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Abstract: The point cloud is disordered and unstructured, and it is difficult to extract detailed features.
The detailed part of the target shape is difficult to complete in the point cloud completion task. It
proposes a point cloud completion network (BCA-Net) focusing on detail reconstruction, which can
reduce noise and refine shapes. Specifically, it utilizes residual deformation architecture to avoid
error points. The break and recombine refinement method is used to recover complete point cloud
details. In addition, it proposes a bilateral confidence aggregation unit based on recurrent path
aggregation to refine the coarse point cloud shape using multiple gating. Our experiments on the
ShapeNet and Complete3D datasets demonstrate that our network performs better than other point
cloud completion networks.

Keywords: point cloud completion; deep learning; point cloud processing; loop gating unit

1. Introduction

LiDAR acquires point clouds from the environment in three-dimensional vision. How-
ever, many uncertain environmental factors can affect the accuracy of the data. These
include partial occlusion of targets and blurring of target motion. In addition, LiDAR
systems often have low spatial resolution and may miss vital information about the en-
vironment [1–3]. As a result, raw point clouds collected by LiDAR can be sparse and
incomplete, leading to significant differences from the actual geometry of objects and affect-
ing the sensor system’s perception of the environment [4,5]. To solve these problems, point
cloud completion techniques can be utilized to reconstruct and restore the missing informa-
tion in sparse and incomplete point clouds. The process involves using various algorithms
to fill in gaps in the data and create a more realistic representation of the environment.
By improving the accuracy of point cloud data, sensor systems can better perceive their
surroundings and make more informed decisions [6]. Traditional point cloud completion
methods mainly include the geometric symmetry method, surface reconstruction method,
and template matching method. The geometric symmetry method is aimed at symmetrical
objects, which can hardly be adapted to objects in nature. Surface reconstruction methods
are also interpolation and fitting methods, which infer the location of missing points from
existing points. However, missing locations are often uncertain and uneven. It can hardly
fill in the shape accurately. And template matching method requires large databases, and
the missing target must exist in the database. Not only the complexity is high, but also
the universality is poor. The traditional method can hardly complete the unknown shape.
Some partial shapes of the target are a lot of incomplete, which will bring great difficulties
to the completion task. Therefore, the most popular point cloud completion method is to
use the learning and optimization performance of deep learning networks to estimate the
shape of the incomplete part [7].
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Point cloud processing framework: In the completion task, the point cloud is disor-
dered and unstructured, unlike a two-dimensional image. Normal convolution frameworks
cannot be used in point cloud processing tasks. Therefore, different methods of framework
have been proposed to solve the unstructured problem in the point cloud completion task.
PCN [8] utilizes the multi-layer perceptron proposed by Point-Net [9] and directly maps
part of the point cloud to the full shape through the encoding and decoding structure. It
reduces intermediate steps and losses. It is also the most widely used point cloud pro-
cessing framework. Since then, many scholars have proposed some other frameworks
to process point clouds. GR-Net [10] maps the point cloud to the grid. They carry out
three-dimensional convolution to the point cloud grid to retain the complete structure
information. Similarly, the regularized point cloud is equivalent to being unitized and
down-sampled and cannot retain the features of the detailed points. DGCNN [11] utilizes
graph convolution on the restored topology to extract features from point clouds. However,
its learning ability is limited, and local point clouds cannot be effectively restored. Top-
Net [12] introduces a layered tree network that adapts to point cloud topology, focusing
mainly on overall structure while neglecting details. ProxyFormer [13] designs a missing
part sensitive transformer to transform the random normal distribution into reasonable
position information. Predicted point agents are more sensitive to the characteristics and
location of missing parts, and they are better suited for subsequent coarse-to-fine pro-
cessing. USSPA [14] proposes an unsupervised symmetric shape-preserving automatic
coding network. And, unlike previous methods of training each class separately, it can train
multiple classes of data at once through classifier-guided discriminators. ACL-SPC [15]
proposes a self-monitoring framework for point cloud completion. It takes a single partial
input and attempts to output a complete point cloud using an adaptive closed-loop system
that forces the same output for changes in the input. The challenge of recovering details is
an important problem for almost all point cloud completion frameworks, as it determines
the effectiveness of the completion process [16–18]. However, these frameworks need to
transform or change the original information, and the comprehensive ability of the network
is limited. Therefore, BCA-Net chooses the multi-layer perceptron framework to extract the
point cloud features of the network, which has greater advantages in efficiency and cost.
On this basis, it conducts special treatment for detailed reconstruction.

