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Abstract: Before 2008, China lacked high-coverage regional surface observation data, making it dif-

ficult for the China Meteorological Administration Land Data Assimilation System (CLDAS) to di-

rectly backtrack high-resolution, high-quality land assimilation products. To address this issue, this 

paper proposes a deep learning model named UNET_DCA, based on the UNET architecture, which 

incorporates a Dual Cross-Attention module (DCA) for multiscale feature fusion by introducing 

Channel Cross-Attention (CCA) and Spatial Cross-Attention (SCA) mechanisms. This model focuses 

on the near-surface 10-meter wind field and achieves spatial downscaling from 6.25 km to 1 km. We 

conducted training and validation using data from 2020–2021, tested with data from 2019, and per-

formed ablation experiments to validate the effectiveness of each module. We compared the results 

with traditional bilinear interpolation methods and the SNCA-CLDASSD model. The experimental 

results show that the UNET-based model outperforms SNCA-CLDASSD, indicating that the UNET-

based model captures richer information in wind field downscaling compared to SNCA-CLDASSD, 

which relies on sequentially stacked CNN convolution modules. UNET_CCA and UNET_SCA, in-

corporating cross-attention mechanisms, outperform UNET without attention mechanisms. Fur-

thermore, UNET_DCA, incorporating both Channel Cross-Attention and Spatial Cross-Attention 

mechanisms, outperforms UNET_CCA and UNET_SCA, which only incorporate one attention 

mechanism. UNET_DCA performs best on the RMSE, MAE, and COR metrics (0.40 m/s, 0.28 m/s, 

0.93), while UNET_DCA_ars, incorporating more auxiliary information, performs best on the PSNR 

and SSIM metrics (29.006, 0.880). Evaluation across different methods indicates that the optimal 

model performs best in valleys, followed by mountains, and worst in plains; it performs worse dur-

ing the day and better at night; and as wind speed levels increase, accuracy decreases. Overall, 

among various downscaling methods, UNET_DCA and UNET_DCA_ars effectively reconstruct the 

spatial details of wind fields, providing a deeper exploration for the inversion of high-resolution 

historical meteorological grid data. 
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1. Introduction 

The China Meteorological Administration’s high-resolution land data assimilation 

system (CLDAS3.0) [1] utilizes data assimilation techniques to integrate various meteor-

ological observation data, surface feature data, and outputs from numerical weather pre-

diction models to generate high-quality assimilation products with an hourly spatial res-
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olution of 1 km. However, before 2008, China lacked high-coverage regional surface ob-

servation data, making it difficult for CLDAS3.0 to directly backtrack high-resolution, 

high-quality land assimilation products. Spatial downscaling methods can address this 

issue. Currently, spatial downscaling methods mainly consist of dynamic downscaling 

and statistical downscaling. Dynamic downscaling is a physically-based method that sim-

ulates and resolves the dynamic processes of the atmospheric system to transform lower-

resolution meteorological data into higher-resolution data. Its advantages lie in strong 

physical interpretability and high predictability, but it incurs high computational costs 

and uncertainty at high resolutions [2–4]. Statistical downscaling, on the other hand, is a 

statistical method that establishes mapping relationships between high-resolution and 

low-resolution data to achieve spatial scale transformation from coarse to fine granularity. 

It is relatively simple, computationally efficient, and offers greater flexibility in terms of 

the study area and specific implementation schemes. Consequently, it has been widely 

applied in regional climate simulation and prediction [5–10]. 

In recent years, deep learning technology has provided new insights for improving 

the accuracy of statistical downscaling results. Among them, image super-resolution 

based on deep learning is an important image reconstruction technique in computer vi-

sion image processing. Its aim is to recover high-resolution images from low-resolution 

ones, with wide applications in medical imaging, satellite image remote sensing, video 

restoration, and 3D rendering [11–14]. Increasingly, research has demonstrated that end-

to-end image super-resolution algorithms can be effectively migrated to meteorological 

element downscaling to improve accuracy [15–18]. In 2017, Vandal et al. [19] first applied 

super-resolution technology to the field of meteorological downscaling, proposing a deep 

learning model named DeepSD based on stacked super-resolution convolutional neural 

network (SRCNN) modules. In experiments downsizing daily precipitation over the con-

tiguous United States, DeepSD exhibited better performance than traditional dynamic and 

statistical downscaling methods. In 2019, Mao Renzhi [20] addressed the shallow depth 

of the DeepSD network and its inability to handle non-integer scaling, proposing en-

hanced deep downscaling models VDSD (Very Deep Statistical Downscaling) and ResSD 

(Statistical Downscaling using Residual Convolutional Network). In experiments down-

sizing precipitation fields in the Chinese region, the results showed superior TS scores 

compared to DeepSD. In 2022, Tie Ruian et al. [21] innovatively introduced the CLDASSD 

model based on VDSD, incorporating global skip connections and attention mechanisms. 

Experimental results demonstrated the model’s stronger spatial reconstruction capabili-

ties in temperature fields over mountainous regions. In the same year, Tie Ruian [22] im-

proved the complexity, parameter count, and loss function of the CLDASSD model, pro-

posing the Light-CLDASSD model. Experimental results showed that all indicators out-

performed bilinear interpolation, DeepSD, and CLDASSD, demonstrating its ability to 

capture small-scale temperature field distribution characteristics in plains areas. In 2023, 

Shen Zhanfei [23] improved the modules of Light-CLDASSD and proposed an SNCA-

CLDASSD model utilizing shuffle-nonlinear activation blocks (SNBlock), Spatial Cross-Atten-

tion mechanisms (SCAMs), and content-aware feature rearrangement upsampling (CA-

RAFE). This model exhibited better robustness, effectively suppressed the checkerboard effect, 

and could reconstruct spatial texture details of 2 m temperature fields more clearly. 

The neural network structures in the above methods are all sequentially stacked 

CNN convolutional blocks, some of which incorporate residual modules, attention mech-

anisms, or improved downsampling and upsampling modules to enhance the perfor-

mance of the network model. The drawback of such models lies in the local nature of 

convolutions, which leads to the easy loss of feature information during downsampling, 

thereby failing to capture long-range dependencies between different features. Conse-

quently, scholars have attempted to improve the performance of downsizing based on the 

UNET architecture. For example, in 2020, Höhlein et al. [24] established the DeepRU 

model based on the UNET architecture, addressing the issue of traditional CNN algo-

rithms failing to reconstruct the wind field structure. In 2023, Dupuy et al. [25] utilized 
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the UNET architecture to downscale near-surface wind fields using two improved mean 

squared error (MSE) loss functions, with experimental results demonstrating optimal im-

provements in wind speed or direction, and combining the two models yielded the best 

overall performance. In the same year, Lin et al. [26] applied the UNET downsizing 

method and bias correction to develop the East Asia high-resolution dataset (CLIMEA-

BCUD), with validation results indicating that the dataset performs reasonably in clima-

tology, effectively simulating seasonal cycles and future changes. Numerous scientific ex-

periments have demonstrated that the multi-level feature extraction and skip connections 

of the UNET architecture can integrate features at large and small scales, thereby learning 

high-level semantic and low-level detailed features and aiding in the model’s understand-

ing of complex structures within images. 

