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Abstract: This study assesses the applicability of different-resolution multispectral remote sensing
images for mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a promi-
nent invasive species in European coastal areas. This study was carried out on the Cávado estuary
sand spit (Portugal). The performance of three sets of multispectral images with different Ground
Sample Distances (GSDs) were compared: 2.5 cm, 5 cm, and 10 cm. The images were classified
using the supervised classification algorithm random forest and later improved by applying a sieve
filter. Samples of C. edulis were also collected, dried, and weighed to estimate the AGB using the
relationship between the dry weight (DW) and vegetation indices (VIs). The resulting regression
models were evaluated based on their coefficient of determination (R2), Normalised Root Mean
Square Error (NRMSE), p-value, Akaike information criterion (AIC), and the Bayesian information
criterion (BIC). The results show that the three tested image resolutions allow for constructing reliable
coverage maps of C. edulis, with overall accuracy values of 89%, 85%, and 88% for the classification of
the 2.5 cm, 5 cm, and 10 cm GSD images, respectively. The best-performing VI-DW regression models
achieved R2 = 0.87 and NRMSE = 0.09 for the 2.5 cm resolution; R2 = 0.77 and NRMSE = 0.12 for the
5 cm resolution; and R2 = 0.64 and NRMSE = 0.15 for the 10 cm resolution. The C. edulis area and
total AGB were 3441.10 m2 and 28,327.1 kg (with an AGB relative error (RE) = 0.08) for the 2.5 cm
resolution; 3070.04 m2 and 29,170.8 kg (AGB RE = 0.08) for the 5 cm resolution; and 2305.06 m2 and
22,135.7 kg (AGB RE = 0.11) for the 10 cm resolution. Spatial and model differences were analysed in
detail to determine their causes. Final analyses suggest that multispectral imagery of up to 5 cm GSD
is adequate for estimating C. edulis distribution and biomass.

Keywords: Carpobrotus edulis; unoccupied aerial vehicle; aboveground biomass; GIS; QGIS;
landcover classification

1. Introduction

In the ever-evolving field of remote sensing (RS), the selection of the appropriate scale
to investigate an object plays a central role in the accuracy and relevance of information, as
geographical phenomena, distributions, and processes are generally scale-dependent [1]. As
new sensors and platforms are developed through new technological advancements, from
aeroplanes to drones as observation platforms, from panchromatic to hyperspectral sensors,
the overall effectiveness of an RS study is still strongly related to its images’ Ground Sample
Distance (GSD). There is, however, a trade-off between the efficiency (extension of the area
covered per survey) and spatial resolution, which are usually inversely proportional, with
higher spatial resolutions linked to smaller areas covered.

Many studies use data collected from small areas obtained with high spatial resolution
sensors to extrapolate their findings to more extensive areas surveyed with lower spatial
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resolution sensors [2–4]. Even though good results can be achieved this way, these studies
do not consider the scale effect. In other words, these studies often neglect to address that,
for a specific area and object of study, there is an optimal monitoring scale [5].

The investigation of optimal resolutions and the impact of spatial resolution on a land
cover classification map (scale effect) has been the object of study of many articles [6–14].
These studies can be divided into two main types: those that use very high spatial resolution
images and resample the images to simulate lower resolutions [7,8,11], and studies that use
different equipment with different spatial resolutions [6,9,10,12,13]. Both approaches can
produce interesting insights about the comparison of resolutions for a determined study
objective. The present study uses the second approach, employing a UAV and an aeroplane
platform equipped with multispectral cameras. This approach was selected considering
the scope of this study, which is to assist in the selection of the means and methods for
monitoring C. edulis.

Remote sensing techniques constitute a valuable tool for the management of invasive
species. Unoccupied aerial vehicles (UAVs) equipped with multispectral sensors have been
increasingly used to identify and monitor different invasive species in many ecosystems,
and their application can be considered a well-established technique [15–17]. Additionally,
multispectral UAVs have also gained importance in commercial agriculture, where vegeta-
tion indices (VIs) are used for crop health assessment and yield estimation [18–20]. Some
recent studies of natural habitats have combined a species identification methodology with
yield estimations to assess the vegetation’s aboveground biomass (AGB) using multi- or
hyperspectral UAVs [21,22]. The measurement of the AGB of invasive species can play a
central role in the planning and execution of vegetation management campaigns.

Originally from South Africa, Carpobrotus edulis is a prominent invasive species in
Europe, with its genus Carpobrotus having the largest number of records of control actions
in Mediterranean countries [23]. Remote sensing methods are an obvious choice to facilitate
Carpobrotus monitoring and management. The objective of the present work was to evaluate
the impact of remote sensing image resolution on C. edulis AGB estimation. Three sets
of multispectral images with different spatial resolutions (2.5 cm, 5 cm, and 10 cm GSD)
were examined, specifically focusing on each resolution’s accuracy in estimating C. edulis
AGB. The results were compared to evaluate the most suitable resolution for C. edulis
monitoring. Data processing, classification algorithms, and the subsequent implications for
AGB estimate accuracies were evaluated to gain insights into the resolution impacts and
improve the decision-making process on monitoring and removal campaigns.

2. Study Area

The study area was part of the Parque Natural do Litoral Norte (PNLN), administered
by the national Nature and Forest Conservation Institute (Instituto da Conservação da
Natureza e das Florestas–ICNF) (Figure 1). The park spreads along 16 km of the coast,
located between the Neiva estuary (41◦36′46.56′′N, 8◦48′32.55′′W) and the south border of
Apúlia (41◦28′10.68′′N, 8◦46′31.30′′W), extending 5 km offshore into the ocean. It covers a
total of 8887 ha, of which 7653 ha are marine areas.

The PNLN was created to protect the littoral of Esposende, preserve its natural re-
sources and elements, and promote a rational use of the site. With its mainland consisting
essentially of a strip of sandy shores, the park houses 15 different habitats described in
the Habitat Directive, 4 of which are marked as priority habitats: 1150-Coastal lagoons,
2130-Fixed coastal dunes with herbaceous vegetation (grey dunes), 2270-Wooded dunes
with Pinus pinea and/or Pinus pinaster, and 91E0-Alluvial forests with Alnus glutinosa and
Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae).