Residual structure: Residual structure can alleviate the problem of gradient disap-
pearance caused by increasing network depth, which will contribute to the complete point
cloud completion effect. Notable work, such as SA-Net [19], introduces a skip attention
mechanism to generate complete point clouds with different resolutions by passing geomet-
ric information about local regions of incomplete point clouds. ASHF-Net [20] proposes a
layered folding decoder with gated skip attention and multi-resolution completion targets
to efficiently utilize partial input local structural details. NSFA [21] proposes two fea-
ture aggregation strategies to express and reconstruct coordinates from their combination.
Therefore, BCA-Net proposes a residual deformation architecture to reduce the noise and
focus on the feature learning process. Every path optimization may lead to a deviation
in the learning direction. Therefore, it is necessary to maintain regularization. Features
are constantly normalized in the convolution process to prevent perturbations caused
by too many layers in the network. Many networks make use of it to achieve efficient
feature extraction [22,23]. The residual deformation architecture can ensure the accuracy of
information and prevent structural deviations during multi-scale changes [24,25].

Detailed reconstruction method: The single use of the point cloud processing frame-
work is insufficient for point cloud completion tasks. It may implement a global shape
estimate, but the details are ignored. Therefore, it is necessary to design detailed recon-
struction modules to enhance the point cloud completion effect. PF-Net [26] proposes a
multi-resolution encoder (MRE) to extract multi-layer features from partial point clouds
and their low-resolution feature points. It enhances the ability of the network to extract
semantic and geometric information. Folding-Net [27] proposes increasing the possibility
of points by learning to fold two-dimensional grids into three-dimensional space. Based
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on it, ECG [28] proposes an edges-aware feature extension module that up-samples or ex-
pands point features via graph convolution, which preserves local geometric details better
than simply copying point features up-samples. Spare-Net [29] proposes channel-focused
convolution of edge perception, which not only considers local information in K-neighbors
but also makes wise use of the global context by aggregating global features and weighting
each point’s feature channel concerns accordingly. VRC-Net [30] adopts a two-subnetwork
structure. One subnetwork uses a coarse complement point cloud generated by another
subnetwork to enhance structural relationships through learning multi-scale local point
features. It uses Point Self-focused kernel (PSA) and Point Selective Kernel Module (PSK)
to further improve performance for detail recovery. Cascaded-PC [31] designs a lifting
module to double the size of the points while refining the position of the points through
feature shrinkage and expansion units. LAKe-Net [32] designs a refinement subnet to feed
the multi-scale surface skeleton to each recursive skeleton auxiliary refinement module
during the complement process. Continuous optimization of the point route is effective
in restoring shape details. PMP-Net [33] proposed an RPA module based on the original
GRU [34,35] to memorize and aggregate the route sequence of points and obtain the exact
position by continuously refining the moving path. Path aggregation is an efficient way
to optimize point cloud details. However, the independent control of the reset gate in
the polymerization unit will affect the polymerization effect. The aggregation unit can be
optimized, and the effect needs to be enhanced.

Therefore, to further improve the point cloud completion performance in detail, it
proposes a bidirectional confidence aggregation unit in the network. By adding a confidence
gate to the update gate and the reset gate, BCA-Net can continuously standardize the
reliability of points. It can strengthen the context information and guide the point cloud
details of network completion. Because error points and noise points are easily occur
in the entire process of point cloud compensation, not all point reliability is consistent.
It considers the confidence levels of updates and resets when moving path predictions,
rather than being confident that all points are correct. The confidence gate allows for more
accurate and reliable point route refinement, resulting in better point cloud detail recovery.

In addition, it proposes a break and recombine refinement module to further enhance
the point cloud detail reconstruction in the network. It is designed to assist in the recovery
of point cloud details by fusing features at a deep level. Unlike traditional feature fusion
methods that often require additional processing and optimization, the break and recombine
refinement module allows for internal information processing by converting points from
the optimization part into a new dimension. In image processing, a common practice is
to convert the time domain image to the frequency domain for processing. It deletes or
adds information in the frequency domain and then converts it back to the time domain. It
enables internal information processing. From this point of view, it breaks and reorganizes
the new points and completion points in the optimization part, and it combines one-
dimensional and two-dimensional convolution. Fusion takes place at a deep level. Points
are fused in a new dimension. In addition, the attention mechanism is used to weight the
processing, making more important parts highlighted, and multiple branches are added
to enrich the fusion level [36,37]. The structure is inspired by CC-Net [38]. In BCA-Net, it
built the breaking recombination module to enhance the fusion effect between points. It
makes the point cloud details more precise.

