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Abstract: Mobile LiDAR technology is a powerful tool that accurately captures spatial information
about typical static objects in road scenes. However, the precise extraction and classification of these
objects pose persistent technical challenges. In this paper, we employ a deep learning approach to
tackle the point cloud classification problem. Despite the popularity of the PointNet++ network
for direct point cloud processing, it encounters issues related to insufficient feature learning and
low accuracy. To address these limitations, we introduce a novel layer-wise optimization network,
LO-Net. Initially, LO-Net utilizes the set abstraction module from PointNet++ to extract initial local
features. It further enhances these features through the edge convolution capabilities of GraphConv
and optimizes them using the “Unite_module” for semantic enhancement. Finally, it employs a point
cloud spatial pyramid joint pooling module, developed by the authors, for the multiscale pooling
of final low-level local features. Combining three layers of local features, LO-Net sends them to the
fully connected layer for accurate point cloud classification. Considering real-world scenarios, road
scene data often consist of incomplete point cloud data due to factors such as occlusion. In contrast,
models in public datasets are typically more complete but may not accurately reflect real-world
conditions. To bridge this gap, we transformed road point cloud data collected by mobile LiDAR
into a dataset suitable for network training. This dataset encompasses nine common road scene
features; hence, we named it the Road9 dataset and conducted classification research based on
this dataset. The experimental analysis demonstrates that the proposed algorithm model yielded
favorable results on the public datasets ModelNet40, ModelNet10, and the Sydney Urban Objects
Dataset, achieving accuracies of 91.2%, 94.2%, and 79.5%, respectively. On the custom road scene
dataset, Road9, the algorithm model proposed in this paper demonstrated outstanding classification
performance, achieving a classification accuracy of 98.5%.

Keywords: PointNet++; graph convolution; upsampling; space pyramid pool; mobile LiDAR; point
cloud classification

1. Introduction

Streetlights, roadside trees, traffic poles, and other static road elements are funda-
mental objects for storage and management in the construction of smart cities. Traditional
methods of obtaining spatial information on road scenes through manual measurement
are inefficient. Currently, with the advantage of capturing detailed 3D point clouds to
describe the surrounding environment, the application of mobile LiDAR systems (MLS) in
road scene construction is becoming increasingly widespread. Mobile LiDAR systems can
rapidly obtain three-dimensional spatial information for static objects in road scenes. They
play a crucial role in the spatial analysis of typical features in road scenes, such as traffic
sign occlusion [1], the optimization of monitoring areas [2], and streetlight illumination
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analysis [3], greatly promoting the future development of smart transportation [4] and
digital twin [5] construction. The precise classification of static objects in road scenes from
vehicle-mounted laser scanning point clouds is the focus of this study.

Currently, deep learning has become a popular research direction in the field of ob-
ject detection. Initially applied to 2D image data and natural language processing, deep
learning gained prominence when the AlexNet model, proposed by Alex et al. [6], reduced
the error rate from 25% to 15% in the ImageNet image recognition competition, leading
to the popularity of convolutional neural networks. Following this, many researchers
extended the use of deep learning to 2D object detection and image segmentation. Repre-
sentative networks include YOLO, proposed by Joseph et al. [7], and U-Net, proposed by
Olaf et al. [8], both showing significant improvements in classification accuracy and effi-
ciency. Thanks to the rapid development of deep learning in the 2D domain, the application
of deep learning to 3D point cloud classification has gradually gained popularity. Due to
the irregular, unordered, and uneven characteristics of point cloud data, extensive research
has been conducted in the field of deep learning for point cloud classification. In recent
years, methods of directly processing point clouds have become a research hotspot. The
PointNet network proposed by Qi et al. [9] was the first to segment point clouds using
raw points but only considered global features. Subsequently, the same team proposed the
PointNet++ network [10], which addressed this issue by using hierarchical neural networks.
Building upon these two networks, Cheng et al. [11] introduced a novel cascaded non-local
module consisting of neighborhood-level, super point-level, and global-level non-local
blocks. These blocks collaborate to aggregate local features and enhance the semantic
segmentation performance of point clouds. Lu et al. [12] proposed using different aggre-
gation methods for data of the same category and different categories. They introduced a
customized module called category-guided aggregation, achieving significant success in
point cloud processing.

Due to limitations imposed by the data collection method of mobile radar systems
and factors such as occlusion, the point cloud data collected by mobile radar systems are
often incomplete, leading to the potential loss of terrain information during the extraction
process. Therefore, models for classifying point clouds in road scenes should possess
better global feature learning capabilities and robustness. Although the aforementioned
methods have achieved good results, most of them have been tested on datasets with
complete models publicly available. The accuracy of these methods may be affected
when classifying partially occluded point cloud data. Specifically, the popular PointNet++
network employs a hierarchical point set feature learning structure to extract local features,
focusing solely on semantic information between points and ignoring basic relationships
between layers. Additionally, its feature pooling and integration lack multi-scale features
and feature diversity. As a result, it has limitations in learning global features, impacting
overall feature learning for the model. Subsequently, many models have been proposed to
improve upon this. Lin et al. [13] introduced LGENet, which combines 2D and 3D point
convolutions to extract features and learn local features for point cloud segmentation. It
ultimately uses a global encoder to leverage contextual information, moderately improving
the model’s ability to learn global features. Nie et al. [14] proposed a pyramid architecture
that allows information to flow more freely and systematically. While these measures have
improved the accuracy of the networks, they overlook the connection between local and
global features. They also fail to integrate features at different scales and stages of the
network, and the single scale can have an impact on the network’s performance.

To address the aforementioned issues, this paper primarily made improvements in
two aspects: firstly, enhancing inter-layer relationships and effectively integrating features
between high and low layers. Secondly, adopting a joint pooling method in conjunction
with a multi-scale approach to extract features. Additionally, there is a scarcity of publicly
available datasets for road scenes on the internet, and synthetic point cloud datasets cannot
accurately reflect the features of road scenes. To address this, the paper introduces its own
road scene dataset, utilized to validate the effectiveness and generalization capability of
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the model improvements. The main contributions of this paper can be summarized in
two aspects:

1. This paper proposes a high-accuracy classification network (LO-Net) for static object
point cloud classification in road scenes. The network is mainly composed of three
modules: the GraphConv module, the joint module, and the joint point cloud spa-
tial pyramid pooling (J-PSPP) module. The first two modules achieve local feature
aggregation and feature learning across multiple layers. Inspired by the spatial pyra-
mid concept in 2D images, the third module introduces the point cloud joint spatial
pyramid pooling. It enhances the model’s robustness and improves its classification
performance by processing features through multi-scale joint pooling.

2. The paper introduces the Road9 road scene dataset based on the Mobile LiDAR system.
Unlike public datasets, Road9 contains a certain level of noise compared to synthetic
complete datasets, and its point cloud model is more realistic. Additionally, various
experiments have been conducted to demonstrate the effectiveness, robustness, and
generalization capability of the model.

The remaining sections of this paper are organized as follows. Section 2 provides
an overview of the related work in this field. Section 3 presents a detailed explanation
of the model’s workflow and the underlying algorithmic principles. Section 4 describes
the dataset and provides a comprehensive analysis of the experiments conducted. In
Section 5, the experimental results are discussed. Finally, Section 6 provides a summary
and conclusion of this paper.

2. Related Work

In this section, the latest methods for point cloud classification based on deep learning
are reviewed. Currently, deep learning-based point cloud classification methods can
be categorized into four types based on their network structures: multi-view methods,
voxelization-based methods, graph convolution-based methods, and point-based methods.