Almost all in-land park terrain is located less than 10 m above mean sea level, with
only some dunes between 10 and 20 m high. There are 240 different vegetation species
identified on the NLNP, most of them native to the north Iberic littoral, including some
endangered species. This native vegetation is vital for preserving the morphological and
biotic characteristics of the ecosystems [24]. However, like many other coastal environments,
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the dunes of the Cávado Estuary suffer not only from erosion risks but also from the
constant pressure of climate change, urbanisation, recreation trampling, and invasive
species [25]. Twelve invasive species were identified within the flora, with the most
prominent ones considered the Acacia longifolia and Carpobrotus edulis, which pose significant
pressure on the dune habitats [26].
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Figure 1. Location of study area (red) in Iberian Peninsula (a); study area (b).

3. Materials and Methods

This study was divided into four phases: in situ work (Section 3.1), laboratory work
(Section 3.2), imagery processing (Section 3.3), and C. edulis area and biomass estimation
(Section 3.4) (the methodology follows [27]).

3.1. In Situ Work

The in situ work was developed as follows: (i) marking of ground control points,
(ii) placement of quadrats for sampling delimitation, and (iii) capture of aerial images.

3.1.1. Ground Control Points

Ground control points (GCPs) were strategically distributed over the study area
and marked with spray paint. These points were georeferenced with a GNSS receiver
Emlid Reach M2 and a NovAtel antenna GPS-702-GG (NovAtel—Calgary, AB, Canada)
in Real-Time Kinematic (RTK) mode, with corrections from the National Network of
Permanent Stations (ReNEP), the Portuguese CORS (Continuously Operating Reference
Station) network, and later used to enhance the orthomosaic geometry and geolocation
precision during imagery processing.

3.1.2. Sample Quadrats

Thirty 50 × 50 cm2 quadrats were placed over areas exclusively covered by C. edulis
vegetation, each exhibiting distinct visually identified biomass and health characteristics
(Figure 2a). This distribution was designed to cover a range of conditions, with more or less
lush plants and different biomasses per sample, to optimise the dry weight (DW)–vegetation
indices (VIs) regression models. The quadrats were placed with a north–south orientation,
which helps to reduce the number of pixels the frames occupy in the RS image and the num-
ber of neighbouring pixels that are affected by interference on reflectance from the frame.

These quadrats have an essential role in identifying the sample areas. As they can
be identified in the aerial images, they are used as visual marks for the samples. Their
north-west and south-east vertices were georeferenced with the GNSS receiver.
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Figure 2. Placement of a quadrat on a C. edulis patch, with other vegetation covers visible to the left
(various herbaceous species) and in the back (acacia) (a); delimitation of the central 30 × 30 cm2 area
within a quadrat for AGB removal (b); brown layer of C. edulis after removal of the top green layer (c).

3.1.3. Aerial Images

Once the quadrats and ground control points were in place, marked, and georefer-
enced, four different sets of aerial images were acquired using a built-in RGB sensor from
a DJI Phantom 4 (DJI—Shenzhen, China) to obtain images with 1 cm Ground Sample
Distance (GSD); a five-band (Blue 475 nm, Green 560 nm, Red 668 nm, RedEdge 717 nm,
NIR 842 nm) Micasense RedEdge-MX sensor (AgEagle—Seattle, WA, USA), carried by a
UAV DJI M200 to obtain images with 2.5 cm GSD; and a four-band (Blue 460 nm, Green
525 nm, Red 610 nm, NIR 715) Ultra Cam Falcon f100 M1 (Vexcel—Graz, Austria), carried
by an occupied aircraft to obtain images with 5 and 10 cm GSD. The survey covered a total
area of 22,607 m2.

All images were captured on 15 June 2022, around 10 am, with the slightest time
difference possible. The flight height and image superposition varied according to the
platform used and the image GSD. UAV images were taken from 30 m height, with 85%
along-track and 70% lateral superposition; radiometric calibration was based on a sun
sensor and reflectance panel provided by the camera manufacturer. Aeroplane images
were captured from 700 m and 1400 m, for the 5 cm and 10 cm GSD images, respectively.
The 5 cm GSD survey used 85% along-track and 30% lateral superposition, while the 10 cm
GSD survey was obtained with a single row of images, with 85% along-track overlap.

The RGB camera from the DJI Phantom 4 UAV was only used to provide a very high
spatial resolution visible orthomosaic to allow for a reliable cover identification. The other
three sets of images were processed to assess their capability to identify and estimate the
AGB of C. edulis.

To avoid the effect of the reflectance interference of the quadrat frames on the Vis of the
sample areas, only the central part of the quadrats was sampled and analysed. Therefore,
after the aerial survey, all the AGB within the central 30 × 30 cm2 of each of the 30 quadrats
was collected, bagged, tagged, and taken to the lab for biomass determination. To do so,
the smaller quadrat was visually positioned in the centre of the 50 × 50 cm2 quadrat, as
shown in Figure 2b. All the AGB was cut out of the sample areas with a saw and scissors
just after the flights were made. After AGB collection, the samples were taken to the lab
and processed.

3.2. Laboratory Work

It is essential to address that Carpobrotus edulis has the characteristic of growing in
two distinct layers, an upper layer—which absorbs and reflects the sunlight and is visible
in the aerial images—and a lower layer composed of older and dryer stems and leaves that
are generally not visible from above. The two layers of the collected plant material were
therefore separated and weighed separately on a scale to the nearest 0.01 g to obtain the
wet weight (WW) of each layer for each sample.
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After weighing, green and brown parts were placed in the lab stove at 60 ◦C to be
dried, and were weighed daily until they presented no weight difference between two
consecutive weightings. After drying, all samples were weighed on the same scale to the
nearest 0.01 g. The DW was later used to (i) relate the biomass with the Vis (Section 3.2),
(ii) compare the DW and WW, and (iii) assess the biomass ratio between the green and
brown parts of the plants.

3.3. Image Processing and Analyses

Each set of images, with 2.5, 5, and 10 cm GSD, respectively, was processed according
to the following steps: (i) orthomosaic production, (ii) vegetation indices calculation and
DW-VI empirical modelling for AGB estimation, and (iii) land cover classification, accuracy
assessment, and error analysis.

3.3.1. Orthomosaics

RGB and multispectral orthomosaics were computed with Agisoft Metashape Pro-
fessional version 1.8.3 built 14,331 (64 bit) (Agisoft—St. Petersburg, Russia), using twelve
georeferenced GCP for image orthorectification. The reflectance values were standardised
by dividing the reflectance value by the difference between the maximum and minimum
sensor capture values.