The main contributions of the paper are summarized as follows:

1. It proposes a residual deformation architecture to regulate the learning direction of
the network and reduce noise, ensuring the accuracy of the structure.

2. It designs the break and recombines refinement for high dimensional internal process-
ing, achieving deep fusion and optimization, and recovering point cloud details.

3. It designs a bidirectional confidence aggregation unit to guide the recovery of point
details by considering the confidence levels of updates and resets during moving
path predictions.
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4. The experiments demonstrate that our network has an enhanced effect on details and
suppressed noise, achieving effective end-to-end point cloud completion.

2. Methods

Our network is mainly divided into two phases: residual deformation architecture
and break and recombine refinement. Figure 1 shows the process of the input point cloud
from coarser to finer. In phase (a), the input point cloud is extracted and down-sampled by
the set abstraction module. The residual structure is adopted in the feature propagation
process, which retains the original characteristics of the network and prevents gradient
explosion. It will be introduced in Section 2.1. In addition, it designs a bilateral confidence
aggregation unit to enhance local details and obtain coarse point clouds, which will be
introduced in Section 2.2. In phase (b), it designs the break and recombine module for
further refinement to obtain the final complete point cloud, which will be introduced in
Section 2.3.
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Figure 1. Overall Architecture. The network consists of (a) (left dashed box) and (b) (right dashed
box). The detailed structure of the residual deformation architecture is shown in the box in the middle
of the left. The trailing arrow indicates the direction of the network. S represents the scale change
process in the process of feature extraction and propagation. RD is residual deformation architecture.
SA is set abstraction and FP is feature propagation. BCA is the bilateral confidence aggregation unit.

2.1. Residual Deformation Architecture

As shown in the lower-left corner of Figure 1a, it designs a residual deformation
architecture to extract the features of the fragmentary point cloud. It connects the point
cloud of the previous stage through the RD layer. The residual structure can regulate the
direction of the network and reduce the noise. If the scale of the feature is n ∈ 0, . . . , N, the
output result can be expressed as

S′n = RD(Sn, FP(Sn, S′′n+1)) (1)

S′′n = BCA(S′n) (2)

The set abstraction (SA) layer in the network abstracts a set of points into a set of
fewer points and constructs a local region, using the centroid neighborhood grouping. The
local region is then encoded into an eigenvector, which helps compensate for the loss of
precision caused by maximum pooling. The feature propagation (FP) layer utilizes an
inverse distance weighted average based on K-nearest neighbor to interpolate features
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point by point. It connects features to the original point set through the unit point network.
The diagram of the SA module and FP module is shown in Figure 2, which are all from
PointNet++ [39]. The output result of the structure is a coarse point cloud S′′0 .
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Figure 2. The construction of set abstraction and feature propagation modules. Aircraft point clouds
are constantly grouped and sampled from left to right. And they are constantly propagated and
interpolated from right to left. It shows the top and side views.

The residual deformation is used in the feature extraction step. Its purpose is to avoid
deviating from the right direction due to the deepening of the number of network layers
while extracting point cloud features. In the whole feature extraction process, the point
cloud first passes through the set abstraction (SA) layer to reduce the resolution, and then
through the feature propagation (SA) layer to improve the resolution. In the process of
improving the resolution, the fusion of the original point cloud features with the same
resolution is required. Our residual deformation further actively guides the direction of
the convolution to optimize the features after fusion. It can reduce the loss caused by
resolution changes.

2.2. Bilateral Confidence Aggregation Unit

As the network gradually replenishes the missing point cloud, the number of points
will multiply. The accuracy of the added points is ignored. Once the optimization direction
is wrong, noise points and discrete points will accumulate. To solve the problem, PMP-Net
proposes a recurrent path aggregation (RPA) module. Further, the paper proposes the BCA
module to further determine the reliability of the reset gate by adding a new gate control.
The optimization for point paths changes the optimization idea and gradually optimizes
the position of the point through a point path search. The network can plan the learning
path for noise and error points. The point path search method can plan the learning path of
noise points and error points. It utilizes a coarse-to-fine route for iterative learning. It is
based on RGU, which is a kind of recurrent neural network.

