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Abstract: In complex environments, the clutter statistical characteristics of synthetic aperture radar
(SAR) are inconstant, and the constant detection performance of a false alarm rate (CFAR) detector
based on a clutter statistical model is also hard to achieve. As a result, the overestimated threshold
leads to a degradation in detection probability. To this end, this paper proposes a SAR ship detector
different from CFAR detectors, which is independent of traditional clutter statistical distribution
models and the probability of a false alarm (PFA). The proposed detector aims to raise the ship
detection probability and alleviate interference from complex environments such as multi-target
areas, shores, and breakwaters. It estimates clutter-truncated thresholds based on clutter intensity
statistics (CIS). Firstly, three statistical parameters, including the mean, standard deviation, and
maximum intensity of background clutter contaminated by outliers, are calculated; secondly, these
parameters are utilized to estimate the clutter-truncated threshold using the novel CIS; and finally,
the pixel under test is determined according to the CIS detection rule. Compared with CFAR-based
algorithms, CIS obtains a high probability of detection in complex environments. As for other aspects,
the CIS detector is insensitive to the structure of the detection window, as well as the size. It is
also computationally efficient due to its simple calculations. The superiority of the CIS detector is
validated on scene-differed SAR images from the DSSDD dataset.

Keywords: synthetic aperture radar (SAR); maritime monitoring; SAR ship detection; clutter intensity
statistics (CIS); adjustment depth

1. Introduction

Synthetic aperture radar (SAR) shows a strongly growing trend towards remote sens-
ing applications such as rescue, maritime monitoring, resource surveys, and agricultural
estimation due to its all-weather conditions, cloud-resistance, and day-and-night imaging
capabilities compared with the traditional remote sensing mode. Ship detection in maritime
activities is a typical SAR remote sensing application. At present, many high-resolution
SAR satellites have been launched into orbit, such as TerraSAR-X, Sentinel-1, Capella, and
GaoFen-3. These satellites generate SAR data continuously for various industries. SAR
ship images are also produced and added to various ship detection datasets.

Compared with sea clutter, ship targets have higher intensities in SAR images. This
means that ship targets are brighter than sea clutter due to the stronger corner reflection
of the ship’s metal structure [1]. However, the azimuth ambiguities, the state of the sea,
and the wake of the ship all result in significant interference, which can cause a bright
and heterogeneous sea background. In addition, phase errors often lead to a degradation
in the focusing quality of SAR imagery [2], leading to an extended back-projection (EBP)
algorithm to compensate for the phase errors being proposed. In [3], the authors performed
parametrization of the minimum cost flow (MCF) algorithm to address the problem of
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phase unwrapping in a SAR radar. The bright high-intensity outliers significantly affect the
accuracy of ship detection. Meanwhile, tiny ships show little discernible texture and shape
information in high-resolution SAR imagery. Especially in complex environments, such as
multi-target areas, shores, narrow waterways, and breakwaters, the probability of detection
degrades sharply. It can be said that the challenge of SAR ship detection still exists.

SAR ships in complex environments from a DSSDD dataset [4] are shown in Figure 1,
which shows some typical scenes such as different sizes of ships, the azimuth ambiguities,
multi-target areas, and breakwaters, as well as inshore ships and different sea states. These
complex environmental interferences, with their brightness and shape being close to the
ship targets, make it difficult to distinguish between them. At the same time, the sidelobe
and azimuth ambiguity even cause the loss of ship features such as shape and texture.
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clutter samples according to the PDF, which sustains a constant probability of false alarm. 
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In the past decade, a large amount of research on SAR ship detection has been carried
out. Meanwhile, it was revealed that the most widely used methods are the CFAR-based
algorithms that are constantly developed in research [5]. CFAR detectors estimate clutter-
truncated thresholds adaptively to segment ship target and sea clutter pixels. Mathemati-
cally, sea clutter can be described by a theoretical probability density function (PDF). The
adaptive thresholds can be calculated from the statistical parameters of the clutter samples
according to the PDF, which sustains a constant probability of false alarm.

CFAR detectors have been practically applied to control the high false alarm rate
(FAR) of radar receivers and have shown remarkable effectiveness [6]. Up until now, many
CFAR-based detectors have been proposed. SAR image pixels are detected one by one
through a small detection window that is divided into a test region, a guard region, and
a background region. To a large extent, CFAR detectors depend on the statistical models
of sea clutter to estimate the thresholds. For different sea states, the statistical models
are different, such as Log-normal [7], K [8], Weibull [9], G [10], generalized Gamma [11],
and alpha-stable [12]. According to a statistical model and a given PFA, some parameters
of the sea clutter samples in a sliding window are calculated to estimate the adaptive
threshold. Then, the central (or tested) pixel in the sliding window is compared with the
estimated threshold.

In the past few years, artificial intelligence technology has developed rapidly and is
being applied in many fields such as image interpretation, autonomous driving, and neural
machine translation. SAR ship detection is part of image interpretation tasks. For this task,
convolutional neural networks (CNNs) demonstrate strong recognition capability [13–17].
CNNs learn the features of SAR ships autonomously and point out the probabilities of the
suspected ships in SAR imagery. However, similar to the traditional methods, CNN-based
ship detection algorithms also face the common problem that the detection probability
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deteriorates in complex environments. To solve this, with the efforts of many scholars, CNN-
based methods have achieved significant ship detection performance on high-resolution
SAR images [18–21].

In recent years, there has been an obvious trend that more and more research on SAR
ship detection has focused on artificial intelligence algorithms. Nevertheless, traditional
methods based on threshold segmentation are still used with vigor.

The differences between them are expressed in the following aspects:

• Algorithm principles. The threshold estimation of the traditional methods is based
on a theoretical clutter statistical model such as Log-normal, Rayleigh, and Otsu.
This means that the threshold is adaptive to changes in sea clutter as long as the
clutter statistics fit the known model. CNN-based methods learn ship target features
autonomously and then fix the weight parameters. However, as the CNN deepens,
the learned features become unexplainable gradually.

• Detection rules. In the traditional methods, each pixel is determined by comparing it
with an adaptive threshold. CNN-based methods determine ship targets according to
the confidence levels calculated from the statistical features of SAR ship images such
as shape and texture.

• Detection results. Binary segmentation images are the output results of traditional
methods. For most CNN-based methods, the ships are marked by external boxes.

• Parameters. Artificial intelligence algorithms must be trained towards the dataset and
save the necessary number of parameters. Traditional methods are the opposite.

The threshold estimation of the traditional methods is mainly affected by the clutter
statistical model and the specified PFA. Complex scenes often produce many outliers, which
result in large statistical parameters. As a consequence, the threshold is overestimated.
A ship pixel tends to be determined as a clutter pixel when comparing it with a large
threshold. In addition, an inappropriate PFA may cause a larger threshold deviation due to
incorrect statistical parameters.

