]

11. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990.
[CrossRef]

12. García-Fernández, M.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. High-Resolution Drone-Acquired RGB Imagery to Estimate
Spatial Grape Quality Variability. Agronomy 2021, 11, 655. [CrossRef]

13. Wei, H.-E.; Grafton, M.; Bretherton, M.; Irwin, M.; Sandoval, E. Evaluation of the Use of UAV-Derived Vegetation Indices and
Environmental Variables for Grapevine Water Status Monitoring Based on Machine Learning Algorithms and SHAP Analysis.
Remote Sens. 2022, 14, 5918. [CrossRef]

14. Lyu, H.; Grafton, M.; Ramilan, T.; Irwin, M.; Sandoval, E. Assessing the Leaf Blade Nutrient Status of Pinot Noir Using
Hyperspectral Reflectance and Machine Learning Models. Remote Sens. 2023, 15, 1497. [CrossRef]

15. Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of Sugar Content in Wine Grapes via
In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors 2023, 23, 1065. [CrossRef]
[PubMed]

16. Bramley, R.; Pearse, B.; Chamberlain, P. Being Profitable Precisely-A Case Study of Precision Viticulture from Margaret River.
Aust. New Zealand Grapegrow. Winemak. [Annu. Tech. Issue] 2003, 473a, 84–87.

17. Benelli, A.; Cevoli, C.; Ragni, L.; Fabbri, A. In-Field and Non-Destructive Monitoring of Grapes Maturity by Hyperspectral
Imaging. Biosyst. Eng. 2021, 207, 59–67. [CrossRef]

18. Kasimati, A.; Espejo-Garcia, B.; Vali, E.; Malounas, I.; Fountas, S. Investigating a Selection of Methods for the Prediction of Total
Soluble Solids among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data from Proximal
and Remote Sensing. Front. Plant Sci. 2021, 12, 683078. [CrossRef] [PubMed]

19. Dambergs, R.; Gishen, M.; Cozzolino, D. A Review of the State of the Art, Limitations, and Perspectives of Infrared Spectroscopy
for the Analysis of Wine Grapes, Must, and Grapevine Tissue. Appl. Spectrosc. Rev. 2015, 50, 261–278. [CrossRef]

20. Kasimati, A.; Espejo-García, B.; Darra, N.; Fountas, S. Predicting Grape Sugar Content under Quality Attributes Using Normalized
Difference Vegetation Index Data and Automated Machine Learning. Sensors 2022, 22, 3249. [CrossRef]

21. Bramley, R.G.V. Precision Viticulture: Managing Vineyard Variability for Improved Quality Outcomes. In Managing Wine Quality;
Elsevier: Amsterdam, The Netherlands, 2022; pp. 541–586.

22. Arnó Satorra, J.; Martínez Casasnovas, J.A.; Ribes Dasi, M.; Rosell Polo, J.R. Precision Viticulture. Research Topics, Challenges
and Opportunities in Site-Specific Vineyard Management. Span. J. Agric. Res. 2009, 7, 779–790. [CrossRef]

23. Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green
Wave Effect) of Natural Vegetation; National Aeronautics and Space Administration: Washington, DC, USA, 1974; pp. 1–120.

24. Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform
and Machine Learning Algorithms for Irrigation Scheduling Management. Comput. Electron. Agric. 2018, 147, 109–117. [CrossRef]

25. Gil-Pérez, B.; Zarco-Tejada, P.J.; Correa-Guimaraes, A.; Relea-Gangas, E.; Navas-Gracia, L.M.; Hernández-Navarro, S.; Sanz-
Requena, J.F.; Berjón, A.; Martín-Gil, J. Remote Sensing Detection of Nutrient Uptake in Vineyards Using Narrow-Band Hyper-
spectral Imagery. Vitis 2010, 49, 167–173.