Recurrent neural network (RNN) has excellent performance in processing sequence
data. Its core concept is the cell state and gate structure, which can combine the front and
back inputs across time. Therefore, it can be used as an iterative unit of the point path. The
cell state is equivalent to a path that can transmit relevant information, and the feature
vector can be passed on as a memory. Gate structure determines whether information needs
to be remembered or forgotten. Figure 3 shows a comparison of our bilateral confidence
aggregation unit with other similar modules. Each iteration structure retains both the
output and the hidden state as the path optimization direction of the current learning. And
it is passed to the next iteration process. gated recurrent unit (GRU) is a type of RNN
and is widely used because they are easy to train and have high performance. As shown
in Figure 3a, it has two gates: the reset gate and the update gate. It utilizes the sigmoid
function as the gating signal. The information control signal is between 0 and 1, with
values closer to 0 indicating that the information should be discarded and values closer to
1 indicating that the information should be retained.
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The reset gate selectively combines input information with memory information to
determine the degree of retention of information from the previous moment. The reset gate
output at time t can be expressed as

rt = σsig(Wr · [ht−1, ft−1]) (3)

where σsig is the sigmoid function. Wr is the weight matrix of the reset gate. ht−1 is the
hidden state at time t− 1. ft−1 is the input at time t− 1.

The update gate can determine which information should be discarded or retained
and select the updated information to be output. The update gate output zt at time t can be
expressed as

zt = σsig(Wz · [ht−1, ft−1]) (4)

where Wz is the weight matrix of the update gate.
The candidate’s hidden state ĥ can be expressed as

ĥt = σtanh(Wh · [rt · ht−1, ft−1]) (5)

where Wz is the weight matrix of the hidden state. σtanh is the tanh function.
PMP-Net introduced the gated recurrent unit (GRU) module into the point cloud

completion network as a path search optimization unit. They design a recurrent path
aggregation (RPA) module which is shown in Figure 3b. PMP-Net proves that the module
has a better effect than the original GRU module through experiments. However, the
sequence processing needs high semantic requirements, so the need for hidden states is
higher. The main body of point path search is the original input path, and the hidden state
is used to assist path optimization. In addition, the gradient of the sigmoid function and
tanh function is close to 0 near the extreme value, and the optimization algorithm updates
the network slowly. As a result, the Relu functions are better suited for deep networks.
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Like GRU modules, RPA modules include a reset gate and an update gate. The
difference is that the candidate’s hidden state ĥ is expressed as

ĥt = σrelu(Wh · [rt · ht−1, ft−1]) (6)

where σtanh is the Relu function.
The output result of the time ft can be expressed as

ft = (1− zt) · [rt · ht−1, ft−1] + zt · ĥt (7)

It designs the bilateral confidence aggregation (BCA) unit to further improve the
gating performance. As shown in Figure 3c, it designs a new confidence gate after the
reset gate to control the confidence of the network to the previous hidden state, rather
than directly introducing it. The confidence gate quantifies the uncertainty of the hidden
state and measures the confidence of path movement. It is very effective in restoring shape
details. Unit mainly consists of two branches, the hidden state of the previous moment is
the top branch, and the input of the previous moment is the bottom branch. In the RPA
structure, the control for both the reset and update doors comes from the direct fusion
of the top and bottom branches, ultimately controlling the aggregation of the bottom
branches. In this process, the effect of the top branch is not obvious, and the hidden state is
directly exploited without processing. In the BCA module, the hidden state is first further
aggregated and restricted, the top branch is effectively used. The module realizes the
bidirectional aggregation of the top and bottom branches.

The confidence gate output ct at time t can be expressed as

ct = σsig(Wc · [ht−1, rt]) (8)

The candidate’s hidden state ĥ is expressed as

ĥt = σrelu(Wh · [ct · ht−1, ft−1]) (9)

The output result ft can be expressed as

ft = (1− zt) · [ct · ht−1, ft−1] + zt · ĥt (10)

