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Abstract: Tropical cyclones (TCs) can be devastating events for vulnerable countries like Vanuatu,
impacting their population, livelihoods, and infrastructure, leaving the country in need of aid and
recovery. Despite this, comprehensive risk information on the nuanced impacts of each region is not
well understood. Every TC event is different, and understanding the potential for impact at each
location empowers decision makers in the lead-up to an event or during off-season planning to make
more informed decisions to direct disaster risk reduction efforts. TC hazard model data typically
describe intensity and likelihood, which can be fed into risk assessment frameworks to describe
probabilistic risk. This study instead uses freely available remote sensing data to create proxies for
the TC hazards of storm surge and flooding and to describe only the intensity of the hazard if the
event occurs at the location. This hazard susceptibility index is fed into a risk assessment framework
with Vanuatu exposure and vulnerability data for domains of populations, housing, and roads. These
methods allow for the risk to be estimated for each month, as well as during specific historical time
periods of TC Pam, TC Harold, and the TCs Judy and Kevin, enabling future impact validation. The
results show households to have the highest risk, followed by roads and population domains, while
a TC-induced surge risk is overall higher than TC-induced flooding, particularly in the road domain.
The results, however, show a likely underestimation of event hazards and an overestimation of Port
Vila’s resistance to impacts, which is a subject of future investigation and validation.

Keywords: tropical cyclone; risk assessment; hazard; exposure; vulnerability; Vanuatu

1. Introduction

Tropical cyclones (TCs) are powerful rotating storms that develop over warm tropical
waters, with the potential to be highly destructive and costly natural disasters depending
on the situation. Since 1970, more than 1900 disasters have been attributed to TCs, with
almost 800,000 casualties [1], causing USD 26 billion in global damages annually [2].

While climate change is expected to reduce the frequency of TC events globally, there
is an increased likelihood of major TC events with even stronger destructive power [3]. A
changing climate alongside urbanisation along the coast [4] suggests the need to be wary of
events in the future with an unprecedented extent and impact. An example is the formation
of severe TCs outside of the usual TC season months, as was the case for TC Lola in October
2023, which became the earliest Category 5 TC on record in the Southern Hemisphere,
although not directly attributed to climate change.

The potential destructiveness of TCs, their unpredictability in occurrence, as well as
their rapid intensification, highlight the need for not only timely early warning systems
but also risk assessment evaluations to proactively inform and prepare exposed and vul-
nerable communities. TCs have also been increasingly recognized as multi-hazardous,
as impacts can come in the form of destructive winds as well as coastal inundation from
storm surges or flooding from sustained rainfall [5–8]. Risk assessments are key tools in
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disaster risk reduction that collate information on the hazard, exposure, and vulnerability
of the area [9]. Typically, this is in relation to human health and safety but has also been
extended to infrastructure to assess the damage, as well as to see the impact on the natural
environment [10–12]. They can be used by decision makers to assist the management of
risk reduction funds to target the most exposed or vulnerable regions [13].

Within the literature, many TC risk studies assess TC hazards using synthetic or
best-track data to model probabilistic risks [2,14–17] or assess the impacts of historical TC
events [18]. While past event studies can reveal the characteristics that make a particular
event impactful [19], and future probability studies can give an indication about what
is more likely in the foreseeable future or inform insurance and planning, both are not
designed to be used in a scenario where a TC has formed, and residents in an area of
expected landfall are preparing for impact. In methods assessing future risk, the hazard
considers the probability of the event occurring at a location as well as its intensity. With
thousands of synthesised tracks, regions that have a higher density of tracks show higher
risks of hazards. With an individual event where the track may only affect one part of the
study area or which follows an unlikely but potentially impactful path, the probabilistic
method assessing an ensemble of tracks can be misleading if used in a risk assessment to
inform TC events as they occur. Previous methodologies have also been difficult to validate
with impacts for future risk, as assessing a known TC track is fundamentally different to
predicting the probability of the genesis and development of TCs in the future.

The aim of this study was to develop a methodology that can assess TC risk in a way
that can inform and prepare TC-prone regions for the TC season, as well as incoming TCs
when paired with track forecasts. The novel concept in this study that allows us to perform
this is defining hazard as follows: ‘where would receive the highest measurements if a TC
event was to occur’, with measurements meaning the highest storm surge or flooding as
an example. By removing the probability aspect of hazard and visualising a TC event as
a blanket that would affect regions equally, we shift focus onto the characteristics of the
location itself and assume predicting the exact likelihood of TCs or their specific tracks to
be out of scope. This information could be paired alongside the risk assessment to inform
on the timescale of interest. By utilising freely accessible remote sensing data as opposed
to relying on where modelled TC data are available, the method becomes much more
reproducible for other vulnerable island countries in the Pacific. This hazard susceptibility
method also then allows us to compare the hazard of an upcoming month against the
hazard where an event occurred. In this study for Vanuatu, we investigate TC Pam, TC
Harold, and the TCs Judy and Kevin combined as case study events of major TCs in our
risk assessment.

With a small island developing state like Vanuatu, available modelled data were
limited to global hazard models, which were coarse in their resolution, making it unsuited
for a country spread out with many islands. This led to the investigation of openly available
remote sensing data instead, which could characterise the propensity of different locations
to hazardous events, such as storm surges and flooding. Wind hazard was not assessed as
wind is almost entirely tied to the TC track and intensity, and suitable indicators to describe
a location’s favourability to high wind speeds were not found. The specific indicators used
are explained in Section 2 on Data and Methods.

2. Data and Methods

The study area is first described in Section 2.1. Section 2.2 describes the indicators
selected for the risk assessment. In Section 2.3, the method to combine indicators to calculate
risk is outlined.