To solve the probability of detection degradation in complex environments, we pro-
posed a novel SAR ship detector based on clutter intensity statistics (CIS), which is irrelevant
to the clutter statistical model and PFA, and estimates the adaptive threshold using clutter
intensity information and simple calculations. Firstly, the statistical parameters of outlier-
contaminated clutter samples, including mean, standard deviation, and the maximum
intensity of the background clutter, are calculated in a sliding window; secondly, the three
statistical parameters are used to calculate the adaptive threshold according to the novel
intensity statistical model; and finally, the pixel under test is determined by comparing it
with the adaptive threshold.

The major contributions of CIS are listed below:

1. Clutter intensity statistics (CIS) are proposed to detect SAR ships in complex envi-
ronments. CIS establishes the relationship between the ship target and the outlier,
which expands their difference. The influence of outliers is effectively alleviated, espe-
cially for complex scenes. Although the CIS detector is irrelevant to traditional clutter
statistical distribution models and PFA, it still projects outstanding performance.

2. The structure of the detection window is no longer a sensitive factor for SAR ship
detection. As the max intensity of outliers in a sliding window becomes one term of
the adaptive threshold estimation formula, the threshold estimation is less affected by
the intensities and quantity of outliers in clutter samples.

3. Adjustment factor λ is an adjustor that is utilized to adjust thresholds to raise the proba-
bility of detection or decrease false alarms. λ is the only global parameter. The optimal
λ is determined according to the experimental results on detection performance under
the different simulated clutters.

The other parts of this paper are listed as follows. Section 2 introduces the related
work on SAR ship detection. The CIS detection methodology details and detection rule are
described in Section 3. The analysis of experimental results is given in Section 4, including
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the analysis of the detecting accuracy, the selection of the optimal adjustment factor, and the
structure of the detection window as well as the computational efficiency. The experimental
results sufficiently demonstrate the outstanding performance of the CIS detector in complex
environments. Section 5 discusses some key derivations of the CIS model and the influence
of the size of the detection window on CIS detection accuracy. Finally, the conclusion is
presented in Section 6.

2. Related Work

In real SAR images, sea clutter is nonideal. It tends to be contaminated by outliers
such as speckle noise, sidelobes, and other objects. The outliers cause inaccurate clutter
parameter estimation. As a result, the thresholds are overestimated, and then ship tar-
gets are removed due to such a large threshold. To solve the interference from outliers,
many CFAR detectors are proposed. CA-CFAR [22] and TP-CFAR [7] are widely applied
due to their simple calculations, but both have large detection losses on homogeneous
backgrounds. The OS-CFAR [23] based on order statistics shows a markable advantage
in multi-target detection but is seriously interfered with by outliers and computational
inefficiency. GO-CFAR [24] and SO-CFAR [25] improve on CA-CFAR and use the maximum
and the minimum means of four blocks that make up the background region to estimate
the local detection thresholds, respectively. However, GO-CFAR suffers from detection loss,
while the false alarm of SO-CFAR has increased. VI-CFAR [26] shows a good performance
by utilizing the special clutter samples of the background window to estimate the detection
threshold, but the detection probability degrades in heterogeneous clutter. In [27], the
statistics-truncated CFAR detector is proposed, which raises the detection probability, but
the false alarm increases due to the low threshold resulting from the clutter with the re-
moval of high-intensity samples. In [28], the correlation between adjacent pixels and CFAR
detection is combined to preserve target signals. Consequently, the parameters estimated
with the truncated sea clutter are smaller than those estimated with the real sea clutter,
resulting in a high false alarm rate. TS-LNCFAR [29] improves [27] and shows a better
detection performance. Its detection results are greatly affected by the truncation depth.
In [30], a feature group based on the invariant area ratio is designed to eliminate the capture
effect. However, the heterogeneous sea clutter deteriorates the detection probability. In [31],
an iterative censoring scheme is proposed, which censors the clutter samples iteratively
based on an automatically generated target feature map. However, it takes much time
to converge. NLM-CFAR [32] suppresses coherent speckle noise with non-local mean
filtering. However, the iterative determination of the proper non-local mean also needs
much time. Ray-CFAR [33] only utilizes the outermost samples of the detection window
for parameter estimation, ensuring that the signals do not overflow, but it still cannot
fully adapt to complex environments, resulting in ship target pixel loss. This is also a
common problem for CFAR detectors. IB-CFAR [34] uses spatial and intensity information
to detect ships. It shows a significant detection performance and robustness. However,
IB-CFAR heavily relies on the details of SAR images. For medium- or low-resolution SAR
images, its performance is weakened. OR-CFAR [35] raises the probability of detection in
multi-target backgrounds. It removes high-intensity clutter samples first and then uses
the remaining samples for parameter estimation and threshold calculation. However, the
detection window without a guard region cannot always adapt to complex environments.
Further, the probability of detection declines sharply for scenes with few sea clutter samples
around ships such as narrow waterways. In [36], a trimodal discrete (3MD) radar clutter
model is proposed based on the idea that sea texture can be statistically modeled as discrete
in nature instead of using continuous texture statistics. It achieves robust results and low
computational complexity according to computing the texture parameters.

It is known that a CFAR detector requires a clear clutter statistical model and a
specified PFA. And the detection results are strongly affected by outliers. Complex en-
vironments, such as multi-target areas, shores, and sea states, make the clutter statistical
model inconstant [37]. This situation makes CFAR detectors obtain inconstant detection
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performance. In order to raise SAR ship detecting probability and reduce the interference
from complex environments, a new SAR ship detector based on clutter intensity statistics
(CIS) is proposed.

3. Methods

Figure 2 shows the CIS detection flowchart and some detection details. CIS detection
contains two main parts: (1) adaptive detection threshold estimation using simple calcula-
tions, such as the standard deviation, mean, maximum intensity, and adjustment depth,
and (2) the detection rule. After a comparison with the adaptive threshold, the tested pixel
is determined as a ship pixel or a clutter. After all the pixels are examined, a binary image
containing ship targets only is the output.
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TP-CFAR [7] is described in Section 3.1 first. On the one hand, the CIS detector is
inspired by TP-CFAR. On the other hand, CFAR detection is briefly introduced using
TP-CFAR as an example. Sections 3.2 and 3.3 introduce the CIS detection methodology and
the detection rule, respectively.



Remote Sens. 2024, 16, 664 6 of 23

3.1. TP-CFAR Detector

For TP-CFAR, the adaptive threshold is calculated using the mean, standard deviation,
and scale factor. Let I be the clutter samples and I = {I1, I2, ···, IN−1, IN}. The mean and the
standard deviation are computed by

µ =
1
N

N

∑
i=1

Ii, (1)

σ = [
1
N

N

∑
i=1

(Ii − µ)2]

1/2

, (2)

where µ is the mean and σ is the standard deviation.
If the intensity of the tested pixel I satisfies formula (3), the tested pixel is considered

as a ship pixel; otherwise, it is considered a clutter pixel.

I ≥ T = κ · σ + µ, (3)

where T is the threshold and κ is the scale factor, which is calculated using the statistical
model of the clutter samples I.

