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Abstract: In this study, we developed an innovative and self-supervised pretraining approach using
Sentinel-2/MSI satellite imagery specifically designed for the intelligent identification of drainage at
sea discharge outlets. By integrating the geographical information from remote sensing images into
our proposed methodology, we surpassed the classification accuracy of conventional models, such as
MoCo (momentum contrast) and BYOL (bootstrap your own latent). Using Sentinel-2/MSI remote
sensing imagery, we developed our model through an unsupervised dataset comprising 25,600 images.
The model was further refined using a supervised dataset composed of 1100 images. After supervised
fine-tuning, the resulting framework yielded an adept model that was capable of classifying outfall
drainage with an accuracy rate of 90.54%, facilitating extensive outfall monitoring. A series of ablation
experiments affirmed the effectiveness of our enhancement of the training framework, showing a
10.81% improvement in accuracy compared to traditional models. Furthermore, the authenticity of
the learned features was further validated using visualization techniques. This study contributes
an efficient approach to large-scale monitoring of coastal outfalls, with implications for augmenting
environmental protection measures and reducing manual inspection efforts.

Keywords: remote sensing; coastal outfalls; self-supervised learning; Sentinel 2/MSI

1. Introduction

Amid swift societal progress and urbanization, issues surrounding aquatic environ-
mental pollution have increasingly attracted attention [1]. Outfalls are recognized as princi-
pal conduits for pollutants to infiltrate recipient water bodies, such as oceans or rivers [2],
making the monitoring of outfalls an essential and effective tool for water resource pollution
surveillance. Oceans concurrently act as the ultimate repository for terrestrial pollutants [3].
In parallel, the discharge of treated domestic and industrial wastewater into oceans emerges
as an economically sustainable approach for utilizing marine environments and mitigating
the pressures on local environments. This strategy also serves as one of the predominant
methods for sewage discharge in coastal regions, which underscores the importance of
thorough coastal outfall monitoring.

The adoption of remote sensing technology in coastal outfall monitoring offers the dual
advantages of continual surveillance and accessibility to remote or challenging locations,
thus delivering temporal and spatial benefits. The successful application of this technology
to tasks including river outfall location detection, abnormal water body classification from
coastal outfalls, and impact area estimation of coastal outfall pollution signifies the potential
for versatile implementation of remote sensing technology in coastal outfall monitoring. The
rapid location of outfall positions over extensive areas can be achieved using high-resolution
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unmanned aerial vehicle (UAV) remote sensing combined with object detection methodolo-
gies [4]. To enhance this approach, the integration of geographical location activation and
digital terrain models in multisource data fusion substantially boosts detection precision and
recall rates. Regarding the classification of coastal outfalls, Anna et al. utilized a random
forest algorithm based on SAR imagery to perform binary classifications of outfall plumes
in the Gaza region, successfully distinguishing these plumes from other features [5]. Other
researchers have developed random forest-based water body classification algorithms us-
ing satellite remote sensing imagery from the MultiSpectral Instrument (MSI) onboard the
Sentinel-2 satellites to segregate water bodies into 14 distinct categories, thus facilitating the
identification of detrimental discharge waters [6]. V. G. Bondur et al., employed band com-
binations to generate sea surface color indices [7], thereby effectively assessing the extent of
impact engendered by coastal outfall discharges. Nevertheless, these methodologies present
limitations in determining whether the outfalls are actively discharging wastewater into the
ocean. For instance, classification approaches based on water bodies require prior knowledge
of whether the coastal outfall is discharging water to further distinguish whether the discharge
is sewage. Therefore, the primary objective of this research study is to develop a novel remote
sensing methodology that enables precise monitoring of the drainage status of coastal outfalls
over extensive areas. Equipped with pre-collected, valid outfall location data, this method is
expected to detect whether each outfall site is actively discharging wastewater into the ocean,
thus providing rapid alerts for the regulatory authorities.

