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Abstract: Transformer has recently become widely adopted in point cloud registration. Nevertheless,
Transformer is unsuitable for handling dense point clouds due to resource constraints and the sheer
volume of data. We propose a method for directly regressing the rigid relative transformation of
dense point cloud pairs. Specifically, we divide the dense point clouds into blocks according to the
down-sampled superpoints. During training, we randomly select point cloud blocks with varying
overlap ratios, and during testing, we introduce the overlap-aware Rotation-Invariant Geometric
Transformer Cross-Encoder (RIG-Transformer), which predicts superpoints situated within the
common area of the point cloud pairs. The dense points corresponding to the superpoints are
inputted into the Transformer Cross-Encoder to estimate their correspondences. Through the fusion
of our RIG-Transformer and Transformer Cross-Encoder, we propose Transformer-to-Transformer
Regression (TTReg), which leverages dense point clouds from overlapping regions for both training
and testing phases, calculating the relative transformation of the dense points by using the predicted
correspondences without random sample consensus (RANSAC). We have evaluated our method
on challenging benchmark datasets, including 3DMatch, 3DLoMatch, ModelNet, and ModelLoNet,
demonstrating up to a 7.2% improvement in registration recall. The improvements are attributed to
our RIG-Transformer module and regression mechanism, which makes the features of superpoints
more discriminative.

Keywords: point cloud registration; Transformer-to-Transformer; dense point cloud

1. Introduction

Point cloud registration is a critical research area within the realms of computer
vision and robotics, serving as pivotal function in diverse applications including 3D object
reconstruction, scene comprehension, and robotic manipulation [1,2]. Achieving precise
alignment of point clouds enables the amalgamation of data from varied sources, thereby
supporting activities such as environmental modeling, object identification, and augmented
reality applications. Enhancing the efficiency and precision of point cloud registration
algorithms empowers researchers to elevate the performance of autonomous systems,
robotic perception, and augmented reality applications, consequently driving progress
across sectors spanning industrial automation to immersive virtual reality encounters.

Recently, there has been a notable increase in research within the domain of point
cloud registration focusing on deep learning methodologies. These innovative strategies
utilize neural networks to directly acquire descriptions from 3D points, eliminating the
necessity for manual feature engineering and tackling issues like varying point density and
noise. Fully Convolutional Geometric Features (FCGF) [3] is a deep learning method that
seeks to extract geometric features directly from point clouds. Through the application of
fully convolutional neural networks, FCGF can effectively capture both local and global
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geometric details, facilitating precise point cloud registration amidst noise and partial
overlap. FCGCF [4] incorporates color data from point clouds into the FCGF network struc-
ture, merging geometric structural details with color features for enhanced representation.
By fusing geometric and color information, the feature descriptors are enhanced in distin-
guishing points with high similarity in three-dimensional geometric structures. Udpreg [5]
proposes a distribution consistency loss function based on a mixture of Gaussian models to
supervise the network in learning its posterior distribution probabilities. It combines this
approach with the Sinkhorn algorithm [6] to handle partial point cloud registration, aiding
the network in extracting discriminative local features. Through unsupervised learning,
UDPReg achieves label-free point cloud registration. GeoTransformer [7] introduces a
method to extract global geometric features from the position coordinates of superpoints.
It presents a geometric Transformer for learning global features and introduces the overlap
circle loss function, treating superpoint feature learning as metric learning. By combining
this approach with the Sinkhorn method, GeoTransformer achieves point cloud registration
without the need for RANSAC [8]. RoITr [9] introduces a network based on the Trans-
former architecture utilizing channel-shared weights to leverage the global properties of
Transformer. Building upon the GeoTransformer framework, it embeds geometric features
from self-attention modules into cross-attention modules to achieve rotation invariance
in the Transformer structure. RegTR [10] utilizes a superpoint correspondence projection
function to directly constrain the features interacting with the Transformer Cross-Encoder
and the voxelized superpoint coordinates. This method replaces RANSAC and directly
regresses the relative transformation matrix. RORNet [11] divides point clouds into several
small blocks and learns the latent features of overlapping regions within these blocks.
This approach reduces the feature uncertainty caused by global contrast and subsequently
selects highly confident keypoints from the overlapping regions for point cloud registration.
HR-Net [12] introduces a dense point matching module to refine the matching relation-
ships of dense points and utilizes a recursive strategy to globally match superpoints of
point clouds and locally adjust dense point clouds layer by layer, thereby estimating a
more accurate transformation matrix. Roreg [13] addresses the point cloud registration
challenge by focusing on directional descriptors and local rotation techniques. The direc-
tional descriptors are categorized into rotational equivariance and rotational invariance
components. Equivariance mandates that descriptors are invariant to transformations
in the relative point positions within the point cloud, whereas invariance ensures that
registration outcomes are insensitive to changes in scale, rotations, or translations of the
point cloud. A local rotation approach is devised to integrate rough rotations for significant
angle adjustments with precise rotations for minor angle variations, aiming to ascertain the
optimal rotation amount and improve registration precision.