The probability density function of I is supposed to obey Gaussian in TP-CFAR. When
a PFA is specified, κ can be deduced as

P f a =

+∞∫
κ

1√
2πσ

· exp

(
(I − µ)2

2σ2

)
= Θ(κ), (4)

where Θ (·) is the cumulative distribution function of the standard normal distribution. κ is
calculated using the inverse function of Θ (·).

3.2. CIS Detection

For the TP-CFAR detector, the PFA must be given, and the PDF of clutter distribution
should be consistent with Gaussian. However, the statistics of the outlier-contaminated
clutter suffer from instability. Meanwhile, outliers in sea clutter make it hard for TP-CFAR to
obtain constant detection performance against a fixed PFA. An outlier is the non-negligible
point that affects detection performance. Hence, the threshold estimation of the CIS detector
considers interference from outliers.

In the TP-CFAR algorithm, formula (3) shows the relationship between the mean, the
standard deviation of clutter samples, and the ship target. Inspired by it, the relation can
be expressed through an approximate signal-to-clutter ratio:

I − µ

σ
≥ κ, (5)

The maximum intensity ξ of outliers in the sea background window can be expressed as

ξ = max{I}, (6)

For the CIS detector, the pixels except for the test (or center) pixel or protection window
in a small detection window are collectively referred to as “clutter pixels”, although these
pixels may contain ship pixels.

Sea clutter with outliers and ship targets are inhomogeneous, and the intensity values
are different. It is known that ξ is larger than µ, which is calculated using I. As mentioned
in [1], the ship’s target intensity is larger than the average intensity of the sea clutter around
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it. Let Is be a ship pixel and Is > µ. Ideally, Is > ξ, and then Is − µ can be divided into many
equal parts, and each one is 0 < Ωk ≤ 1 and Ω1 = . . . = Ωn. Expression (5) can be deduced as

κ′ =
Is − µ

σ
=

µ + Ω1 + · · ·+ Ωn − µ

σ
=

ξ − µ + Ωk + · · ·+ Ωn

σ
, (7)

where 1 < k ≤ n and κ’ is the ideal threshold factor. Note that the ideal situation, Is > ξ,
is discussed, but the final formula also handles non-ideal situations. It is proved in the
complex scene experiments of Section 4. Computing the geometric average of (7), the new
inequality is described as

ξ − µ + Ωk + · · ·+ Ωn

σ
> (

ξ − µ

σ
·

n

∏
l=k

Ωl
σ
)

1
n−k+2 = (

ξ − µ

σ
)

1
ν

· (Ωk
σ

)
1− 1

ν

, (8)

where v represents n − k + 2.
v is hard to determine simply, which can be understood that v is determined while

µ + (k − 1) · Ωk-1 is approximately equal to ξ. Therefore, (8) is proceeded to deduce until
eliminating the uncertain term of Ωk. By computing the geometric average of the terms in
(Is − µ)/σ and Ωk/σ, (9) can be obtained:

(
ξ − µ

σ
)

1
ν

· (Ωk
σ

)
1− 1

ν

< (
ξ − µ

σ
)

2
ν

+ (
Ωk
σ

)
2− 2

ν

, (9)

The larger the n, the smaller the Ωk. If Ωk is small enough, it can be satisfied that the
ratio of Ωk to σ is less than 1.0. In real clutter samples, high-intensity outliers make the
sea background inhomogeneous, and their intensity values are higher than the mean of
sea clutter. Then, the standard deviation of the outlier-contaminated clutter tends to be far
larger than 1.0. Therefore, the situation that the ratio of Ωk to σ is less than 1.0 exists. Then,
formula (9) can be deduced as

(
ξ − µ

σ
)

2
ν

+ (
Ωk
σ

)
2− 2

ν

< (
ξ − µ

σ
)

1
λ

+ 1, (10)

where λ represents v/2 and 1 ≤ λ.
Formula (9) is obtained by the calculation of the geometric average twice. The un-

certain relationship between (8) and (10) is established. It eliminates the outliers whose
intensities are close to Is, which is discussed in Section 5.

Formula (10) eliminates the uncertain term of Ωk to raise the computing efficiency.
Formulas (8) and (10) express similar physical meanings: the ratio of signal to clutter and
the ratio of high-intensity outlier to clutter, respectively. Thus, by combining (7) and (10),
the ideal formula (11) can be obtained:

κ′ =
Is − µ

σ
= (

ξ − µ

σ
)

1
λ

+ 1, (11)

where λ is a global parameter determined by Monte Carlo simulation experiments. When
(Is – µ)/σ > κ′, Is is considered a ship pixel. Therefore, the CIS detection threshold Tc is
described as

Tc = κ′ · σ + µ = [(
ξ − µ

σ
)

1
λ

+ 1] · σ + µ. (12)

The adjustment factor λ is an adjustor by which Tc can be changed. Therefore, the fact
can be seen that the PFA and clutter statistical model are not prerequisites for the adaptive
threshold estimation of the CIS detector. The only thing to consider is the adjustment factor
λ. This means that the complexity of the threshold estimation has decreased.
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3.3. The Rule of the CIS Detection

The main steps of CIS are elaborated below:

1. The adjustment factor λ is initialized. The size of the test window is determined
according to the sizes of the ships in a SAR image.

2. The parameters µ, ξ, and σ of clutter samples in the background window are computed
according to formulas (1), (2), and (6).

3. The adaptive threshold Tc is estimated using the CIS model, as shown in formula (12).
Tc is used to separate the ship pixels from sea clutter in a local window.

4. The intensity value of the tested pixel is compared with Tc. The rule of CIS detection is

I
H1
>
≤
H0

Tc = σ · [( ξ − µ

σ
)

1
λ

+ 1] + µ. (13)

where H1 represents the situation that the detected pixels are ship pixels. Meanwhile, H0
represents the opposite situation.

If I > Tc, the detected pixel is regarded as a ship pixel; otherwise, it is regarded
as clutter.

5. If all the pixels are detected, the final detection result is the output. Otherwise, the
next pixel is moved it and steps from (2) to (4) are repeated.

4. Experiment
4.1. Experiment Introduction

Figure 3a shows the multi-target scene where 21 ship targets of different sizes distribute
densely and with sidelobes. Figure 3b exhibits three ship targets on a narrow waterway
and the shore background. Figure 3c shows one ship target on the sea and three ship targets
near the breakwaters.
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Region Shanghai, the Suez Canal, etc. 
Band C-band 

Imaging mode Interferometric wide swath (IW) mode 
Resolution 2.3 m × 14.0 m (Rg. × Az.) 

Figure 3. Pseudo-color SAR images from the DSSDD dataset: (a) multi-target scene, (b) shore scene,
and (c) breakwater scene.

Some SAR images from DSSDD [4] with typical scenes are used to validate and analyze
the superiority of the proposed CIS detector in complex environments such as multi-target,
shore, and breakwater. The DSSDD dataset consists of pseudo-color enhanced Sentinel-1
imagery. Dual vertical (DV) polarization images in Sentinel-1 IW mode were selected as
samples to construct pseudo-color enhancement. Each pixel was obtained by taking |C11|,
|C12|, and |C22| elements of polarimetric covariance matrix C as red, green, and blue
channels, respectively.