2.3. Break and Recombine Refinement

After several iterations, the raw point cloud is completed into the coarse point cloud.
As shown in Figure 4, it designs the break and recombine refinement module to further add
detail points and optimizations to the point cloud. Breaking means increasing dimension,
and recombine means decreasing dimension. Our fusion optimization takes place in high-
dimensional space. To better show the structure, it utilizes the dimensions that represent
the features. It obtains the coarse point cloud C ∈ ΨB,C,N1 with N1 points through the
previous step and sets the point A ∈ ΨB,C,N2 with N2 points to be fused. It utilizes the
method of initial concatenation and then fusion. The concatenation result of the two sets of
data Cori can be expressed as

Cori = cat(C, A) (11)

Next, the splicing results are broken down into smaller parts. During the breaking
process, dimensions are increased, and internal information is revealed. It allows for a more
detailed analysis of the point cloud structure. The goal of the step is to reveal the hidden
relationships and patterns within the point cloud, which can then be used for further
processing and analysis. The high-dimensional fusion point cloud P can be represented as

P ∈ ΨB,C,Pi ,Pj = AD(Cori ∈ ΨB,C,N1+N2 , dim) (12)

where B is the batch size, C is the number of channels, and dim is the broken dimension. Pi
and Pj are the result of the point cloud dimension expansion. AD is the ascending dimension.
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It optimizes the result of raising dimensions in higher dimensions. To better integrate
internal information, it sets up a structure of one main road and two auxiliary branches.
The three routes can be expressed as v ∈ ΨB,C/2,Pi ,Pj , d1 ∈ ΨB,C/2,Pi ,Pj , and d2 ∈ ΨB,C/2,Pi ,Pj .

It constructs a cross-multiplicative structure to propagate the features of the main road
to the branch road, which can be obtained as

v1 ∈ ΨBPj ,C/2,Pi = view(v ∈ ΨB,C/2,Pi ,Pj)

v2 ∈ ΨBPi ,C/2,Pj = view(v ∈ ΨB,C/2,Pi ,Pj)

d̂2 ∈ ΨBPi ,Pj ,Pj = view(d2 ∈ ΨB,C/2,Pi ,Pj)

d̂1 ∈ ΨBPj ,Pi ,Pi = view(d1 ∈ ΨB,C/2,Pi ,Pj)

(13)

where view is a dimensional reconstruction operation.
The initial result of the branch d′1 and d′2 can be expressed as

d′1 ∈ ΨB,C/2,Pi ,Pj = bmm(v1, view(v1, d̂1)) (14)

d′2 ∈ ΨB,C/2,Pi ,Pj = bmm(v2, view(v2, d̂2)) (15)

where bmm is matrix multiplication.
Finally, it carries out the fusion of each branch and gets the feature confidence f that

can be expressed as
f = σsig(W(cat(v, d′1, d′2))) (16)
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where W is the weight matrix. Feature confidence is used to focus on the more important
part of the feature to be fused. The fusion result P′ can be expressed as

P′ = f × P + P (17)

2.4. Loss Function

It utilizes Chamfer Distance and Earth Mover’s Distance as loss functions to train the
network. Chamfer Distance measures the average distance between each point in a point
cloud and the nearest point in another point cloud. It is the most extensive way to judge
the completion effect. For point clouds S1 and S2, the CD is defined as

dCD(S1, S2) = ∑
x∈S1

min
y∈S2
‖x− y‖+ ∑

y∈S2

min
x∈S1
‖x− y‖ (18)

EMD is a definition of distance measurement that can be used to measure the distance
between two distributions, which can be expressed as

dEMD(S1, S2) = min
φ:S1→S2

1
S1

∑
x∈S1

‖x− φ(x)‖ (19)

where φ is considered as a bijection that minimizes the average distance between corre-
sponding points in S1 and S2.

The total loss function is defined as

L = dCD + dEMD (20)

3. Results
3.1. Setup

To verify the effectiveness of the network, it conducts comparative experiments on
the network on the ShapeNet dataset and the Complete3D dataset, which are described in
Section 3.2. Ablation experiments are performed on the three proposed modules on the
ShapeNet dataset, which are described in Section 3.2.

ShapeNet: The ShapeNet dataset is from PCN in our work. The original dataset
consisted of 30,974 3D models. Using a uniform sampling method, they back-projected
16,384 sample points of the target into 3D to generate partial point clouds. Some of the point
clouds have different points in some shapes. Each complete shape contains 16,384 points.
The dataset includes eight categories such as aircraft, watercraft, and so on. It follows the
same dataset segmentation method as the PCN for fair comparison.