Deep learning algorithms, specifically convolutional neural networks (CNNs), have
gained recognition in the area of complex spatial pattern recognition, thus becoming invalu-
able in remote sensing applications, including scene classification [8]. Scene classification
assigns remote sensing image blocks into land cover or land use types, benefiting from
deep learning’s superior feature extraction ability to understand images semantically [9,10].
Despite their potential, deep learning methods rely on substantial, high-quality anno-
tated datasets [11], a requirement that is often challenging to fulfill. Thus, self-supervised
learning, which exploits proxy tasks on extensive unlabeled data for the learning of deep
features, emerges as a solution, with outcomes that can, in some instances, surpass those
of supervised learning [12]. The application of self-supervised learning is widespread in
remote sensing image scene classification and methods, such as MoCo [13], Simsiam [14],
and BYOL [15], have already proven successful [16]. Strategies incorporating geographical
location information have displayed notably good performance, suggesting their potential
utility in our proposed method [17,18].

Our main goal is to overcome the limitations of current methods by employing a self-
supervised learning model, leveraging Sentinel-2/MSI imagery, to enhance the accuracy of
outfall drainage classification, a task that is traditionally hampered by a scarcity of labeled
data. In the present study, we assembled both a large-scale unsupervised dataset and a
small-scale supervised dataset utilizing Sentinel-2/MSI images. We applied a self-supervised
pretraining strategy that incorporates geographical information to enhance the performance of
convolutional neural networks (CNNs) in outfall classification tasks. By doing so, we intend
to develop a classification model that surpasses supervised methods in performance, thereby
addressing the prevalent issue of a limited quantity of labeled images of outfalls.

The remainder of this paper is organized as follows: Section 2 describes the data and
methods used in our study, including the details of the data preparation and the establishment
of the intelligent recognition model. Section 3 presents the results of our analysis, focusing
on the model performance and its evaluation. Finally, Section 4 concludes the paper with a
summary of our findings and a discussion of their implications and potential future work.

2. Data and Methods
2.1. Data Preparation

This study utilizes true-color images acquired from the Sentinel-2 multispectral imager
to construct both supervised and unsupervised datasets. The Sentinel-2A and Sentinel-2B
satellites, launched by the European Space Agency on 23 June 2015 and 7 March 2017,
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respectively, maintain a revisit cycle of up to five days at the equator with the two satellites
combined. Both Sentinel-2A and 2B satellite data are used. The MultiSpectral Instrument
(MSI) embedded in these satellites offers imaging capabilities across 13 bands, ranging from
visible to near-infrared, with the highest resolution of visible light bands reaching 10 m. The
superior resolution and complimentary accessibility of Sentinel-2 data have not only led to
their widespread utilization in land cover classification but also demonstrated promising
applications in climate change, fire monitoring [19], and river pollution monitoring [20], as
well as in algal bloom detection [21] and marine water quality assessment [22].

In this research study, the Sentinel-2 data utilized in our study were acquired from the
Copernicus Open Access Hub. We used the true-color bands (with wavelengths of 490 nm,
560 nm, and 665 nm) from Level-2A products, which have a spatial resolution of 10 m.
Sentinel-2 Level-1C (L1C) data are processed for radiometric calibration and basic geometric
corrections, ensuring accurate reflection of captured electromagnetic energy and spatial
consistency. Level-2A (L2A) data further enhance this by adding atmospheric correction
to adjust for atmospheric effects on reflectance and incorporating cloud detection and
masking. Through meticulous investigation and compilation of coastal outfall locations in
Zhejiang Province, China, we acquired geographical information pertaining to these outfalls
(Figure 1). The supervised dataset was manually annotated through visual interpretation
using Google Earth Engine. This process involved categorizing images collected from 2017
to 2022 into two categories: outfall and non-outfall (Figure 2). This dataset comprises a
total of 1100 images. The unsupervised dataset was generated by procuring corresponding
images predicated on the location information and amalgamating multiple temporal data
for the same locations. This step served as the foundation for selecting positive sample pairs
in the subsequent steps. The unsupervised dataset comprises 25,600 images. All images
were projected onto the UTM Zone 51 N coordinate system, and each image window
measures 512 pixels in width and height, corresponding to an actual ground area of 5120 m
by 5120 m. In the unsupervised dataset, a distance matrix was generated based on the
distances between the different locations and saved as an integral component of the dataset.
This matrix offers acceleration for the subsequent distance retrieval process.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Distribution of coastal outfalls in the study area. The figure shows a total of 4100 outfalls. 