2.1. Study Area

Vanuatu is considered one of the most risk-prone countries in the world because of its
high vulnerability, susceptibility to disasters, difficulty coping and adaptive capacity [20,21].
Vanuatu is made up of 83 islands situated in the southwest Pacific Ocean (Figure 1) and is
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reliant on tourism for national income and on foreign aid in the wake of natural disaster
events [20,22]. Over the last 10 years, the country has been impacted by several major TCs,
such as TC Pam in 2015, which caused direct economic losses of up to 60% of the country’s
annual GDP [23], TC Harold in 2020, and TCs Judy and Kevin in 2023. The occurrence
of these TCs and many others have led to a ‘boom-and-bust’ cycle in the country where
an influx of foreign money in the wake of disasters creates more jobs in recovery efforts,
leading to a more reactionary reconstruction mindset [20] rather than trying to build long
term resilience as other countries do [24]. This can also be seen through the high proportion
of temporary/semi-permanent buildings. This does not mean Vanuatu should necessarily
adapt to the concept of building stronger structures better for resilience, as it would not only
require a high initial cost but require more maintenance for the humid, warm, and rainy
conditions. Considering the intricacies of a country’s situation when using risk assessments
is imperative when deciding how to better prepare a country for future risk events.
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Figure 1. Map of Vanuatu in context of the South Pacific. Vanuatu Provinces are labelled, and Council
Area boundaries are shown. The main cities of Port Vila (capital) and Luganville are labelled.

2.2. Selection and Description of Indicators

In this section, the selection of indicators is explained, with a focus on the hazard, as
the proposed hazard index suggests an alternative way of looking at TC hazards compared
to the literature.

2.2.1. Flood Hazard Indicators

The Topographical Wetness Index (TWI) was used as the first indicator for flooding,
as presented by Equation (1):

TWI = ln
(

Speci f ic Catchment Area
Percent Slope

)
= ln

 (FA + 1)× 302(
S

100

)
× 0.0001

 (1)

where FA is the flow accumulation, and S is the slope. Using high-resolution Digital
Elevation Model (DEM) data to derive slope and flow accumulation, it explains where
water would pool based on the topographical landscape. As an example, a cell with a low
TWI is less likely to be flooded and could be a feature such as the top of a hill where water
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runs off rather than gathers. A high TWI cell could be features such as a point along a
river or a topographical depression. TWI has been used in flood hazard assessment studies
before [25,26], and this study sets the basis for a methodology that uses openly available
remote sensing data to explain a region’s propensity to TC hazards.

The impermeability indicator was created from Land Use Land Cover (LULC) data
from the European Space Agency (ESA) at a 10 m resolution based on Sentinel-1 and
-2 data, which included land cover categories of grassland, forests, croplands, wetlands,
mangroves, bare ground, shrubbery, built-up areas and water. In the original dataset, land
use categories were assigned permeability values from 0 to 100, with 100 being the most
permeable and 0 being impermeable. To create the impermeability indicator for the flood
hazard index, the values were inverted by dividing by 100 and subtracting from 1. This
aligned values with the logic that more impermeable land covers, such as built-up regions
or water, are more prone to flooding as the surface cannot accept much water before it
becomes runoff or pools on the surface. Conversely, surfaces with low impermeability,
such as grasslands and forests, can receive much more water into the soil, making them
less susceptible to floods. Permeability values from LULC datasets have been used in the
past to inform flood hazard models but are used in this study as an independent indicator
in the flood index.

The accumulated rainfall indicator is the one dynamic flood hazard indicator in this
methodology. High accumulated rainfall in a short period of time leads to flooding and, for
longer timescales of a month, saturates the soils, priming the conditions for flood in the
future. By using Vanuatu’s monthly accumulated rainfall climatology for 1980–2021 from
the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset, we differentiated the
flood hazard from month to month based on the historical accumulated rainfall in each
month. The MSWEP accumulated rainfall climatology by month is presented in Figure 2.
Not only does this show the spatial distribution of where rainfall is most common for an
island country like Vanuatu, which has islands spread over 7 degrees of latitude, but it also
accounts for the dry and wet seasons by month.
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This accumulated rainfall indicator was designed not only to be dynamic from month
to month based on the climatology but to also be able to receive rainfall data from historical
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TC events, to calibrate and compare against expected hazards in future months, as well
as to ensure the methodology could validate actual TC events and their impacts as a risk
assessment. This aspect of the methodology was an adjustment to previous risk assess-
ments, addressing the limitations of validation. To ensure that the monthly climatology
accumulated rainfall and the accumulated rainfall from TC events could be compared on
the same scale, we took the 5 days of highest accumulated rainfall in the TC events of TC
Pam, TC Harold, and TCs Judy and Kevin, and compared them to the average or expected
rainfall in 5 days of each month. The 5 days of highest rainfall were chosen by looking
at daily accumulated rainfall for all days in the TCs’ lifetime and summing up the 5 days
that showed the highest values over Vanuatu land from a source of TC rainfall (organised
convective shape). The 5-day accumulated rainfall from TCs Pam, Harold and Judy/Kevin
combined are presented in Figure 3.
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2.2.2. Storm Surge Hazard Indicators

The first indicator of the storm surge hazard is coastal elevation (CE). This indicator
assessed the elevation of coastal regions and their susceptibility to inundation from the
storm surge by identifying which cells would be inundated if the sea level was raised to a
certain height. Scenarios of 1, 3, 5 and 7 m of increased sea levels were used in Geographical
Information Systems (GIS) software (ArcGIS Pro 2.7.0) by reclassifying elevation data
in each scenario to either flooded or non-flooded cells. Lower-lying coastal cells were
inundated in all scenarios and, thus, were given the highest hazard values for this indicator,
while regions that did not flood in any scenario were given a value of 0. This indicator
identifies coastal regions across the country that are most susceptible to storm surge hazards
if a TC event occurs due to their low coastal elevation.