Building upon prior research, this study considers the complex interaction between 

large-scale wind fields and small-scale boundary layers in ground wind fields. Therefore, 

the efficient extraction and integration of the large-scale and small-scale features of both 

wind fields and terrain significantly impact the accuracy of the spatial downsizing of wind 

fields. In order to better reconstruct the wind field, this paper focuses on how to better 

learn the relationship between wind fields and terrain at different scales. Therefore, based 

on the UNET architecture, this research is conducted. However, it also has some short-

comings. For instance, simple skip connections in encoder and decoder features can lead 

to semantic gaps. Inspired by achievements in the field of medical image segmentation 

[27–29], this paper introduces a Dual Cross-Attention module (DCA) based on the UNET 

architecture, incorporating Channel Cross-Attention (CCA) and Spatial Cross-Attention 

(SCA) mechanisms. This DCA module adaptively captures channel and spatial depend-

encies between multi-scale encoder features in sequence to address the semantic gaps be-

tween encoder and decoder features in the UNET architecture. This is aimed at better 

learning information at different spatial scales, establishing a deep learning model based 

on the UNET architecture and the Dual Cross-Attention mechanism (DCA). The goal is to 

achieve the spatial downsizing of near-surface 10 m wind field product data from 0.0625° 

(coarse scale) to 0.01° (fine scale) within the China Meteorological Administration Land 

Data Assimilation System (CLDAS), reconstructing high-resolution, high-quality land as-

similation products before 2008, and filling the historical gap in CLDAS3.0 before 2008. In 

this study, 80% of the data from 2020–2021 is used for training, 20% for validation, and 

data from 2019 is used for testing. Ablation experiments are conducted to verify the effec-

tiveness of each module, and comparisons are made with traditional bilinear interpolation 

methods and SNCA-CLDASSD, which has shown excellent performance in spatial 

downscaling of ground-level 2 m temperature. The results indicate that the UNET_DCA 

model, which incorporates a Dual Cross-Attention mechanism, exhibits the best perfor-

mance in terms of RMSE, MAE, and COR metrics. Furthermore, the UNET_DCA_ars 

model, which incorporates additional auxiliary information, achieves optimal perfor-

mance in the PSNR and SSIM indicators. 

Section 2 of this paper primarily delineates the study area, the dataset utilized, and 

the data processing methodology. Moving on to Section 3, a comprehensive exposition 

will be provided on the structure, principles, and functionalities of each module within 

the downscaling model. Subsequently, Section 4 will outline the testing scheme for the 

ablation experiment and the evaluation metrics employed to assess the model’s perfor-

mance. In Section 5, a meticulous analysis of the experimental results for each model will 

be presented. 

2. Data and Processing 

2.1. Study Area 

The study area (as shown in Figure 1) covers a longitude range of 109.0° to 116.0°E 

and a latitude range of 34.0° to 41.0°N, including Shanxi Province and its surrounding 



Remote Sens. 2024, 16, 1867 4 of 23 
 

 

areas. The region exhibits diverse ground features and complex terrain, including moun-

tains, plateaus, basins, river valleys, and plains. Most of the area is mountainous, primar-

ily located in the western and eastern parts of Shanxi Province. Plateaus are mainly dis-

tributed in the northwest of the study area and the southwest of Shanxi Province. Basins 

are found in the intermediate zone between the mountain ranges on both sides of Shanxi 

Province. River valleys are located in the region where Shanxi and Shaanxi provinces in-

tersect, along the Yellow River. The plains are situated in the southeastern part of the study 

area. The study area belongs to the warm temperate monsoon climate zone. The spring 

and winter seasons experience relatively strong winds, particularly the north wind during 

the winter. In the summer, the region is influenced by warm and moist air currents, re-

sulting in high temperatures and abundant precipitation. In contrast, winter is influenced 

by cold and dry air currents, leading to low temperatures and less precipitation. 

  

(a) (b) 

Figure 1. The figure on the left (a) illustrates the spatial arrangement of national meteorological sta-

tions (marked by red stars) and regional meteorological stations (depicted as green dots) within the 

study area. On the right (b), the figure displays the distribution of ground elevation across the research 

area, segmented into 49 distinct zones. Table 1 provides a breakdown of the terrain types correspond-

ing to each of these areas. 

Table 1. The numbers of the five terrains in the 49 small areas divided by the right figure in Figure 1. 

Topography Serial Number 

Mountains 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 22, 24, 26, 29, 32, 33, 36 

Highland 1, 2, 3, 39, 45, 46 

Basin 25, 31, 37, 38, 43, 44 

Valley 16, 23, 30 

Plain 20, 21, 27, 28, 34, 35, 40, 41, 42, 47, 48, 49 

Based on the characteristics of the underlying surface, the study area is segmented 

into five distinct terrains: mountain, plateau, basin, valley, and plain. Table 1 displays the 

numerical distribution of these small areas, corresponding to the five different terrains. 

2.2. Data 

Table 2 enumerates all the data employed in this study. The hourly data for the years 

2020 and 2021 are partitioned into training sets (80%) and validation sets (20%), with the 

data from 2019 designated for independent testing. Additionally, Digital Elevation Model 

(DEM) data are incorporated as auxiliary information during the training phase. Table 2 
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presents all the data used in this study. The hourly data from 2020 and 2021 were ran-

domly shuffled and divided into a training set (80%) and a validation set (20%), while the 

data from 2019 serve as an independent test set. During the training phase, a Digital Ele-

vation Model (DEM) was introduced as auxiliary data. The following sections provide a 

detailed introduction to each type of data. 

(1) CLDAS-V2.0 data [30], provided by the National Meteorological Information Center 

of the China Meteorological Administration, is coarse-resolution land surface data 

used as input for the model in this study. This data are generated by assimilating 

various ground and satellite observations using techniques such as the Spatial and 

Temporal Multiscale Analysis System (STMAS), Cumulative Distribution Function 

(CDF) matching, physical inversion, and terrain correction. It produces hourly, 

0.0625° spatiotemporal resolution products covering the Asian region (0–60°N, 70–

140°E). Compared to similar products, CLDAS-V2.0 data exhibit superior quality and 

has been widely applied in meteorological and environmental research fields. Each 

individual grid of the low-resolution wind field in the study area measures 112 × 112. 

(2) CLDAS-V3.0 product [1], high-resolution land surface data from the National Meteor-

ological Information Center of the China Meteorological Administration, is used as the 

label data for the model in this study. This product combines the weather forecast prod-

ucts from the European Centre for Medium-Range Weather Forecasts (ECMWF) with 

over 60,000 national and regional automatic weather station data deployed by the 

China Meteorological Administration using the Spatial and Temporal Multiscale Anal-

ysis System (STMAS) assimilation method. It generates hourly, 0.01° spatiotemporal 

resolution merged data on an equally spaced latitude-longitude land grid, providing 

more detailed and accurate land surface meteorological information such as tempera-

ture, humidity, wind speed, and precipitation with higher spatiotemporal resolution. 

The grid size of each high-resolution wind field label in the study area is 700 × 700. 

(3) DEM data, obtained from a joint mapping mission called the Shuttle Radar Topogra-

phy Mission (SRTM) conducted by the United States, Germany, and Italy’s national 

space agencies, is used in this study. The SRTM data used are version 4.1, with a reso-

lution of 0.01°, and it has been filled using a new interpolation algorithm to better repair 

the gaps in the SRTM terrain data [31]. The DEM grid size in the study area is 700 × 700. 

(4) Station observation data include data from 339 national-level automatic weather sta-

tions and 5903 regional-level automatic weather stations within the study area. The 

spatial distribution of the weather stations can be seen in Figure 1. 

Table 2. Descriptions of all types of datasets (all datasets are projected by equal latitude–longitude 

projection). 