Combining the 3D coordinates and features of superpoints, RegTR [10] employs
Transformer to directly perform global information interaction on superpoints. However,
the coordinates of superpoints are sparse, and the computation on superpoints is voxelized
around the centers of point cloud blocks, introducing errors in superpoint coordinates,
especially for point clouds with small areas of overlap. We seek to leverage the global
properties of Transformer to extract and incorporate global information from dense point
clouds. Nevertheless, due to the limitations of Transformer in terms of data length and
computational resources, direct processing of dense point clouds is not feasible. Through
multiple experiments and data analysis, we discovered that the similarity between the
neighborhoods of points outside the overlapping region and those inside the overlapping
region has a significant influence on point cloud registration. Points within the over-
lapping region have less significance for point cloud registration due to their uniform
structure. Therefore, it is crucial to select the overlapping region and features with higher
discriminative power within this region to enhance the registration’s effectiveness. Draw-
ing inspiration from previous studies [7,9,10], we segmented the point cloud registration
procedure into two distinct stages. Initially, we leverage Transformer’s overarching charac-
teristics to differentiate the overlapping and non-overlapping zones, thereby converting the
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point-to-point matching challenge into a classification task across these areas. Subsequently,
we select representative dense keypoints within the overlapping region using a Transformer
Cross-Encoder to directly regress the relative transformation.

2. Materials and Methods
2.1. Problem Setting

Our objective is to utilize dense point clouds to compute the relative rigid transfor-
mation matrix T ∗ ∈ SE(3) between point cloud pairs P0 ∈ R3×M and Q0 ∈ R3×N by
minimizing the Equation (1) defined as follows:

F = min
T∗ ∑

( p̂j ,q̂k)∈Ĉpd

∥∥T ∗( p̂j)− q̂k)
∥∥

2, (1)

where Ĉpd
=

{
( p̂j, q̂k)

∣∣ p̂j ∈ pd ⊂ Q, q̂k ∈ qd ⊂ Q}, which is the set of predicted dense
correspondences; ( p̂j, q̂k) is a pair of correspondence; and ∥·∥2 is L2 norm.

2.2. Overview of Our Method

Our approach, named TTReg, utilizes a global transformer to select dense correspon-
dences related to sparse superpoints within the common area to estimate the transfor-
mation (See Figure 1). TTReg consists of an encoder–decoder feature extraction module,
a sparse superpoint matching module, and a dense point matching module (see Figure 2).
The encoder–decoder utilizes the KPConv [14] backbone as a feature extraction module
and computes downsampling points of different levels (Section 2.3). The sparse superpoint
matching module utilizes our RIG-Transformer to select matching superpoints located
in overlapping regions to generate dense point clouds (Section 2.4). We partition dense
points and superpoints into spatially clustered blocks. During training, we randomly select
point cloud blocks with varying overlap ratios, and during testing, we choose dense points
corresponding to superpoints selected by RIG-Transformer. Then, the dense point matching
module directly regresses the correspondences of input dense point clouds, enabling the
computation of relative transformation between dense point cloud pairs (Section 2.5). We in-
troduce different loss functions to supervise superpoint matching module and dense point
matching module to learn the correspondences and predict the transformation (Section 2.6).
Our contributions are summarized as follows:

(b) Estimated dense matching points (c) Registered pairs of point clouds

(a) Point clouds to be registered

Figure 1. Our TTReg predicts dense correspondences in the overlap region and estimates the
transformation of point clouds with regions of low overlap. Points in red and green represent point
clouds P0 and Q0, respectively, and gray lines represent the relationship of correspondences.
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• We propose a Rotation-Invariant Geometric Transformer Cross-Encoder module (RIG-
Transformer) that combines the geometric features and positional encoding of su-
perpoint coordinates to extract more distinctive features for predicting superpoints
located in the overlapping region.