The images are shown in Figure 3. The detailed information of the original Sentinel-1
imagery and DSSDD dataset are listed in Tables 1 and 2, respectively.
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Table 1. The basic information of the original Sentinel-1 imagery.

Information The Original Sentinel-1 Imagery

Region Shanghai, the Suez Canal, etc.
Band C-band

Imaging mode Interferometric wide swath (IW) mode
Resolution 2.3 m × 14.0 m (Rg. × Az.)

Polarization VV + VH
Number of looks Single
Production level L1A

Table 2. The basic information of the DSSDD dataset.

Information DSSDD

Open date 3 November 2021
Enhancement Pseudo-color

Quantity 1236
Image size 256 × 256 pixels

Channel (R,G,B) |C11|, |C12|, |C22| elements of polarimetric covariance matrix
Bit depth 8-bit, 16-bit

According to [35], OR-CFAR shows the robustness of ship detection in a multi-target
environment and performs better than other similar methods. Thus, it is selected as the
reference method. The CIS detector is inspired by TP-CFAR, so it is also chosen. Three
classic and cell-average-based CFAR detectors, such as CA-CFAR, SO-CFAR, and GO-
CFAR, are picked for comparison with the CIS detector. In addition, LN-CFAR based on
the Log-normal model and Ray-CFAR based on the Rayleigh model are also selected as the
reference methods.

The experimental parameters are described as below:

1. The structures of the detection windows of the reference methods are listed in Table 3.
The size of the detection window is set according to the sizes of the ships.

2. According to [35], a false-alarm rate of 0.00001 is set for all the CFAR detectors, and
the truncation depth γ of OR-CFAR is 2.0.

3. The symmetric image block is used to detect the edge pixels of a SAR image.
4. The adjustment factor λ of CIS is set to 1.0, 2.0, and 3.0. The aim is to investigate the

detection performance of CIS under different adjustment factors.

Table 3. The detection windows of the reference methods.

Method Test Guard Background

CA-CFAR 1 × 1 21 × 21 41 × 41
SO-CFAR 1 × 1 21 × 21 41 × 41
GO-CFAR 1 × 1 21 × 21 41 × 41
TP-CFAR 1 × 1 21 × 21 41 × 41
LN-CFAR 1 × 1 21 × 21 41 × 41
Ray-CFAR 1 × 1 40 × 40 41 × 41
OR-CFAR 1 × 1 -- 41 × 41

CIS 1 × 1 21 × 21 41 × 41

4.2. Detection Results

Figures 4–6 illustrate the experimental results of SAR ship detection in different scenes.
Figure 4a shows the SAR ship image with the size of 256 × 256 pixels, as well as

more than 20 densely distributed ships in different sizes and the case of azimuth ambiguity.
Figure 4b shows the ground truth. Most of the detectors detect all the ship targets except
TP-CFAR, as shown in Figure 4f. The ships missing in the TP-CFAR detection results are
the ones affected heavily by azimuth ambiguity. It can be explained that the removal of
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the ship targets results from large thresholds, which are obtained through the inaccurate
parameter estimation of clutter samples contaminated by the azimuth ambiguity and the
dense ships. CA-CFAR, GO-CFAR, LN-CFAR, Ray-CFAR, and OR-CFAR preserve all ships,
but detection loss exists in the detection results due to their high thresholds. CA-CFAR,
GO-CFAR, and LN-CFAR use the cell-average method to estimate parameters. GO-CFAR
divides the background window into four regions and selects the maximum mean of these
regions as a multiplier with the calculated CFAR detection threshold factor. Regardless of
the selection of mean, maximum, or minimum mean, the threshold estimation is influenced
severely by the high-intensity outliers in the clutter samples. If these statistical parameters
are excessively large, the threshold tends to be inevitably large. This situation causes
detection probability degradation. For Ray-CFAR when using few samples to calculate the
parameters, the thresholds are often underestimated, resulting in the ship pixels being more
than the ground truth; meanwhile, a low PFA can make some local detection thresholds
large, causing missing ship pixels such as the ship at the bottom of Figure 4h. The detection
results of OR-CFAR are similar to Ray-CFAR. It uses truncated clutter to estimate the
adaptive threshold. However, the threshold seems unstable, resulting in more or fewer ship
pixels than the ground truth. It can be deduced that the threshold estimation is related to
the outliers in the truncated clutter. If high-intensity clutter samples are removed massively,
the threshold calculated using the remaining clutter samples is low; otherwise, it is large. It
can be concluded that the truncation depth affects the accuracy of the threshold estimation
of OR-CFAR. The detection results of CIS against different adjustment factors, shown in
Figure 4j–l, are close to the ground truth except in Figure 4j. It can be explained that its
threshold estimation can overcome the interference from multi-targets, preserving the
true target pixels. Although the isolated noise points are left in the detection results, they
can be easily removed by feature extraction and classification [38,39], deep learning [40],
morphology filtering, etc. It is also seen that a low adjustment factor results in detection loss.
Thus, an appropriate adjustment factor is critical, which is discussed in the next section.
Figure 4m,n show the filtering results by the open operator against Figure 4k,l, respectively.

Figure 5a shows that the ships are in a shore-dominated scene with narrow waterways.
The ground truth is shown in Figure 5b. Very few sea clutter samples are around the two
ships. On the contrary, shore pixels represent the most pixels in the background window.
The statistical characteristics of such background samples are inconsistent with that of sea
clutter. The parameters, such as mean and standard deviation, are also larger than the
actual ones of sea clutter, which results in a large threshold. Under these situations, the
ship targets are often removed from the detection results. The reason is that the threshold
is overestimated due to high-intensity outliers. The results of the CFAR detection prove
the above analysis. Most of the detectors eliminate the two ships, as shown in Figure 5c–i.
Only CIS can detect both ships when λ is equal to 2.0 or 3.0. The threshold estimation of the
CIS detector uses outliers in the clutter samples. In this way, it can reduce the interference
from outliers and raise the detection probability. Although CIS is irrelevant to the statistical
model of sea clutter samples, it can still achieve, or even surpass, the detection performance
of CFAR-based detectors.

As a further analysis, the detection threshold of CIS is calculated using the maximum
intensity outlier. It can be deduced that such a threshold can distinguish the targets from the
outliers to a large extent. Meanwhile, most of the outliers are eliminated, and the remaining
are decomposed into discrete noise points, as shown in Figure 5k,l. In high-resolution
SAR imagery, the ship target consists of many high-intensity pixels. The isolated noise
points can be removed easily without heavy influence on the ship targets, as shown in
Figure 5m,n.
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(i) OR-CFAR with γ = 2.0; (j) CIS with λ = 1.0; (k) CIS with λ = 2.0; (l) CIS with λ = 3.0; (m) filtered 
on (k) through the open operator of morphology; and (n) filtered on (l) through the open operator 
of morphology. The PFA of 1.0 × 10−5 is set for all CFAR detectors. 
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Figure 4. A comparison of the detection performance on a multi-target scene: (a) Figure 3a; (b) ground
truth; (c) CA-CFAR; (d) SO-CFAR; (e) GO-CFAR; (f) TP-CFAR; (g) LN-CFAR; (h) Ray-CFAR; (i) OR-
CFAR with γ = 2.0; (j) CIS with λ = 1.0; (k) CIS with λ = 2.0; (l) CIS with λ = 3.0; (m) filtered on
(k) through the open operator of morphology; and (n) filtered on (l) through the open operator of
morphology. The PFA of 1.0 × 10−5 is set for all CFAR detectors.