2.1. Methods Based on Multiple Views

The point cloud classification algorithm based on multiple views benefits from the ma-
turity of two-dimensional image classification techniques. Such algorithms simulate human
observation of objects from different perspectives by obtaining a series of projected images
containing side information from different directions around the three-dimensional point
cloud model. Subsequently, two-dimensional image processing techniques are applied
to classify these projected images containing point cloud information. Finally, the labels
obtained from the segmentation in the two-dimensional views are back-projected onto the
three-dimensional point cloud, achieving semantic classification of the point cloud. Classic
models such as the Multi-View Convolutional Neural Network (MVCNN) proposed by
Su et al. [15] in 2015 generate different 2D views around the point cloud from various
“virtual camera” positions. These 2D images are then processed using 2D CNN, and a
view-pooling layer is used to fuse features from multiple perspectives to obtain a three-
dimensional shape feature representation for classification. Building upon the MVCNN,
Feng et al. [16] proposed the GVCNN algorithm, which introduces a global–local view
attention mechanism. This mechanism allows the model to focus on more critical global
and local information, enhancing the handling of global structure and local details in three-
dimensional shapes and improving sensitivity to key features. Different from the approach
of projecting from multiple views to obtain two-dimensional projections, Shi et al. [17] first
project the three-dimensional shape onto the outer surface of a corresponding cylinder.
They then unfold the lateral surface of the cylinder to obtain a single two-dimensional
panoramic view. To eliminate the impact of projection rotation, the authors propose a row-
wise max pooling layer (RWMP) to obtain rotation-invariant feature representations of the
panoramic view. However, this method requires specifying the principal axis for cylindrical
projection and is sensitive to the poses of non-normalized objects. For better rotational
invariance, Sfikas et al. [18] use the SYMPAN algorithm, which has reflective symmetry, to
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normalize the pose of three-dimensional models. The models are then projected in both
spatial and directional domains, achieving improved performance in three-dimensional
object recognition. In summary, these algorithms [19] are relatively efficient. However, due
to the involvement of 3D to 2D transformations, the geometric information of point clouds
inevitably experiences some loss. Additionally, constrained by the viewpoint, capturing
comprehensive features poses challenges, making these algorithms sensitive to occlusion and
less suitable for the classification needs of large-scale and complex environmental objects.

2.2. Methods Based on Voxelization

Inspired by convolutional neural networks, algorithms in this category convert point
clouds into a spatially uniform voxel grid. Subsequently, they use three-dimensional convo-
lutional neural networks (3DCNN) and similar feature-learning techniques to accomplish
classification tasks. Within this category, VoxNet, proposed by Maturana et al. [20], has been
a prominent approach capable of directly processing three-dimensional data. However,
it is sensitive to the input dimensions. Many researchers have subsequently improved
traditional dense voxel methods. For example, Wu et al. [21] proposed the 3D ShapeNets
network based on VoxNet, employing a hierarchical structure for multi-level convolu-
tion and pooling on three-dimensional data. This gradually extracts higher-level features,
enhancing the network’s global feature learning capability. The VoxResNet network in-
troduced by Hao et al. [22] incorporates residual connections to aid the network in better
learning deep features. Traditional voxel methods face significant limitations in terms of
computer memory when dealing with large amounts of point cloud data. Subsequent re-
search has focused on addressing time and computational cost constraints. Riegler et al. [23]
proposed an octree point cloud data structure, where areas with higher point density have
finer divisions in the octree representation. This reduces computational costs, improving
the network’s adaptability to large-scale three-dimensional data. In addition to improving
voxel structures, some studies [24,25] aim to reduce the computational requirements for
dense volumetric data after voxelization using sparse convolutions, thereby enhancing
computational efficiency. Existing voxelization-based methods effectively address the
challenges posed by the unordered and non-structural nature of point clouds. However,
determining voxel size poses a significant challenge. Traditional dense voxel represen-
tations may quickly exceed computer memory limits, while sparse voxels may result in
the loss of valuable information. These factors present challenges to the development of
voxel-based methods.

2.3. Methods Based on Graph Convolution

This method combines convolution operations with a graph structure representa-
tion, enabling convolutional neural networks to operate on graph structures, captur-
ing dependencies for a more comprehensive understanding of underlying relationships.
Kipf et al. [26] proposed Graph Convolutional Networks (GCNs) for feature extraction
from graph nodes. With the development of graph convolution, some researchers have
applied it to point cloud segmentation tasks. Te et al. [27] introduced the Relation Graph
Convolutional Network (RGCNN) for point cloud segmentation, treating point cloud fea-
tures as graph signals and processing graph-structured data using the point cloud feature
matrix and adjacency matrix as inputs. Since earlier algorithms only considered discrete
point clouds, neglecting the topological relationships between point clouds, Wang et al. [28]
proposed the Dynamic Convolutional Network. This method enhances model performance
and robustness through edge convolution networks and dynamically updating the graph
structure. Zhang et al. [29] removed the transformation network from the DGCNN to
reduce model complexity and proposed a Linked Dynamic Graph for direct segmentation
and computation on point clouds. Additionally, many researchers have conducted research
in this direction [30–33]. These algorithms effectively capture the geometric structure of
point clouds. However, when facing sparse graphs, the relationships between the model
and nodes are susceptible to influences, leading to overfitting. Additionally, these methods
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primarily focus on nodes in local regions, and improving the learning and understanding
of global structures poses a significant challenge.

2.4. Methods Based on Point

Due to spatial information loss in multi-view methods, high computational hardware
requirements in voxel-based methods, and difficulties in global feature learning in graph
convolution-based methods, point cloud processing methods directly take point clouds
as input. They utilize point cloud networks to extract features, preserving the geometric
information of input data without demanding high hardware requirements. The pioneering
methods in this category are PointNet and PointNet++, proposed by the Qi team. PointNet
uses farthest point sampling and constructs a spherical search region to obtain pairs of points
in subregions, achieving local feature extraction. However, there is still significant room
for improvement in terms of local information and pooling methods. Cortinhal et al. [34]
introduced a new module that adds a residual dilated convolution module to the front
end of the encoder. This method effectively integrates receptive fields of multiple scales to
capture more comprehensive features. Some studies [35–37] have also made improvements
to it. Recently, attention mechanisms have been widely adopted in deep learning tasks.
The fundamental idea is to make neural networks ignore irrelevant information and focus
on fine-grained and key features of point clouds, thereby improving the segmentation
accuracy and efficiency of the model. Xue et al. [38] proposed the S3Net network, which
is based on the Transformer encoder-decoder structure. It uses a sparse residual tower
to handle detailed information and extract global features for point cloud segmentation.
However, attention mechanisms are susceptible to noise, and improving the robustness of
attention mechanisms is one of the challenges in future research.

3. Methodology

To improve the precision of deep learning in the classification of typical features, this
paper introduces the LO-Net network. The network is initially based on a set abstraction
(SA) module of PointNet++, which sequentially performs sampling, grouping, and feature
extraction to obtain local features of the point cloud. In the network design of this paper,
the local features obtained at this stage are considered as the initial features. Since graph
convolution can construct local neighborhood graphs within the point set and perform
convolution operations on the edges between points to obtain local geometric features,
graph convolution is employed for deep information mining and generates intermediate-
level features. Subsequently, an upsampling-optimized Unite_module is designed to fuse
semantic information with the obtained three layers of local features, enhancing the feature
learning capabilities of each layer. Considering that PointNet++ employs single-window
feature aggregation through max pooling after feature extraction, with a singular pooling
approach, this paper’s LO-Net network constructs a point cloud spatial pyramid joint
pooling structure with multiple windows and specific strides. This structure delivers the
optimized low-level features to both point cloud spatial pyramid maximum pooling (M-
PSPP) and point cloud spatial pyramid average pooling (A-PSPP), combining the features
to provide diverse information with both global and local characteristics. Finally, the
optimized local features from the three layers are concatenated together to achieve precise
point cloud classification.