• Through the fusion of our RIG-Transformer and Transformer Cross-Encoder, we
introduce a Transformer-to-Transformer dense regression (TTReg) that leverages
dense point clouds from overlapping regions for both training and testing phases to
compute the transformation matrix.

• Through extensive experiments, our method showcases strong matching capabilities
on public 3DMatch and ModelNet benchmark, with a notable improvement of 7.2% in
matching recall on datasets with small overlap ratios.
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Figure 2. Overview of our TTReg architecture. FP
4 and FQ

4 are features of superpoints P4 and Q4. FP
2

and FQ
2 represent features of dense points P2 and Q2. Our RIG-Transformer serves as the superpoint

matching module for selecting the optimal matching superpoint pairs Ĉs within the overlap area.
The point matching module encodes the feature FP

2 and FQ
2 of dense points P2 and Q2 corresponding

to Ĉs, and predicts the dense correspondences Ĉd. Finally, the relative transformation matrices R̂ and
t̂ are calculated utilizing dense correspondences Ĉd.
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2.3. Feature Extraction and Correspondences Sampling

We utilize KPConv [14] as our feature extractor. The original point cloud pairs,
represented as P0 ∈ R3×M0 and Q0 ∈ R3×N0 , are voxelized to calculate the downsampled
3D points Pj ∈ R3×Mj and Qj ∈ R3×Nj , where Mj and Nj denote the number of 3D points
obtained at each convolutional layer. Unlike Farthest Point Sampling (FPS) [15,16], we
calculate the centroids of adjacent points within a voxel radius V to derive the downsampled
point clouds Pj and Qj. These downsampled point clouds are then utilized for feature
extraction in the subsequent KPConv layers, resulting in feature representations FP

j ∈
RDj×Mj and FQ

j ∈ RDj×Nj .
The architecture for 3DMatch and 3DLoMatch illustrated in Figure 2 is adopted.

We apply a 3-layer stridden KPConv convolutional structure to the original point cloud,
involving three downsampling steps. Conversely, we perform two upsampling steps during
the upsampling stage, resulting in one less upsampling step compared to the downsampling
step. This is because point clouds are dense, requiring uniform voxelization to adapt to
our correspondence loss function. The choice of upsampling steps follows the settings in
Predator [17]. For the ModelNet and ModelLoNet datasets, a 2-layer downsampling and
1-layer upsampling encoder–decoder structure is employed.

To illustrate the sampling and aggregation method between sparse superpoints and
dense point clouds used in our architecture of 3DMatch and 3DLoMatch (as shown in
Figure 2), we first perform downsampling and feature extraction using the KPConv network.
This process yields the lowest-level sparse 3D point cloud superpoints P4 and Q4, along
with their corresponding features FP

4 and FQ
4 . We adopt the data grouping method proposed

in [17,18], where each superpoint serves as the center of a circle to divide the dense point
clouds P2 and Q2 into 3D data blocks. The Euclidean distances between the dense points
in P4 and P2, as well as Q4 and Q2, are computed. The dense points that are closest to
the superpoints are assigned to the corresponding data blocks. The grouping method for
mapping the dense points Q0 and P0 to superpoints is defined by Equation (2):

GQ4
k =

{
q4 ∈ Q4|k = argminl(

∥∥q4 − q2,l
∥∥

2), q2,l ∈ Q2
}

, (2)

where q4 represents a superpoint obtained by downsampling the point cloud Q0, and q2
denotes a dense 3D point of Q0 that needs to be grouped. The symbol ∥·∥ denotes the
Euclidean distance of 3D points. The same grouping strategy is applied to the other point
cloud P0.