The Shelf Gradient (SG) indicator describes how steep or shallow the underwater shelf
beneath the coastline is. It is calculated as the distance from the coastline to the nearest
30 m bathymetric depth contour. This is because surge generation is mostly confined from
this depth to the shore [27,28]. A coastline with a short distance to the nearest 30 m depth
has a steep coastline and would be less susceptible to a storm surge compared to a coastline
with a shallower gradient that allows water to reach the land more easily [28]. This was
performed in GIS by isolating the 30 m depth line from GEBCO (General Bathymetric Chart
of the Oceans) bathymetry data and calculating the nearest distance from each point along
the coast to the 30 m depth line.
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The Time Above Threshold (TAT) indicator is a dynamic indicator within the surge
hazard index. TAT is defined by the time (hrs) the tide gauge measurement is above a
certain high-tide threshold (e.g., 1 m) per day and attempts to describe the likelihood of an
elevated tide coinciding with TC-induced storm surges. Earlier post-disaster studies have
identified that the strength of a TC by its Saffir–Simpson category is not indicative of the
created storm surge but that there are many other contributors, such as the size of the TC,
forward speed, direction and timing [29]. Depending on whether the TC’s surge coincides
with high or low tide can greatly affect the total raised sea level that can inundate coasts.
TAT addresses this coincidence by evaluating days with high TAT as more susceptible to
surge if a TC occurs, compared to a day with only a few hours where the tide was high.
To our knowledge, this concept has not been utilised within a storm surge hazard index
before and is a simple way of quantifying surge propensity for each day.

TAT was created from hourly tide gauge measurement data for Port Vila from the
Australian Bureau of Meteorology. As Port Vila is the only tide gauge available for Vanuatu,
this study assumes similar tides and timings for the country. Hourly tide gauge data were
converted into daily hours above the threshold (1 m) and then into a monthly climatology
from tide gauge data in Port Vila from 1995 to 2023. A total of 1 m was chosen as a threshold
to describe a raised tide, which is considerably above the baseline; however, in the future,
ideally, an impact-based threshold could be investigated to align with when coastal impacts
occur [30]. The average daily TAT in each month is shown in Table 1. Similarly to the
flood hazard index’s dynamic accumulated rainfall indicator, with our TAT dataset, we
can extract the TAT values for each day of the TCs Pam, Harold and Judy/Kevin to use for
comparison. TAT values from the same 5 days of the highest accumulated rainfall closely
aligned with the 5 days of highest TAT values in each TC’s lifetime. For each TC, the TAT
values across these 5 days were averaged (Table 2).

Table 1. Average daily TAT for each month calculated from Port Vila tide gauge data from 1995
to 2023.

Month Avg. Daily TAT (Hours)

January 10.9800
February 10.7849

March 9.95161
April 8.91071
May 8.28111
June 8.30000
July 8.80184

August 9.59447
September 9.94643

October 10.3894
November 10.5262
December 10.7454

Table 2. Average daily TAT for Port Vila tide gauge over 5 days during the TCs lifetime.

TC Event Avg. Daily TAT (Hours)

TC Pam 12.4
TC Harold 11.6

TC Judy/Kevin 17.4

To represent future risk to TCs in this study, we selected the month of February to
show in the results as it had the highest maximum accumulated rainfall and second highest
TAT value out of all the months. February’s hazard and risk will, therefore, be compared
against that of the case study TCs in the Results and Discussion to reduce the number of
figures shown; however, risk maps could be created for all months in the same way.



Remote Sens. 2024, 16, 1890 7 of 27

2.2.3. Exposure and Vulnerability Indicators

One limitation in past risk assessment studies is the lack of relevant vulnerability
indicators for the non-social domain [31]. The adjustment that was, thus, made to this study
to address this was first to source vulnerability data for all domains and to group exposure
and vulnerability by domain. In this study, the three domains we assessed were based
on each exposure indicator of population, households, and roads. Therefore, we sourced
vulnerability indicators that informed how vulnerable the people, houses and roads were.

For the population domain, population density was used to inform how exposed a
region was. Where there are more people per given area, the more valued assets there
are at risk to TCs. To determine how vulnerable the people in each region are, the two
vulnerability indicators used were Distance to Shelter (DtS) as well as an Economic Stability
proxy. DtS was created within GIS by calculating the distance of each cell to the nearest
communal shelter, such as schools, churches, and community centres. People living in areas
that are near to a shelter are given a lower vulnerability than those with a longer distance
to travel in the case where they need to evacuate their households for sturdier shelter. The
Economic Stability proxy indicator was created from an income source dataset from VNSO’s
(Vanuatu National Statistics Office) 2016 mini-census, using the proportion of people whose
main income source is from a salary. Assuming other income sources, such as fish, crop or
handcraft sales, remittances or house rent, as less stable than receiving an income via salary,
regions with higher proportions of main income from salaries were less vulnerable. This
indicator was chosen to capture the distribution of Economic Stability across the country in
the absence of more direct measures, such as total income or expendable income, which are
yet to be recorded in census data.

For the housing domain, exposure was informed by Household Density. Regions
with more household infrastructure had more assets to lose in the case of a TC event. The
vulnerability indicators specifically related to housing were Household Wall Material and
Household Roof Material. These datasets were sourced from the 2016 mini-census after the
impacts of TC Pam, where VNSO gathered responses on the type of materials that were
mainly used in each Council Area. For our household vulnerability indicators, from the
census datasets, we took vulnerability as the proportion of households that used traditional
materials for walls and palm/straw for their roofs. Households that are made up of these
materials are less likely to withstand the destructive impacts of a TC if they occur compared
to materials such as tile, concrete, metal, cement, or brick.

In the road domain, exposure was informed by the presence of a road at a resolution
of 30 m. These data were sourced from OpenStreetMap. Compared to density indicators
used for population and housing, the presence of roads is suitable for road exposure in
Vanuatu, as roads are few and far between. An alternative was to create a road density
indicator by counting the number of cells a road spanned across within a larger cell, but
this would reduce the resolution of the indicator, making the following vulnerability in-
dicators less appropriate. As no vulnerability data were attached to any road dataset
for Vanuatu, we created a novel road vulnerability index using elevation and slope data.
Guided by documentation from The Vanuatu Climate Resilient Road Standards Project [32],
using GIS, we checked how many vulnerable road conditionals each road met. The condi-
tions were as follows: intercepts a waterway, is within 50 m of the coastline, has a steep
slope of >10 degrees, has a very flat slope of <1 degree, and is within 10 m of a steep
slope >16 degrees. All of these conditions increase the vulnerability of roads to potential
impacts of a TC. A vulnerability value of 3 was given if the road cell met 3 of the conditions,
which would be more vulnerable than a road that only met one of the above conditions.