3.1. Set Abstraction Module

The PointNet++ deep learning network model is developed based on the PointNet net-
work. PointNet utilizes a multi-layer perceptron to extract feature information from point
clouds and uses a max pooling layer to extract global features for classification. Although
the PointNet network pioneered point cloud processing, it cannot capture the local features
of points, and it lacks the ability to analyze point clouds at a finer granularity and generalize
well with complex sample data. To address these limitations, the Qi team introduced a hier-
archical point set feature learning structure, employing farthest point sampling (FPS) [39]
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for sampling and designing two “adaptive” solutions for dense and sparse point clouds.
This ensures that the sampled points cover the entire sampling space, resolving the issue of
uneven point cloud density and achieving end-to-end automated point cloud classification.
The structure of the PointNet++ classification network is illustrated in Figure 1.
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The PointNet++ classification network processes input point cloud data through two
SA (set abstraction) modules sequentially and then aggregates features using PointNet,
finally calculating the classification scores using fully connected layers. The SA module
is the core of the PointNet++ classification network, consisting of three parts: sampling,
grouping, and feature extraction. First, it utilizes FPS to downsample the initial point
count N to N1. Then, for each sampled point, it clusters the nearest k points within a
specified radius using Ball Query, aggregating the input N × D matrix into an N1× k× D
matrix. Finally, it employs PointNet for feature aggregation pooling within the sampling
region, resulting in N1× D1 local features (where D and D1 represent different feature
dimensions). The result of the first SA module is input to the next SA module, repeating
this process. While the number of central points decreases, the receptive field increases and
it captures more feature information, thus obtaining local features of the points.

3.2. GraphConv Module

After processing through two layers of SA modules, the sub-high-level features of
the point cloud are obtained. The sub-high-level features contain fewer points, but they
possess richer semantic information. In contrast, the low-level features in the input layer
contain more points that are closer to the original point cloud, but they have relatively less
semantic information. To enable the model to capture both global semantic information
and retain local detailed information, it is necessary to fuse high- and low-level features.
The fusion process enhances the model’s understanding of objects and scenes. This paper
proposes a layered processing approach, leveraging the GraphConv module to obtain
enhanced intermediate-level features. This facilitates the subsequent Unite_module module
to effectively combine low, intermediate, and high-level features. The basic procedure is
as follows: Before the original data enter the first SA module, they undergo GraphConv
processing to obtain N × 128 low-level features. Similarly, the output of the first SA is
processed through GraphConv to obtain N1× 256 mid-level features, and the output of the
second SA is processed through GraphConv to obtain N2× 512 high-level features. In the
subsequent steps, this paper sequentially combines the high-level, mid-level, and low-level
features using the Unite_module module to enrich the semantic information.

The GraphConv module aggregates its features through graph convolution, com-
bining the feature vectors of each node and its neighboring nodes in a nonlinear way.
This non-linear combination enhances the comprehensive local neighborhood information,
strengthening the feature-capturing capabilities. The specific approach involves construct-
ing a directed graph G = (V, E) using the K-nearest neighbors (KNN) [40] algorithm, where
V represents vertices, V = {1, . . . , N}, N is the number of point clouds, and E represents
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edges formed by KNN. Taking k = 5 as an example, Figure 2 illustrates the feature extraction
process of graph convolution. For a selected node xi, the KNN algorithm selects the five
nearest neighboring points {xij1, xij2, xij3, xij4, xij5}. The distances between node xi and its
neighboring points form the edges of the graph, represented by the yellow directional lines
in Figure 2, and eij represents the edge features between node Xi and its neighboring points.
Its feature aggregation can be formally represented as Equations (1) and (2).

eij = hθ

(
xj − xi

)
(1)

FXi = ∑
j:(i,j)∈1,...,k

eij (2)

RD × RD = RD′ (3)

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 25 
 

 

to effectively combine low, intermediate, and high-level features. The basic procedure is 
as follows: Before the original data enter the first SA module, they undergo GraphConv 
processing to obtain 𝑁 ൈ 128 low-level features. Similarly, the output of the first SA is 
processed through GraphConv to obtain 𝑁1 ൈ 256 mid-level features, and the output of 
the second SA is processed through GraphConv to obtain 𝑁2 ൈ 512 high-level features. 
In the subsequent steps, this paper sequentially combines the high-level, mid-level, and 
low-level features using the Unite_module module to enrich the semantic information. 

The GraphConv module aggregates its features through graph convolution, combin-
ing the feature vectors of each node and its neighboring nodes in a nonlinear way. This 
non-linear combination enhances the comprehensive local neighborhood information, 
strengthening the feature-capturing capabilities. The specific approach involves con-
structing a directed graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ  using the K-nearest neighbors (KNN) [40] algo-
rithm, where 𝑉 represents vertices, 𝑉 ൌ ሼ1, … , 𝑁ሽ, 𝑁 is the number of point clouds, and 
E represents edges formed by KNN. Taking k=5 as an example, Figure 2 illustrates the 
feature extraction process of graph convolution. For a selected node 𝑥, the KNN algo-
rithm selects the five nearest neighboring points {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ}. The distances 
between node 𝑥 and its neighboring points form the edges of the graph, represented by 
the yellow directional lines in Figure 2, and 𝑒 represents the edge features between node 𝑋  and its neighboring points. Its feature aggregation can be formally represented as 
Equations (1) and (2). 

 
Figure 2. Diagram of GraphConv feature extraction when k is set to 5, the white circles represent 
neighboring points. 

𝑒 ൌ ℎఏ൫𝑥 െ 𝑥൯ (1) 

𝐹 ൌ  e :ሺ,ሻ∈ଵ,…,  (2) 

𝑅 ൈ 𝑅 ൌ 𝑅ᇲ (3) 

Here, 𝑥 represents the adjacent point. 𝑥 represents the target point. ℎ denotes a 
collection of nonlinear functions parameterized by the learnable parameter set Θ . 𝐹 
represents the aggregated features of point 𝑥 . Equation (3) represents the process of 
changing feature space dimensions, where 𝑅 denotes the feature dimension of the orig-
inal input feature space. This can be achieved by fusing the original feature space to gen-
erate a new feature space dimension 𝑅ᇱ, achieving the goal of feature learning. 

3.3. Unite_Module 
The purpose of the Unite_module is to take the features from the upper layer, which 

contains fewer points but richer semantic information, and attach them to the features of 
the current layer through a feature upsampling process. This enriches the semantic infor-
mation of the current layer. The upsampling network architecture can be divided into four 
categories: pre-upsampling, post-upsampling, stepwise upsampling, and iterative up-
sampling. In this paper, the pre-upsampling method is employed, which can use 
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neighboring points.

Here, xj represents the adjacent point. xi represents the target point. hΘ denotes
a collection of nonlinear functions parameterized by the learnable parameter set Θ. FXi
represents the aggregated features of point xi. Equation (3) represents the process of
changing feature space dimensions, where RD denotes the feature dimension of the original
input feature space. This can be achieved by fusing the original feature space to generate a
new feature space dimension RD′, achieving the goal of feature learning.

3.3. Unite_Module

The purpose of the Unite_module is to take the features from the upper layer, which
contains fewer points but richer semantic information, and attach them to the features
of the current layer through a feature upsampling process. This enriches the semantic
information of the current layer. The upsampling network architecture can be divided into
four categories: pre-upsampling, post-upsampling, stepwise upsampling, and iterative
upsampling. In this paper, the pre-upsampling method is employed, which can use
interpolation of any size and scale factor compared to other methods, and its learning
difficulty is also lower. Figure 3 illustrates the structure of the Unite_module. From Figure 3,
it can be observed that the features from the upper layer first undergo an upsampling
transformation and are then concatenated with the features of the current layer. Finally, the
fused features pass through a multi-layer perceptron (MLP) to produce the output. The
new features have two paths: one directly enters the final step, and the other serves as the
input for the next Unite_module in the next layer.
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By using upsampling, the lower-level features are transferred to the upper layer, allow-
ing the lower-level features to receive richer semantic information through this combination
of high- and low-level features. In this module, the upsampling is achieved through a
reverse interpolation method. A Euclidean distance matrix and weighting coefficients are
computed based on the points between adjacent layers. For each point to be interpolated,
three of the nearest neighboring points are selected, and the weighted average of their
features is calculated as the feature of the interpolated point. These interpolated features
are stacked with the features from the previous layer using skip connections to perform
feature upsampling. The weighting coefficients are determined by taking the reciprocal of
the distances of each point and dividing it by the sum of the reciprocals of the distances
of the three nearest neighboring points. Through interpolation, the point count in the
lower-level features is restored to match the point count in the upper-level features. This
combines the features into fused features, and the mathematical formulas for the process of
inverse interpolation are shown in Equations (4) and (5).

f̂i =
∑M

j=1 ωj(pi) f j

∑M
j=1 ωj(pi)

(4)

ωj(pi) =

{
1

‖pi−pj‖2
, pj ∈ N(pi)

0, otherwise
(5)

In the equation, f̂i represents the feature interpolation of the point to be interpolated,
where pi is a known point, pj is an unknown point, and f j represents the feature value of
the known point. M represents the number of known points. ωj(pi) represents the weight
value, which is the reciprocal of the Euclidean distance between the unknown point and
the known point. N(pi) denotes the set of known point cloud regions.