Figure 6a,b show the shore scene and the ground truth, respectively. Three ships are
moored at the breakwater, and one is in the sea. The ship targets are absent or indiscernible
in the detection results of the CA-CFAR, GO-CFAR, TP-CFAR, LN-CFAR, and Ray-CFAR
detectors. The reasons are consistent with the analysis in the previous scenes: large thresh-
old due to incorrect parameter estimation. Figure 6i shows that all ship targets seem to
be detected by the OR-CFAR detector. Actually, most of the two ship pixels are missing;
meanwhile, the breakwater pixels close to the two ships are preserved. It is exposed that the
clutter truncation is non-ideal as many high-intensity pixels are left in the truncated clutter
and interfere with the threshold estimation. As a result, partial pixels of the ship targets
are discarded when compared with a large threshold. SO-CFAR performs well, but too
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many breakwater pixels are left in the detection results. Thus, a smaller PFA is needed to
generate a larger threshold. Nevertheless, an appropriate global PFA cannot be determined
simply and accurately. This situation is also a drawback of CFAR-based detectors. As for
the CIS detection results illustrated in Figure 6k,l, it is observed that the ships are almost
intact; meanwhile, the outlier pixels such as breakwater are removed massively, and the
residual points become isolated or dispersed. After morphology filtering, they are nearly
filtered out, as shown in Figure 6m,n.
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Figure 5. A comparison of the detection performance on the shore scene: (a) Figure 3b; (b) ground
truth; (c) CA-CFAR; (d) SO-CFAR; (e) GO-CFAR; (f) TP-CFAR; (g) LN-CFAR; (h) Ray-CFAR; (i) OR-
CFAR with γ = 2.0; (j) CIS with λ = 1.0; (k) CIS with λ = 2.0; (l) CIS with λ = 3.0; (m) filtered on
(k) through the open operator of morphology; and (n) filtered on (l) through the open operator of
morphology. The PFA of 1.0 × 10−5 is set for all CFAR detectors.
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The performance of CIS detection shown in Figure 6l is worse than in Figure 6k,l
due to a low adjustment factor λ. The lower the λ, the higher the threshold, which can be
deduced according to formula (12). Thus, an adjustment factor is the key point for the CIS
detector, which is analyzed in Section 4.3.
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Figure 6. A comparison of the detection performance on the breakwater scene: (a) Figure 3c; (b) ground
truth; (c) CA-CFAR; (d) SO-CFAR; (e) GO-CFAR; (f) TP-CFAR; (g) LN-CFAR; (h) Ray-CFAR; (i) OR-
CFAR with γ = 2.0; (j) CIS with λ = 1.0; (k) CIS with λ = 2.0; (l) CIS with λ = 3.0; (m) filtered on
(k) through the open operator of morphology; and (n) filtered on (l) through the open operator of
morphology. The PFA of 1.0 × 10−5 is set for all CFAR detectors.
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4.3. Analysis
4.3.1. The Analysis of the Optimal Adjustment Factor

According to the analysis of the detection results in Section 4.2, it can be concluded
that an optimal adjustment factor determines the performance of the CIS detection.

In order to evaluate the performance of CIS detection under different adjustment
factors, the clutter data are simulated with the size of 100 × 100 pixels. Furthermore, four
common clutter statistical models are used to simulate sea clutter, whose parameters are
shown in Table 4.

Table 4. The parameters of 4 clutter statistical models.

Model Mean Standard Deviation

Log-normal 4.1 1.4
Gamma 5.7 2.9
Weibull 3.6 1.8

Rayleigh 8.2 4.3

When a ship target pixel is detected, other ship targets in the detection window are
regarded as outliers. Therefore, a multi-target environment can be simulated by adding
multiple targets to the clutter. The target samples are generated from a uniform distribution,
of which intensity is in the range of 1.2 to 3.0 times the maximum value of the clutter-
simulated data, and the clutter data are randomly replaced by these targets. The target
interference ratio is described as the fraction of the target samples in all clutter samples.
Considering that the width of the detection window is 40 pixels (excluding the center pixel),
the probability that there is only one outlier in one-dimensional data is 2.5%. Then, for
two-dimensional data composed of such one-dimensional data, more than one pixel can be
guaranteed to exist within the detection window. Thus, the target interference ratio of 2.5%
is implemented in the simulated clutter samples.

The probability of detection (PD) and the false alarm rate (FAR) can be calculated
according to [41]. The PD is defined as the proportion of the number of pixels accurately
determined as ship pixels in the total ship pixels. The FAR is defined as the proportion of
the number of pixels falsely determined as ship pixels in the total clutter. The experiments
are implemented against different adjustment factors, of which the range is from 1.0 to 10.0.
The plots of CIS detection are shown in Figure 7.

Figure 7a,e,i,m show the histogram statistics of the four clutter-simulated samples.
The fitting results are consistent with the four preset models. Figure 7b,f,j,n exhibit the per-
formance of CIS detection under different λ for different clutter statistical models. The PD
becomes stable and high when λ is close to 3, 4, or 5, but the FAR also appears when λ > 3. In
summary, considering a high PD and a relatively lower FAR under different clutter statisti-
cal models, the statistical optimal adjustment factor of 3.0 is selected. Figure 7c,d,g,h,k,l,o,p
show the CIS detection results, which, for λ = 3.0, have higher PDs (white pixels) and lower
FARs (blue pixels) than the reference methods.

4.3.2. Detection Performance Analysis

Pixel accuracy (PA), pixel recall (PR), and pixel precision (PP) are used to analyze the
detection performance of the CIS detector. They are calculated as below, respectively,

PA =
TP + TN

TP + TN + FP + FN
, (14)

PR =
TP

TP + FN
, (15)

PP =
TP

TP + FP
. (16)
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where TP is the true ship pixel detected; TN is the true sea pixel detected; FP is the false
alarm pixel; and FN is the pixels mis-detected as clutter.
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Figure 7. Plots of CIS detection performance against different adjustment factors: (a,e,i,m) show
the simulated clutter distribution fitting; (b,f,j,n) exhibit PD and FAR performance; (c,g,k,o) are
the visualization of detection results when λ = 3.0; (d,h,l,p) are the detection results of LN-CFAR,
OR-CFAR, TP-CFAR, and Ray-CFAR against different PFAs of 0.001%, 0.1%, 1%, and 10% (red: missed
target points; blue: false alarm points).