Table 3 summarises the data sources, resolution and normalisation methods used in
this study for each input indicator in the risk assessment.
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Table 3. Data sources, resolution and normalisation methods used for each input indicator in the risk
assessment.

Indicator Data Source Resolution Methods

TWI
(Flood Hazard) NASADEM-HGT elevation data ~30 m (1 arc second) St Dev (1–7)

Impermeability
(Flood Hazard) Land Cover data from ESA 10 m Unique (1–100)

Accumulated Rainfall
(Flood Hazard)

Daily accumulated rainfall from
MSWEP from 1980 to 2023 ~11.1 km (0.1 degrees) Min-max (0–1)

Coastal Elevation
(Surge Hazard) NASADEM-HGT elevation data ~30 m (1 arc second) Unique (0–4)

Shelf Gradient
(Surge Hazard) GEBCO gridded bathymetry ~450 m (15 arc seconds) Quantile (1–10)

TAT
(Surge Hazard)

Hourly Sea Level and
Meteorological Data from the

Australia Bureau of Meteorology
from 1995 to 2023

N/A Min-max (0–1)

Population Density
(Population Exposure)

Vanuatu Population Density 2020
(WorldPop) 1 km Quantile (1–10)

Distance to Shelter
(Population Vulnerability)

Vanuatu Buildings polygons
(OpenStreetMap) 30 m Quantile (1–10)

Economic Stability
(Population Vulnerability)

Proportion of households with
salary as main income (Vanuatu

2016 mini-census)
Council Area level Equal (1–9)

Household Density
(Housing Exposure)

Household locations grid (2016
Population and Housing census) 100 m Quantile (1–10)

Household Wall Material
(Housing Vulnerability)

Proportion of houses built with
traditional materials for walls
(Vanuatu 2016 mini-census)

Council Area level Equal (1–10)

Household Roof Material
(Housing Vulnerability)

Proportion of houses built with
palm/straw materials for roofs

(Vanuatu 2016 mini-census)
Council Area level Equal (1–10)

Road presence
(Road Exposure)

Vanuatu Road polylines
(OpenStreetMap) 30 m Unique (1)

Road Vulnerability Index
(Road Vulnerability) NASADEM-HGT elevation data ~30 m (1 arc-second) Unique (0–4)

2.3. Outline of Method

While this study focuses on the use of remote sensing data as proxy hazard indicators,
how a hazard is combined with exposure and vulnerability follows the same risk assessment
framework as previous studies [31]. Major improvements from the authors’ previous study
include calculating data at a gridded high resolution, separating exposed domains to assess
their relevant vulnerability, and assessing risk for different time periods based on dynamic
hazard indicators. Indicator data were sought for categories of hazard (flood and storm
surge), exposure (population, housing and road domains), and vulnerability (population,
housing and road domains).

Classification methods were carefully chosen based on each indicator and the shape
of their dataset. Defined equal intervals were used for data related to the % proportion
per Council Area from census data, whereas the quantile was used for indicators like
population and household densities. A min–max linear normalisation was used for the
dynamic hazard indicators of accumulated rainfall and TAT to allow case study TC events
to contextualise monthly values, setting the max range. Unique values of integers 0–4 were
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used for indicators based on scenarios such as coastal elevation and the road vulnerability
index. Once classified, all indicators were normalised to a 0–1 value before being placed
into index and risk calculations.

The risk calculation we used in this study follows what is commonly used in the
literature, where risk is the product of hazard, exposure and vulnerability [33,34], as
presented by Equation (2). For a region to be at risk, there must be exposed assets with
some vulnerability to the potential hazard.

Risk = Hazard × Exposure × Vulnerability (2)

The hazard index value, which is used in the risk equation, was calculated by equally
weighting and averaging each hazard indicator. This was conducted separately for the
two hazards of flooding and storm surge. In the case of multiple vulnerability indicators,
such as for population and housing domains, they were also averaged and then multiplied
by their relevant exposure indicator. Each hazard was then multiplied by each domain’s
exposure vulnerability product. A visual representation is given in Figure 4. This resulted
in maps at a 10 m resolution for all of Vanuatu for risk to populations, housing and roads,
and for both TC-induced flood and storm surge. Additionally, risk maps were created for
case study events of TCs Pam, Harold and Judy/Kevin by replacing monthly accumulated
rainfall and TAT values for the values measured at the time of each event.
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maps produced.

3. Results and Discussion

In the following sections, maps of indicators to the final risk map results are shown
and described before trends and insights are discussed. The flood hazard is discussed in
Section 3.1, followed by the surge hazard in Section 3.2. Exposure and vulnerability of
the three assessed domains are discussed in Section 3.3, followed by risk in Section 3.4.
Further discussion can be found in Section 3.5. In some cases, the results are shown for the
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specific area of greater Port Vila to capture high-resolution trends; however, results have
been computed for all of Vanuatu.

3.1. Flood Hazard

The reclassified Topographical Wetness Index (TWI) values mapped over Port Vila
and southern Efate Island are presented in Figure 5.
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Figure 5. Reclassified Topographical Wetness Index (TWI) values mapped over Port Vila and southern
Efate Island.

Figure 5 shows darker blue areas to have a higher reclassified value for TWI as an
indicator of the flood hazard. Topographically, flood-susceptible areas are those of lower
elevations than their surroundings, and TWI captures this by considering the elevation
and slope. TWI also describes where water can flow and pool to first in a flood event
when considering flow accumulation in its equation. In Figure 5, many river patterns can
be seen, including areas that could act as rivers with enough water. Additionally, lighter
colour ridges can be seen, especially towards the centre of Efate and its mountains. The
dark blue lake-like feature with the highest TWI values is actually Emten Lagoon, which is
an example of where water could pool in. TWI is combined with the other flood hazard
indicators; however, Emten Lagoon is masked out as part of the ocean. Over the main
city of Port Vila, TWI values are generally lower without the presence of such dark rivers
running through it.