After the grouping process of dense 3D point clouds, as shown in Figure 3, we calculate
the neighborhood points for each superpoint P4 and Q4 by considering the points in GP4

k
and GQ4

k . For each superpoint, we compute the distance to its farthest neighboring point,
which is used to measure the overlap region. By applying the relative transformation, we
transform the superpoints P4 and the dense points P2 from point clouds P0 into the Q0

coordinates, denoted as P
′
2, P

′
4 from P

′
0. We then measure the overlap between superpoint

pairs P
′
2 and Q2. The overlap is determined based on whether the dense points P

′
4, Q4

are contained within the overlap region of superpoints P
′
2, Q2 or not. The threshold

for the overlapping region is represented as othr, which is used to select the dense point
pairs. The selected superpoints in the overlap region of P4 and Q4 are denoted as Po

4
and Qo

4, respectively, and the dense points related to Po
4 and Qo

4 are denoted as Po
2 and Qo

2,
respectively. We select dense points around superpoints based on the size of the overlapping
region of the aligned point clouds. Dense point block pairs with larger overlapping regions
are chosen to train our network architecture. In Figure 3, dense point block pairs of (a) are
considered to be located in the overlapping region due to a large overlap area, while those
in (b) and (j) are discarded as they either have no overlap or a small overlap region.
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Point 
cloud

...othr

(a) (b) (j)

Point 
cloud 

Q0

Figure 3. The selection of a superpoint and its corresponding dense points. (a) represents the
selected dense matching point cloud block with a relatively large overlapping region, while (b) and
(j) represent dense point cloud blocks with no or small overlapping region.

2.4. Superpoint Matching Module

We propose a Rotation-Invariant Geometric Transformer Cross-Encoder module,
referred to as RIG-Transformer. Figure 4a depicts the computational flowchart, and
Figure 4b,c depicts our RIG-self-attention and RIG-cross-attention, respectively. Through
incorporating geometric features and positional encoding, we start by adding and nor-
malizing the input features, a slight deviation from the typical attention mechanism. We
compute the geometric features R

′
P4

and R
′
Q4

, as well as the positional encoding RP4 and
RQ4 of superpoint P4 and Q4. These values are then combined with the feature vectors
FP

4 and FQ
4 of the superpoints and fed into RIG-Transformer to calculate the interaction

features of the point cloud pairs.
For instance, considering the point cloud P0, we compute the feature vectors for

RIG-self-attention, following the process and dimensions depicted in Figure 4. Utilizing
the superpoint P4 and feature vector FP

4 extracted by KPConv [14] as input, we not only
calculate the initial attention [19] components Qs, Ks, Vs, but also compute weighted
geometric feature encodings Gs and Rs. Subsequently, we derive the geometric branch
feature EP4 and contextual feature CP4 based on the attention weights. The definitions of
the individual variables are provided as follows:

Gs = R
′
P4

WGs , (3)

Rs = R
′
P4

WRs , (4)

Qs = (FP
4 + RP4)WQs , (5)

Ks = (FP
4 + RP4)WKs , (6)

Vs = (FP
4 + RP4)WVs , (7)

EP = So f tmax(
QsRs + QsKT

s√
Ds

)Gs, (8)

CP = So f tmax(
QsRs + QsKT

s√
Ds

)Vs, (9)

where WGs , WRs represent the learnable weights for geometric features; WQs , WKs , and
WVs denote the learnable self-attention weights for the features of superpoints P4 and Q4;
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and Ds indicates the dimension of the features FP
4 and FQ

4 of P4 and Q4. It is noteworthy that
WGs , WRs , WQs , WKs , and WVs share weights between point clouds P0 and Q0. Similarly,
taking Q4 and FQ

4 as inputs to the self-attention module RIG-self-attention, we replace the
corresponding input variables according to the computation methods in Equations (3)–(9)
to calculate EQ4 and CQ4 for subsequent feature interactions.

Softmax

Softmax

:M4 x M4 :M4 x M4

M4 x M4

M4 x M4M4 x M4

:M4 x M4 x D4

:M4  x D4
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:M4  x D4:M4  x D4:M4  x D4

Figure 4. Overview of our RIG-Transformer module: (a) depicts an overall computation of the
RIG-Transformer module, (b,c) depict the RIG-self-attention and RIG-cross-attention.