 
Figure 2. Supervised dataset. The first row represents samples with drainage and the second row 
represents samples without drainage. A red box has been added to visually highlight the location 
of the outfall. 

  

Figure 1. Distribution of coastal outfalls in the study area. The figure shows a total of 4100 outfalls.



Remote Sens. 2024, 16, 423 4 of 14

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Distribution of coastal outfalls in the study area. The figure shows a total of 4100 outfalls. 

 
Figure 2. Supervised dataset. The first row represents samples with drainage and the second row 
represents samples without drainage. A red box has been added to visually highlight the location 
of the outfall. 

  

Figure 2. Supervised dataset. The first row represents samples with drainage and the second row
represents samples without drainage. A red box has been added to visually highlight the location of
the outfall.

2.2. Establishment of the Intelligent Recognition Model

In the present study, we devised a self-supervised pretraining strategy anchored in
contrastive learning while integrating a geographical coordinate prediction head to assist
the encoder in the next stage of learning. To identify positive and negative sample pairs,
we supplemented conventional image augmentation techniques with a mechanism that
accommodates multiple temporal images and overlapping images. Moreover, we employed
a dropout method analogous to SimCSE [23] for the generation of positive sample pairs.
During the encoder’s parameter updating process, we aimed to conserve more sample
encoding features without surpassing the GPU memory limit. To achieve this, we stored
prior encoding features in a queue located in memory. This queue has the capacity to retain
encoding features for a relatively extended period, and when used in conjunction with
the momentum updates of parameters, it ensures the stability of the encoder’s parameters.
This concept originated from and found success in the MoCo method [13].

Our training process is illustrated in Figure 3. The process begins with the input of
satellite imagery into the ResNet-50 encoder, which is responsible for converting raw data
into a sophisticated set of feature representations. These features are then encoded into
two distinct formats: ‘q’ (query) and ‘k’ (key), each playing a vital role in the model’s
analysis. The encoded features are processed by a projection head, typically comprising a
multilayer perceptron, to prepare them for the classification task. A crucial aspect of our
model is the simultaneous application of contrastive loss and geolocation loss (Lg). The
contrastive loss assesses the similarity between the ‘q’ and ‘k’ encodings, which are crucial
for learning discriminative features from the unlabeled data. Concurrently, the geolocation
loss integrates geographical context, enabling the model to capture spatial relationships
and nuances within the imagery more effectively. This dual-loss approach enhances the
model’s ability to recognize and classify drainage patterns accurately. The final output of
the model is a classification of the imagery, categorizing it based on the identified drainage
patterns and leveraging the enhanced feature representations developed through this
comprehensive, dual-loss-informed learning process.
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(1) Training Framework

We define the unsupervised dataset as X = {xi|i = 1, . . . , N}, where xq and xk form
positive sample pairs. Specifically, xq is from the original dataset, while xk is an image
selected from X and subjected to image augmentation, which will be explained in detail
in the next section. At the initial stage, fq and fk are two identical encoders. The encoder
is defined as a function: fθ(x) : RH×W×C → Rd , where H, W, and C represent the width,
height, and number of channels of the image, respectively, and d is the dimension of the
feature vector. The encoder fq updates its parameters through gradient backpropagation,
while the gradient does not propagate to the encoder fk. The encoder fk slowly updates its
parameters using an exponential moving average (EMA) based on the encoder f_q, with
the update process as follows:

θt
q = β ∗ θt−1

q + (1 − β) ∗ θt−1
k (1)

where θt
e(e ∈ {k, q}) represents the parameters of the encoder at time t, and β is a parameter

less than 1 that controls the updating speed, which we set to 0.999. After passing through
the encoder, we obtain the encodings q and k, which are then fed into a multilayer per-
ceptron (MLP) with two linear layers ( eθ(x) : Rd → Rd′ ). To ensure that the encoder learns
meaningful information in the self-supervised task, the contrastive learning proxy task is
designed to pull the encoding features of positive sample pairs closer while pushing the
encoding features of positive and negative sample pairs further apart. Therefore, we use
the InfoNCE function [24] as the contrastive loss, which can be represented as Lc:

Lc = −log
exp
(
eq
(

fq
(
xq
))

· ek( fk(xk))/λ
)

exp
(
eq
(

fq
(
xq
))

· ek( fk(xk))/λ
)
+ ∑M

j=1 exp(eq
(

fq
(
xq
))

· k j/λ)
(2)

The negative samples
{

k j
}M

j=1 are obtained from the queue maintained in memory,
where M is a fixed length and the queue follows a first-in-first-out principle, which allows
us to maintain a sufficiently large set of negative samples without loading a large amount
of data into the GPU’s memory each time. λ is a temperature parameter that controls the
width distribution of the function. The encoder q is then passed through another layer

of MLP and projected into a two-dimensional vector, i.e., eg(q) = [l̂x, l̂y]
⊤

. This vector is
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used to calculate the location loss, which is referred to as ‘regression loss’ in Figure 3, in
conjunction with the geographical information from the following labels:

Lg =
1
2
[(lx − l̂x)

2
+
(

ly − l̂y)2
]

(3)

where lx and ly represent the coordinates of the center point of the original image after
projection in the projected coordinate system. Finally, we linearly combine the two loss
components, where α is a parameter used to indicate the relative importance of the two loss
components. The overall objective of this self-supervised learning is represented as follows:

arg minL
θq ,θk ,θg

= αLc + (1 − α)Lg (4)

(2) Positive Sample Pair Generation

Standard methodologies for the generation of positive sample pairs typically involve
capturing varying perspectives of an identical image, achieved by deploying image aug-
mentation methods, such as rotation, cropping, and color transformations, resulting in
images derived from the original [11]. While this approach has seen success in the realm of
computer vision, it does not fully exploit the surplus information that is inherent in remote
sensing images. Hence, we propose a filtering mechanism underpinned by geographical
location and temporal data. During the dataset construction process, we maintained cor-
responding location data for each point and formulated a distance matrix grounded in
these points. This approach facilitates the retrieval of the distance between any two given
points. By setting a distance threshold denoted as d, we filter out points that exhibit a
certain degree of overlap with a specific image. Furthermore, considering the fact that
images of an identical location may display temporal variations, we select images from
different timeframes as candidate images from the filtered points. From this candidate pool,
we randomly select one image to form a positive sample pair with the original image.

The carefully selected positive sample pairs are subjected to an array of augmentation
techniques, encompassing random rotation, cropping, grayscale transformation, Gaussian
blur, color modifications, and occlusion. Furthermore, we adopt the random dropout method
utilized in SimCSE [23]. This involves applying distinct dropout masks to encoders sharing
identical parameters, thereby engendering marginally diverse encodings for the same image.
Originally, the dropout strategy was conceived to mitigate overfitting through the deactivation
of certain neurons during the training process. This results in slightly varied output features
under constrained data conditions, thereby reducing the propensity for overfitting.

Through the strategic deployment of these filtering and augmentation methods, we
ascertain that the images, while maintaining similarities in their semantic features, display
divergences in both visual appearance and encoding features. Our objective is for the
encoder to learn the intrinsic connections between these images in the absence of labeled
data via contrastive self-supervised learning. Consequently, this methodology provides a
high-quality pre-trained model for subsequent supervised training endeavors.