TWI is an ideal indicator for the TC flood hazard as it only requires high-resolution
DEM data, which are readily available globally, and creates an indicator that shows differ-
ences in flood susceptibility in great detail.

The impermeability indicator of the TC flood hazard is shown in Figure 6.
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Figure 6. Impermeability classed by land cover type mapped over Port Vila and southern Efate Island.

Darker land cover refers to areas that are more impermeable and, thus, are more
susceptible to flooding. Built-up urbanised land cover had a value of 80, while bare ground,
shrubs and mangroves had a value of 65; wetlands were 60, cropland was 45, forest was 30,
and grasslands were the least impermeable with a value of 15. In index calculations, these
impermeability values were divided by 100 for a value from 0 to 1. For Vanuatu’s capital of
Port Vila on Efate Island, the highest impermeability was seen across the city with built-up
land cover. At the northern end of Port Vila is the airport, which can be seen as a long line
of dark blue. This makes sense as built-up areas generally have more paved surfaces, which
take in less amounts of water before turning excess water into runoff that can begin to pool.
Apart from the city, Efate and most other islands in Vanuatu are dominated by forest land
cover and some grasslands, which have some of the lowest impermeability values and
contribute to lower flood hazards.

Similarly to DEM data, the land cover data used in this study are freely available
globally, making it feasible to apply this methodology to other TC- and flood-prone coun-
tries. At an even higher resolution (10 m) than DEM, impermeability is another physical
indicator that provides great detail to the flood hazard index.

The AR indicator for the month of February directed towards future risk for the month,
as well as the historical case study events of TC Pam in 2015, TC Harold in 2020, and TCs
Judy and Kevin in 2023, are shown in Figure 7.

For February, values are low across the country, with slightly higher values of
0.1–0.2 across parts of the northern islands (Figure 7a). For TC Pam, AR is highest in
the northeast in the Penama province with a max of 0.6–0.8, with moderate values across
the rest of the country despite being far from the TC track (Figure 7b). For TC Harold,
maximum AR values are reached in Sanma province and parts of Penama province within
100 km of the TC track. Port Vila received moderate rainfall, while more southern islands
received values of 0–0.2 (Figure 7c). For the TCs Judy and Kevin, AR was highest in Shefa
and Tafea provinces, where the two TC tracks both passed through, with moderate values
along the northern path of TC Judy and west of Luganville (Figure 7d).
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Figure 7. Accumulated rainfall (AR) values normalised by highest raw value from TC Harold, across
Vanuatu for the month of February (a), and TC case study events for the TCs Pam (b), Harold (c), and
Judy/Kevin (d).

The regions of higher (0.1–0.2) AR values in the February map show which regions
have received more rainfall on average in the month of February since 1980. These light
green regions seem to correlate with higher elevation and mountainous features in the
northern islands. Despite there also being mountains in Efate and more southern islands,
rainfall seems to be more common in the north, closer to the equator. Values for February
were very low compared to those from the case study TCs. This is because the expected
AR over 5 days in February is compared to 5 days during a rare extreme TC event. Within
the method, the maximum accumulated rainfall value over 5 days found for TC Harold
was used as the maximum value in the linear normalisation of all maps. This set the
highest value of one as the amount of rainfall reached the wettest spot during TC Harold,
giving meaning and perspective to all other values. In previous risk assessments, indicator
values often were not calibrated to anything meaningful [31], limiting observations to just
comparative statements, such as one region had higher values than another and thus would
contribute to higher risk.

For the three case study TCs, it can be seen that the highest AR does not necessarily
follow the TC track, particularly for TC Pam. TC systems can be quite large, and most
rainfall does not necessarily fall near the centre; rather, how long a system resides over an
area can contribute more to accumulated rainfall. This is supported by the two tracks of
TCs Judy and Kevin passing over the same southern islands of Vanuatu, as well as the high
AR in TC Harold, where the TC spent a lot of time west of Vanuatu outside of the map
frame before gradually moving east over the country.

When comparing the month of February to the TC case study events, the very high
hazard values in an event that occurred contribute to much higher risks in the risk assess-
ment below. This is to be expected as these three events did cause massive damage and
negatively impacted the country’s population, infrastructure and livelihoods. For the future
risk map, where we used February’s average rainfall values, we identified regions that
generally received more rainfall in the month due to spatial location and topographical fea-
tures. This may contribute to wetter antecedent conditions and is used to estimate regions
of highest risk in the future when TCs have yet to form, and tracks cannot be predicted.
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By combining the three flood hazard indicators TWI, impermeability, and AR, the
flood hazard index is created, as shown in Figure 8.
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Figure 8. Flood hazard index values for February shown over southern Efate Island.

The flood index for February in Figure 8 shows similar patterns identified in the TWI
and impermeability indicators, with higher values where these patterns overlapped. In
particular, urban Port Vila has higher values, along with the airport strip north of the city.
Outside of Port Vila, the river systems and ridges from the TWI indicator can be seen. The
influence of the AR indicator is indiscernible as rainfall data came at a lower resolution
and had little variation over small distances.

For the three TC case study events, we expected similar patterns to be identified
in Figure 8 at a high resolution but with amplified values for regions with higher event
rainfall.

3.2. Surge Hazard

Coastal elevation (CE) over Port Vila and its surroundings is shown in Figure 9.
Regions with higher CE values are areas that become inundated with 1 m of storm

surge with higher thresholds for lower values. CE is shown to be high, particularly on
the west coast of Port Vila and at several parts along the southern coast. Of note is Emten
Lagoon, which, as explained earlier, is masked out as part of the ocean in index calculations.
Another consideration is that CE did not simulate how water could reach further inland
but was only based on elevation in situations of elevated sea levels to emulate surges. As a
result, some inland regions, particularly in the southeastern map extent, have >1 values far
inland, separated from the ocean by higher elevation barriers.