Figures 4a, 5a, and 6a are selected to calculate these metrics. The PFAs are set to
0.001%, 0.1%, 1% for the CFAR methods. A comparison of the results is shown in Table 5.
For the three different scenes and the different PFAs, the proposed CIS exhibits outstanding
performance. CIS has high pixel accuracy and pixel recall; furthermore, the pixel precision
is the highest. The other detectors show different performances under the different PFA
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and scenes. The reference methods achieve inflated pixel accuracy due to the contribution
of the background pixels detected, but they generate many false-alarm ship pixels. This
can be seen based on the pixel precision of Figure 4a in Table 5. For complex scenes, such
as Figures 5a and 6a, the reference methods obtain low pixel recall and pixel precision. But
the CIS detector still achieves better performance than the others against complex scenes.
The CFAR detectors, such as CA-CFAR, TP-CFAR, LN-CFAR, Ray-CFAR, and OR-CFAR,
require different PFAs to detect ships accurately for different scenes, which reduces the
algorithm adaptability.

Table 5. Detection performance analysis under different scenes and PFAs.

Condition Method
Figure 4a Figure 5a Figure 6a

PA PR PP PA PR PP PA PR PP

PFA = 0.001%

CA-CFAR 97.9 86.2 60.8 99.8 0.0 0.0 99.0 45.9 29.8
SO-CFAR 97.4 99.3 57.5 99.8 0.0 0.0 96.4 99.1 15.5
GO-CFAR 97.7 71.7 65.5 99.8 0.0 0.0 99.2 7.28 9.97
TP-CFAR 98.5 69.2 56.2 99.8 0.0 0.0 99.2 5.24 7.36
LN-CFAR 98.6 92.5 56.1 99.6 0.0 0.0 98.9 30.8 21.5
Ray-CFAR 98.5 73.2 57.1 99.4 33.9 15.4 98.6 24.5 16.1

OR-CFAR (γ = 2.0) 97.3 95.7 39.1 97.4 20.3 2.9 92.9 32.7 4.3

PFA = 0.1%

CA-CFAR 96.9 99.3 53.3 99.8 0.7 1.3 98.2 91.3 26.2
SO-CFAR 95.8 100.0 45.4 99.3 6.2 3.9 94.7 100.0 11.0
GO-CFAR 97.1 81.6 55.8 99.8 0.0 0.0 98.8 14.2 12.6
TP-CFAR 96.3 77.3 48.2 99.7 14.1 17.6 98.9 9.7 10.0
LN-CFAR 96.9 93.7 53.1 99.5 2.67 2.37 98.7 48.8 24.9
Ray-CFAR 98.4 83.7 53.4 98.3 69.2 9.9 97.6 68.7 18.6

OR-CFAR (γ = 2.0) 96.8 95.8 35.7 96.9 21.2 2.5 91.9 37.3 4.1

PFA = 1%

CA-CFAR 95.5 99.7 43.8 99.46 63.8 25.1 96.8 97.3 17.0
SO-CFAR 93.8 100.0 35.6 97.4 67.4 6.8 93.1 100 8.6
GO-CFAR 96.4 89.6 48.6 99.7 27.3 27.7 98.5 46.4 21.5
TP-CFAR 95.7 89.3 43.7 99.1 49.5 15.2 98.4 33.1 17.5
LN-CFAR 95.6 94.8 43.5 98.5 51.0 9.54 97.6 96.4 21.6
Ray-CFAR 93.3 89.8 49.3 95.8 75.0 4.43 95.1 88.9 11.3

OR-CFAR (γ = 2.0) 90.5 95.3 25.8 95.0 21.3 1.59 87.6 71.3 4.1

CIS (λ = 3.0) 98.2 97.5 63.3 99.8 71.1 52.5 99.3 74.0 43.1

To further analyze the performance of the CIS detector, ROC curves are drawn, as
shown in Figure 8. Figure 4a is selected to calculate the analysis metrics TPR (same as PR)
and FPR (false positive rate). The expression of FPR is below

FPR =
FP

FP + TN
. (17)

where TPR is the recall or true positive rate, and FPR is the false alarm rate.
For CFAR-based methods, the range of PFAs is from 1.0 ×10−10 to 1.0. The range of

the parameter λ of the CIS detector is from 0.1 to 5. Other parameters are the same as the
experiment in Section 4.2.

According to Figure 8, it can be seen that the ROC performance of the CIS detector is
better than other reference methods. The CIS detector obtains a high PR with a low FPR and
rises up to a stable state quickly. Meanwhile, the reference methods show differentiated
results. This indicates that not only is the probability of CIS detection higher than the
reference methods, but it also achieves fewer false alarms.
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4.3.3. Analysis of the Structure of the Detection Window

The detection performance of the CIS detector is also related to the structure of the
detection window. For most of the methods based on CFAR, a detection window is often
composed of a test window, a guard window, and a background window. In this section,
the impact of different windows on detection performance is analyzed.

Ray-CFAR, OR-CFAR, and other CFAR detectors have different structures of detection
windows. Therefore, the detection performance of the CIS detector is analyzed against
their three different windows, as shown in Table 6. Structure (1) does not have a guard
window but has a large amount of background clutter. Meanwhile, structure (3) has a large
guard window but few clutter samples. Structure (2) is a traditional detection window.
Figures 4a and 6a are selected as the test images. The final detection results are shown in
Figure 9.

Table 6. The structure of the detection window.

Method No. Test Guard Background

CIS
(1) 1 × 1 -- 41 × 41
(2) 1 × 1 21 × 21 41 × 41
(3) 1 × 1 40 × 40 41 × 41

For the different windows described in Table 6, all the ship targets are accurately
detected by CIS. This proves that CIS is less affected by the different structures of the
detection window. For structures (1), (2), and (3), the other methods show different ship
pixel loss. Comparing structure (1) with structure (2), the detection results against structure
(2) are better than the other structures. It can be explained that parts of the high-intensity
ship targets, without the protection of the guard window, overflow into the background
clutter samples, which results in overestimated thresholds. Compared with structure (3),
structure (2) preserved the integrity of the ship targets better. The reason is that the pa-
rameters calculated using small samples, such as the mean and standard deviation, are
affected much more than those calculated using large ones. Based on the analysis of the
experimental results, it can be determined that CIS achieves a better performance than
other methods under different structures.
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4.3.4. Computational Efficiency Analysis

Time consumption is one of the important indicators for evaluating the performance of
an algorithm. In this section, the proposed CIS is compared with other reference methods
in terms of time. This experiment is carried out on a desktop computer with a Core (TM)
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i3-2120 CPU, 8 GB RAM, and the 64-bit Windows 7 operating system. The CIS detector is
developed using MATLAB (R2014b). Table 7 lists the time consumed by the CIS and the
CFAR-based detectors in Figures 4a, 5a, and 6a.