3.3.2. Vegetation Indices and Biomass

The AGB was estimated based on the relationship between the vegetation DW and
VIs derived from the image bands. Based on a previous study, where sixteen VIs were
evaluated for their ability to estimate the AGB of C. edulis [27], the best-performing VIs
(with DW-VI model R2 ≥ 0.75) (Table 1) were selected to compare the performances of
the different spatial resolution images in estimating the C. edulis AGB. The indices were
computed using the QGIS 3.28.3 raster calculator tool, creating VI maps for the study area.

Table 1. Vegetation indices formulas used in this work. Bands: Blu—Blue; Gre—Green; NIR—Near-Infrared.

Index Formula Reference

Green Chlorophyll Index (GCI)
NIR
Red − 1 [28]

Difference Vegetation Index (DVI) NIR − Red [29]
Green Difference Vegetation Index (GDVI) NIR − Gre [30]

Enhanced Normalised Difference Vegetation Index (ENDVI)
(NIR−Gre)−2Red
(NIR−Gre)+2Red [31]

Green Normalised Difference Vegetation Index (GNDVI)
NIR−Gre
NIR+Gre [32]

Normalised Difference Vegetation Index (NDVI)
NIR−Red
NIR+Red [33]

Photochemical Reflectance Index (PRI)
Gre−Blu
Gre+Blu [34]

Renormalised Difference Vegetation Index (RDVI)
NIR−Red√
NIR+Red [35]

Ratio Vegetation Index (RVI) Red
NIR [36]

Mean VI values were computed for each AGB sample collection area. Notice that
the pixels used coincided with the 30 × 30 cm2 collection area square in the centre of the
50 × 50 quadrats. The obtained VI values were later used to assess their relationship with
the sample DW of the plants’ green parts.

Each sample’s DW of the green parts (y-axis) was plotted against the mean VI (x-axis)
to evaluate the relationship between the two parameters. One linear and two exponen-
tial regression models were evaluated to select the best-fitting model for each VI and
image resolution:

Linear model (lin) y = a + bx (1)

Exponential model 1 (xpo1) y = abx (2)

Exponential model 3 (xpo3) y = axb (3)
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where
y = dry weight;
x = vegetation index;
a = coefficient 1;
b = coefficient 2.
Only the green parts of the DW were used because of the limitations of the aerial

images, which only capture the reflectance of the top layer of C. edulis. The best-fitting
regression model was selected based on the R2, p-value, Akaike information criterion (AIC),
Schwarz’s Bayesian information criterion (BIC), and a Normalised Root Mean Square Error
(NRMSE), calculated by dividing the RMSE by the difference between the maximum and
minimum observed DW of the green parts.

3.3.3. Land Cover Classification

The orthomosaics were classified through a supervised classification with the random
forest algorithm. The random forest algorithm was selected based on its performance in
previous studies on identifying C. edulis [27].

The number of cover classes was determined by the visual identification of the most
relevant covers in the image, and 30 Regions of Interest (ROIs) of 20 × 20 cm2 were selected
for each class for the training of the classification, resulting in approximately 13,000 pixels.
For the target C. edulis class, the ROIs were created near to the vegetation sampling areas
(Figure 3).
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Figure 3. Orthomosaic image with 10 cm GSD and ROI points marked.

The number of ROIs for the different spatial resolutions was defined to approximately
13,000 training pixels (Table 2), a number of pixels that resulted in a satisfactory classification
in the previous study [27].

For the lower-resolution orthomosaics, the ROIs were positioned as close as possible
to the ROI of the 2.5 cm GSD orthomosaic. Notice that the ROI of 2.5 cm is also part of
the ROI of 5 cm, which, in turn, is also part of the ROI for the 10 cm GSD orthostatic
(Figure 4). Examples of ROI distribution are provided in Figure 4a,b, showing 1 ROI for the
2.5 cm GSD, 4 ROIs for the 5 cm GSD, and 16 ROIs for the 10 cm GSD, in order to achieve
approximately similar numbers of training pixels.
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Table 2. ROIs and training pixels count per resolution.

GSD (cm) Individual ROI
Area (cm) Pixels per ROI Number of

ROIs per Class
Total Training

Pixel Count

2.5 20 × 20 64–81 30 13,269
5.0 20 × 20 16 120 11,520

10.0 20 × 20 4 460 11,524
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The accuracy of each classification was assessed based on a large set of randomly
selected pixels, from which the ground truth cover class was visually identified in the
1 cm GSD RGB image and compared to the classified class. The number of pixels for the
accuracy test was defined based on the proportion of each class and the expected standard
deviation in each class, and the values are determined based on past experience from
similar studies [37] according to the following equation.

N =
(
∑6

i=1(Wi × Si)/S0

)2
(4)

where
N = total number of pixels;
Wi = mapped area proportion of class I;
Si = standard deviation of stratum I;
S0 = expected standard deviation in overall accuracy.
The classifications were evaluated in terms of the F1 score of the C. edulis cover

class, i.e., considering a harmonic mean between the user accuracy (UA) and producer
accuracy (PA).

F1 score = 2
UA × PA
UA + PA

(5)

Sieve filters with progressive strength were applied, using QGIS (3.28). A sieve filter
can be used during land cover classification to eliminate small, isolated pixels that may not
accurately represent the land cover type (considered noise). This might help to improve
the accuracy of the classification and results in a cleaner output. Two types of sieve filters
were used: a 4-pixel filter, which only considers the pixels on the edges of the target
pixel as neighbour pixels; and an 8-pixel filter, which considers all pixels connected to
the edges and corners of the target pixel as neighbours. The two filters were used with
progressively larger thresholds (i.e., larger areas used to re-calculate the pixel(s)’ class)
doubling at every interaction (1, 2, 4, 8, 16, (. . .), 2048) until the accuracy of the classification
stopped increasing and started to fall. The increase in the accuracy with the increasing
threshold can be linked to classification noise reduction, but as the filter becomes larger,
the classification begins to lose information, reducing its accuracy.
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The classification was performed using the QGIS dzetsaka: Classification Tool Plugin
(version 3.70) [38]. Sieve filtering and accuracy assessments were realised using QGIS (3.28)
and the Semi-Automatic Classification Plugin (version 7.10.11) [39].