3.4. J-PSPP Module

In deep learning networks, pooling functions are commonly used to process features,
resulting in features with dimensions of (1, D). For example, in the PointNet network,
after multiple layers of convolution operations, point cloud features are dimensionally
elevated to N × 1024. Following this, max pooling is employed to obtain global features of
size 1 × 1024, which are then replicated for N points. Finally, these features go through
fully connected layers to yield classification scores. However, max pooling utilizes a fixed
pooling window size N, and can only integrate global features, lacking detailed descriptions
of local point cloud features. Inspired by the spatial pyramid pooling (SPP) [41] used in
the pixel domain of 2D images, this paper introduces a point cloud spatial pyramid joint
pooling module (J-PSPP) to enhance the network. For the conventional point cloud spatial
pyramid pooling, a multi-window pyramid pooling approach can be adopted, allowing
the final features to include both global and fine-grained local information, as shown in
Formula (6).

G(x1, x2, . . . , xN) = mlp[c{g( f , s1), g( f , s2), . . . , g( f , sn)}]) (6)

In the equation, sn represents different pooling window sizes. f represents the feature
information learned by the network. g represents the pooling method employed by the
network. c represents the feature concatenation operation, which combines and integrates
the features obtained from different pooling windows.

As observed in Figure 4, cones of varying sizes and colors represent pyramid pooling
windows with sizes N/s1, N/s2, . . . , N/sn. The PSPP (point cloud spatial pyramid pooling)
structure enables the pooling and integration of features under multiple window sizes,
ultimately resulting in features of dimensions (s1 + s2 + . . . + sn)× D. PSPP achieves the
aggregation of local information with different characteristics by concatenating network
features obtained from various scale neighborhoods. Compared to conventional pooling



Remote Sens. 2024, 16, 663 9 of 24

operations, PSPP offers the advantage of being non-parametric, effectively enhancing the
network’s ability to learn point cloud features.
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This paper simultaneously applies PSPP to both max pooling and average pooling,
achieving the joint complementary utilization of the two pooling methods. This compen-
sates for the limitations of a single pooling method, resulting in the J-PSPP module. The
formal expressions of M-PSPP and A-PSPP are represented in Equations (7) and (8), where
gmax represents the max pooling operation, Gmax represents the features after M-PSPP
pooling, gavg represents the average pooling operation, and Gavg represents the features
after A-PSPP pooling.

Gmax = mlp[c{gmax( f , s1), gmax( f , s2), . . . , gmax( f , sn)}] (7)

Gavg = mlp
[
c
{

gavg( f , s1), gavg( f , s2), . . . , gavg( f , sn)
}]

(8)

Point cloud spatial pyramid joint pooling is represented as shown in Equation (9),
which represents the result of joint pooling. The J-PSPP module aggregates features of
point cloud data through different windows and pooling methods, ultimately obtaining
more fine-grained feature information.

GJ = Gmax ⊕ Gavg (9)

3.5. LO-Net Overall Network Architecture

The overall structure of the LO-Net classification network is illustrated in Figure 5.
In the figure, N represents the number of point clouds, and D is the feature dimension.
The raw point cloud data, N × 3, has two pathways as input to the network. The first
pathway is directly fed into the GraphConv module, which extracts N × 128 dimensional
feature information, representing the low-level features. Since the input data include all
the point clouds, they capture both global and local information. The blue dashed box
in the lower-left corner of Figure 5 depicts the GraphConv structure. It involves a KNN
graph, representing a k-nearest neighbor point search for all points in the set, constructing
the neighborhood region. Subsequently, edge information is extracted through MLP
(L1, L2, . . . , Ln) with shared weight attributes, where (L1, L2, . . . , Ln) represents the number
of neurons in each layer. Finally, the pooled operation aggregates the N × Ln dimensional
feature results. The second pathway of N× 3 data is sent to the SA (set abstraction) module
for local point feature extraction. The result of the first SA module is N1× 128 dimensional
information (N1 represents the downsampled point count, N1 < N). It then undergoes
GraphConv to extract local geometric information, resulting in N1× 256, representing the
mid-level features. The result of the second SA module undergoes GraphConv and yields
N2× 512 local features (N2 represents the point count after downsampling N1, N2 < N1),
representing the high-level features. The high-level features and mid-level features are
processed by the Unite_module to perform upsampling, obtaining N1× 256 mid-level
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features strengthened by semantic information. Similarly, the Unite_module processes the
low-level and mid-level features, acquiring enhanced N× 128 low-level features. Currently,
N × 128 is sent to M-PSPP and A-PSPP for multi-scale pooling, and their pooled results are
concatenated, yielding 1× 256 dimensional information that encompasses both multi-scale
local features and global features. Finally, this 1× 256 feature, the mid-level feature (1× 256)
after pooling, and the high-level feature (1× 256) after pooling are concatenated to obtain
1× 1024 information with the ability to harness multiple features. After processing through
the fully connected layer, the network produces classification results for S categories.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 25 
 

 

3.5. LO-Net Overall Network Architecture 
The overall structure of the LO-Net classification network is illustrated in Figure 5. 

In the figure, 𝑁 represents the number of point clouds, and 𝐷 is the feature dimension. 
The raw point cloud data, 𝑁 ൈ 3, has two pathways as input to the network. The first 
pathway is directly fed into the GraphConv module, which extracts 𝑁 ൈ  128  dimen-
sional feature information, representing the low-level features. Since the input data in-
clude all the point clouds, they capture both global and local information. The blue dashed 
box in the lower-left corner of Figure 5 depicts the GraphConv structure. It involves a 
KNN graph, representing a k-nearest neighbor point search for all points in the set, con-
structing the neighborhood region. Subsequently, edge information is extracted through 
MLP (𝐿ଵ, 𝐿ଶ, … , 𝐿) with shared weight attributes, where (𝐿ଵ, 𝐿ଶ, … , 𝐿) represents the num-
ber of neurons in each layer. Finally, the pooled operation aggregates the 𝑁 ൈ 𝐿𝑛 dimen-
sional feature results. The second pathway of 𝑁 ൈ 3 data is sent to the SA (set abstraction) 
module for local point feature extraction. The result of the first SA module is 𝑁1 ൈ 128 
dimensional information (N1 represents the downsampled point count, 𝑁1＜ 𝑁). It then 
undergoes GraphConv to extract local geometric information, resulting in 𝑁1 ൈ 256, rep-
resenting the mid-level features. The result of the second SA module undergoes Graph-
Conv and yields 𝑁2 ൈ 512 local features (𝑁2 represents the point count after downsam-
pling 𝑁1, 𝑁2＜𝑁1), representing the high-level features. The high-level features and mid-
level features are processed by the Unite_module to perform upsampling, obtaining 𝑁1 ൈ 256  mid-level features strengthened by semantic information. Similarly, the 
Unite_module processes the low-level and mid-level features, acquiring enhanced 𝑁 ൈ 128 low-level features. Currently, 𝑁 ൈ 128 is sent to M-PSPP and A-PSPP for multi-
scale pooling, and their pooled results are concatenated, yielding 1 ൈ 256 dimensional in-
formation that encompasses both multi-scale local features and global features. Finally, 
this 1 ൈ 256 feature, the mid-level feature (1 ൈ 256) after pooling, and the high-level fea-
ture (1 ൈ 256 ) after pooling are concatenated to obtain 1 ൈ 1024  information with the 
ability to harness multiple features. After processing through the fully connected layer, 
the network produces classification results for 𝑆 categories. 