Dataset Source Time Frame Spatial Resolution Spatial Range 

CLDAS-V2.0 NMIC 2019.01–2021.12 (hourly) 0.0625° 

109.0°~116.0°E 

34.0°~41.0°N 

CLDAS-V3.0 NMIC 2019.01–2021.12 (hourly) 0.01° 

SRTM(DEM)-V4.1 NASA - 0.01° 

Station Observation NMIC 2019.01–2021.12 (hourly) - 

2.3. Data Processing 

2.3.1. Grid Data 

The cleaning of gridded data aims to remove outliers, repair missing values, and cor-

rect errors to enhance the quality and reliability of the data. In this study, the following 

methods were employed to clean the gridded data: According to the meteorological obser-

vation data quality control standards for surface wind speed elements specified in the in-

dustry standard of the People’s Republic of China (QX/T 118-2020) [32], data points with 

wind speed values outside the range of 0 to 20 m/s were excluded. Data points were retained 

if the residual distribution between high-resolution and low-resolution data fell within the 

±3σ confidence interval. Finally, manual verification was performed on all the data to ensure 
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their accuracy. These cleaning methods were applied to improve the quality and reliability 

of the gridded data in accordance with the specified criteria. 

2.3.2. Station Observation Data 

The data from national weather stations within the observation network of the China 

Meteorological Administration are generally considered stable and reliable, often requiring 

minimal data cleaning. However, regional weather stations may experience data instability 

and larger errors, necessitating data cleaning procedures. By applying appropriate data 

cleaning techniques, the quality and reliability of the regional station data can be improved, 

ensuring its suitability for further analysis and applications. 

The steps for cleaning the regional station data in this study are as follows: Firstly, 

based on the meteorological observation data quality control standards for surface wind 

speed elements specified in the industry standard of the People’s Republic of China (QX/T 

118-2020) [32], data points with wind speed values outside the range of 0 to 20 m/s were 

retained. Next, the Mean Absolute Error (MAE) and correlation (COR) between the regional 

station data and CLDAS2.0 data were calculated. The statistical results, as shown in the first 

two columns of Figure 2, indicate that prior to data cleaning, the MAE values were distrib-

uted between 0.46 and 1.63, with the majority falling between 0.6 and 0.9. The COR values 

were distributed between 0.42 and 0.86, with the majority concentrated between 0.6 and 

0.75. Based on these statistical results, the regional station data with MAE and COR values 

occurring with a frequency distribution above 0.05 were retained. As shown in the third 

column of Figure 2, after data cleaning, the MAE and COR values were controlled within a 

reasonable range, effectively removing most of the outliers. Through these steps, the clean-

ing process improved the quality of the regional station data by removing outliers and en-

suring its reliability for further analysis. 

 

Figure 2. The first column displays statistical histograms for Mean Absolute Error (MAE) and Corre-

lation (COR) of regional site data; the second column shows the violin plots of MAE and COR for 

regional site data before data cleansing; the third column presents the violin plots of MAE and COR 

for regional site data after data cleansing. 
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3. Methodology 

3.1. Structure of the Model 

The near-surface wind field is the complex result of the interaction between the large-

scale wind field and the finer, horizontal-scale boundary layer. Therefore, the efficient ex-

traction of features at different scales significantly impacts the accuracy of spatial 

downscaling for the wind field. Numerous scientific experiments have demonstrated that 

the UNET architecture, with its multi-level feature extraction and skip connections, can 

effectively integrate information from different scales [33,34]. Hence, this study is con-

ducted based on the UNET architecture to explore its capabilities. 

The UNET model has shown outstanding performance in image segmentation tasks, 

particularly in tasks requiring precise detail segmentation. In recent years, experts have 

attempted to introduce it into the field of image super-resolution with good results [35–

38]. The traditional UNET architecture efficiently extracts multi-scale features through de-

sign, consisting of symmetric branches for encoding and decoding. The encoding branch 

comprises a series of convolutional and pooling layers, where convolutional layers extract 

feature representations of the image, gradually transforming the input image into high-

level feature representations, and pooling layers progressively reduce the size of feature 

maps while increasing the number of channels to capture context information at different 

scales. The decoding branch of UNET consists of a series of transposed convolutional lay-

ers and skip connections. Transposed convolutional layers, also known as deconvolution 

layers, restore the size of feature maps to the original image size, gradually generating 

segmentation results. Skip connections connect the feature maps from the encoding 

branch with corresponding layers in the decoding branch, preserving and locating data 

details that may have been lost during the encoding process. 

However, the traditional UNET architecture has some drawbacks: Firstly, the local 

nature of convolutions fails to capture long-range dependencies between different fea-

tures; secondly, simple skip connections between encoder and decoder features can cause 

semantic gaps. Inspired by research in the field of medical image segmentation [24–26], 

we propose a deep learning model for spatial downscaling of wind fields in the China 

Meteorological Administration Land Assimilation System (CLDAS) based on the UNET 

architecture, called UNET_DCA, incorporating a Dual Cross-Attention (DCA) mecha-

nism. This model, based on the UNET architecture, introduces a Dual Cross-Attention 

module (DCA) that sequentially captures channel and spatial dependencies between 

multi-scale encoder features to address the semantic gap between encoder and decoder 

features. By adaptively focusing on channels and spatial features, it facilitates information 

exchange and interaction between different positions, aiding the model in better under-

standing global context information and alleviating information loss issues caused by spa-

tial downscaling. The overall model structure, as shown in Figure 3, mainly includes the 

UNET basic architecture, the Multi-Scale Feature Embedding Module (MSFEM), and the 

Dual Cross-Attention (DCA) mechanism module, with each module detailed in subse-

quent sections. 
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Figure 3. The architecture diagram of the UNET_DCA network model. 

3.2. Multi-Scale Feature Embedding Module (MSFEM) 

The core purpose of the Multi-Scale Feature Embedding Module is to perform a se-

quence of operations on the feature maps derived from convolution operations at various 

levels in the encoder stage. This is carried out to align the feature maps with different 

spatial resolutions and semantic information, ensuring they possess consistent feature di-

mensions. 

The multi-scale feature embedding module is shown in Figure 3. The model input is the 

feature graph output by n encoders 𝐸𝑖 ∈ 𝑅
𝐶𝑖×

𝐻

2𝑖−1×
𝑊

2𝑖−1 of different scales in the coding stage. 

The graph size is 𝑃𝑖
𝑠 = 𝑃𝑠 2𝑖−1⁄  (i = 1, 2, …, n), and the feature map is first averaged, pooled, 

then flattened into a 2D sequence, and finally mapped to the same region of the encoder fea-

ture using 1 × 1 depth convolution, keeping the original channel size in the process. 

 𝑇𝑖 = 𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝐸𝑖
(Reshape(AvgPool2D𝐸𝑖

(𝐸𝑖))) (1) 

where 𝑇𝑖 ∈ 𝑅𝑃×𝐶𝑖 (i = 1, 2, …, n) represents the planarization image of the i encoder stage, 

where each Ti has the same size. 

3.3. Dual Cross-Attention Module (DCA) 

Illustrated in Figure 3, the DCA module is segmented into three primary stages. In 

the initial stage, the module leverages the output from the multi-scale feature embedding 

module as input and employs Channel Cross-Attention (CCA) to capture the interrelation 

between different channels within the feature map. Moving to the second stage, the output 

from the preceding stage is utilized as input, integrating the Spatial Cross-Attention (SCA) 

module to enhance the understanding of correlations between distinct locations in the 

feature map. Lastly, in the third stage, layer normalization and GeLU sequences are im-

plemented. Subsequently, these tokens undergo upsampling and are linked to the corre-

sponding tokens in the decoder. This intricate design enables the module to effectively 

encapsulate both spatial and channel relationships within the input feature map, amal-

gamating them to generate a more nuanced and expressive feature representation. 
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3.3.1. Channel Cross-Attention Module (CCA) 

As depicted in Figure 4a, the token Ti generated by the multi-scale feature embedding 

module serves as the input to the CCA module. Initially, layer normalization is conducted 

for each Ti. Subsequently, a 1 × 1 deep convolution projection is executed to produce que-

ries, keys, and values. 