3.4. C. edulis Area and Biomass Estimation

For each image resolution, the land cover classification with the highest F1 score was
used to obtain the total area of C. edulis (Figure 5).
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To estimate the total C. edulis biomass for the classified area, the following information
is necessary: (i) C. edulis classified area; (ii) pixel VI values in the C. edulis area; (iii) the
regression model correlating the VI value with the DW of the green parts of C. edulis;
(iv) the relation between the DW and WW; and (v) the ratio between the WW of the green
and brown parts.

For the biomass estimation, the pixel VI values were converted to AGB DW using the
best-fitting regression model. This allowed for the calculation of the green-part DW of each
pixel classified as C. edulis. After that, the DW was converted to WW, using the previously
established WW-DW relationship. Finally, to assess the total weight of C. edulis in the study
area, an estimate of the brown-part AGB had to be added, since only the green parts have
been accounted for in the regression model. This was achieved using the ratio between the
WW of the green and brown parts.

There are different errors to be considered using the proposed methodology: (i) geometric
distortions, which depend on sensor perspective and motion, platform stability, terrain
relief, and the curvature and rotation of the Earth (less relevant for small surveyed areas);
(ii) sensor errors, causing image deformation; (iii) classification errors; (iv) regression model
errors; (v) the natural variability in the relationship between the DW and WW, largely
dependent on environmental conditions and plant moisture, which can produce AGB
estimation errors; and (vi) the variability in the ratio between the green and brown parts,
which will depend on the age and development of the vegetation, also contributing to AGB
estimation errors. For this study, only the (iii) classification and (iv) regression errors were
considered in the final AGB estimation. The classification error (expressed in m2) is directly
related to the accuracy evaluation procedure, from which an area standard error (SE) and a
95% confidence interval (CI) can be extracted. The RMSE (kg/m2) was extracted from the
regression model and also considered in the total AGB estimation. The two errors were
added for a conservative evaluation of the methodology. Further discussion can be found
in Section 4.2.
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4. Results
4.1. Image Classification Results
4.1.1. Cover Classification

The six most relevant covers could be identified in the orthomosaic: water, C. edulis,
sand, wet sand, dry vegetation, and green vegetation. The dry vegetation and green
vegetation classes included all vegetation species in the study area that were not identified
as C. edulis. The mean spectral signatures of the ROI training areas for each class and for
the different image resolutions are displayed in Figure 6.
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4.1.2. Classification Accuracy Assessment

Applying Equation (5) for every classification resolution, while considering for a
class-specific standard deviation of 0.3 and an overall accuracy standard deviation of 0.01,
resulted in an accuracy assessment using 780 pixels. An equal distribution was applied
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with 130 randomly generated pixels for each class, aiming to enhance the reliability of the
accuracy for the C. edulis cover class. The first accuracy assessment presented the following
results: 2.5 cm GSD—C. edulis F1 score 72.6 and OA 85.9; 5 cm GSD—F1 score 70.6 and
OA 87.1; and 10 cm GSD—F1 score 75.5 and OA 87.2.

Sieve Filter Effects

When applying the sieve filter, the different resolution classifications presented overall
similar behaviour (Figure 7). In general, as the filter threshold increased, the F1 score for
C. edulis increased, while the classification noise decreased, until it dropped significantly,
when too much information was lost. This happened at different thresholds for the different
imagery resolutions.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 24 
 

 

for C. edulis increased, while the classification noise decreased, until it dropped signifi-

cantly, when too much information was lost. This happened at different thresholds for the 

different imagery resolutions. 

 

Figure 7. Comparison of F1 score for the C. edulis class for different filters (4: 4-pixel filter; 8: 8-pixel 

filter), thresholds, and resolutions. Highest F1 score marked in red. 

The different resolution images resulted in classifications with different cover class 

distributions (Figure 8), with varying proportions, particularly for the of-target class C. 

edulis and for the green vegetation. 

 

Figure 8. Cover class distribution for the classification results obtained with each spatial resolution; 

labels in the graphic indicate area in square meters. 

The sieve filter that achieved the highest F1 score for C. edulis for each survey resolu-

tion (identified in Figure 7) was used for the C. edulis area estimation. Given that C. edulis 

is the target species and its class accuracy is the central object in the present study, the F1 

score was the only criterion considered for the sieve filters selection. However, the overall 

accuracy (OA) was still relevant and was also analysed. 

Figure 7. Comparison of F1 score for the C. edulis class for different filters (4: 4-pixel filter; 8: 8-pixel
filter), thresholds, and resolutions. Highest F1 score marked in red.

The different resolution images resulted in classifications with different cover class
distributions (Figure 8), with varying proportions, particularly for the of-target class
C. edulis and for the green vegetation.
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The sieve filter that achieved the highest F1 score for C. edulis for each survey resolution
(identified in Figure 7) was used for the C. edulis area estimation. Given that C. edulis is the
target species and its class accuracy is the central object in the present study, the F1 score was
the only criterion considered for the sieve filters selection. However, the overall accuracy
(OA) was still relevant and was also analysed.

For the 2.5 and 10 cm GSD, the classifications’ OA increased by 4.4% and 1.4%,
respectively, if compared with the classification with no filter applied. The 5 cm GSD
classification presented a 1.8% decline in its OA, but the F1 score for C. edulis increased by
9.9%, which justified the use of the filter.

The best results in terms of the F1 scores for all resolutions were achieved using the
sieve filter with a connectedness of four pixels. However, the threshold was different for
every resolution, and each classification resulted in a different final classified C. edulis area
(Figure 8). A complete area-based classification error matrix of each resolution can be found
in Appendix A (Tables A1–A3).

4.2. Biomass Estimation

The samples’ wet and dry weights for the green and brown parts of the collected
C. edulis AGB are presented in Table 3. Notice that some samples did not present any brown
plant parts.

Table 3. Summary statistics of C. edulis sample wet weights (WWs) and dry weights (DWs) for the
plants’ green and brown parts (SD: standard deviation).