(3) Feature Assessment and Visualization

In an effort to visually authenticate the effectiveness of our model and evaluate the
learned features during the training phase, we engaged Grad-CAM++ [25] to facilitate the
visualization of the convolutional neural network (CNN) model. Grad-CAM++ serves as
an enhancement to Grad-CAM [26], offering superior visualization results, particularly for
multiple and smaller objects. It computes the weights of each channel in the feature map
and subsequently conducts guided backpropagation to acquire the visualization results on
the original image. This is achieved by computing derivatives of the specific class output
and preserving positive derivatives. For any spatial position (i, j) of the saliency map pixel
Lc

ij, which corresponds to class c, the calculation is executed as follows:
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Lc
ij = ReLU(∑

k
wc

k · Ak
ij) (5)

wc
k = ∑

i
∑

j
αkc

ij · ReLU

(
∂Yc

∂Ak
ij

)
(6)

αkc
ij =

∂2Yc(
∂Ak

ij

)2

2 ∂2Yc(
∂Ak

xj

)2 + ∑a ∑b Ak
ab

{
∂3Yc(
∂Ak

ij

)3

} (7)

where Ak
ij denotes the value of the k-th layer in the feature map, Yc signifies the output

value corresponding to class c, and the rectified linear unit (ReLU) function serves as an
activation function frequently utilized within the framework of neural networks:

ReLU(x) = max(0, x) (8)

We further adopted the technique of guided backpropagation [27]. Guided backprop-
agation is a deep learning visualization method that operates by modifying the standard
backpropagation process. In conventional backpropagation, error gradients propagate from
the output layer back to the input layer, computing contributions to the output. In guided
backpropagation, this method is modified to propagate gradients only when both the input
and gradient are positive. Thus, the modified gradient propagation rule becomes as follows:

∂ f
∂x

=

{
1, i f x > 0 and ∂ f

∂x > 0

0, otherwise
(9)

This means that the gradient is allowed to backpropagate through the layer only if
both the input x and the gradient of the layer with respect to the loss function L, ∂L

∂ f , are
positive. This selective backpropagation helps filter out features that do not positively
contribute to the model output, thereby emphasizing those features that are most influential
in the model’s decision-making in visualizations.

(4) Evaluation of Model Performances

In our analysis, we employ two primary metrics to evaluate the performance of
our model: accuracy and the F1-score. Accuracy is defined as the proportion of true
results (both true positives and true negatives) among the total number of cases examined.
Mathematically, it is expressed as follows:

Accuracy =
True Positives (TP) + True Negatives (TN)

TP + False Positives (FP) + False Negatives (FN) + TN
(10)

The F1-score is a measure that combines precision and recall, both of which are critical
in scenarios where imbalanced class distribution is present. Precision is the ratio of true
positives to all positive predictions, while recall is the ratio of true positives to all actual
positives. The F1-score is the harmonic mean of precision and recall, providing a balance
between them. It is calculated as follows:

F1-score = 2 × Precision × Recall
Precision + Recall

, (11)

where
Precision =

TP
TP + FP

, Recall =
TP

TP + FN
(12)
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We utilize these metrics due to their ability to offer a comprehensive view of the
model’s performance. Accuracy provides an overall effectiveness measure, while the
F1-score offers insight into the balance between precision and recall.