 𝑄𝑖 =  𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑄𝑖
(𝑇𝑖) (2) 

 𝐾 =  𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑘(𝑇𝑐) (3) 

 𝑉 =  𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑣(𝑇𝑐) (4) 

where 𝑄𝑖 ∈ 𝑅𝑃×𝐶𝑖 , 𝐾 ∈ 𝑅𝑃×𝐶𝑐, and 𝑉 ∈ 𝑅𝑃×𝐶𝑐  are queries, keys, and values, respectively. 

Next, the queries and keys are calculated by matrix multiplication to obtain a correlation 

matrix. The correlation matrix is then normalized using the softmax function to obtain 

attention weights. The CCA is formulated as follows: 

CCA(𝑄𝑖 , 𝐾, 𝑉) =  Softmax(
𝑄𝑖

𝑇𝐾

√𝐶𝑐

)𝑉𝑇 (5) 

where Qi, K, and V represent the matrix of queries, keys, and values, respectively, and 

1 √𝐶𝑐⁄   is the scaling factor. Finally, the attention weights are utilized to perform a 

weighted summation of the values, resulting in the feature representation following the 

Channel Cross-Attention fusion. 

 

Figure 4. The structure diagram of the Dual Interlaced Attention Module (DCA) consists of two mod-

ules: (a) the Channel Interlaced Attention Module and (b) the Spatial Interlaced Attention Module. 

By utilizing the Channel Cross-Attention module, the network can autonomously 

learn the inter-channel relationships and significance, adjusting the feature representation 
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accordingly. This enhances the network’s expression and performance by leveraging these 

learned relationships. 

3.3.2. Spatial Cross-Attention Module (SCA) 

The Spatial Cross-Attention module (SCA) is shown in Figure 4b. The output of the 

Channel Cross-Attention module 𝑇𝑖̅ ∈ 𝑅𝑃×𝐶𝑖  is taken as the input of SCA, and the input is 

first normalized along the channel dimension. A 1 × 1 deep convolution projection is then 

performed to generate queries, keys, and values, as follows: 

 𝑄 = 𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑄𝑖
(𝑇𝑐̅) (6) 

 𝐾 = 𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑘(𝑇𝑐̅) (7) 

 𝑉𝑖 = 𝐷𝐶𝑜𝑛𝑣𝑙𝐷𝑉𝑖
(𝑇𝑖̅) (8) 

where 𝑄 ∈ 𝑅𝑃×𝐶𝑐 , 𝐾 ∈ 𝑅𝑃×𝐶𝑐 , and 𝑉𝑖 ∈ 𝑅𝑃×𝐶𝑖  are the projected queries, keys, and values, 

respectively. Then, the queries and keys are calculated by matrix multiplication to obtain 

a correlation matrix. The correlation matrix is then normalized using the softmax function 

to obtain attention weights, and then SCA takes the following form: 

SCA(𝑄, 𝐾, 𝑉𝑖) =  Softmax(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉𝑖 (9) 

Here, Q, K, and Vi represent matrices of queries, keys, and values, and 1 √𝑑𝑘⁄  is the 

scaling factor. For the multi-head case 𝑑𝑘 =
𝐶𝑐

ℎ𝑐
⁄ , where hc is the number of heads. Fi-

nally, the attention weight is applied to the value features for weighted summation to 

obtain the feature representation after Spatial Cross-Attention fusion. 

The crux of the Spatial Cross-Attention module lies in capturing correlations between 

distinct spatial locations via correlation calculation and attention weight computation. 

This process aids the model in effectively leveraging information interactions among spa-

tial locations, thereby enhancing feature expression and discrimination capabilities. 

3.4. Loss Function 

In this study, we employed the Charbonnier loss function, which is the square root 

form of the L1 loss function. The L1 loss function is also known as the Mean Absolute 

Error (MAE) loss function. The Charbonnier loss function was chosen for three reasons: 

First, it incorporates the square root, resulting in smaller gradients at small differences 

and providing a smoother optimization path. Second, it exhibits strong robustness against 

outliers, reducing the impact of outliers on the loss. Third, compared to the L2 loss func-

tion (also known as the Mean Squared Error (MSE) loss function), the Charbonnier loss 

function better preserves image details and avoids excessive smoothing. The formula is 

outlined as follows: 

ℒ𝐶ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 =  
1

𝑁
∑ √(𝑆𝑅𝑖 − 𝐻𝑅𝑖)

2 + ℰ2𝑁
𝑖=1   (10) 

where 𝑆𝑅𝑖  represents the resulting image of super-resolution, 𝐻𝑅𝑖  represents the 

ground truth label image, N represents the total number of pixels, and ℰ is a small posi-

tive number used to avoid division by zero, typically set to 10−3. 
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4. Experimental Design and Evaluation Criteria 

4.1. Experimental Design 

4.1.1. Ablation Experiment 

To comprehensively evaluate the impact of each module on the neural network’s 

downscaling performance, this study conducts an ablation experiment, detailed in Table 

3. Building upon the four-layer 8-fold downsampling UNET architecture, the research 

progressively integrates the Channel Cross-Attention module (CCA), Spatial Cross-Atten-

tion module (SCA), and various auxiliary information. A comparative analysis is then con-

ducted across UNET, UNET_CCA, UNET_SCA, UNET_DCA, and UNET_SCA_ars to 

showcase the efficacy of CCA, SCA, and auxiliary information in enhancing model per-

formance. The model’s loss function is based on the Charbonnier loss function, utilizing a 

product loss approach. 

Table 3. The table presents the experimental design for the ablation study, wherein “√” signifies 

the inclusion of that module, whereas “-” indicates non-use of that module. 

Model CCA SCA Auxiliary Information 

UNET - - DEM 

UNET_CCA 🗸 - DEM 

UNET_SCA - 🗸 DEM 

UNET_DCA 🗸 🗸 DEM 

UNET_DCA_ars 🗸 🗸 DEM, slope, aspect, relief 

The following introduces the various models in Table 3, one by one: UNET refers to 

the standard UNET model without any additional modules. UNET_CCA refers to the 

model based on the standard UNET architecture with the CCA module added. 

UNET_SCA refers to the model based on the standard UNET architecture with the SCA 

module added. UNET_DCA refers to the model based on the standard UNET architecture 

with both the CCA and SCA modules added. UNET_DCA_ars refers to the model based 

on UNET_DCA with the addition of geographic information such as slope, aspect, and 

relief. Slope represents the degree of ground inclination, usually expressed as the slope 

angle. Aspect represents the orientation of the slope, i.e., the angle between the normal of 

the slope and the true north direction. Relief represents the roughness of the terrain, re-

flecting the degree of variation in surface elevation. The calculation formulas for these are 

as follows: 

 slope =
∆h

∆x
  (11) 

aspect = arctan2(dy,dx)  (12) 

    relief = Hmax − Hmin  (13) 

In Equation (11), Δh represents the difference in elevation between two points, and 

Δx represents the horizontal distance between the two points. In Equation (12), dy repre-

sents the change in slope in the vertical direction, and dx represents the change in slope 

in the horizontal direction. In Equation (13), Hmax represents the maximum elevation value 

within a unit area, and Hmin represents the minimum elevation value within a unit area. 