GREEN BROWN

WW (kg/m2) DW (kg/m2) WW (kg/m2) DW (kg/m2)

Highest 27.12 2.86 3.65 2.64
Lowest 2.09 4.66 0 0
Mean 9.68 1.27 1.01 0.62

Median 8.16 1.07 0.51 0.29
SD 6.43 0.71 1.13 0.73

To estimate the proportions of the WW of the green (WWgreen) and brown
(WWbrown) plant parts, a simple mean ratio was calculated using all the samples,
WWgreen/WWbrown = 15.9. The relationship between the WW and DW of the green parts
resulted in a mean ratio of WWgreen/DWgreen = 7.0. The mean ratio considered the mean
of the ratio between the WWgreen/DWgreen of each sample area.

The best model for the relationship between the sample’s DWgreen and the sample
area mean VI values, obtained for each image resolution, are presented in Table 4. The
selection of the best model per image resolution was based on the R2, AIC, BIC, p-value, and
NRMSE, with all the best values for the R2, AIC, and BIC coinciding. All DWgreen—VI
regressions were significant (p-value < 0.001). Plots of the best-performing empirical
regression models can be found in Appendix A (Figures A1–A3).

Table 4. Best DWgreen–VI regression model for each resolution with respective R2, RMSE, NRMSE,
model, and respective coefficients a and b.

GSD (cm) Index R2 RMSE
(kg/m2) NRMSE Model Coef a Coef b

2.5 RDVI 0.87 0.23 0.09 y = abx 151.94 81.11
5 ENDVI 0.77 0.30 0.12 y = abx 2596.48 13.48
10 GCI 0.64 0.36 0.15 y = abx 506.44 3.07

Different indices performed best for the different resolution images. The best-performing
VI was the Renormalised Difference Vegetation Index (RDVI) for the 2.5 cm GSD, the
Enhanced Normalised Difference Vegetation Index (ENDVI) for the 5 cm GSD, and the



Remote Sens. 2024, 16, 652 12 of 22

Green Chlorophyll Index (GCI) for the 10 cm GSD. These indices were therefore applied
to estimate the total biomass of C. edulis in the study area, computing the DWgreen for
all pixels classified as C. edulis. Notice that, even though these were the best-performing
indices, many of the other indices tested also presented a satisfactory performance. Seven
of the eight other indices from the 2.5 GSD images presented an R2 that was less than 10%
lower than the R2 of the best-performing index. Likewise, seven of the eight other indices
applied to the 5 and 10 cm GSD images presented R2 values that were less than 5% lower
than that of the best VI. A complete table with the best-performing regression models for
each VI can be found in Appendix A—Table A4.

Notice that, even though the classification accuracy did not decrease much with the
increase in the GSD (i.e., decrease in image resolution), the coefficient of determination R2

of the regression model significantly decreased with the increasing GSD (Table 5). This is
probably due to the amount of information available in the sample areas. For the 2.5 cm
GSD, there are up to 144 pixels in each sample area, while for the 5 and 10 cm GSD, there
are only 36 and 9 pixels, respectively. The lower amount of information might reduce the
efficiency of the regression models.

Table 5. Classification results, AGB values, and total AGB estimates considering the classified and
estimated areas; the estimated area is calculated based on accuracy and validation samples and,
considering its error, a good predictor for the real area.

Image Resolution

2.5 cm 5 cm 10 cm

Classification

Filter threshold 1024 4096 256
C. edulis classified area (m2) 3441 3070 2305

F1 score C. edulis 84.5 80.5 81.1
Overall Accuracy 89.5% 85.3% 88.6%

Kappa 0.871 0.808 0.859
C. edulis estimated area (m2) 2982 2616 2431

Standard error of estimated area (m2) 176 160 160
95% confidence interval estimated area (m2) 345 314 313

AGB values (WW)
Based on VI

empirical models

RMSE (kg/m2) 0.23 0.30 0.36
Highest value (kg/m2) 29.13 29.18 24.50
Lowest value (kg/m2) 1.23 1.80 3.58

Mean (kg/m2) 8.23 9.50 9.60
Median (kg/m2) 7.67 9.44 9.41

Standard deviation (kg/m2) 3.66 3.16 2.88

Total AGB classified area

Total AGB (kg) 28,327 29,170 22,135
Regression model error (RMSE × classified area) (kg) 782 923 840

Classified area error (kg) 1449 1520 1537
Total AGB error (kg) 2231 2443 2377

Relative error 0.08 0.08 0.11

Total AGB Estimated area

Total AGB (kg) 24,548 24,857 23,345
Total AGB error (kg) 2231 2443 2377

95% CI AGB error (kg) 3518 3770 3892
Fractional error (Total AGB error) 0.09 0.10 0.10

Fractional error (95% CI AGB error) 0.14 0.15 0.17

For each image resolution, the C. edulis green-part DW was calculated by applying the
regression models to the classified area of C. edulis. The resulting values were subsequently
converted to WWgreen, using the above-mentioned WW/DW ratio of 7.0. Finally, the
area’s total AGB of C. edulis was estimated using the WWgreen/WWbrown ratio of 15.9,
resulting in values of the total AGB for each classification (Table 5).

In terms of error analysis, the regression model error and the classification error were
estimated. The regression error considered the root mean square error of the model, the
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RMSE (kg/m2), which was multiplied by the total classified area, resulting in an error in
kg for the total AGB. The classification error was based on the estimated classified area’s
standard error (SE). A more detailed explanation of the estimated area and its SE can be
found in Section 4.4 of Olofsson et al. (2014) [37]. Even though the SE is related to the
estimated reference area, it is intrinsically linked to the accuracy of the classification. The
SE was multiplied by the mean value of the AGB to estimate the total error of the classified
area (Table 5).

5. Discussion
5.1. Image Classification

The present study assessed the cover of the invasive species C. edulis through the land
cover classification of multispectral imagery (orthomosaics) of different resolutions. The
supervised random forest classification presented satisfactory results in identifying C. edulis
(Table 5) for all three analysed resolutions, if compared to similar studies [40,41]. However,
despite the satisfactory accuracies, the areas classified as C. edulis varied considerably in
size. The difference was more prominent for the 10 cm GSD image classification, which
estimated the C. edulis area was 33% and 25% less than the area estimated for the 2.5 cm
GSD and the 5 cm GSD image classifications, respectively.