26. Jiménez-Brenes, F.M.; Lopez-Granados, F.; Torres-Sánchez, J.; Peña, J.M.; Ramírez, P.; Castillejo-González, I.L.; de Castro, A.I.
Automatic UAV-Based Detection of Cynodon Dactylon for Site-Specific Vineyard Management. PLoS ONE 2019, 14, e0218132.
[CrossRef] [PubMed]

27. Brook, A.; De Micco, V.; Battipaglia, G.; Erbaggio, A.; Ludeno, G.; Catapano, I.; Bonfante, A. A Smart Multiple Spatial and
Temporal Resolution System to Support Precision Agriculture from Satellite Images: Proof of Concept on Aglianico Vineyard.
Remote Sens. Environ. 2020, 240, 111679. [CrossRef]

https://doi.org/10.48130/TIA-2023-0006
https://doi.org/10.3390/rs71114458
https://doi.org/10.1111/j.1755-0238.2004.tb00007.x
https://doi.org/10.3390/rs14184450
https://doi.org/10.1016/j.rsase.2021.100485
https://doi.org/10.1007/s11119-015-9407-8
https://doi.org/10.3390/rs70302971
https://doi.org/10.3390/agronomy11040655
https://doi.org/10.3390/rs14235918
https://doi.org/10.3390/rs15061497
https://doi.org/10.3390/s23031065
https://www.ncbi.nlm.nih.gov/pubmed/36772104
https://doi.org/10.1016/j.biosystemseng.2021.04.006
https://doi.org/10.3389/fpls.2021.683078
https://www.ncbi.nlm.nih.gov/pubmed/34178002
https://doi.org/10.1080/05704928.2014.966380
https://doi.org/10.3390/s22093249
https://doi.org/10.5424/sjar/2009074-1092
https://doi.org/10.1016/j.compag.2018.02.013
https://doi.org/10.1371/journal.pone.0218132
https://www.ncbi.nlm.nih.gov/pubmed/31185068
https://doi.org/10.1016/j.rse.2020.111679


Remote Sens. 2023, 15, 5412 20 of 20

28. Albetis, J.; Duthoit, S.; Guttler, F.; Jacquin, A.; Goulard, M.; Poilvé, H.; Féret, J.-B.; Dedieu, G. Detection of Flavescence Dorée
Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2017, 9, 308. [CrossRef]

29. Soubry, I.; Patias, P.; Tsioukas, V. Monitoring Vineyards with UAV and Multi-Sensors for the Assessment of Water Stress and
Grape Maturity. J. Unmanned Veh. Syst. 2017, 5, 37–50. [CrossRef]

30. Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; De Antoni Migliorati, M. Assessing the Feasibility of Using Sentinel-2
Imagery to Quantify the Impact of Heatwaves on Irrigated Vineyards. Remote Sens. 2019, 11, 2869. [CrossRef]

31. Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Bessa, J.; Sousa, A.; Peres, E.; Morais, R.; Sousa, J.J. Vineyard Properties Extraction
Combining UAS-Based RGB Imagery with Elevation Data. Int. J. Remote Sens. 2018, 39, 5377–5401. [CrossRef]

32. Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV
Multispectral Imagery to Detect Flavescence Dorée and Grapevine Trunk Diseases. Remote Sens. 2018, 11, 23. [CrossRef]

33. Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in Vine Vigour, Grape Yield and Vineyard Soils and Topography as Indicators of
Variation in the Chemical Composition of Grapes, Wine and Wine Sensory Attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229.
[CrossRef]

34. SU, S.L.; Singh, D.N.; Baghini, M.S. A Critical Review of Soil Moisture Measurement. Measurement 2014, 54, 92–105. [CrossRef]
35. Trought, M.C.; Dixon, R.; Mills, T.; Greven, M.; Agnew, R.; Mauk, J.L.; Praat, J.-P. The Impact of Differences in Soil Texture within

a Vineyard on Vine Vigour, Vine Earliness and Juice Composition. OENO One 2008, 42, 67–72. [CrossRef]
36. Yu, R.; Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Spatial Variability of Soil and Plant Water Status and Their Cascading

Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Front. Plant Sci. 2020, 11, 790. [CrossRef] [PubMed]
37. Keller, M. The Science of Grapevines; Academic Press: Cambridge, MA, USA, 2020; ISBN 0-12-816702-5.
38. Trought, M.C.; Bramley, R.G. Vineyard Variability in Marlborough, New Zealand: Characterising Spatial and Temporal Changes

in Fruit Composition and Juice Quality in the Vineyard. Aust. J. Grape Wine Res. 2011, 17, 79–89. [CrossRef]
39. Bramley, R.G.V. Understanding Variability in Winegrape Production Systems 2. Within Vineyard Variation in Quality over Several

Vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [CrossRef]
40. Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Comparison of Different Approaches for the Prediction of Sugar Content

in New Vintages of Whole Port Wine Grape Berries Using Hyperspectral Imaging. Comput. Electron. Agric. 2017, 140, 244–254.
[CrossRef]

41. Sanches, I.D.; Souza Filho, C.R.; Kokaly, R.F. Spectroscopic Remote Sensing of Plant Stress at Leaf and Canopy Levels Using
the Chlorophyll 680 Nm Absorption Feature with Continuum Removal. ISPRS J. Photogramm. Remote Sens. 2014, 97, 111–122.
[CrossRef]

42. Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical
Review. Agriculture 2021, 11, 457. [CrossRef]

43. Bramley, R.G.V.; Ouzman, J.; Trought, M.C.; Neal, S.M.; Bennett, J.S. Spatio-temporal Variability in Vine Vigour and Yield in a
Marlborough Sauvignon Blanc Vineyard. Aust. J. Grape Wine Res. 2019, 25, 430–438. [CrossRef]

44. Proffitt, T.; Malcolm, A. Implementing Zonal Vineyard Management through Airborne Remote Sensing. Aust. New Zealand
Grapegrow. Winemak. 2005, 22–31.

45. Hall, A.; Louis, J.; Lamb, D. Characterising and Mapping Vineyard Canopy Using High-Spatial-Resolution Aerial Multispectral
Images. Comput. Geosci. 2003, 29, 813–822. [CrossRef]

46. Anastasiou, E.; Balafoutis, A.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to
Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [CrossRef]

47. Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A. Daily
Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sens. 2017, 9, 317. [CrossRef]

48. Jiang, G.; Grafton, M.C.; Pearson, D.; Bretherton, M.R.; Holmes, A. A Comparison of Supervised Machine Learning Algorithms
for Predicting Subfield Yield Variability of Maize Grain. J. ASABE 2022, 65, 287–294. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs9040308
https://doi.org/10.1139/juvs-2016-0024
https://doi.org/10.3390/rs11232869
https://doi.org/10.1080/01431161.2018.1471548
https://doi.org/10.3390/rs11010023
https://doi.org/10.1111/j.1755-0238.2011.00136.x
https://doi.org/10.1016/j.measurement.2014.04.007
https://doi.org/10.20870/oeno-one.2008.42.2.828
https://doi.org/10.3389/fpls.2020.00790
https://www.ncbi.nlm.nih.gov/pubmed/32655596
https://doi.org/10.1111/j.1755-0238.2010.00120.x
https://doi.org/10.1111/j.1755-0238.2005.tb00277.x
https://doi.org/10.1016/j.compag.2017.06.009
https://doi.org/10.1016/j.isprsjprs.2014.08.015
https://doi.org/10.3390/agriculture11050457
https://doi.org/10.1111/ajgw.12408
https://doi.org/10.1016/S0098-3004(03)00082-7
https://doi.org/10.3390/agriculture8070094
https://doi.org/10.3390/rs9040317
https://doi.org/10.13031/ja.14126

	Introduction 
	Methods 
	Study Sites 
	Grape Sugar Content Data Acquisition 
	Canopy and Leaf Reflectance Data Acquisition 
	Vine Vigour Parameter Acquisition 
	Soil and Terrain Data Acquisition 
	Geostatistical Analysis 
	Machine Learning Model 

	Results 
	Variation in Total Soluble Solids 
	Pearson’s Correlation Coefficient between VIs and TSS 
	Spatial Variability of Soil ECa, Elevation and Vine Vigour Status 
	Prediction Model Performance of Grape TSS 

	Discussion 
	Conclusions 
	Appendix A
	References