The model utilizes a 3 × 3 subsampled convolution kernel with a step size of 1, pad-

ding of 1, and an 8× magnification factor. The average pooled core size is 3 × 3, with a step 

size of 2. For optimization, the model employs AdamW with an initial learning rate of 1 × 

10−4, gradually decreasing to 1 × 10−6 using a dynamic learning rate adjustment strategy 

(ReduceLROnPlateau). Training samples are input at a size of 112 × 112, amplified to 700 

× 700 through bilinear interpolation by 6.25×. The batch size is set at 16, and training is 

conducted across eight Nvidia A800 GPUs. 
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4.1.2. Contrast Experiment 

In this section, we will introduce the methods of comparison with ablation experi-

ments. 

(1) Bilinear interpolation 

Bilinear interpolation is a commonly used image interpolation method that estimates 

values between known discrete grid points. It provides relatively smooth interpolation 

results and can preserve image details to some extent. Bilinear interpolation is widely ap-

plied in image scaling, rotation, and transformation operations to achieve high-quality 

image processing effects. The formula is shown below. 

 𝑍(𝐼1, 𝐽)= 
𝐽−𝐽2

𝐽1−𝐽2
𝑍(𝐼1, 𝐽1)+

𝐽−𝐽1

𝐽2−𝐽1
𝑍(𝐼1, 𝐽2)  (14) 

 𝑍(𝐼2, 𝐽)= 
𝐽−𝐽2

𝐽1−𝐽2
𝑍(𝐼2, 𝐽1)+

𝐽−𝐽1

𝐽2−𝐽1
𝑍(𝐼2, 𝐽2)  (15) 

 𝑍(𝐼, 𝐽)= 
𝐼−𝐼2

𝐼1−𝐼2
𝑍(𝐼1, 𝐽)+

𝐼−𝐼1

𝐼2−𝐼1
𝑍(𝐼2, 𝐽)  (16) 

(2) SN-CLDASSD 

SN-CLDASSD is a deep learning model proposed by Zhanfei Shen et al. [12] for spa-

tial downscaling of the 2 m temperature data product from CLDAS. This model exhibits 

high accuracy in the spatial downscaling of temperature fields and can effectively recon-

struct the spatial texture details of the temperature field. In this study, a comparative ex-

periment is conducted with SN-CLDASSD to demonstrate two points. Firstly, it aims to 

illustrate that the UNET-based model proposed in this paper can capture more spatial 

details compared to SN-CLDASSD, which is based on sequentially stacked CNN convo-

lution modules. Secondly, it aims to test whether a model that performs well in the spatial 

downscaling of temperature fields can also be applied to the spatial downscaling of wind 

fields. The learning rate, optimizer, and loss function used to train this model are the same 

as those used for training UNET_DCA. 

4.2. Evaluation Criteria 

The quantitative evaluation of deep learning-based super-resolution tasks typically 

involves comparing various metrics to assess the differences between the original low-

resolution images and the reconstructed high-resolution images. In this study, high-reso-

lution CLDAS3.0 data are considered the “ground truth”, and metrics such as Root Mean 

Square Error (RMSE), Bias, Mean Absolute Error (MAE), Correlation Coefficient (COR), 

Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) are used to 

evaluate the pixel-level performance of different super-resolution methods. The formulas 

are shown below. 

RMSE = √
1

𝑁
∑(𝑆𝑅𝑖 − 𝐻𝑅𝑖)

2

𝑁

𝑖=1

  (17) 

MAE = 
1

𝑁
∑|𝑆𝑅𝑖 − 𝐻𝑅𝑖|

𝑁

𝑖=1

 (18) 

COR = 
∑ (𝑆𝑅𝑖 − 𝑆𝑅̅̅̅̅

𝑖)(𝐻𝑅𝑖 − 𝐻𝑅̅̅ ̅̅
𝑖)

𝑁
𝑖

√∑ (𝑆𝑅𝑖 − 𝑆𝑅̅̅̅̅
𝑖)

2(𝐻𝑅𝑖 − 𝐻𝑅̅̅ ̅̅
𝑖)

2𝑁
𝑖

 
(19) 

PSNR = 10𝑙𝑜𝑔10
𝐼𝑚𝑎𝑥

2

MSE
  (20) 
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   SSIM = 
(2𝜇𝑆𝑅𝜇𝐻𝑅+𝑐1)(𝜎𝑆𝐻+𝑐2)

(𝜇𝑆𝑅
2+𝜇𝐻𝑅

2+𝑐1)(𝜎𝑆𝑅
2+𝜎𝐻𝑅

2+𝑐2)
  (21) 

MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) are metrics used 

to calculate the errors between the reconstructed image and the original image. Smaller 

values indicate smaller average differences between the reconstructed and original im-

ages. The difference between them lies in their sensitivity to outliers. MAE is less sensitive 

to outliers because the absolute value function eliminates the positive and negative differ-

ences, while RMSE is more sensitive to outliers because the square operation amplifies 

larger differences. Therefore, RMSE may be larger in the presence of outliers or significant 

differences. 

COR (Coefficient of Rank Correlation) is a statistical measure used to assess the cor-

relation between the reconstructed image and the original image. The value of COR ranges 

from −1 to 1, indicating the strength and direction of the correlation between the two im-

ages. Specifically, a COR of 1 indicates a perfect positive correlation, meaning the two 

images are identical. A COR of −1 indicates a perfect negative correlation, meaning the 

two images are completely opposite. A COR of 0 indicates no linear correlation between 

the two images. 

PSNR (Peak Signal-to-Noise Ratio) is used to measure the peak signal-to-noise ratio 

between the reconstructed image and the original image. A higher value indicates smaller 

errors between the reconstructed and original images. 

SSIM (Structural Similarity Index) is used to measure the structural similarity be-

tween the reconstructed image and the original image. It considers three key features of 

the image: luminance, contrast, and structural similarity. The value of SSIM ranges be-

tween 0 and 1, with a value closer to 1 indicating higher similarity between the recon-

structed and original images. 

5. Result 

In this section, CLDAS3.0 and observation station data serve as Ground Truth for 

wind speed. The proposed model advantages are analyzed concerning the comparison 

results of ablation experiments, classification assessment based on terrain, time assess-

ment, and wind speed grade evaluation, respectively. 

5.1. Ablation Results 

Table 4 lists the overall evaluation metrics of the downscaling results in the study 

area for each method, using CLDAS3.0 as the Ground Truth and assessing wind speed 

with five metrics: RMSE, MAE, COR, PSNR, and SSIM. 

Table 4. The overall evaluation index of wind speed based on the downscaling results of each 

method is presented in this table, with CLDAS3.0 serving as the Ground Truth. The optimal index 

is highlighted in bold. 

Methods RMSE MAE COR PSNR SSIM 

BILINEAR 0.803 0.577 0.699 22.277 0.642 

SNCA_CLDASSD 0.589 0.427 0.844 24.917 0.748 

UNET 0.428 0.306 0.912 27.801 0.852 

UNET_CCA 0.401 0.286 0.928 28.363 0.876 

UNET_SCA 0.412 0.288 0.926 28.205 0.878 

UNET_DCA 0.400 0.280 0.930 28.806 0.877 

UNET_DCA_ars 0.410 0.289 0.928 29.006 0.880 

The study reveals that the performance of deep learning models is significantly su-

perior to that of traditional bilinear interpolation methods. UNET_DCA excels in RMSE, 
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MAE, and COR metrics, with improvements of 50.19%, 51.47%, and 33.05% over BILIN-

EAR, respectively. Meanwhile, UNET_DCA_ars performs best in PSNR and SSIM metrics, 

with improvements of 30.21% and 37.07% over BILINEAR, respectively. 