We input the calculated EP4 , CP4 , EQ4 , and CQ4 from the above computations into RIG-
cross-attention, as illustrated in Figure 4c. We compute the rotation-invariant geometric
feature F̃P

4 after the interaction, with the calculation of variables defined as follows:

Q
′
s = (EP + CP)WQ′

s
, (10)

K
′
s = (EQ + CQ)WK′

s
, (11)

V
′
s = (EQ + CQ)WV′

s
, (12)

F̃P
4 = So f tmax(

Q
′
sK

′
s
T

√
Ds

)V
′
s, (13)

where WQ′
s
, WK′

s
and WV′

s
are the learnable shared weights for point clouds P4 and Q4.

By swapping the input order of EP4 and EQ4 , CP4 and CQ4 in Figure 4c, we obtain the
output features F̃Q

4 . As shown in Figure 2, the obtained F̃P
4 and F̃Q

4 are further processed
through the FFN module, which consists of two layers of linear transformation units,
to facilitate multiple interactions and the fusion of features. The calculated features serve
as new F̃P

4 and F̃Q
4 . We iterate the computation of RIG-Transformer Ls times to enhance the

correlation between intrinsic and interaction features of the point clouds, resulting in the
final output feature vectors F̃P

4 and F̃Q
4 with geometric properties and rotation invariance.

To extract the optimal matching dense 3D points Ĉd, during the training phase, we
compute neighboring points from P4 and Q4 and randomly select matching superpoints
Ĉs, followed by selecting densely related points for training our network. During the
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testing phase, we calculate the optimal matching superpoints and then select the densely
related points in the dense point matching module. To select the best matching superpoints,
we first normalize the features F̃P

4 and F̃Q
4 mixed with geometric features and positional

encoding. Subsequently, we compute the Gaussian correlation matrix C̃s for the normalized
features, with the Gaussian correlation formula for a pair of superpoints defined as follows:

C̃s
ij = exp(

∥∥∥F̃pi
4 − F̃

qj
4

∥∥∥2

2
). (14)

To enhance the discriminative feature matching of superpoints, we normalize the
correlation matrix C̃s

ij using bidirectional normalization [7,20,21]. Bidirectional normaliza-
tion refers to normalizing the feature correlation matrix in rows and columns separately.
The formula is defined as follows:

Ĉs
ij =

C̃s
ij

∑
|P4|
k=1C̃s

ik

·
C̃s

ij

∑
|Q4|
k=1 C̃s

kj

. (15)

After bidirectional normalization, we select the top K best-matching pairs of super-
points based on the matching scores and extract the related dense points. These dense
matching points not only possess richer geometric features but are also located in overlap-
ping regions. This reduces the impact on point cloud registration performance from points
structurally similar but located outside the overlapping regions.

2.5. Point Matching Module

Due to the quadratic relationship between weight matrices and data length in the
attention mechanism of Transformer, existing methods are unable to directly process dense
point clouds with Transformer. Furthermore, numerous dense point pairs correspond to
points in the overlapping areas. Thus, we choose the top K matching point pairs Ĉs using
the predicted superpoints containing global information. Subsequently, we index the dense
3D matching point pairs located in overlapping regions based on the relationship between
superpoints and dense points. The predicted dense matching points are denoted as Ĉd,
containing the dense three-dimensional points P2 and Q2 of point clouds P0 and Q0, along
with their respective features F̂P

2 and F̂Q
2 .

Since F̂P
2 and F̂Q

2 are dense point cloud features extracted by the KPConv network, they
have more accurate coordinates compared to sparse superpoints. We utilize a Transformer
Cross-Encoder to interactively exchange information among the dense point features
located within the overlapping regions outputted by the RIG-Transformer module. In the
interaction, we fuse the positional encoding [10,19] of the respective dense point coordinates.
The incorporation of positional encoding not only enhances the robustness of the features
but also allows us to use them for subsequent prediction of corresponding point coordinates
and determining if the predicted points reside in overlapping areas. Based on the predicted
dense corresponding points, we calculate the transformation matrix.