Examination of Table 5 (Classification) indicates that some aspects deserve further
investigation in order to (i) determine where the differences in the area of C. edulis between
classifications occur; (ii) identify the different attributed classes for the different resolutions
and investigate the possible reasons for these differences; and (iii) assess if the reference
raster-estimated area can be utilised with the mean vegetation values to estimate the total
AGB, considering that the estimated C. edulis areas for the reference rasters for all three
resolutions were within the 95% confidence intervals of each other.

Notice that, even though all resolutions presented some relevant results, the total
biomass of C. edulis obtained from the 2.5 cm GSD images captured by the MicaSense
RedEdge-MX was considered the most accurate. This was justified by the higher image
spatial resolution, and thus more detailed information was available, by the higher number
of bands available for classification (five bands as opposed to the four bands from the
lower-resolution images), which provided more spectral information, probably resulting in
better classification results, and the better DW-VI regression model results, which increase
the confidence in the total AGB estimation.

To better understand the marked differences between resolutions in the areas classified
as C. edulis, the classifications were compared in detail (Tables 6–8). A representative area
of the orthomosaics cover changes is presented in Figure 9. The comparison between the
2.5 GSD classification and the other imagery classifications showed that the changes from
smaller to larger GSD are characterised by the reduction in the C. edulis classified cover
area (Table 5), replaced mainly by green and dry vegetation. These changes occur in small
patches, close to the border of C. edulis areas and inside bigger C. edulis areas (Figure 9). The
observed differences may be due to a scale effect of the resolution, an imprecision in the
superposition of orthomosaics, a misclassification due to overlapping spectral signatures,
or a mixture of these effects. The scale effect can be defined as the influence of the spatial
resolution on the classification accuracy [6].

The different cover classes observed at the border of the C. edulis areas might be
attributed to imprecision in the superposition of the orthomosaics and to the scale effect.
These effects are more relevant at the border of the classified cover areas, where the
reflectance of the C. edulis areas may mix with the reflectance of neighbouring covers due
to the larger GSD. As seen in Figure 9, some of these changes are at the border between the
C. edulis and green vegetation cover, which are the two classes with the less distinct spectral
signatures. It is also interesting to notice that these differences are distributed on all sides
of the C. edulis borders, suggesting that these changes cannot be explained by orthomosaic
superposition imprecisions alone (as these would produce a lateral shift). Some changes
are also on the border between C. edulis and dry sand, where C. edulis pixels (according to
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the 2.5 cm classification) were classified as green vegetation, also likely due to the scale
effect and spectral signature inaccuracy in larger pixels, which are more likely to display
mixed cover than smaller pixels.
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Larger areas of cover change, especially in the central part of the C. edulis classified
areas, cannot be explained by superposition imprecision or by the scale effect. These
changes are probably related to misclassifications due to overlapping spectral signatures.
Table 5 and Figure 6 show that, even though there was sufficient differentiation between the
spectral signature of green vegetation and of C. edulis to provide a satisfactory classification
accuracy result, a considerable overlapping of these signatures must be acknowledged.
This overlapping results in uncertainties and the misclassification of C. edulis and green
vegetation covers.

Misclassifications may further be accentuated by the lack of the RedEdge band in
the plane-based aerial images, i.e., the 5 and 10 cm GSD images. Analysing the pairwise
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comparisons (Tables 6–8), it is possible to see that most cover changes occurred between
C. edulis and green vegetation, which may point to an inaccuracy related to the lower
spectral resolutions from the 5 and 10 cm GSD. The extra RedEdge band of the UAV camera
seems to provide some additional information that enhances the classification accuracy.

Table 6. Comparison of the cover class areas resulting from the 2.5 and 5 cm GSD classifications.

5 cm GSD

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation

Total 2.5 cm
GSD Area (m2)

2.
5

cm
G

SD

Water 5555 3 2 103 298 16 5979
C. edulis 0 2548 9 6 300 574 3440

Dry sand 80 15 1685 26 504 16 2328
Wet sand 37 9 88 2349 45 0 2532

Dry vegetation 23 143 327 131 3274 197 4098
Green vegetation 4 349 23 8 225 3609 4221

Total 5 cm GSD area (m2) 5701 3069 2138 2627 4649 4416 22,602

Table 7. Comparison of the cover class areas resulting from the 5 and 10 cm GSD classifications.

10 cm GSD

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation

Total 5 cm
GSD Area (m2)

5
cm

G
SD

Water 5604 0 0 14 85 0 5704
C. edulis 1 2029 5 0 84 946 3069

Dry sand 0 9 1774 76 263 13 2138
Wet sand 83 10 13 2187 324 8 2627

Dry vegetation 41 79 295 8 3654 565 4645
Green vegetation 66 175 6 0 96 4069 4413

Total 10 cm GSD area (m2) 5798 2304 2095 2287 4509 5603 22,599

Table 8. Comparison of the cover class areas resulting from the 2.5 and 10 cm GSD classifications.

10 cm GSD

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation

Total 2.5 cm
GSD Area (m2)

2.
5

cm
G

SD

Water 5564 0 5 30 367 11 5979
C. edulis 10 2075 14 0 143 1194 3438

Dry sand 80 15 1772 32 414 12 2327
Wet sand 53 8 36 2172 256 6 2532

Dry vegetation 33 87 252 48 3204 468 4093
Green vegetation 52 118 14 3 122 3909 4219

Total 10 cm GSD area (m2) 5794 2304 2094 2287 4508 5602 22,592

A further and deeper investigation may allow for the identification of the most signifi-
cant factors influencing cover discrepancies between resolutions in larger areas. An analysis
of the classification confidence map for these areas may provide some helpful information.

5.2. Biomass Estimation

For the quantification of vegetation through regression models, the RDVI, ENDVI,
and GCI exhibited the best performance for the 2.5, 5, and 10 cm GSD, respectively. Several
previous investigations have achieved promising outcomes when employing the NDVI
to assess various measurable attributes of vegetation [42–46], consolidating the NDVI’s
status as the predominant index in vegetation research [47]. However, within the context
of this study, the NDVI occupied a relatively low position as the eighth, seventh, and
fifth most effective model for DW prediction for the 2.5, 5, and 10 cm GSD, respectively
(Appendix A—Table A4). This corroborates prior research indicating that various vegeta-
tion indices (VIs) may exhibit stronger correlations with vegetation AGB and quantitative
attributes, compared to the conventional NDVI [45]. Consequently, the development of
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a specific methodology for evaluating the predictive accuracy of diverse VIs in relation
to vegetation attributes still requires investigation. To do so, it is crucial to consider a
wide spectrum of variables, including species diversity and topographical features, as well
as weather and lighting conditions [45]. Additionally, opposed to commercial crops, the
inherent morphological variability among natural vegetation species poses an additional
challenge when seeking a universal relationship between image-derived data and quantifi-
able vegetation attributes. Consequently, a possible relationship between plant AGB and
the VI must be investigated and modelled case by case [45].