SNCA_CLDASSD shows noticeable improvements over BILINEAR across all metrics but 

falls short of the models based on the UNET architecture. Although SNCA_CLDASSD 

performs well in spatial downscaling of ground 2 m temperature fields, its performance 

in wind field spatial downscaling is subpar, indicating that models based on the UNET 

architecture can capture richer information across different spatial scales in wind field 

downscaling compared to SNCA_CLDASSD, which stacks CNN convolution modules se-

quentially. UNET models incorporating Cross-Attention mechanisms, UNET_CCA and 

UNET_SCA, outperform UNET without attention mechanisms, demonstrating the effec-

tiveness of Channel Cross-Attention module CCA and Spatial Cross-Attention module 

SCA. Additionally, UNET_DCA, which integrates both channel and Spatial Cross-Atten-

tion mechanisms, outperforms UNET_CCA and UNET_SCA, each enhanced by only one 

attention mechanism. UNET_DCA excels in RMSE, MAE, and COR metrics, with im-

provements of 6.54%, 8.49%, and 1.97% over UNET, indicating the positive impact of 

stacking these two attention mechanisms sequentially. The UNET_DCA_ars model, 

which incorporates more auxiliary information, achieves the best performance in terms of 

PSNR and SSIM metrics, with improvements of 4.33% and 3.29%, respectively, compared 

to UNET and 0.7% and 0.34% compared to UNET_DCA. This indicates that the integration 

of additional geographical information, such as slope, aspect, and relief, can enhance the 

structural similarity of wind field images and improve the capture of spatial details in the 

wind field. However, the performance of UNET_DCA_ars is not as good as UNET_DCA 

in terms of the RMSE, MAE, and COR metrics. This may be because, although the addi-

tional geographical information enhances the model’s adaptability to specific terrain, it 

may also introduce more potential complexity or noise, which could have a slight negative 

impact on the accuracy of numerical predictions and trend capture (RMSE, MAE, and 

COR). This suggests that the model may require more fine-tuning and balancing to fully 

utilize this information without overfitting or introducing unnecessary interference. The 

fact that UNET_DCA_ars is not the best performer in all metrics indicates that the en-

hancement of deep learning models is not always a linear gain. The integration of geo-

graphical information needs to be carefully considered to avoid over- or under-utilization. 

Figure 5 presents box plots of wind speed RMSE, MAE, and COR metrics calculated 

using station data as the Ground Truth for the downscaling results of each method. It can 

be concluded that UNET_DCA also exhibits the best performance, with lower dispersion 

of each metric around the mean compared to other downscaling methods. 

 

Figure 5. Box plots of wind speed RMSE, MAE, and COR metrics based on station data as the Ground 

Truth for the downscaling results of each method. 

5.2. Topographic Assessment 

In this section, we evaluate the five terrains divided into the study area according to 

Table 1. Table 5 presents the evaluation results of different downscaling methods for wind 

speed using CLDAS3.0 as the Ground Truth across different terrains. The study reveals 
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that in mountainous, plateau, basin, and valley terrains, UNET_DCA performs the best in 

terms of RMSE, MAE, and COR metrics. However, in plains, UNET_DCA_ars demon-

strates superior performance, indicating that in plain regions, UNET_DCA_ars, incorpo-

rating more terrain auxiliary information, captures more detailed information. For all ter-

rains, UNET_DCA_ars performs the best in terms of PSNR and SSIM metrics, demonstrat-

ing its ability to better maintain the quality and structural similarity of wind field images. 

Overall, the optimal model performs best in valley areas, followed by mountainous re-

gions, and poorest in plains. The possible reasons for this phenomenon are as follows: In 

valley areas, the unique terrain features, such as the canyon effect, may give the wind field 

a certain regularity. When dealing with such terrain with distinct characteristics, the wind 

field model may more easily capture specific patterns, leading to its best performance in 

valleys. For mountainous regions, the complex flow patterns, such as wind speed barriers 

and leeward areas, pose challenges for the model. However, compared to plains, the com-

plexity of mountainous areas still provides a certain regularity, such as the reversal of 

daytime wind direction and nighttime wind speed, which allows the model to perform 

better in mountainous areas than in plains, though still inferior to its performance in val-

leys. The terrain in the plains is relatively simple, and theoretically, the model should per-

form well. However, in reality, the small variations in wind speed in plain areas may lead 

the model to oversimplify or underfit, unable to capture the actual complexity of the wind 

field. Additionally, the local heat island effect caused by human activities (such as urban-

ization and agriculture) in plains may also increase the difficulty of prediction. 

Table 5. The wind speed evaluation index table for five non-terrain types, namely mountain, plat-

eau, basin, valley, and plain, presents each method’s downscaling results. The evaluation index is 

based on CLDAS3.0 as the actual value, and the optimal index is highlighted in bold. 

Evaluation Index Topography 
Methods 

BILINEAR SNCA_CLDASSD UNET UNET_DCA UNET_DCA_ars 

RMSE 

Mountains 0.892 0.602 0.417 0.390 0.399 

Highland 0.776 0.638 0.446 0.408 0.419 

Basin 0.724 0.592 0.437 0.424 0.431 

Valley 0.989 0.561 0.339 0.321 0.326 

Plain 0.569 0.524 0.434 0.443 0.421 

MAE 

Mountains 0.399 0.441 0.298 0.274 0.282 

Highland 0.419 0.464 0.321 0.283 0.298 

Basin 0.431 0.427 0.308 0.304 0.309 

Valley 0.326 0.429 0.249 0.232 0.238 

Plain 0.421 0.382 0.319 0.313 0.300 

COR 

Mountains 0.628 0.829 0.923 0.932 0.929 

Highland 0.766 0.850 0.928 0.938 0.936 

Basin 0.707 0.834 0.894 0.902 0.901 

Valley 0.685 0.720 0.903 0.912 0.910 

Plain 0.791 0.828 0.885 0.888 0.896 

PSNR 

Mountains 22.237 24.925 27.731 28.706 28.915 

Highland 22.283 24.564 27.862 28.812 29.031 

Basin 22.452 24.732 27.615 28.693 28.762 

Valley 23.035 25.154 28.061 29.120 29.210 

Plain 21.398 24.281 26.914 27.062 27.235 

SSIM 

Mountains 0.621 0.748 0.852 0.877 0.881 

Highland 0.649 0.726 0.832 0.843 0.860 

Basin 0.658 0.721 0.840 0.849 0.866 

Valley 0.658 0.795 0.861 0.897 0.901 

Plain 0.586 0.710 0.820 0.831 0.843 
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Figure 6 shows the visual comparison of the downscaling results of various methods 

at 12:00 UTC on 24 April 2019. The first row displays the overall effects of CLDAS3.0 and 

each method in the study area, followed by images representing local regions of five dif-

ferent terrains, i.e., mountainous, plateau, basin, valley, and plain. From the visual com-

parison of the images, it can be observed that the downscaled results of the traditional 

bilinear interpolation method simply increase the grid resolution without effectively re-

constructing the corresponding details, whereas deep learning models, by incorporating 

auxiliary information, can better reconstruct the spatial details of the wind field. Under 

the same auxiliary information conditions, UNET and UNET_DCA based on the UNET 

architecture outperform SNCA_CLDASSD in capturing more realistic spatial details. 