The CE indicator shows low-lying coastal regions that are most susceptible to the storm
surge hazard. By mapping where these regions are, we overlay with other surge indicators
to determine where we estimate surges to be the highest in a TC event; understanding this,
in reality, depends on the strength, extent and direction of the particular TC. One of the
limitations noted above is how far inland areas can still show >1 CE values despite not
being connected to the coast by a lower elevation channel. This is not addressed as the
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method intersects this indicator with the Shelf Gradient indicator, which only has values
up to 200 m from the coast. Another point to note is that Vanuatu is one of the Pacific
Island countries that is uplifting due to tectonic processes [35], which helps to reduce
the impacts of rising sea levels with climate change. This does not negate the need for
storm surge risk assessment, however, as some high-hazard areas have been identified, and
most of Vanuatu’s populations and infrastructure are lined around the coast and rely on
fishing activities.
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Figure 9. Reclassified coastal elevation values over southern Efate Island, describing low-lying
regions susceptible to inundation.

The Shelf Gradient (SG) indicator is shown within 200 m of the coastline of Port Vila
and its surroundings in Figure 10.

The further away from the dotted green line describing 30 m bathymetric depth, the
shallower the gradient underwater is for storm surges to run up. A shallower, hence,
further away coastline is given a higher reclassified hazard value versus a steep gradient,
which is given a lower value. High values around Port Vila are seen around the lagoons
and along the southern coastline, where the coastline curves inland like a bay. Lower values
are seen in western Port Vila and around the southwestern peninsula. It can be noted that
sometimes the 30 m bathymetric depth line crosses into land due to the inaccuracies of the
lower resolution bathymetry data.

A 200 m buffer from the coastline was used to limit the surge risk assessment to land
within 200 m of the coast. This was seen as a generous length to capture surge impacts
and capture most regions with moderate-to-high values in the coastal elevation indicator.
One concern with the indicator, however, is its usability as an indicator for coastlines that
reach far inland, such as lagoons. The purpose of this indicator was to distinguish steep
open coastlines against bay-like coastlines, which allow the shallow run-up of storm surges
more easily [28]; however, for Vanuatu with a more complex coastline shape, as shown
along the south of the extent in Figure 10, the suitability of the indicator to Vanuatu should
be assessed in future validation.
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Figure 10. Reclassified Shelf Gradient values along the coastline of southern Efate Island. The dotted
line of 30 m bathymetric depth is shown.

The recorded tide gauge sea level and calculated Time Above Threshold (TAT) are
plotted for the three TC case study events in Figure 11.

TAT describes the amount of time per day the tide was above a threshold of 1 m and
was chosen to indicate the likelihood of a raised tide level coinciding with a TC event’s
storm surge for each day. Figure 11 above shows both the sea level values (a, c, e) and TAT
(b, d, f) from three days before to three days after the case study TC events. The averaged
TAT value from 5 days of each TC event is normalised and used as a flat value across the
country as the TAT indicator value. After normalisation, these values were 0.45 for TC Pam,
0.36 for TC Harold, and 1.0 for TC Judy/Kevin. In comparison, the average value for the
month of February was 0.27.

Investigating the trend of TAT before, during, and after each TC event in Figure 11,
one can see that TAT rises during an event and often decreases below pre-event levels once
the TC has passed. Of consideration is that these TCs could not have caused landfall in Port
Vila or had their strongest storm surge at the same point in the 5 days of the TC’s effective
lifetime that we investigated. Comparing event-averaged and normalised TAT values for
each TC in their preceding daily TAT values, we can see that high preceding daily TAT
values correlate with high-event TAT values, and thus reinforce the use of this indicator to
show monthly/seasonal TAT value variations and how they can contribute to an increased
TC surge risk. With more tide gauge locations, similar values could be derived for each
location to better spatially assess storm surge hazards based on TAT.
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Figure 11. Sea level from Port Vila tide gauge (left) and daily Time Above Threshold values (right)
for three days before and after the five measured event days for TCs Pam (a,b), Harold (c,d), and
Judy/Kevin (e,f).

By combining the three surge hazard indicators, CE, SG and TAT, the surge hazard
index is created, as shown in Figure 12.

The trends found in CE and SG are seen; however, the magnitude of the values
seems to have dropped due to the lower TAT value applied across the country in February
compared to the TC case study events. Overall, the highest values are seen in the lagoons
and around Eratap, while the southwestern peninsula shows low values due to SG despite
having a low-lying elevation. The western main coastline of Port Vila is also relatively low,
suggesting reduced surge impacts from TCs to major populations and infrastructure.
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3.3. Exposure and Vulnerability
3.3.1. Population Domain

Figure 13 shows the exposure and vulnerability indicators for the population domain.
The exposure in the Population density map (Figure 13a) is highest around Port Vila in

Efate Island, as expected, with hotspots along the coast for the islands of Tanna, Malekula
and Luganville in Espiritu Santo Island. According to the Distance to Shelter indicator, the
most vulnerable regions were in north Espiritu Santo and south Malekula as they were
the largest islands with the furthest distances away from buildings used as shelters in TC
events. Comparing Distance to Shelter with Population density, there seem to be many
shelters, and thus, less vulnerability where major population hubs are. The Economic
Stability indicator derived from income source data show high vulnerability over most
of the country except for Port Vila and some surrounding Council Areas in Efate. This
shows how different residents’ jobs are in Vanuatu’s capital compared to other islands,
which rely on subsistence farming and fishing. Finally, in Figure 13d, the product of
exposure and vulnerability for the population domain is depicted with relatively similar
values throughout the country. Upon further inspection, many areas have values of 0.1–0.3,
either from high exposure and low vulnerability, such as Port Vila, or low exposure with
high vulnerability. There are some exceptions where very high values are found in some
locations along the coasts of Malekula and Pentecost.

While these indicators give great insight into the population and their characteristics,
the input data could still be improved upon. One limitation is the use of income source data
as a proxy for a region’s financial situation. It assumes people working a job paid wages are
less vulnerable than those who receive their income from other methods, such as through
the trading of goods or farming. Ideally, a future census could assess expendable income or
another indicator of their capacity to persevere through multiple days of disruption to work
and repair damages. Additionally, the DtS indicator could be improved with extended
information on what people living far away from identified shelters do. This could reveal
whether shelter points are missing from the dataset or confirm that they had to brace for
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TC landfall in less-than-ideal structures. While this study has tried to select effective and
relevant indicators for exposure and vulnerability, with different input data, the pattern
shows that the highest risk could change.