 
Figure 5. LO-Net classification network (key modules are shown in different colors except for the 
lower left corner). 

4. Experiment 
4.1. Preparation for Experiment 

The experimental hardware environment consists of an Intel Core i7-9700F processor, 
an RTX 2060 graphics card with 6 GB of RAM, and 16 GB of system memory (RAM). The 

Figure 5. LO-Net classification network (key modules are shown in different colors except for the
lower left corner).

4. Experiment
4.1. Preparation for Experiment

The experimental hardware environment consists of an Intel Core i7-9700F processor,
an RTX 2060 graphics card with 6 GB of RAM, and 16 GB of system memory (RAM). The
software environment includes Ubuntu 16.04 (64-bit), Windows 10 (64-bit), CUDA 10.1,
cuDNN 7.5, TensorFlow 1.13, and Python 3.7.

4.2. Network Parameter Settings

Based on the experimental environment in this paper, the network configuration is
set according to the parameters provided by the PointNet++ network. In this paper, the
improved network employs the ReLU activation function; the loss function is chosen to
be cross-entropy; the optimization algorithm is the Adam optimizer with the number
of optimization iterations (Epoch) set to 250; training is conducted using the momentum
gradient descent method, with the momentum parameter set to 0.9; and to expedite network
training, alleviate overfitting, and enhance the generalization ability of the neural network,
a dropout rate of 0.5 is introduced between each fully connected layer. The learning rate,
which determines the magnitude of parameter updates during network learning, is set to
0.001, and the decay rate is set to 0.7. To ensure the network converges as quickly as possible
within the available memory, the batch size is set to 8. The number of sample points for
network learning is set to 2048, with the same sampling and neighborhood point numbers
as in the PointNet++ network to ensure there are enough points for feature learning.

4.3. Experimental Dataset

Considering that most studies have focused on public datasets, we transformed the
point cloud data collected by mobile LiDAR into a dataset suitable for network training
and conducted classification research based on public datasets and this dataset.
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• Public datasets: To explore the feasibility and robustness of the improved deep learning
network model in classifying typical features in road scenes, this paper decided to
conduct experiments using internationally recognized standard datasets, namely
ModelNet Dataset [10] and the Sydney Urban Objects Dataset [42]. ModelNet Dataset
includes ModelNet10 and ModelNet40. The ModelNet40 public dataset comprises
9843 training models and 2468 test models, totaling 12,311 rigid 3D models. The choice
of this dataset is due to its noise-free nature, allowing for an accurate reflection of the
feasibility of model improvements. Visualizations of the ModelNet dataset samples are
presented in Figure 6. The Sydney Urban Objects Dataset (Suo Dataset) was collected
using Velodyne HDL-64E LiDAR scans of various common urban road objects in the
Central Business District (CBD) of Sydney, Australia. The dataset includes 631 scans
of different object categories, covering vehicles, pedestrians, signs, and trees. This
dataset represents a sparse point cloud model with a significant degree of point
density unevenness. The selection of this dataset allows for testing the robustness and
generalization ability of model improvements. Visualizations of the Sydney Urban
Objects Dataset samples are presented in Figure 7.
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• Road9 dataset: The Road9 dataset was created by collecting point cloud data from
a circular road in Shanyang District, Jiaozuo City, Henan Province, using the SSW-3
mobile LiDAR system. As shown in Figure 8, it is the overall visualization of the
study area’s remote sensing image Figure 8a and the original point cloud Figure 8b. In
Figure 8a, the highlighted red section represents the main research segment, depicting
a complex road scene.



Remote Sens. 2024, 16, 663 12 of 24

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 7. Partial visualization of the Sydney Urban Objects Dataset. 

• Road9 dataset: The Road9 dataset was created by collecting point cloud data from a 
circular road in Shanyang District, Jiaozuo City, Henan Province, using the SSW-3 
mobile LiDAR system. As shown in Figure 8, it is the overall visualization of the 
study area�s remote sensing image Figure 8a and the original point cloud Figure 8b. 
In Figure 8a, the highlighted red section represents the main research segment, de-
picting a complex road scene. 

  
(a) (b) 

Figure 8. Road9 dataset research overview: (a) remote sensing image of the study area, the red 
arrows indicate the data acquisition route. (b) visualization display of the partial original mobile 
LiDAR point cloud data. 

The process of converting LiDAR data into training data for the network is mainly 
divided into two major parts. The first part is raw data preprocessing, which is further 
divided into four steps: data clipping (Figure 9a), data denoising (Figure 9b), data seg-
mentation, and ground point removal (Figure 9c). A partial workflow is illustrated in Fig-
ure 9. Data clipping focuses on obtaining road scene data within buildings. Subsequently, 
noise reduction is achieved through the Statistical Outlier Removal (SOR) filter. To allevi-
ate computational pressure in subsequent data processing, Terra Solid v8 software is used 
to segment the data, with overlapping sections to ensure that extracted features are not 
disrupted or split. Finally, a cloth simulation filtering algorithm (CSF) [43] is employed to 
separate ground points, completing the data preprocessing. The second part involves ap-
plying a multi-stage clustering segmentation algorithm [44] to extract objects from the 
non-ground point cloud. Subsequently, the dataset format is modified to control the num-
ber of points to 2048 and labeled. Finally, the data are written to an.h5 file in a 7:3 ratio, 
creating the Road9 dataset. The Road9 dataset comprises 2670 object models belonging to 
nine different categories, with 1866 training models and 804 test models. The dataset in-
cludes nine categories of objects: 707 streetlights, 205 traffic signals, 970 roadside trees, 170 
poles, 241 traffic signs, 52 garbage cans, 57 bus waiting shelters, 47 guardrails, and 221 
motor vehicles. In real road scenes, point cloud data are often incomplete due to occlusion. 
The visualization of the dataset attempts to select complete 2D representations for display, 

Figure 8. Road9 dataset research overview: (a) remote sensing image of the study area, the red arrows
indicate the data acquisition route. (b) visualization display of the partial original mobile LiDAR
point cloud data.

The process of converting LiDAR data into training data for the network is mainly
divided into two major parts. The first part is raw data preprocessing, which is further
divided into four steps: data clipping (Figure 9a), data denoising (Figure 9b), data segmen-
tation, and ground point removal (Figure 9c). A partial workflow is illustrated in Figure 9.
Data clipping focuses on obtaining road scene data within buildings. Subsequently, noise
reduction is achieved through the Statistical Outlier Removal (SOR) filter. To alleviate
computational pressure in subsequent data processing, Terra Solid v8 software is used
to segment the data, with overlapping sections to ensure that extracted features are not
disrupted or split. Finally, a cloth simulation filtering algorithm (CSF) [43] is employed
to separate ground points, completing the data preprocessing. The second part involves
applying a multi-stage clustering segmentation algorithm [44] to extract objects from the
non-ground point cloud. Subsequently, the dataset format is modified to control the number
of points to 2048 and labeled. Finally, the data are written to an.h5 file in a 7:3 ratio, creating
the Road9 dataset. The Road9 dataset comprises 2670 object models belonging to nine
different categories, with 1866 training models and 804 test models. The dataset includes
nine categories of objects: 707 streetlights, 205 traffic signals, 970 roadside trees, 170 poles,
241 traffic signs, 52 garbage cans, 57 bus waiting shelters, 47 guardrails, and 221 motor
vehicles. In real road scenes, point cloud data are often incomplete due to occlusion. The
visualization of the dataset attempts to select complete 2D representations for display,
Partial data are often represented as data from only one side, as shown in Figure 10. The
visualization of the Road9 dataset and a partial comparison with the Sydney Urban Objects
Dataset (SUO Dataset) are presented in Table 1.

Table 1. Visualization of the Road9 dataset and a partial comparison with the SUO Dataset.