Among them, UNET_DCA_ars, which incorporates more auxiliary information, performs 

the best and is more similar to the truth in CLDAS3.0. 

 

Figure 6. Visual comparison of downscaling results of various methods at 12:00 UTC on 24 April 2019. 

5.3. Time Assessment 

Figure 7 illustrates the diurnal variations in wind speed RMSE, BIAS, MAE, COR, 

PSNR, and SSIM for various downscaling methods calculated using CLDAS3.0 as the 

Ground Truth. Overall, all methods exhibit similar trends in these metrics over time. Dur-

ing periods when bilinear interpolation performs poorly, all deep learning models also 

perform poorly. In terms of RMSE, BIAS, MAE, PSNR, and SSIM metrics, both bilinear 
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interpolation and all models perform worse during the day and better at night. This is 

because, overall, the wind field variability during the day is greater than at night, leading 

to lower data quality for daytime wind field data. As previously mentioned, better data 

quality leads to better downscaling results. However, in the case of the COR metric, bilin-

ear interpolation performs better during the day than at night, while the deep learning 

models perform equally well during both day and night. This indicates that deep learning 

models, due to their deep learning structure and feature extraction capabilities, are able 

to learn and capture more spatiotemporal patterns and complex relationships. Whether it 

is daytime or nighttime, they demonstrate greater robustness in handling nonlinear and 

variable wind speed distributions. Overall, SNCA_CLDASSD consistently outperforms 

bilinear interpolation at all times, with UNET showing superior performance over 

SNCA_CLDASSD and UNET_DCA slightly outperforming UNET. UNET_DCA and 

UNET_DCA_ars perform similarly, with the latter slightly edging ahead. 

 

Figure 7. Daily variations of RMSE, MAE, COR, PSNR, and SSIM between downscaling wind speed 

results of each method and CLDAS3.0. 

Figure 8 presents the seasonal variation trends of RMSE, MAE, COR, PSNR, and 

SSIM calculated by various downscaling methods using CLDAS3.0 as the ground truth. 

Overall, all models exhibit similar seasonal trends across all metrics. Bilinear interpolation 

and all deep learning models perform poorly in the spring, indicating that data quality 

determines the upper limit of downscaling results—better data quality leads to better 

downscaling results. Across RMSE and MAE metrics, all models perform best in the au-

tumn and worst in the spring, with comparable performance in the summer and winter. 

This may be related to the frequent and unstable weather transitions and large wind speed 

fluctuations during the spring season. However, in terms of the COR metric, the models 

perform best in the spring and worst in the summer, indicating that the models can cap-

ture the overall trend of spring wind speed well, despite performing poorly in terms of RMSE 

and MAE. Regarding PSNR and SSIM metrics, the models perform best in the winter and 

worst in the spring, possibly due to the complex and variable wind field structure in the 

spring, making it difficult for the models to accurately reproduce its fine structure and signal, 

resulting in relatively lower image quality. Overall, SNCA_CLDASSD performs significantly 
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better than bilinear interpolation in all seasons, while UNET outperforms SNCA_CLDASSD. 

UNET_DCA slightly outperforms UNET, and UNET_DCA and UNET_DCA_ars perform 

equally, or the latter slightly outperforms the former. 

 

Figure 8. Seasonal variations of RMSE, MAE, COR, PSNR, and SSIM between each method’s 

downscaling wind speed results and CLDAS3.0. 

5.4. Assessed by Wind Speed Rating 

Table 6 presents the wind speed grade accuracy for various downscaling methods 

calculated using CLDAS3.0 as the Ground Truth. Overall, the accuracy decreases as the 

grade of wind speed increases. The accuracy for wind speeds equal to or less than grade 

2 reaches 0.788, whereas the accuracy for wind speeds equal to or greater than grade 7 

only reaches 0.331. UNET_DCA achieves the highest accuracy for wind speeds below 

grade 7, while UNET_DCA_ars performs best for wind speeds above grade 7. 

Table 6. The downscaling results of each method were evaluated according to the accuracy of the 

wind speed grade; the evaluation index was evaluated with CLDAS3.0 as the Ground Truth; and 

the optimal index was represented in bold. 

Grade 
Methods 

BILINEAR SNCA_CLDASSD UNET UNET_DCA UNET_DCA_ars 

≤2 0.635 0.705 0.774 0.788 0.787 

3–4 0.259 0.415 0.584 0.603 0.597 

5–6 0.184 0.232 0.379 0.420 0.404 

≥7 0.167 0.154 0.313 0.322 0.331 

The first row of Figure 9 presents the diurnal variations in wind speed grade accuracy 

for various downscaling methods calculated using CLDAS3.0 as the Ground Truth. For 

the accuracy of wind speeds equal to or less than grade 2 (Figure 9a), the trends of all 

methods are generally similar, gradually decreasing around 00:00 UTC, reaching a mini-

mum by 06:00, and then gradually increasing, maintaining a relatively stable trend after 

10:00. Regarding wind speeds of grades 3 to 4 (Figure 9b), the trends of all methods are 

also quite similar, starting to rise around 00:00, peaking at 04:00, maintaining the peak 

until 09:00, then gradually decreasing to a minimum by 12:00, followed by a relatively 

stable trend. For wind speeds of grades 5 to 6 (Figure 9c), all methods show similar high 

and low value positions, reaching a peak around 05:00 and a minimum around 12:00. As 
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for wind speeds equal to or greater than grade 7 (Figure 9d), the trends of the methods 

are not consistent. On the whole, for light wind speeds (equal to or less than Beaufort scale 

2), the daytime accuracy is low while the nighttime accuracy is high; for moderate wind 

speeds (Beaufort scale 3–6), the daytime accuracy is high and the nighttime accuracy is 

low; for high wind speeds (equal to or greater than Beaufort scale 7), there is no clear 

pattern. This may be related to the following factors: light wind speed samples mainly 

occur at night, moderate wind speed samples predominantly appear during the day, and 

there is a minimal amount of high wind speed samples. The model has learned more from 

the patterns of larger samples, leading to insufficient learning capacity for the smaller 

samples. The accuracy for all wind grades is best exhibited by UNET_DCA_ars or 

UNET_DCA. 

 

Figure 9. The first row presents diagrams illustrating the diurnal variation in the accuracy of wind 

speed grade calculations derived from each downscaling method, with (a–d) corresponding to the four 

wind speed categories, respectively. The second row depicts the seasonal variation in the correctness 

of wind speed grade estimations achieved by the various downscaling techniques, where (e–h) re-

spectively match the four distinct wind speed classes. 

The second row of Figure 9 presents the seasonal variations in wind speed grade 

accuracy for various downscaling methods calculated using CLDAS3.0 as the Ground 

Truth. For wind speeds equal to or less than grade 2 (Figure 9e), the accuracy is lowest in 

spring and highest in autumn. Regarding wind speeds of grades 3 to 4 and 5 to 6 (Figure 

9f,g), accuracy is poorest in summer and best in spring. For wind speeds equal to or 

greater than grade 7 (Figure 9h), bilinear interpolation and SNCA_CLDASSD exhibit the 

lowest accuracy in spring and winter, with the highest accuracy in spring, while the other 

three UNET architecture models perform the worst in spring and the best in summer. 

6. Discussion 

The near-surface wind is not only related to the large-scale wind field but also asso-

ciated with the boundary layer at a finer horizontal scale. Therefore, efficient extraction of 

features at different scales plays a crucial role in the accuracy of the spatial downscaling 

of wind fields. To better reconstruct wind fields, this study primarily focuses on how to 

enhance the learning of relationships between wind fields and terrain at various scales. 