Even though there is a significant difference in the C. edulis classified area between
resolutions, the total AGB estimated presented similar values for the 2.5 and 5 cm GSD, yet
a considerably different value for the 10 cm GSD images. For the above-mentioned reasons,
the AGB estimates for the 2.5 cm resolution images were considered the most accurate.
In comparison, the 5 cm GSD C. edulis area was 25% smaller but the AGB 3% larger, and
the 10 cm GSD area was 33% smaller, with a 22% smaller AGB. These values show that
the discrepancy in the results of the classified areas is somewhat compensated for by the
estimated vegetation densities, obtained from the empirical model, as the AGB per square
meter was higher for the aeroplane images than for the UAV images (Table 5).

To investigate alternative calculations for the AGB estimation, a comparison was
undertaken between the already-presented total AGB obtained using the VI of individual
classified C. edulis pixels and the total AGB derived using the mean VI in conjunction with
the reference raster-estimated C. edulis area. The results (Table 5) suggest that the mean VI
and the reference raster-estimated area of C. edulis can reasonably estimate the total AGB in
the study area. Even though the errors were higher, since the 95% CI area was used, relative
errors of up to 0.17 show that this method might still provide relevant insights. The final
result can be compared with the result using the classified area, with both sharing a relevant
overlap considering the errors. However, there is a fundamental difference between these
estimations; while the total AGB based on the classified area has a geospatial distribution,
meaning that it is possible to locate the C. edulis AGB inside the study area, the total AGB
based on the estimated area has no spatiality, it only provides an overall estimate for the
total AGB inside the study area.

5.3. Estimation Uncertainties

While this investigation has achieved favourable outcomes in forecasting DWgreen
through VIs, uncertainties in the computation of the total aboveground biomass (AGB) have
to be recognised. There are the widely acknowledged uncertainties inherent to classification
and regression models. The orthorectification may have uncertainties, although, as the
visual alignment with the sample areas (squares) displayed in the images suggested,
the orthorectification did not have significant errors. And some uncertainties remain
unquantifiable. For instance, the WW–DW ratio demonstrates a linear correlation, and
employing a mean ratio can be a reasonable approximation. Nevertheless, this approach
involves many variables that exhibit spatial and temporal variations. For instance, certain
plants may thrive in more humid microenvironments compared to others, and their life
stages may also differ, potentially affecting the ratio.

An even higher uncertainty is associated with the morphology of C. edulis, charac-
terised by the presence of two distinct layers: an upper succulent green layer and a drier
brown layer. This peculiarity poses a considerable challenge when estimating the AGB
for a generic location using a model-based approach. Notably, no identifiable correlation
was noticed between DWgreen and DWbrown, and all the regression models presented
p-values greater than 0.05. Consequently, the most viable approach used a mean ratio as the
best estimate. This ratio could be influenced by many factors, including plant age, growth
rate, decay velocity, seasonality, and availability of water and light.

The ability to distinguish between various vegetation covers may be more or less
successful, depending upon the season and the plants’ state, with spectral signatures likely
varying between seasons and across regions. In the current investigation, data collection
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occurred during the spring season, specifically prior to flowering. This choice was made
based on the belief that flowers could potentially influence the classification outcomes and
biomass estimation via vegetation indices. However, a recent study [48], which involved
the classification of C. edulis during the flowering season, revealed that flowers do not pose
a significant impact on image classification results.

The estimation of C. edulis’ AGB plays an important role in the management of invasive
species, where the biomass estimates offer critical insights for planning and executing
removal campaigns. Nonetheless, the approach adopted in this study holds the potential
for broader applications, extending beyond C. edulis and can be reproduced with various
low-stratum plant species. Furthermore, it can be leveraged for estimating the total carbon
content in ecosystems, employing established biomass–carbon correlations.

Moreover, the exploration of the feasibility of constructing a general model for pre-
dicting C. edulis DW-VI relationships could be an interesting future investigation. This
endeavour requires conducting an array of new tests, mirroring the methodology employed
in the current investigation, to recognise potential patterns associating the VIs with the
AGB. These future investigations can also search into the utility of VIs for refining land
cover classifications, thus assessing their viability in enhancing the identification of C. edulis.
Relevant future research may also include an evaluation of the applicability and precision
of this methodology using imagery characterised by even lower resolutions, including
satellite-based images. Such assessments can serve to monitor the distribution and biomass
of C. edulis on a regional scale.

6. Conclusions

In conclusion, the results obtained in this study suggest that multispectral images
have a relevant potential for monitoring the invasive species C. edulis. Even though
some differences were detected, all three spatial resolutions presented relevant results for
monitoring, with the 2.5 and 5 cm GSD resolution being the most accurate ones. Still,
the 10 cm GSD resolution can provide valuable insight on the area and AGB of C. edulis,
especially when considering the multipurpose samples campaign, which might have
larger pixels for monitoring more extensive areas. Regarding the spectral resolution, no
significant difference was attributed to the RedEdge band on the 2.5 GSD imagery, with the
four-band imagery presenting a satisfactory result. Finally, it is interesting to address that
the applied methodology has the potential to be applied to a wide variety of coastal (and
other) environment monitoring.
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Appendix A

The classification accuracy results for each resolution are detailed from Tables A1–A3.

Table A1. Area-based classification error matrix for the 2.5 cm GSD classification.