Category Quantity Road9 Dataset SUO Dataset

0 Street Lamp 707
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• Overall accuracy: This refers to the ratio of the number of correctly classified samples 
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mance of the network. The formula is as follows (Equation (10)). 
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𝑀𝐴 ൌ 1𝑛  𝑝∑ 𝑝ୀ


ୀ  (11) 

• F1-score: A weighted harmonic mean that takes both recall and precision into ac-
count, used for a comprehensive evaluation of network performance. The formula is 
as follows (Equation (12)).        𝐹1 ൌ 2 ൈ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙 (12) 

precision refers to the proportion of correct classification numbers in the sample re-
sults. The calculation formula is shown in Equation (10). recall is the recall rate, which 
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Figure 9. Data preprocessing schematic diagram. (a) Schematic diagram of road scene data clipping,
with red lines indicating segmentation; (b) effect diagram of road scene data denoising; (c) effect
diagram of ground filtering processing, the ground is represented in blue.
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4.4. Evaluation Index

The classification results for the same dataset may vary between different models.
Therefore, this paper uses overall accuracy (OA), mean accuracy (MA), F1-score, and
the Kappa coefficient as evaluation metrics for comparative analysis of the classification
performance of multiple models.

• Overall accuracy: This refers to the ratio of the number of correctly classified samples to
the total number of samples. A higher score indicates better classification performance
of the network. The formula is as follows (Equation (10)).

OA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
(10)

In the equation, n represents the number of target categories; pii represents the number
of samples correctly classified in class i; and pij represents the number of samples of
class i predicted as class j.

• Mean accuracy: The average of the independent classification accuracies for each
category, divided by the number of target categories. A higher score indicates better
classification results for each category. The formula is as follows (Equation (11)).

MA =
1
n

n

∑
i=0

pii

∑n
j=0 pij

(11)

• F1-score: A weighted harmonic mean that takes both recall and precision into account,
used for a comprehensive evaluation of network performance. The formula is as
follows (Equation (12)).

F1 = 2× precision× recall
precision + recall

(12)

precision refers to the proportion of correct classification numbers in the sample results.
The calculation formula is shown in Equation (10). recall is the recall rate, which refers
to the proportion of the number of correct classifications in a sample classification
result. The calculation formula is shown in Equations (13) and (14).

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

The meanings of the relevant parameters are shown in Table 2.

Table 2. Definition of true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Parameter Label Prediction

TP + +
FP − +
FN + −
TN − −

‘+’ represents positive examples,’−’ represents negative examples.

• Kappa coefficient: This refers to the index used to evaluate the overall classification
accuracy of the network model. The larger the value, the stronger the classification
performance of the network and the better the classification effect. The calculation
formula is shown in Equations (15) and (16).
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Kappa =
OA−Q

1−Q
(15)

Q =
a1 × b1 + a2 × b2 + . . . + am × bm

N × N
(16)

where ai (i = 1, 2, . . . , m) represents the real number of each sample; bi (i = 1, 2, . . . , m)
represents the predicted quantity of each sample; m represents the number of sample types
in the dataset; and N represents the total number of samples.

4.5. Experimental Analysis of Public Dataset
4.5.1. Graph Convolution K-Value Selection Analysis

The feature extraction performance of graph convolution depends on the number of k-
nearest neighbors. To assess the impact of different k-values on the network’s performance,
a comparison of classification accuracy was conducted for various k-values, as shown in
Figure 11.
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From Figure 10, it can be observed that the overall accuracy is the lowest when k is set
to 10, indicating that having too few neighboring points does not effectively capture local
geometric features. With an increase in the value of k, the overall classification performance
improves. When k is set to 30, the accuracy reaches a relatively high value. However,
when k is set to 40, the network’s classification accuracy decreases, and it also increases the
computational load and runtime. In summary, choosing a k value that is either too small or
too large can lead to a decrease in the network’s classification performance. Therefore, the
choice of the k value is crucial, and in this study, LO-Net selects k = 30.

4.5.2. Analysis of Public Dataset Experiments

This paper first conducts an accuracy analysis on the public dataset ModelNet. From
Table 3, it can be observed that the accuracy of the LO-Net network is equal to or greater
than that of the Point and PointNet++ networks in 27 categories, indicating that this
network has stronger classification capabilities for individual objects.

Table 3. The classification accuracy of 40 typical objects in the publicly available ModelNet40 dataset
evaluated by the PointNet, PointNet++, and LO-Net networks.

Category PointNet PointNet++ LO-Net

Airplane 100 100 100
Bathtub 80.0 88.0 92.0

Bed 96.0 96.0 97.0
Bench 70.0 85.0 80.0

Bookshelf 91.0 90.0 94.0
Bottle 94.0 95.0 94.0
Bowl 90.0 90.0 90.0
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Table 3. Cont.

Category PointNet PointNet++ LO-Net

Car 98.0 98.0 99.0
Chair 97.0 92.0 97.0
Cone 90.0 100 95.0
Cup 75.0 80.0 85.0

Curtain 90.0 90.0 95.0
Desk 83.7 91.0 88.4
Door 85.0 85.0 85.0

Dresser 72.1 75.6 82.6
Flower Pot 20.0 25.0 10.0
Glass Box 98.0 96.0 94.0

Guitar 100 97.0 100
Keyboard 100.0 100.0 100

Lamp 90.0 90.0 97.0
Laptop 100 100 100
Mantel 94.9 97.0 97.0

Monitor 95.0 99.0 100
Night Stand 72.1 73.3 76.7

Person 95.0 90.0 90.0
Piano 87.8 96.0 92.0
Plant 80.0 74.0 79.0
Radio 75.0 80.0 80.0

Range Hood 91.0 95.0 95.0
Sink 70.0 85.0 90.0
Sofa 97.0 96.0 96.0

Stairs 85.0 95.0 95.0
Stool 85.0 85.0 85.0
Table 84.0 72.0 78.0
Tent 95.0 95.0 95.0

Toilet 99.0 99.0 100
Tv Stand 80.0 88.0 92.0

Vase 74.7 80.0 79.0
Wardrobe 70.0 80.0 85.0

Xbox 90.0 75.0 80.0

To demonstrate the effectiveness and generalization capability of the improved LO-Net
classification network, we evaluated it using the publicly available ModelNet40, Model-
Net10, and Sydney Urban Objects Dataset. We compared its accuracy against the PointNet
and PointNet++ networks. As shown in Table 4, on ModelNet40, LO-Net achieved overall
accuracy and mean accuracy of 91.2% and 88.9%, respectively. These values are 2.6% and
2.9% higher than PointNet and 1.4% and 0.9% higher than PointNet++. On ModelNet10,
LO-Net attained an overall accuracy of 94.2% and a mean accuracy of 94.1%, surpassing
PointNet by 2.6% and 2.9%, and PointNet++ by 1.9% and 1.8%. Moreover, on the Sydney
Urban Objects Dataset, LO-Net demonstrated an overall accuracy of 82.4% and a mean
accuracy of 79.9%. These values are notably higher compared to PointNet (18.7% and 2.8%
higher) and PointNet++ (1.9% and 3.1% higher). LO-Net exhibits stronger classification
performance across different datasets. Additionally, we conducted experiments with the
point-based method PointGrid on public datasets, achieving 90.1%, 87.4%, 78.3%, and 77.4%
accuracy on ModelNet40 and Sydney Urban Objects Dataset, respectively, all of which
are lower than LO-Net’s performance. While the overall accuracy of PointGrid differs
significantly from LO-Net, its average accuracy is similar to LO-Net. This indicates that
the LO-Net network may have lower accuracy in certain specific categories, which is the
direction in which we aim to improve. In conclusion, LO-Net exhibits stronger classification
performance across different datasets.
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Table 4. Comparison of OA and MA of public datasets in PointNet, PointNet++, PointGrid,
and LO-Net.

Networks
ModelNet40 ModelNet10 Sydney Urban Objects

OA (%) MA (%) OA (%) MA (%) OA (%) MA (%)

PointNet 88.6 86.0 91.6 91.2 67.1 66.2
PointNet++ 89.8 88.0 92.3 92.3 - -

PointGrid [45] 90.1 87.4 - - 78.3 77.4
LO-Net (Ours) 91.2 88.9 94.2 94.1 79.5 77.6

4.6. Experimental Analysis of Road9 Dataset

Table 5 displays the recall, precision, and F1-score values for nine typical land cover
samples in the PointNet, PointNet++, and LO-Net models on the Road9 dataset.