Numerous scientific experiments have shown that the multi-level feature extraction and 

skip connections of the UNET architecture can integrate information from different scales. 
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Hence, this research incorporates channel and Spatial Cross-Attention mechanisms into 

the UNET architecture. Experimental results demonstrate that the UNET_DCA model 

with Dual Cross-Attention mechanisms achieves the best evaluation metrics. At the same 

time, when compared with the SNCA-CLDASSD model, which is based on sequentially 

stacked CNN convolutional modules, the UNET-based model significantly outperforms 

SNCA-CLDASSD, reconstructing more detailed small-scale wind field features. 

The wind field downscaling model established in this paper can be used to backtrack 

historical data prior to 2008 and generate high-resolution long-term time series products, 

which is of great significance for enhancing our understanding of wind field dynamics 

and models. This is mainly reflected in two aspects: Firstly, high-resolution wind field 

data can more accurately demonstrate the temporal variation trends and regional differ-

ences of wind fields, which helps identify the long-term impact of climate change on wind 

field patterns. Secondly, high-resolution wind field data over a long time series enables 

researchers to conduct detailed analyses of the regulatory effect of complex terrain on 

wind fields. Such analyses contribute to the establishment of accurate models of terrain 

influence, improving the understanding of local climate and weather phenomena. There-

fore, improving the accuracy of wind field downscaling is of great importance, and we 

will continue to delve into this research in the future to further enhance its accuracy. 

However, all models experience a decrease in prediction accuracy with higher wind 

speed grades. The prediction accuracy for wind speeds above grade 7 only reaches a max-

imum of 33.1%, significantly lower than the accuracy for low wind speeds. One potential 

reason for this discrepancy may be the scarcity of samples for high wind speeds compared 

to low wind speeds, leading the models to primarily learn patterns from the more abun-

dant low wind speed samples. Therefore, future research could focus on expanding the 

training samples for high wind speeds. Another contributing factor to the aforementioned 

results could be the close relationship between surface winds and upper winds. Typically, 

when winds are strong in the upper air, they also tend to be strong at the surface. Future 

steps could involve supplementing additional auxiliary data, such as wind at 850 hPa and 

700 hPa levels. 

This study focuses on the application of the improved UNET_DCA model based on 

the UNET architecture in wind field downscaling. By incorporating a Dual Cross-Atten-

tion mechanism, the model’s capability for handling complex terrain feature recognition 

has been effectively enhanced, demonstrating excellent performance. Although satisfac-

tory results have been achieved, the UNET_DCA and the emerging Transformer architec-

tures each have their own strengths in wind field prediction tasks. The advantage of the 

UNET_DCA model lies in its efficient processing of spatial structural information, partic-

ularly the accurate capture of local features, which is crucial for the analysis of terrain 

effects on wind fields. Furthermore, its lightweight computational characteristics enable 

rapid iteration and deployment even in resource-constrained environments, making it 

suitable for handling large-scale wind field datasets. In comparison, the Transformer 

model is renowned for its powerful global attention mechanism, which can capture long-

range dependencies and thus has inherent advantages in understanding large-scale wind 

flow patterns and overall wind speed distributions. However, the Transformer model’s 

drawbacks include its higher computational cost and memory requirements, which may 

become limiting factors when processing high-resolution wind field data. Additionally, 

the direct application of Transformers to spatial data poses a challenge in terms of their 

lack of direct capture of local features. Given the unique advantages of the Transformer 

architecture in handling global dependencies and sequential data, our research team plans 

to explore its application in wind field downscaling in future work. The focus will be on 

optimizing the Transformer architecture to maintain a global perspective while effectively 

utilizing local information, as well as exploring hybrid model designs that combine the 

strengths of UNET and Transformer with the aim of further improving the accuracy of 

wind field downscaling while maintaining computational efficiency. 
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7. Conclusions 

To enhance the understanding of the relationship between the wind field and terrain 

across different scales, this paper introduces a deep learning model, UNET_DCA, based 

on the UNET architecture. The model incorporates Channel Cross-Attention (CCA) and 

Spatial Cross-Attention (SCA) mechanisms. Its objective is to achieve the spatial downscal-

ing of near-surface 10 m wind field data from the China Meteorological Administration 

Land Data Assimilation System (CLDAS) from a coarse scale of 0.0625° to a fine scale of 

0.01°, thereby reconstructing high-resolution and high-quality land assimilation products 

before 2008 and thus filling historical gaps in CLDAS3.0. Through ablation comparison 

experiments, the following conclusions are drawn: 

(1) The performance of deep learning models significantly surpasses that of the tradi-

tional bilinear interpolation method. Models based on the UNET architecture outper-

form SNCA_CLDASSD, showcasing the UNET’s ability to extract multi-level fea-

tures and capture richer spatial information in wind field downscaling. UNET mod-

els with Cross-Attention mechanisms (CCA and SCA) outperform those without, 

demonstrating the effectiveness of these mechanisms. UNET_DCA, incorporating 

both channel and Spatial Cross-Attention mechanisms, outperforms UNET_CCA 

and UNET_SCA, showing superior performance in RMSE, MAE, and COR metrics. 

It outperforms BILINEAR by 50.19%, 51.47%, and 33.05%, and outperforms UNET 

by 6.54%, 8.49%, respectively. Additionally, UNET_DCA_ars, with more auxiliary 

information, excels in PSNR and SSIM indexes, displaying improvements of 30.21% 

and 37.07% over BILINEAR and showcasing enhancements of 4.33% and 3.29% over 

UNET. 

(2) Based on the terrain assessment results, UNET_DCA demonstrates superior perfor-

mance in RMSE, MAE, and COR across mountain, plateau, basin, and valley regions. 

On the other hand, UNET_DCA_ars excels in PSNR and SSIM metrics across all ter-

rains and also leads in RMSE, MAE, and COR in plain areas. This suggests that 

UNET_DCA shows a stronger correlation with actual values, while UNET_DCA_ars 

excels in preserving the quality and structural similarity of wind field images and cap-

turing finer details in plain regions. At the same time, it can be seen from the compari-

son of visual images that the downscaling result of the bilinear interpolation method 

increases the number of grids, making it difficult to reconstruct the corresponding de-

tails. In contrast, the deep learning model can reconstruct the spatial details of the wind 

field, and UNET_DCA_ars can capture more delicate details. 

(3) The results of the time-based evaluation show that all indexes of all methods have 

the same trend over time in the intraday variation, and all deep learning models also 

perform poorly in the period of poor bilinear interpolation performance, indicating 

that data quality determines the upper limit of downscaling results, and the better 

the data quality, the better the downscaling results. Except for the COR index, the 

other four indexes were worse in the daytime and better at night. In general, 

SNCA_CLDASSD performs significantly better than bilinear interpolation in each 

season, while UNET is significantly better than SNCA_CLDASSD, and UNET_DCA 

is slightly better than UNET. 

(4) According to wind speed grade, the evaluation results indicate decreasing accuracy 

with higher wind speeds. UNET_DCA performs best for winds below grade 7, while 

UNET_DCA_ars excels for winds grade 7 and above. Small wind speed (less than or 

equal to 2 wind) has low accuracy during the day, high accuracy at night, the lowest 

accuracy in spring, and the highest accuracy in autumn; moderate wind speed (3~6 

wind) has high accuracy during the day, low accuracy at night, the lowest accuracy 

in summer, and the highest accuracy in spring. For significant wind speeds (grade 7 

and above), there are no apparent regular patterns in intra-day and intra-seasonal 

accuracy changes. 
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