All the methods except OR-CFAR are less time-consuming than the simple calcula-
tions. CIS only needs simple processing such as mean, standard deviation, and maximum
intensity of sea clutter. Therefore, the computational efficiency of CIS is close to the two-
parameter-based CFAR detectors such as TP-CFAR, LN-CFAR, and Ray-CFAR. OR-CFAR
spent a relatively long time on the three main steps of truncation clutter, parameter estima-
tion, and adaptive threshold calculation. In addition, CFAR detectors rely on the PDF of sea
clutter. The PDF is determined by the clutter statistical model. It is assumed that the whole
SAR image and any local sea clutter obey the same statistical model. In fact, the local clutter
statistical model may differ from the global one [37]. If clutter statistics are implemented
on each local sample, the processing time will be quite long. On the contrary, the proposed
CIS detector results in less time consumption due to simple parameter statistics.

Table 7. Computational time of the CIS and CFAR detectors.

Method
Time (s)

Figure 4a Figure 5a Figure 6a

CA-CFAR 3.16 3.19 3.27
SO-CFAR 5.71 5.49 5.49
GO-CFAR 5.34 5.76 5.29
TP-CFAR 4.34 4.36 4.38
LN-CFAR 4.71 4.49 4.51
Ray-CFAR 4.43 4.41 4.74
OR-CFAR 12.0 11.95 12.62

CIS 4.45 4.38 4.45

5. Discussion
5.1. Size of the Detection Window

The previous section analyzes the impact of the structure of the detection window. This
section discusses the impact of the size of the detection window. Actually, the parameters
are calculated using the clutter samples in the background window, which is part of the
detection window shown in Table 3. To avoid confusion, the detection window is shown
instead of the background window. The size of the detection window is related to the
number of clutter samples. Different clutter samples can lead to different statistical results.

Figure 10 shows the experimental results of CIS, OR-CFAR, and Ray-CFAR detection
against Figures 3a and 5a. The range of the size of the detection window is from 23 to
65 pixels with a step of 2.
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The detection performance curves of the CIS detector converge quickly, and both
show the same trend. It can be determined that CIS is hardly affected by the changes in
clutter samples resulting from the different sizes of the detection window. At the same
time, OR-CFAR and Ray-CFAR exhibit fluctuations and instability.

5.2. Analysis of Large-Scale Images

Large-scale images have more complex scenes, which can be used to better examine
the performance of the CIS detector. A high-resolution SAR image with 800 × 800 pixels
from the HRSID dataset [42] is shown in Figure 11. The image is complex for ship detection,
including shore, breakwater, noise, and other highlighted pixels. There are many densely
distributed ships of different sizes and large areas without ships in the image.
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Compared with the ground truth, most of the ships are detected by the CIS detector,
although some false alarm pixels appear. OR-CFAR obtains few ship pixels, which means
the PD is quite low. For the CIS detector, the PD is higher than that of OR-CFAR, but ship
pixel loss still exists, and some adjacent ships are detected as one. This will be regarded as
the key problem to improve in the future.

6. Conclusions

In this paper, a SAR ship detector based on clutter intensity statistics (CIS) is proposed.
CIS is used to design an adaptive threshold estimation algorithm that is irrelevant to PFA
and traditional sea clutter statistical models and is only dependent on the adjustment factor.
The threshold estimation of the CIS detector considers high-intensity outliers, the mean,
and the standard deviation. In this way, it alleviates interference from outliers effectively in
complex environments such as breakwaters, shores, narrow waterways, and multi-target
areas. Based on the quantitative analysis of the experimental results against real SAR and
simulated data, the CIS detection performance outperforms the reference methods in terms
of detection precision and recall. As for other aspects, CIS is insensitive to the structure
and size of the detection window as well as being simple and efficient. To conclude, the
proposed CIS exhibits a better comprehensive performance than other CFAR detectors.

Author Contributions: Conceptualization and software, M.L.; methodology and validation, B.Z. and
H.M.; writing—original draft preparation, M.L.; writing—review and editing, B.Z. and H.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62027801 and the Research Foundation of the Key Laboratory of Spaceborne Information
Intelligent Interpretation.

Data Availability Statement: The DSSDD datasets presented in this paper are available at https:
//github.com/liyiniiecas/A_Dual-polarimetric_SAR_Ship_Detection_Dataset, accessed on 3 Novem-
ber 2021.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ai, J.; Qi, X.; Yu, W.; Deng, Y.; Liu, F.; Shi, L. A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in

SAR images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 806–810. [CrossRef]
2. Lin, C.; Tang, S.; Zhang, L.; Guo, P. Focusing High-Resolution Airborne SAR with Topography Variations Using an Extended BPA

Based on a Time/Frequency Rotation Principle. Remote Sens. 2018, 10, 1275. [CrossRef]
3. Dudczyk, J.; Kawalec, A. Optimizing the minimum cost flow algorithm for the phase unwrapping process in SAR radar. Bull. Pol.

Acad. Sci. Tech. Sci. 2014, 62, 511–516. [CrossRef]
4. Hu, Y.; Li, Y.; Pan, Z. A Dual-Polarimetric SAR Ship Detection Dataset and a Memory-Augmented Autoencoder-Based Detection

Method. Sensors 2021, 21, 8478. [CrossRef]
5. Raghavan, R.S. CFAR Detection in clutter with a Kronecker covariance structure. IEEE Trans. Aerosp. Electron. Syst. 2017, 53,

619–629. [CrossRef]
6. Liu, Y.; Zhang, S.; Suo, J.; Zhang, J.; Yao, T. Research on a New Comprehensive CFAR (Comp-CFAR) Processing Method. IEEE

Access 2019, 7, 19401–19413. [CrossRef]
7. Crisp, D.J. The state-of-the-art in ship detection in synthetic aperture radar imagery. Org. Lett. 2004, 35, 2165–2168.
8. Oliver, C. A Model for non-Rayleigh scattering statistics. Opt. Acta Int. J. Opt. 1984, 31, 701–722. [CrossRef]
9. Gu, X.; Fu, K.; Qiu, X. Basics of SAR Image Interpretation; Science Press: Beijing, China, 2017.
10. Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic censoring for target

detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1685–1697. [CrossRef]
11. Qin, X.; Zhou, S.; Zou, H.; Gao, G. A CFAR detection algorithm for generalized gamma distributed background in high-resolution

SAR images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 806–810. [CrossRef]
12. Liao, M.; Wang, C.; Wang, Y.; Jiang, L. Using SAR Images to Detect Ships from Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2008, 5,

194–198. [CrossRef]
13. Mao, Y.; Yang, Y.; Ma, Z.; Li, M.; Su, H.; Zhang, J. Efficient low-cost ship detection for SAR imagery based on simplified U-Net.