Table 5. Recall, precision, and F1-score values of 9 typical ground objects in the Road9 dataset in
PointNet, PointNet++, and LO-Net networks.

Networks Evaluation
Index

Street
Lamp

Traffic
Light

Street
Tree Pole Traffic

Sign
Garbage

Can
Bus

Shelter Guardrail Motor
Vehicle

PointNet
Recall 98.1 85.5 99.3 100 91.7 100 100 64.3 95.5

Precision 97.7 92.8 100 86.7 95.7 100 100 90.0 98.4
F1-score 97.9 89.0 99.6 92.9 93.7 100 100 75.0 96.9

PointNet++
Recall 100 77.4 100 96.2 97.2 100 100 78.6 97.0

Precision 95.5 90.6 100 94.3 94.6 100 100 91.7 100
F1-score 97.7 83.5 100 95.2 95.9 100 100 84.6 98.5

LO-Net
Recall 98.6 90.3 100 100 98.6 100 100 85.7 100

Precision 98.1 96.6 100 91.2 98.6 100 100 100 100
F1-score 98.4 93.3 100 95.4 98.6 100 100 92.3 100

Analyzing the data in the table, it is evident that the LO-Net network achieved better
classification results across all three evaluation metrics when compared to the PointNet
and PointNet++ networks. The following Table 6 shows the identification results of some
typical landmarks.

Based on the data analysis in Tables 5 and 6, the overall structure of motor vehicles
is completely distinct from other landmarks. Despite the presence of some deficiencies,
multiple network models can accurately identify and classify them. However, for street
lamp samples with poor completeness, both the PointNet and PointNet++ networks experi-
ence classification errors, while the LO-Net network, relying on its strong feature extraction
capabilities, can accurately identify them. Traffic lights suffer from issues such as incom-
pleteness and sparse point density. Additionally, in real road scenarios, the contours of
traffic lights are similar to those of traffic signs, leading to all three networks being unable
to fully learn their features, resulting in misclassification as traffic signs or pole-like objects.
For individual long guardrail samples, under the condition of ensuring the same input
point number, the PointNet and PointNet++ networks cannot accurately learn unique
features, leading to the misclassification results of “3Pole” and “traffic signal lamps”. In
contrast, the LO-Net network conducts in-depth exploration at the local feature level,
demonstrating a more proficient grasp of the geometric semantic information of landmarks
and achieving correct labeling. Bus stop shelters, located at the edge of the main road with
close proximity and low occlusion to the onboard LiDAR system, possess unique geometric
structures, allowing all network models to achieve 100% classification accuracy.

As for the F1 values in Table 5, which offer a more comprehensive reflection of single-
sample classification performance, the results for different land cover types are as follows:
road lamps achieved an F1 score of 98.4%, traffic signal lamps scored 93.3%, road trees
scored 100%, line poles scored 95.4%, traffic signs scored 98.6%, garbage bins scored
100%, bus stops scored 100%, guardrails scored 92.3%, and motor vehicles scored 100%.
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Compared to the PointNet and PointNet++ networks, all samples showed higher F1 values,
indicating improved classification performance for individual samples. Analyzing the
characteristics of each land cover sample individually, as can be seen from the bar chart
in Figure 12, it becomes clear that road trees, garbage bins, bus stops, and motor vehicles
have relatively simple and distinct shapes, resulting in high F1 scores, all achieving 100%
classification F1 values in the LO-Net network. Road lamps rely on their arms or single-arm
lamp heads to distinguish themselves from other samples, achieving a 98.4% F1 score.
Traffic signs come in multiple varieties, but their head components exhibit distinctive
cubic features, contributing to a 98.6% result. Line poles can be either long and straight or
have protruding features, which sometimes resemble sparse or incomplete pole-like land
features, resulting in a 95.4% F1 score. Traffic signal lamps have diverse types, including
cameras, pedestrian crossing signal lamps, intersection signal lamps, and central road
signal lamps, which exhibit various shapes. Guardrails are long and straight with multiple
protruding structures, making them susceptible to misclassification as traffic signal lamps
or line poles, and there are fewer instances of this sample compared to others. Consequently,
traffic signal lamps and guardrails achieved the lowest F1 scores.

Table 6. The recognition results of some typical landmarks on the Road9 dataset. The data type labels
refer to Table 1.

Original Labels Data Network Classification Results

0 (Street Lamp)
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tiple network models can accurately identify and classify them. However, for street lamp 
samples with poor completeness, both the PointNet and PointNet++ networks experience 
classification errors, while the LO-Net network, relying on its strong feature extraction 
capabilities, can accurately identify them. Traffic lights suffer from issues such as incom-
pleteness and sparse point density. Additionally, in real road scenarios, the contours of 
traffic lights are similar to those of traffic signs, leading to all three networks being unable 
to fully learn their features, resulting in misclassification as traffic signs or pole-like ob-
jects. For individual long guardrail samples, under the condition of ensuring the same 
input point number, the PointNet and PointNet++ networks cannot accurately learn 
unique features, leading to the misclassification results of “3Pole” and “traffic signal 
lamps.” In contrast, the LO-Net network conducts in-depth exploration at the local feature 
level, demonstrating a more proficient grasp of the geometric semantic information of 
landmarks and achieving correct labeling. Bus stop shelters, located at the edge of the 
main road with close proximity and low occlusion to the onboard LiDAR system, possess 
unique geometric structures, allowing all network models to achieve 100% classification 
accuracy. 

As for the F1 values in Table 5, which offer a more comprehensive reflection of single-
sample classification performance, the results for different land cover types are as follows: 
road lamps achieved an F1 score of 98.4%, traffic signal lamps scored 93.3%, road trees 
scored 100%, line poles scored 95.4%, traffic signs scored 98.6%, garbage bins scored 100%, 
bus stops scored 100%, guardrails scored 92.3%, and motor vehicles scored 100%. Com-
pared to the PointNet and PointNet++ networks, all samples showed higher F1 values, 

PointNet 8 (Motor Vehicle)
PointNet++ 8 (Motor Vehicle)

LO-Net 8 (Motor Vehicle)

For the classification task on the Road9 dataset, the F1-score describes the performance
of individual samples, essentially binary classification. To capture the overall performance
of the network for multi-class tasks, this study employs the macro-average Macro-F1 for
comparative analysis, as shown in Figure 13. Macro-F1 is the average of the F1-scores for
all samples. It is evident from the chart that the LO-Net network achieves a score of 97.6%,
consistently higher than the Macro-F1 values of the PointNet and PointNet++ networks.

To provide a more comprehensive analysis of the overall classification performance of
the LO-Net network in this study, metrics such as overall accuracy (OA), mean accuracy
(MA), and the Kappa coefficient were used for evaluation. As shown in Table 3, the LO-
Net network achieves an OA of 98.5% and an MA of 97.0%. Compared to the PointNet
network, it exhibits improvements of 2.2% and 4.3%, respectively, while compared to the
PointNet++ network, it shows improvements of 1.3% and 3.0%. These results demonstrate
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a significant enhancement in classification accuracy. Furthermore, the Kappa coefficient
of 0.981 indicates that the optimization of the network with GraphConv, Unite_module,
and J-PSPP allows for a more detailed extraction of feature information for land objects,
resulting in a substantial improvement in classification accuracy.
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This confirms the strong classification performance of the LO-Net network on the
Road9 dataset, as evident from Tables 5 and 7, as well as Figures 9 and 10.

Table 7. Comprehensive comparison of PointNet, PointNet++, and LO-Net networks on OA, MA,
and Kappa coefficients.