Complete3D: The complete3D dataset is a large-scale 3D object dataset derived from
the ShapeNet dataset, created by Top-Net. The number of points in both partial and full
point clouds is 2048 points. Each complete model corresponds to only one complete point
cloud. It follows the same dataset segmentation to make fair comparisons.

In addition, our network is designed through the PyTorch framework. An NVIDIA
GTX 2080 TI GPU is used in the experiment. The batch size is set to 24. To make a fair
comparison with other networks, it only focuses on the innovation of network structure,
but does not improve the training method. The optimizer is Adam with β1 = 0.9 and
β2 = 0.999 during training, which is efficient and stable. The initial learning rate is set to
10−3, and the epoch index decays by 0.5 every 20 epochs.

3.2. Results of Comparative Experiments
3.2.1. ShapeNet

It first experiments on the ShapeNet dataset, which is widely used. It can compare it
more clearly with other network results. The effect of our network compared with other
networks on the ShapeNet dataset is shown in Table 1. To make a clear comparison, the
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common L2 chamfer distance used by other networks was chosen as the evaluation method.
It is the CD in Equation (18) averaged by the point number.

Table 1. Point cloud completion on ShapeNet dataset in terms of per-point L1 Chamfer Distance
×103. The bold numbers are the best.

Model Folding-Net Top-Net PCN GR-Net PMP-Net BCA-Net

Airplane 9.49 7.61 5.50 6.45 5.50 5.19
Cabinet 15.80 13.31 22.70 10.37 11.10 10.79

Car 12.61 10.90 1063 9.45 9.62 9.51
Chair 15.55 13.82 8.70 9.41 9.47 9.13
Lamp 16.41 14.44 11.00 7.96 6.89 6.62
Sofa 15.97 14.78 11.34 10.51 10.74 10.95
Table 13.65 11.22 11.68 8.44 8.77 8.03

Watercraft 14.99 11.12 8.59 8.04 7.19 7.26
Overall 14.31 12.15 9.64 8.83 8.66 8.43

Time - - - 0.020 0.016 0.018

In five of the eight categories, our results are better. PMP-Net utilizes the same
framework as our network, and our results are better than it. GR-Net is based on a 3D
convolution framework that consumes more time and space costs. Our framework is faster
than 3D convolutional frameworks. In addition, the 3D convolution framework uses the
grid as the intermediate quantity and voxelizes the point cloud, which does not lose the
global structural features. Therefore, other frames may have an advantage when it comes to
completing the overall shape. As shown in the table, BCA-Net has the best overall results.
However, the results are slightly lower than GR-Net in the cabinet, car, and sofa categories.
It is because the objects of these three categories are holistic. The target points are relatively
concentrated and the requirements for details are lower. BCA-Net is more focused on
restoring details and has more advantages in practical applications. The overall shape has
been preliminarily estimated, and the details are more important in some operations that
require three-dimensional information.

As shown in Figure 5, the first row is the aircraft category, where the wing shape is
better recovered from a complete absence. The second line is the lamp category, where
the bracket section is less noisy and closer to ground reality. The third row is for the car
category, where the outline of the wheels and partial details of the windshield are more
prominent, and the last line is the table category; our network has a much more nuanced
grasp of the breadth of detail. The performance of BCA-Net is excellent, especially when it
comes to detail reconstruction.

3.2.2. Complete3D

Since the ground truth of the Complete3D dataset has a smaller number of points, it
conducts another experiment on the Complete3D dataset to further verify the effect of the
network. To make a clear comparison, the common L2 Chamfer Distance used by other
networks was chosen as the evaluation method. It is the CD replacing the L1-norm in
Equation (18) with the L2-norm. For point clouds S1 and S2, the CD is defined as

dCD(S1, S2) = ∑
x∈S1

min
y∈S2
‖x− y‖2

2 + ∑
y∈S2

min
x∈S1
‖x− y‖2

2 (21)

As shown in Table 2, Unlike the results in the previous section, BCA-Net is better than
GR-Net in all categories when targeting many missing points. It proves that frameworks
with intermediate-form transformations have greater losses in this case. The overall shape
of the original information is very important to them. When it is missing, it is less effective.
In addition, BCA-Net is unfortunately not optimal in the Cabinet, Car, and Table categories.
It is more suitable for detail reconstruction when the number of missing points is small.
However, our network was able to achieve the best results overall in the comparison exper-
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iment on Complete3D, reaching the optimal value in most categories. It demonstrates the
effectiveness of our method and its ability to handle large-scale datasets like Complete3D.
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Table 2. Point cloud completion on Completion3D dataset in terms of per-point L2 Chamfer distance
×104. The bold numbers are the best.