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 29 
 

 

 
(a) (b) 

 
(c) (d) 

Figure 13. Population density (a), Distance to Shelter (b), Economic Stability (c), and Population 
Exposure multiplied by vulnerability (d). Values are shown over all of Vanuatu with a close-up of 
the extent of Efate Island. Vulnerability indicators are equally weighted into one vulnerability in-
dex before multiplication. 

The exposure in the Population density map (Figure 13a) is highest around Port Vila 
in Efate Island, as expected, with hotspots along the coast for the islands of Tanna, Ma-
lekula and Luganville in Espiritu Santo Island. According to the Distance to Shelter in-
dicator, the most vulnerable regions were in north Espiritu Santo and south Malekula as 
they were the largest islands with the furthest distances away from buildings used as 
shelters in TC events. Comparing Distance to Shelter with Population density, there seem 

Figure 13. Population density (a), Distance to Shelter (b), Economic Stability (c), and Population
Exposure multiplied by vulnerability (d). Values are shown over all of Vanuatu with a close-up of
the extent of Efate Island. Vulnerability indicators are equally weighted into one vulnerability index
before multiplication.

3.3.2. Population Domain

Figure 14 shows the exposure and vulnerability of housing in Vanuatu.
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Figure 14. Household Density (a), Household Wall Material (b), Household Roof Material (c), and
Housing Exposure multiplied by vulnerability (d). Vulnerability indicators are equally weighted into
one vulnerability index before multiplication.

Unlike population data, Household Density came in the form of raster data only for
areas where houses existed. As a result, there are only data where one or more houses
are present. Household Density in the top left shows the highest exposure in Port Vila, as
expected, in the capital city. Outside the figure’s extent, housing is seen scattered across
the country in a similar distribution to Population Density. The vulnerability of housing is
quantified by the two indicators of Household Roof Material and Household Wall Material.
The material data show Efate Island to have low proportions of their houses built with
less sturdy materials, while islands coloured in dark purple have the majority of their
houses built from materials such as straw and palm, which are likely to be destroyed in
a TC event. The product of exposure and vulnerability for the housing domain can be
seen in Figure 14d, showing low values of 0–0.3 around Port Vila due to extremely low
vulnerability in comparison to the rest of the country. At hotspots of Household Density
across other islands, however, values reach as high as 0.8–0.9 as vulnerability is generally
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high outside of Efate. The high-resolution but scattered data for housing makes it difficult
to ascertain trends at a glance but retains all information from inputs. When analysing risk
to housing, data will be summarised into Council Areas for discussion.

3.3.3. Road Domain

Figure 15 shows the exposure and vulnerability of the road domain.
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Exposure is taken as the presence of the road and given a value of one. Although
it would have been ideal to differentiate amounts of exposure where there were roads
based on road type data (primary roads, secondary roads, trails, etc.), the road data from
OpenStreeMap was not complete enough nor verified to be used. Alternatively, statistics
such as the amount of traffic each road holds would differentiate the value of different
roads, but these data were also not available.

For vulnerability, roads were assessed based on the physical properties of the road’s
locations, such as the slope. While it is difficult to discern patterns in vulnerability at a
glance, they are usually found near the coast or waterways, as can be seen for one road at
the southern end of Port Vila along the coastline. Again, not enough road data, such as road
surface, were available to indicate how affected the roads would be by water-based hazards,
such as surges and floods. A road vulnerability index methodology was instead created
using knowledge from the Vanuatu Climate Resilient Road Standards Project, which could
easily be replicated in other regions lacking further information from road data.

3.4. Risk Assessment
3.4.1. Flood Risk

Figure 16 shows the flood risk to populations for February as well as the TC case studies.
For each scenario, Efate has higher risk values that are found on the northern coastline,

as well as a portion of the coast north of Port Vila. The influence of differing AR values
from the hazard index can be seen by consistently higher values from 0.1 and above for
northern islands in the case of TC Harold. The TCs Judy and Kevin show an increase in risk
values for Efate and more southern islands. In each case, the mountainous northern end of
Sanma province, northwest of Luganville, shows consistently higher risk values than other
islands. This is likely due to high values from the flood hazard index. The highest risk
values shown in red are scarce but exist in particularly coastal regions where there is an
overlap of considerable population and high vulnerability. In general, the most populated
regions, such as the cities of Port Vila and Luganville, show some of the lowest levels of
vulnerability throughout the country, resulting in much lower risk values.
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Figure 16. Population flood risk maps for February (a), TC Pam (b), TC Harold (c) and TCs
Judy/Kevin (d).

While the final risk maps combine trends from all the input indicators, when compar-
ing population flood risk maps of February to historical TC events, where we know they
have caused massive devastation and disruption to the country, the risk values seem to
be underestimated. This suggests that the weighting of either the hazard or the dynamic
AR indicator, in particular, should be emphasised. With the current method, the differ-
ence in AR values between scenarios is diluted in the hazard index calculation where it
is equally weighted with TWI and impermeability, as well as diluted through multiplica-
tion with exposure and vulnerability indices. We expect future validation to confirm this
underestimation and prompt adjustments to the methodology.

In the following results, risk values have been summarised to a Council Area resolution
for visualisation and to more easily identify trends. Only the February scenario is shown to
reduce the repetition of maps, as the case study TC results show the same trends but with
an increased relative risk matching the pattern of AR specific to the event.

Figure 17 shows the Council Area mean risk values for the population, housing and
road TC flood risks.