Networks OA (%) MA (%) Kappa

PointNet 96.3 92.7 0.952
PointNet++ 97.2 94.0 0.964

LO-Net 98.5 97.0 0.981

4.7. Ablation Experiment

To verify the impact of the point cloud spatial pyramid pooling (PSPP) structure on
the network’s classification performance, this paper conducted ablation experiments to
compare accuracy under various conditions. As shown in Table 8, the overall accuracy
obtained with single max pooling is 98.0%, and with single average pooling, it is 97.8%.
Although the overall accuracy with PSPP is also 98.0%, the mean accuracy is improved
by 0.4% and 0.6% respectively. This demonstrates that adopting the PSPP structure al-
lows for diverse feature information, resulting in higher accuracy compared to single
pooling methods.
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Table 8. Comparison of precision of single pooling and combined pooling and comparison of network
classification accuracy under different J-PSPP structures.

Max Pooling Avg Pooling OA (%) MA (%)
√

98.0 95.6√
97.8 95.4√ √
98.0 96.0

N/1, N/2, N/4, N/8 N/1, N/2, N/4, N/8 98.4 96.3
N/1, N/2, N/4, N/8, N/16 N/1, N/2, N/4, N/8, N/16 98.5 97.0
N/1, N/2, N/4, N/8, N/16 98.3 96.6

N/1, N/2, N/4, N/8, N/16 98.2 95.9
N/1, N/2, N/4, N/8, N/16,

N/32
N/1, N/2, N/4, N/8, N/16,

N/32 98.5 96.7

Note:
√

indicates that the network uses this pooling method.

Analyzing the data in Table 3, it is evident that the window size and quantity of the
point cloud spatial pyramid pooling (PSPP) structure also have a certain impact on network
accuracy. Specifically, for the N/1, N/2, N/4, N/8, and N/16 window types in the point
cloud spatial pyramid max pooling structure, the overall accuracy is 98.3%, and the mean
accuracy is 96.6%. Similarly, for the same structures with point cloud spatial pyramid
average pooling, the overall accuracy is 98.2%, and the mean accuracy is 95.9%. This
indicates that constructing the PSPP structure is more effective than the conventional single-
window pooling method. Furthermore, under the N/1, N/2, N/4, N/8, and N/16 window
structures of the point cloud spatial pyramid pooling, it is possible to further enhance
the network’s accuracy, achieving an overall accuracy of 98.5% and a mean accuracy of
97.0%. While the networks under the N/1, N/2, N/4, N/8, N/16, and N/32 window
structures have the same overall accuracy of 98.5%, the mean accuracy decreased by 0.3%.
In conclusion, the J-PSPP structure in N/1, N/2, N/4, N/8, and N/16 window structures
achieves the best classification performance for the custom-made Road9 dataset.

To investigate the influence of the GraphConv, Unit_module, and J-PSPP modules on
the network, various combinations were analyzed through ablation experiments. It should
be noted that when Unit_module was not used, GraphConv only processed high-level
features, and J-PSPP was placed after the high-level features. As evident from Table 9,
combining two modules resulted in a more significant improvement in accuracy compared
to using a single module. The combination of all three modules optimized and enhanced
the network’s learning capability in the best way, resulting in an overall accuracy and mean
accuracy of 98.5% and 97.0%, respectively.

Table 9. Influence of different module combination modes on network accuracy (note: when
Unit_module is not used, GraphConv only processes high-level features and J-PSPP is placed behind
the high-level features).

GraphConv Unit_Module J-PSPP OA (%) MA (%)
√

97.5 95.1√
97.4 94.7√
97.7 95.8√ √
98.0 96.0√ √
98.3 96.6√ √
98.0 96.3√ √ √
98.5 97.0

Note:
√

indicates that the network uses this method.

5. Discussion

This paper investigates the classification of improved deep learning networks for
typical road scene objects. The experiments in Section 3 demonstrate the effectiveness,
robustness, and generalization capability of the LO-Net classification network. Firstly,
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experiments are conducted on synthetic datasets (ModelNet40 and ModelNET10). As
shown in Table 9, in environments where point cloud models are complete and free of
noise, LO-Net achieves higher accuracy compared to PointNet, PointNet++, and PointGrid,
with improvements of 2.6%, 2.9%, 1.65%, 1.35%, 1.1%, and 1.5%, respectively. This reflects
the effectiveness of the improved LO-Net classification network. Secondly, on the Sydney
Urban Objects Dataset, due to the limited training samples, models generally achieve lower
accuracy. PointNet and PointGrid networks, neglecting relationships between layers, result
in the loss of structural data in lower-level features, making them less descriptive and
sensitive to noise. In contrast, LO-Net fully utilizes features between layers, expanding
the receptive field, and thus, LO-Net demonstrates higher overall accuracy and better
robustness compared to other networks. On the Road9 dataset, LO-Net achieves an overall
accuracy of 98.5% and a mean accuracy of 97%, outperforming PointNet by 2.2% and
4.3%, and PointNet++ by 1.3% and 3%, highlighting the strong generalization capability of
LO-Net. In conclusion, LO-Net exhibits superior classification performance on both public
datasets and realistic road scene datasets.

Analyzing the reasons behind this, PointNet is a pioneering network that directly
processes point clouds but can only obtain global features of point clouds through multiple
convolutions, lacking the description of local features. PointNet++, on the other hand,
continuously samples, groups, and extracts features within the point set, resulting in a
larger receptive field and more feature information, allowing it to capture local features
of point clouds. However, this network focuses solely on semantic information between
points and lacks the analysis of “edge” properties between point sets. The LO-Net network
proposed in this paper absorbs the advantages of PointNet++’s hierarchical feature learning
structure and builds multiple modules for feature optimization and enhancement.

• GraphConv conducts learning between adjacent points in the point set, allowing
the aggregation of edge features near the central point, greatly absorbing geomet-
ric information in the local domain. This enables the network to learn more point
cloud features.

• Unite_module integrated after hierarchical feature learning employs upsampling to
gradually restore the low-point count layer features to the previous layer, progressively
refining the semantic features of each layer and making the features learned at each
level more comprehensive.

• J-PSPP pools the final features obtained, using pyramid pooling to learn features from
different spatial regions. This combined with joint pooling allows the network to acquire
multi-scale and multi-style features that encompass both local and global characteristics.

The hierarchical optimization involving multiple modules enhances the point cloud
learning ability, leading to increasingly robust feature extraction capabilities and ultimately
achieving better classification performance.

6. Conclusions

This paper introduced an improved deep learning model called LO-Net, which effec-
tively improved classification accuracy for typical road scene objects. It extracted typical
objects from preprocessed point clouds obtained from a mobile LiDAR system, creating
the necessary datasets for the study. Based on the SA module of the PointNet++ net-
work, the paper transformed and optimized the network using three modules, GraphConv,
Unit_module, and J-PSPP, designed to combine multiple feature learning methods in a
layer-wise optimized network for dataset classification. Experimental results demonstrated
that the LO-Net network performed well on public datasets, achieving an overall accu-
racy of 91.2%, 94.2%, and 79.5% on ModelNet40, ModelNet10, and Sydney Urban Objects
Dataset, respectively. When applying the Road9 dataset of typical objects to the LO-Net
network, an overall classification accuracy of 98.5% was achieved. The experiments above
concluded that the improved LO-Net model exhibits superior effectiveness, robustness,
and generalization capabilities in addressing the classification of typical road scene objects.
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However, while this multi-module optimization approach enhances the accuracy of
the LO-Net model, it partially overlooks the complexity of the model. Next, we will explore
a lightweight network that can balance high accuracy while improving the efficiency and
effectiveness in handling the research subject. Additionally, there is room for improvement
in the creation of the Road9 dataset in this paper. In future research, different urban
road segments can be selected for data collection to expand the number and styles of
object samples, enriching the dataset. Moreover, a combination of various LiDAR tools,
such as airborne LiDAR, ground-based LiDAR, and backpack LiDAR, can be employed
for comprehensive, multi-angle scanning to enhance the completeness of various object
samples, reducing the model’s demands.
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A-PSPP Point cloud spatial pyramid average pooling
FN False negative
FP False positive
FPS Farthest point sampling
J-PSPP Point cloud spatial pyramid joint pooling
MA Mean accuracy
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M-PSPP Point cloud spatial pyramid maximum pooling
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SA Set abstraction
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