Model Folding-Net PCN Top-Net SA-Net GR-Net CRN PMP-Net BCA-Net

Airplane 1.28 0.98 0.73 0.53 0.61 0.40 0.39 0.26
Cabinet 2.34 2.27 1.88 1.45 1.69 1.32 1.47 1.35

Car 1.49 1.24 1.29 0.78 0.83 0.83 0.86 0.71
Chair 2.57 2.51 1.98 1.37 1.22 1.06 1.02 1.20
Lamp 2.18 2.27 1.46 1.35 1.02 1.00 0.93 0.87
Sofa 2.13 2.03 1.63 1.42 1.49 1.29 1.24 0.99
Table 2.07 2.03 1.49 1.18 1.01 0.92 0.85 1.35

Watercraft 1.15 1.17 0.88 0.88 0.87 0.58 0.58 0.49
Overall 1.91 1.82 1.45 1.12 1.06 0.92 0.92 0.90

3.3. Results of Ablation Experiments

It proposes three innovative modules in the paper. To prove the role of the modules, it
conducts ablation experiments on the ShapeNet dataset.

3.3.1. Residual Deformation Architecture

Residual deformation architecture is proposed in the feature extraction step of the
network. The multi-resolution structure is conducive to collecting information at various
scales. Table 3 shows the effect of adding residual deformation architectures to our network.
It conducts four sets of comparison experiments, without adding residual deformation
structure, adding one layer, adding two layers, and adding three layers. “None” represents
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the result without adding any structure. “+Res*1” represents the result of adding residual
deformation architecture of one layer. “+Res*2” represents the result of adding residual
deformation architecture of two layers. “+Res*3” represents the result of adding residual
deformation architecture of three layers. It uses the Chamfer Distance (CD) to verify the
effect of this structure. The relationship between the number of layers and the effect of
residual deformation can be measured from the experimental results. The network effect
gradually improves with the addition of residual deformed architectures. However, the
time increased by less than 0.1ms with each additional layer. It demonstrates the simplicity
and efficiency of our structure. In addition, as shown in Figure 6, the Residual Deformation
Architecture designed by us pays more attention to the original information, effectively
suppressing stray points and noise points.

Table 3. Ablation experiment of residual deformation architecture in terms of per-point L1 Chamfer
Distance ×103. The bold numbers are the best.

Model Overall CD Time (ms)

+None 8.64 1.6
+Res*1 8.62 1.6
+Res*2 8.61 1.7
+Res*3 8.60 1.7
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3.3.2. Bilateral Confidence Aggregation Unit

Bilateral Confidence Aggregation Unit increases the confidence gate which can be
well restored to a more realistic detailed shape. As shown in the dashed box on the left
of Figure 7, after adding the module, the lamp head shape was better reconstructed and
had clearer boundaries. The actual shape of the bottom of the lamp in the dotted frame
on the right is a vertical column. The network estimated the wrong shape before adding
the module. As a rule of thumb, since the dataset consists of eight different types, the
network recognizes the lamp type as something else, such as the chair. On the contrary,
after the addition of modules, the network was more resilient to details, and the network
successfully recognized categories and reconstructed details. In addition, the partial point
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cloud of the left leg part is missing in the lower dotted line frame. After adding the module,
its shape details are effectively completed, which is closer to the real shape.
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Table 4 shows the ablation experiments of the BCA unit and the comparison of the
effect of adding confidence gates in different positions. “Ori” represents the result without
adding any module. “+GRU” represents the result of adding the GRU module. “+RPA”
represents the result of adding the RPA module. “+BCA” represents the result of adding a
confidence gate between the input hidden state and the reset gate based on the RPA module,
which is the BCA module. As shown in the results of the experiment in Table 4, adding a
path aggregation module has a beneficial effect. When it adds a confidence gate between
the input hidden state and the reset gate, the confidence gate constrains the relationship
between the hidden state and the reset. Point cloud details are better recovered.

Table 4. Ablation experiment of bilateral confidence aggregation in terms of per-point L1 Chamfer
Distance ×103. The bold numbers are the best.