IEEE Access 2020, 8, 69742–69753. [CrossRef]
14. Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention receptive pyramid network for ship detection in SAR images. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [CrossRef]

https://github.com/liyiniiecas/A_Dual-polarimetric_SAR_Ship_Detection_Dataset
https://github.com/liyiniiecas/A_Dual-polarimetric_SAR_Ship_Detection_Dataset
https://doi.org/10.1109/LGRS.2010.2048697
https://doi.org/10.3390/rs10081275
https://doi.org/10.2478/bpasts-2014-0055
https://doi.org/10.3390/s21248478
https://doi.org/10.1109/TAES.2017.2651599
https://doi.org/10.1109/ACCESS.2019.2897358
https://doi.org/10.1080/713821561
https://doi.org/10.1109/TGRS.2008.2006504
https://doi.org/10.1109/lgrs.2012.2224317
https://doi.org/10.1109/LGRS.2008.915593
https://doi.org/10.1109/ACCESS.2020.2985637
https://doi.org/10.1109/JSTARS.2020.2997081


Remote Sens. 2024, 16, 664 23 of 23

15. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

17. Chen, H.; Zhang, F.; Tang, B.; Yin, Q.; Sun, X. Slim and Efficient Neural Network Design for Resource-Constrained SAR Target
Recognition. Remote Sens. 2018, 10, 1618. [CrossRef]

18. Wang, S.; Cai, Z.; Yuan, J. Automatic SAR Ship Detection Based on Multifeature Fusion Network in Spatial and Frequency
Domains. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4102111. [CrossRef]

19. Zhou, Z.; Cui, Z.; Cao, Z.; Yang, J. Feature-transferable pyramid network for dense multi-scale object detection in SAR images. In
Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia,
17–22 July 2022; pp. 647–650.

20. Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 8983–8997. [CrossRef]

21. Li, L.; Lv, M.; Jia, Z.; Ma, H. Sparse Representation-Based Multi-Focus Image Fusion Method via Local Energy in Shearlet Domain.
Sensors 2023, 23, 2888. [CrossRef]

22. Finn, H.M.; Johnson, R.S. Adaptive detection mode with threshold control as a function of spatially sampled clutter-level
estimates. RCA Rev. 1968, 29, 414–464.

23. Rohling, H. Radar CFAR Thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 1983, 19,
608–621. [CrossRef]

24. Hansen, V.G.; Sawyers, J.H. Detectability loss due to “greatest of” selection in a cell-averaging CFAR. IEEE Trans. Aerosp. Electron.
Syst. 1980, 16, 115–118. [CrossRef]

25. Trunk, G.V. Range resolution of targets using automatic detectors. IEEE Trans. Aerosp. Electron. Syst. 1978, 14, 750–755. [CrossRef]
26. Smith, M.E.; Varshney, P.K. Intelligent CFAR processor based on data variability. IEEE Trans. Aerosp. Electron. Syst. 2000, 36,

837–847. [CrossRef]
27. Tao, D.; Anfinsen, S.N.; Brekke, C. Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Trans.

Geosci. Remote Sens. 2016, 54, 117–134. [CrossRef]
28. Ai, J.; Yang, X.; Zhou, F.; Dong, Z.; Jia, L.; Yan, H. A Correlation-based joint CFAR detector using adaptively-truncated statistics in

SAR imagery. Sensors 2017, 17, 686. [CrossRef]
29. Ai, J.; Yang, X.; Song, J.; Dong, Z.; Jia, L.; Zhou, F. An Adaptively truncated clutter-statistics-based two-parameter CFAR Detector

in SAR imagery. IEEE J. Ocean. Eng. 2018, 43, 267–279. [CrossRef]
30. Leng, X.; Ji, K.; Xing, X.; Zhou, S.; Zou, H. Area ratio invariant feature group for ship detection in SAR imagery. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2018, 11, 2376–2388. [CrossRef]
31. Cui, Y.; Zhou, G.; Yang, J.; Yamaguchi, Y. On the iterative censoring for target detection in SAR images. IEEE Geosci. Remote Sens.

Lett. 2011, 8, 641–645. [CrossRef]
32. Chang, J.; Zhao, J.; Li, N. Improved 2P-CFAR SAR ship detection method. Foreign Electron. Meas. Technol. 2021, 40, 7–12.
33. Wu, R. Two-Parameter CFAR Ship Detection Algorithm Based on Rayleigh Distribution in SAR Images. Preprints 2021, 2021120280.

[CrossRef]
34. Ai, J.; Cao, Z.; Mao, Y.; Wang, Z.; Wang, F.; Jin, J. An Improved Bilateral CFAR Ship Detection Algorithm for SAR Image in

Complex Environment. J. Radars 2021, 10, 499–515.
35. Ai, J.; Luo, Q.; Yang, X.; Yin, Z.; Xu, H. Outliers-Robust CFAR Detector of Gaussian Clutter Based on the Truncated-Maximum-

Likelihood-Estimator in SAR Imagery. IEEE Trans. Intell. Transp. 2020, 21, 2039–2049. [CrossRef]
36. Bocquet, S.; Rosenberg, L.; Gierull, C.H. Parameter Estimation for a Compound Radar Clutter Model With Trimodal Discrete

Texture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7062–7073. [CrossRef]
37. Sana, S.; Ahsan, F.; Khan, S. Design and implementation of multi-mode CFAR processor. In Proceedings of the 19th International

Multi-Topic Conf (INMIC), Islamabad, Pakistan, 2 February 2017.
38. Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A Novel hierarchical method of ship detection from spaceborne optical image based on

shape and texture features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446–3456. [CrossRef]
39. Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P. Synthetic aperture radar ship detection using haar-like features. IEEE Geosci.

Remote Sens. Lett. 2017, 14, 154–158. [CrossRef]
40. Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A Densely connected end-to-end neural network for

multiscale and Multiscene SAR ship detection. IEEE Access 2018, 6, 20881–20892. [CrossRef]
41. Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [CrossRef]
42. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance

Segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/rs10101618
https://doi.org/10.1109/TGRS.2023.3267495
https://doi.org/10.1109/TGRS.2019.2923988
https://doi.org/10.3390/s23062888
https://doi.org/10.1109/TAES.1983.309350
https://doi.org/10.1109/TAES.1980.308885
https://doi.org/10.1109/TAES.1978.308625
https://doi.org/10.1109/7.869503
https://doi.org/10.1109/TGRS.2015.2451311
https://doi.org/10.3390/s17040686
https://doi.org/10.1109/JOE.2017.2768198
https://doi.org/10.1109/JSTARS.2018.2820078
https://doi.org/10.1109/LGRS.2010.2098434
https://doi.org/10.20944/preprints202112.0280.v1
https://doi.org/10.1109/TITS.2019.2911692
https://doi.org/10.1109/TGRS.2020.2979449
https://doi.org/10.1109/TGRS.2010.2046330
https://doi.org/10.1109/LGRS.2016.2631638
https://doi.org/10.1109/ACCESS.2018.2825376
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/ACCESS.2020.3005861

	Introduction 
	Related Work 
	Methods 
	TP-CFAR Detector 
	CIS Detection 
	The Rule of the CIS Detection 

	Experiment 
	Experiment Introduction 
	Detection Results 
	Analysis 
	The Analysis of the Optimal Adjustment Factor 
	Detection Performance Analysis 
	Analysis of the Structure of the Detection Window 
	Computational Efficiency Analysis 


	Discussion 
	Size of the Detection Window 
	Analysis of Large-Scale Images 

	Conclusions 
	References