3. Results and Discussion
3.1. Visual Results from the Encoding Model

In our study, we also employed ResNet50 [28] as the encoding model. Following the
pretraining and supervised fine-tuning processes, we proceeded with sample inference and
visualization utilizing the methodology delineated below (Figure 4). The regions depicted in
red correspond to areas bearing high weight, which are the key regions of interest from the
model’s perspective. The results of guided backpropagation, to a certain extent, reflect the
detailed image areas influencing the model’s decision-making process. A clear alignment is
observed between these regions and the actual locations of the outfalls, thereby suggesting
that the model has effectively learned pertinent features for classification throughout the
training phase.
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3.2. Pretraining Enhancement and Baseline Model Evaluation

To appraise the enhancements resulting from our pretraining approach, we em-
ployed a variety of baseline models for pretraining that were subsequently refined utiliz-
ing supervised classification models. A partition of 20% from the supervised dataset was
designated as the testing set to evaluate classification accuracy, and the corresponding
results are displayed in Table 1. To ensure that the experimental conditions remained con-
sistent, ResNet-50 was adopted as the encoder (i.e., fq and fk) across all self-supervised
methodologies. Detailed descriptions of the various comparison baseline models are
as follows:

(1) Supervised-only: This method involves training the encoder exclusively on supervised
data, maintaining complete isolation from the unlabeled dataset.

(2) Self-sup-only: This self-supervised training method abstains from incorporating
geographical information, thereby excluding the parameter update via Lg, and geo-
graphical location information is not utilized in selecting positive sample pairs. The
generation of positive sample pairs adheres to the same strategy as MoCo-V2 [29].

(3) Selfsup + Geoloss: This method builds upon the previous approach, employing Lg for
gradient calculation and subsequent parameter updates.

(4) Selfsup + Geoloss + GeoSelect: This method extends method 3, incorporating the
sample pair selection mechanism, as discussed in Section 3.2.

Table 1. Test results with subsequent supervised datasets for models pre-trained with different
baseline methods. Values in bold indicate the best performance for each metric.

Methods Encoder Accuracy (%) F1-Score (%)

Supervised-only Resnet50 79.73 75.68
Selfsup-only Resnet50 84.23 81.67

Selfsup + Geoloss Resnet50 88.29 86.17
Selfsup + Geoloss + GeoSelect Resnet50 90.54 88.52

The experimental results clearly demonstrate that unsupervised pretraining signif-
icantly enhances model performance in remote sensing image scene classification tasks
compared to supervised training alone. Specifically, a Resnet50 model trained with su-
pervision only achieved an accuracy of 79.73% and an F1 score of 75.68% on the test set.
Introducing unsupervised pretraining improved the accuracy to 84.23% and the F1 score
to 81.67%, confirming the potential of unsupervised learning in extracting effective fea-
ture representations, even without explicit labels. Incorporating geographical loss (Lg) in
unsupervised learning further increased the accuracy and F1 score to 88.29% and 86.17%,
respectively, indicating the benefits of geographical information in representing remote
sensing data by providing additional spatial context. The most significant improvement
occurred when introducing a geographically based positive sample selection mechanism
into unsupervised learning, resulting in the highest accuracy of 90.54% and F1 score of
88.52% among all methods. This highlights the significant impact of geographically filter-
ing positive samples, likely due to the visual and semantic similarities of geographically
proximate images, offering the model more similar yet distinct positive sample pairs for
learning highly discriminative features.

Throughout the training process, methods 2–4, which require pretraining, retain
consistent parameters. Each method undergoes 200 epochs of training with a batch size
of 128. The initial learning rate is designated at 0.001, and it is progressively attenuated
to 0.00001 as the experiment advances. The length of the memory queue is uniformly
established at 65,536, with the distance threshold d defined as 500. The experimental results
demonstrate that the weight parameter α in Equation (4) exerts a negligible influence on
training accuracy, although it does modify the rate of convergence. For the purpose of this
study, we set α = 0.9. When compared to other contrastive self-supervised frameworks
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(Table 2), our method, which is Method 3, demonstrates optimal performance and achieves
the most commendable outcomes.

Table 2. Comparison with other self-supervised methods. Bold indicates the best result.