While the results were calculated to a high resolution, the values were summarised to
the Council Area to allow for a comparison of results at the country zoom level. Figure 17a
shows the summarised population flood risk for February, as shown previously in Figure 16.
Comparing the domains of populations, households and roads, households show higher
risk values, particularly in the northern provinces, while the population risk is moderate-
to-low across the country. In general, risk in all domains is relatively low in Efate Island.
As the mean value of all cells is taken for each Council Area, population risk values are
seen to be lower as the exposure data cover the whole country, whereas households and
roads have many gaps. This led to more cells with low exposure values for the population,
lowering the overall mean risk.
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Another insight is that the highest exposure but lowest vulnerability regions, such as
Efate, particularly in the housing domain, result in much lower risk. While, mathematically,
there is no error in the method, it brings up the question of whether the lowest vulnerability
based on the chosen indicators is effective in reducing risk in reality. In other words, does
Efate’s highest proportion of sturdier households dramatically reduce the impacts of TCs.
Historical reports suggest that while they may be sturdier, in the event of a severe TC,
they are by no means invulnerable to damage and, in most cases, are more expensive to
repair, resulting in greater monetary loss. This reveals the need for vulnerability indicators
that inform thresholds of whether assets were damaged or not in case study events. One
such dataset could be mapped insurance claims; however, these types of data are seldom
available in the public domain.

3.4.2. Surge Risk

For surge risk to populations, housing, and roads shown in Figure 18, one can see
a very similar pattern to flooding when results are summarised by the Council Area
resolution. Risk is generally low in Efate, with roads showing higher values of 0.05–0.15.
Compared to the flood risk, the regions of Penama and Tafea provinces reach higher risk
values, shown by a darker red.

Figure 18 shows the Council Area mean risk values for population, housing and road
TC surge risk. Although surge risk values overall seem to be higher than flood risk, it
should be noted that the actual area of surge risk is quite low, only along the coast. TC
case study maps were not shown for surge risk as they showed the same trends but with a
flat hazard and, hence, risk increase across the country based on each TC event’s average
TAT value.
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3.5. Further Discussion

The Results and Discussion above have shown how the developed methodology used
remote sensing data to indicate TC hazards of flooding and storm surge and how it was
applied alongside exposure and vulnerability data for multiple domains to estimate risk.
One key missing assessment is the inclusion of wind hazards. This was excluded from
the methodology as it was determined that wind hazard is too closely entangled within
the TC characteristics of the TC track (location), intensity and wind direction. Removing
this information left the possible indicator of surface roughness to determine a location’s
tendency to allow for high wind speeds; however, compared to indicators such as TWI or
CE, surface roughness does not prohibit flooding or storm surge occurrence at a location
to the same degree. Thus, winds were excluded from this hazard susceptibility index and
risk assessment for Vanuatu; however, we did not understate the impact of wind damage,
particularly for Vanuatu and other Pacific Island countries. The inclusion of wind will be a
direction of future research.

A limitation of most risk assessments, which are tailored to specific domains or sectors,
is that they cannot address every asset at risk. In this study, populations, housing and roads
were assessed, and regions of higher and lower risk were identified. A region found with
low-risk values for these three domains may be due to the low presence of assessed assets in
this location, but in reality, may hold valuable assets such as cropland, critical infrastructure,
office buildings or ports. The results shown in this study have mainly been used to identify
trends throughout the country and in the main island of Efate. The usefulness of these
high-resolution risk maps can only be fully understood when given to local residents who
are able to confirm their accuracy or identify gaps.
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A benefit of the designed hazard index, along with lower data requirements, is that
the hazard describes the susceptibility of the location to flooding and storm surges, even
from non-TC events. Any other systems, such as non-cyclonic storms that bring extensive
rainfall or winds that push water inland, can have their hazard assessed through this
method. While it could be argued that this makes this risk assessment less of a TC-specific
risk assessment, it can be adapted to inform decision makers for events no matter where,
when, or how strong.

This study contributes to the literature on TC risk assessment by proposing an al-
ternative method of defining hazards and possibly changing how risk assessments can
be utilised by decision makers. Although it may seem counterintuitive, removing the
probability component of the hazard allows the accompaniment of TC information to be
chosen depending on the use case. For example, the risk assessment put forward in this
study assessing hazard susceptibility could be accompanied by seasonal TC forecasts [36],
sub-seasonal multi-week forecasts [37], or tracks of an incoming TC, which have been im-
proving in recent years. Alternatively, future probabilistic risk information could be inferred
by pairing conventional TC hazard model data when they are published or made available.

By setting up the framework in this way, the risk assessment identifies what character-
istics of the location make it most susceptible to TC impacts. This shift in focus away from
where and how strong TCs may be statistically, instead lends itself to look at what can be
changed and improved to increase resilience and reduce the region’s vulnerability to TCs.

4. Conclusions

This study evaluated TC risk in Vanuatu, addressing constraints of limited hazard
model data in Pacific Island countries. The TC hazard index was modified from earlier
studies in Australia to use high-resolution remote sensing data to create proxies for flood
and surge hazards. This led to the decision to omit some TC characteristics from the risk
assessment, such as predictions of the TC’s track, intensity, direction, and duration, and
instead focus on quantifying the potential hazard that could occur based on the physical
properties of each location; in other words, focusing on hazard susceptibility. With the
inclusion of rainfall and tide indicators in each hazard index, this method allowed for
the differentiation of rainfall and tide at different time periods. The month of February
was assessed using climatologies of accumulated rainfall and Time Above Threshold tide
data, compared against the values measured during the following major TC events: TC
Pam, TC Harold and TCs Judy and Kevin. As a result, the developed TC risk assessment
methodology could be used to inform general future risk, as well as to assess historical
events. The risk to the domains of population, housing, and roads were separately assessed.
At the fine scale, the results show intersections of high hazard, exposure, and vulnerability
scattered across the country; however, maps with values summarised to the Council Area
were used to identify trends. These maps show relatively low flood and surge risks
over Vanuatu’s most populated island of Efate, with higher average risks in the Sanma,
Malekula, Tafea and Penama provinces. The comparison of risk in February to TC events
with evidence of major impact and disruption to the country suggests the underestimation
of the dynamic hazard indicators. Future research will be focused on the comparison of
estimated risks against reported impacts in historical TC events, which will allow for the
currently developed concept methodology to be evaluated and improved upon.
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