2.5 cm GSD Reference

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation % of Area Area

C
la

ss
ifi

ed

Water 0.262 0.000 0.000 0.002 0.000 0.000 26.5% 5980
C. edulis 0.000 0.120 0.000 0.000 0.002 0.030 15.2% 3441

Dry sand 0.000 0.000 0.091 0.000 0.010 0.002 10.3% 2329
Wet sand 0.002 0.000 0.002 0.108 0.000 0.000 11.2% 2533

Dry vegetation 0.001 0.005 0.016 0.005 0.134 0.019 18.1% 4100
Green vegetation 0.000 0.006 0.000 0.000 0.002 0.179 18.7% 4223

% of Area 26.6% 13.2% 11.0% 11.5% 14.7% 23.0% 100.000
Area (m2) 6011 2982 2478 2606 3331 5198 22,605

SE area 66 176 128 90 177 201
95% CI area 129 345 252 177 347 393

PA 98.7% 91.0% 83.3% 93.5% 91.2% 77.7%
UA 99.2% 78.9% 88.7% 96.2% 74.1% 95.7%

Overall accuracy 89.5%
Kappa hat 0.871

Table A2. Area-based classification error matrix for the 5 cm GSD classification.

5 cm GSD Reference

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation % of Area Area

(m2)

C
la

ss
ifi

ed

Water 0.247 0.000 0.000 0.006 0.000 0.000 25.2% 5705
C. edulis 0.000 0.101 0.002 0.000 0.002 0.030 13.6% 3070

Dry sand 0.000 0.000 0.083 0.001 0.010 0.001 9.5% 2140
Wet sand 0.001 0.000 0.005 0.107 0.003 0.001 11.6% 2628

Dry vegetation 0.007 0.004 0.030 0.012 0.139 0.014 20.6% 4651
Green vegetation 0.000 0.011 0.002 0.000 0.006 0.177 19.5% 4416

% of Area 25.5% 11.6% 12.1% 12.6% 16.1% 22.2% 100.0%
Area (m2) 5761 2616 2727 2845 3638 5023 22,610

SE area 104 160 160 133 200 190
95% CI area 203 314 313 261 392 372

PA 96.7% 87.5% 68.4% 84.9% 86.5% 79.6%
UA 97.7% 74.6% 87.2% 91.9% 67.7% 90.6%

Overall accuracy 85.3%
Kappa hat 0.820

Table A3. Area-based classification error matrix for the 10 cm GSD classification.

10 cm GSD Reference

Water C. edulis Dry Sand Wet Sand Dry
Vegetation

Green
Vegetation % of Area Area

C
la

ss
ifi

ed

Water 0.247 0.004 0.000 0.000 0.000 0.006 25.7% 5804
C. edulis 0.000 0.085 0.000 0.000 0.003 0.014 10.2% 2305

Dry sand 0.000 0.000 0.090 0.000 0.003 0.000 9.3% 2098
Wet sand 0.000 0.000 0.003 0.099 0.000 0.000 10.1% 2289

Dry vegetation 0.000 0.006 0.023 0.028 0.136 0.006 20.0% 4511
Green vegetation 0.000 0.013 0.000 0.000 0.005 0.230 24.8% 5604

% of Area 24.7% 10.8% 11.5% 12.7% 14.8% 25.6% 100.0%
Area 5578 2431 2603 2865 3339 5795 22,610

SE area 100 160 123 127 186 176
95% CI area 196 313 241 248 364 345

PA 100.0% 79.0% 77.8% 77.9% 92.3% 89.8%
UA 96.1% 83.3% 96.5% 97.6% 68.3% 92.8%

Overall accuracy 88.6%
Kappa hat 0.859

The regression models relating C. edulis DW to the best-performing VI for each GSD
resolution, and their respective residuals plotted are shown in Figures A1–A3.
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Table A4. Vegetation indices empirical regression results, ordered by R2. Best-performing indices for
each GSD resolution are marked in green.

Resolution
Rank GSD Vegetation

Index
Model

Equation R² p-Value RMSE NRMSE Coef. a Coef. b

1 2.5 cm RDVI y = abx 0.868 <0.0001 227.178 0.094 151.945 81.109
2 2.5 cm DVI y = abx 0.846 <0.0001 234.418 0.096 204.547 380.533
3 2.5 cm GDVI y = axb 0.841 <0.0001 234.851 0.097 15,205.471 1.984
4 2.5 cm RVI y = axb 0.828 <0.0001 271.856 0.112 264.764 −0.733
5 2.5 cm GCI y = axb 0.808 <0.0001 292.922 0.121 355.145 0.613
6 2.5 cm ENDVI y = abx 0.807 <0.0001 306.380 0.126 530.993 5.144
7 2.5 cm GNDVI y = abx 0.795 <0.0001 301.812 0.124 31.944 5.201
8 2.5 cm NDVI y = abx 0.793 <0.0001 316.796 0.130 130.453 19.155
1 5 cm ENDVI y = abx 0.767 <0.0001 300.675 0.124 2596.483 13.48
9 2.5 cm PRI y = abx 0.766 <0.0001 334.371 0.138 199.192 111.099
2 5 cm GCI y = abx 0.763 <0.0001 286.278 0.118 439.55 2.762
3 5 cm RVI y = axb 0.757 <0.0001 305.370 0.126 357.892 −1.826
4 5 cm GNDVI y = abx 0.755 <0.0001 312.075 0.128 128.654 326.561
5 5 cm NDVI y = abx 0.753 <0.0001 311.993 0.128 341.068 53.151
6 5 cm GDVI y = abx 0.752 <0.0001 299.784 0.123 118.118 174.225
7 5 cm RDVI y = abx 0.750 <0.0001 310.310 0.128 327.38 41.328
8 5 cm DVI y = abx 0.740 <0.0001 314.435 0.129 316.124 31.858
1 10 cm GCI y = abx 0.644 <0.0001 364.552 0.150 506.436 3.068
2 10 cm DVI y = abx 0.641 <0.0001 363.282 0.150 420.967 33.223
3 10 cm RDVI y = abx 0.639 <0.0001 369.599 0.152 429.327 38.289
4 10 cm RVI y = axb 0.637 <0.0001 375.040 0.154 448.837 −1.787
5 10 cm ENDVI y = abx 0.634 <0.0001 374.650 0.154 3111.199 11.267
6 10 cm NDVI y = abx 0.634 <0.0001 378.191 0.156 439.312 43.577
7 10 cm GDVI y = abx 0.630 <0.0001 358.406 0.148 213.865 123.69
8 10 cm GNDVI y = abx 0.620 <0.0001 383.228 0.158 223.962 155.699
9 5 cm PRI y = abx 0.601 <0.0001 411.631 0.169 257.451 6,134,559.7
9 10 cm PRI y = abx 0.449 0.0001 457.038 0.188 381.25 4,745,123,015.5
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