Methods Encoder Accuracy (%) F1-Score (%)

MoCo-v2 [29] Resnet50 84.23 80.44
BYOL [15] Resnet50 88.17 86.15

simCLR [30] Resnet50 85.39 84.62
Our Method Resnet50 90.54 88.52

3.3. Impact of Distance Threshold on Encoder Performance

Additionally, the magnitude of the distance threshold d during the selection process
can potentially affect the accuracy of the pre-trained model. Figure 5 illustrates the perfor-
mance of distinct encoders at various threshold values. Among these encoders—ResNet-18,
ResNet-50, ResNet101, and ViT [31]—there is an increase in parameter quantities.
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Analyzing the F1 scores shown in the graph, we observe that the models based on the
Resnet architecture exhibit an initial increase followed by a decrease in performance with
rising distance thresholds, while ViT-based models show higher performance at smaller
threshold ranges. There is a positive correlation between the number of encoder parameters
and accuracy performance, but ViT does not follow this pattern. Thus, our algorithm
may not be suitable for transformer-based models. This suggests an optimal balance in
the quality of positive sample pairs at certain thresholds, reflecting spatial associations
in remote sensing imagery while maintaining sufficient variability for model learning.
Notably, the performance of Resnet50 and Resnet101 peaks at medium-distance thresholds,
indicating that deeper networks may better capture and utilize complex spatial patterns in
remote sensing data.
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3.4. Analysis of Classification Outcomes

In Figure 6, we illustrate instances classified by our algorithm as actively draining
when applied to real-world imagery that is not included in the training set. Notably, the
regions of high relevance in the correctly classified positive samples align precisely with
active drainage locations. Regarding the misclassified instances, the emphasized regions in
Figure 6e,f correspond to areas with diminished brightness obscured by cloud shadows,
while those in Figure 6g,h are situated in turbid water zones enriched with sediment. These
two types of scenarios predominantly account for our misclassification outcomes.
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samples with no active drainage. The red areas in the Grad-CAM++ images represent the regions of
interest to the model.
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4. Summary

Anthropogenic emissions have exerted substantial pressure on the coastal marine
environment, requiring rigorous monitoring of coastal outfalls to safeguard the surrounding
marine water systems. However, there is a noted deficiency in effective satellite remote
sensing mechanisms for large-scale outfall drainage monitoring, compounded by a dearth
of annotated data, which escalates the challenge of training effective classification models.

In the current research, we developed a self-supervised pretraining approach tai-
lored for the visible light bands of Sentinel-2 remote sensing imagery, with the primary
objective of classifying the drainage conditions of coastal outfalls. Following this, super-
vised fine-tuning enabled us to refine an efficient outfall classification model, thereby
facilitating extensive monitoring of outfall statuses discharging into maritime regions.
Notably, our training method effectively utilizes the geographic information embedded
in the remote sensing imagery, delivering greater accuracy than methods that exclude
such geographic data. Our method demonstrated an accuracy rate of 90.54%, signifi-
cantly outperforming conventional models. A series of ablation experiments confirmed
a 10.81% improvement in accuracy compared to traditional models, showcasing the
effectiveness of our training framework. Additionally, through rigorous visualization
techniques, we assessed the post-supervised training model, thereby validating the
potency of the acquired features.

Our approach offers an innovative perspective on monitoring coastal outfalls. By
meticulously tracking the drainage status, we can promptly identify specific drainage
locales, subsequently redirecting our monitoring emphasis toward regions of particular
interest. This approach not only economizes manual inspection efforts but also supports
monitoring on an expansive scale. However, there are many factors that can degrade the
performance of the proposed approach, such as cloud shadows and turbid waters. In
the future, we will augment the classification precision by implementing preprocessing
strategies in regions affected by cloud shadows and incorporating samples with distinct,
analogous morphologies. Such advancements will further broaden our monitoring capacity,
ensuring exhaustive surveillance of outfall statuses across an even more extensive area.

Currently, our approach focuses on identifying drainage presence without analyzing
wastewater treatment status. Future improvements could include integrating additional
data, like hyperspectral imagery or water quality measurements, to enhance classifica-
tion capabilities.
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