Model Air-Plane Cabinet Car Chair Lamp Sofa Table Water-Craft Overall

Ori 6.05 11.13 9.62 9.53 7.50 10.82 8.36 7.42 8.72
+GRU 5.37 11.00 9.71 9.48 6.82 11.16 8.25 7.39 8.65
+RPA 5.26 11.04 9.54 9.37 6.85 11.21 8.20 7.33 8.60
+BCA 5.34 10.81 9.57 9.34 6.84 11.14 8.22 7.41 8.58

3.3.3. Break and Recombine Refinement

Break and recombine refinement can enhance local effects through high dimensional
fusion. Because our refinement module focuses more on detailed shapes, it uses FS to
evaluate it. F-Score (FS) can show the ability to recover the detailed shape of the point
cloud. It is defined as

FS =
2P(d)R(d)

P(d) + R(d)
(22)
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where P is precision. It calculated the percentage of corresponding points in the recon-
structed point clouds within a certain threshold distance from the ground truth value. R is
the recall rate. It calculated the percentage of the ground-truth value corresponding to the
correct point within a certain threshold with the reconstructed point cloud distance.

As shown in Table 5, the break and recombine refinement module has an excellent
effect on our network. The threshold of FS is set to 0.01. “None” represents the result
without adding any module. “+BR” represents the result of adding the break and recombine
refinement module. In all categories, the target point cloud is closer to ground truth. The
CD decreased by 0.15 and the F-score increased by 0.01. Therefore, the break and recombine
refinement module is effective in improving accuracy.

Table 5. Ablation experiment of break and recombine refinement in terms of per-point L1 Chamfer
distance ×103 (The lower is the best) and F-Score (The higher is the best). the bold numbers are
the best.

Model Air-Plane Cabinet Car Chair Lamp Sofa Table Water-Craft Overall

CD
None 5.34 10.81 9.57 9.34 6.84 11.14 8.22 7.41 8.58
+BR 5.19 10.79 9.51 9.13 6.62 10.95 8.03 7.26 8.43

FS
None 0.820 0.534 0.540 0.622 0.766 0.508 0.688 0.719 0.650
+BR 0.836 0.543 0.552 0.634 0.773 0.513 0.700 0.730 0.660

The visualization is shown in Figure 8. In the aircraft category, the top half of the wing
is almost completely missing, which means the network needs to reconstruct the shape of
the wing through optimization. As shown in the detailed enlarged image on the left, points
estimated from the initial network are scattered. However, the points are grouped to form
an exact shape after adding the module. The shape of the left wing of the aircraft is closer
to reality.
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In addition, the top left corner shape is incomplete in the watercraft category. The
detail area and the ship are connected. The completion point cloud is still disconnected
from the hull before adding the module. After adding the module, the gap in the middle is
filled and the details are more precise.

Table 6 shows the time consumed by the various modules. “None” represents the
result without adding any module. “+RDA” represents the result of adding the residual
deformation architecture. “+BCA” represents the result of adding the bilateral confidence
aggregation module. “+BR” represents the result of adding the break and recombine
refinement module. “∆t” represents the time increment. Our modules are simple and
efficient. The modules proposed in the paper take about 1 ms. It achieves detailed recovery
of the fragmentary point cloud with a mere 0.018 s running time.

Table 6. Comparison experiment of running time of each model.

Model None + RDA +BCA +BR

∆t (s) - 0.001 0.001 <0.001

Time (s) 0.016 0.017 0.018 0.018

4. Conclusions

This paper designs an end-to-end point cloud completion network (BCA-Net) to
complete the shape of the partial point cloud. It can be used to improve the effectiveness of
three-dimensional information in areas such as autonomous driving and smart industry.
In addition, compared to other networks, our network can recover point cloud details
better, which is vital in real complex applications. In this network, to solve the problem
of noise points as the network deepens, it adopts the residual deformation architecture. It
helps to avoid adding stray points and maintain the integrity of the point cloud. To further
refine the recovered point cloud, it incorporates a break and recombine refinement module
to the fusion structure. In addition, it constructs a bidirectional confidence aggregation
unit to achieve progressive shape recovery. Our network has demonstrated exceptional
performance in terms of accuracy and speed.

In addition, there are some disadvantages to the research. The network pays more
attention to detail. Therefore, it is not perfect for targets with less detail and denser points.
The target objects in the current datasets also have limitations in terms of variety and
quantity. The universality of the method needs to be further improved. In the future, it will
conduct research around more diverse and challenging targets.
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