Our dense point cloud matching module is primarily composed of a Transformer
Cross-Encoder module and an output decoding module. The Transformer Cross-Encoder
module consists of a self-attention module, cross-attention module, and FFN module.
In Figure 5a, the overall calculation process of attention is depicted, Figure 5b represents
the calculation of self-attention for feature extraction, and Figure 5c illustrates the attention
interaction calculation between two point clouds. The FFN module comprises two layers
of linear transformation units, serving to transform and integrate feature channels in the
interaction of multi-layer attention.
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Figure 5. The dense matching module structure: (a) depicts the overall computation of the dense
matching module, (b,c) depict the calculation of the self-attention and cross-attention modules.

Taking dense spatial coordinates P2 and the features F̂P
2 of point cloud P0 located

in the overlapping region as an example, we illustrate the feature fusion and interaction
of dense point feature pairs in Figure 5b,c. Firstly, P2 are encoded using sine encoding,
followed by the fusion with the feature F̂P

2 to calculate the self-attention context feature CP2 .
The formulas for feature fusion and the self-attention of Qd, Kd, and Vd and the context
feature CP2 are defined as follows:

Qd = (F̂P
2 + RP2)WQd , (16)

Kd = (F̂P
2 + RP2)WKd , (17)

Vd = (F̂P
2 + RP2)WVd , (18)

CP
2 = So f tmax(

QdKd
T

√
Dd

)Vs, (19)

where the variables Qd, Kd, and Vd of self-attention are shared. The corresponding learn-
able weights WQd , WKd , and WVd are shared by the dense point clouds P2 and Q2 of point
clouds P0 and Q0. Similarly, we replace the input variables of the self-attention module
(b) in the Transformer Cross-Encoder in Figure 5 with Q2 and F̂Q

2 and compute the global
context feature vector CQ2 of point cloud Q0 based on Equations (16)–(19). Consequently,
we have obtained the context feature vectors CP2 and CQ2 of the matching point pairs of
dense point clouds P0 and Q0 within the overlapping region, which serve as inputs to the
cross-attention module for further feature fusion.

The computational process of the cross-attention is illustrated in Figure 5c. Subse-
quently, we input CP2 and CQ2 into the cross-attention module (c) in sequential order
(first CP2 and then CQ2), and compute the interacted feature F̃P

2 , which integrates more
accurate encoding of dense spatial coordinates and contains global feature interaction
information of the point cloud to be matched, thus possessing better discriminative power.
The corresponding formula for this computation is defined as follows:
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Q
′
d = CP2 WQ′

d
, (20)

K
′
s = CQ2 WK′

d
, (21)

V
′
s = CQ2 WV′

d
, (22)

F̃P
2 = So f tmax(

Q
′
dK

′
d

T

√
Dd

)V
′
d, (23)

where WQ′
d
, WK′

d
, and WV′

d
are the learnable parameters of the cross-attention variables Q

′
d,

Q
′
d, and Q

′
d. Similarly, we interchange the input order of CP2 and CQ2 in Figure 5c and the

corresponding computation Formulas (20)–(23). By first computing in the sequence of CQ2

and then CP2 , we obtain the feature F̃Q
2 for dense point pairs located in the overlapping

region. The resulting F̃P
2 and F̃Q

2 contain positional encoding and feature information from
the other, representing dense global features with enhanced discriminative power. These
features will be directly utilized in the output decoding module to predict corresponding
point coordinates and overlap scores.

We feed F̃P
2 and F̃Q

2 as inputs to the output decoding module, which consists of four
linear layers. Among these layers, three are utilized for predicting the corresponding
coordinates of points, while the fourth linear layer is responsible for predicting scores
indicating whether the matched points are within the overlapping area. The network
structure is illustrated in Figure 6, and the detailed mathematical expressions are presented
as follows: {

P̂o
2 = ReLU(ReLU(F̃Q

2 W1 + b1)W2 + b2))W3 + b3
Q̂o

2 = ReLU(ReLU(F̃P
2 W1 + b1)W2 + b2))W3 + b3

, (24)

{
ôP2 = F̃Q

2 W
′
1 + b

′
1

ôQ2 = F̃P
2 W

′
1 + b

′
1

, (25)

where W1, W2, W3, b1, b2, b3, W
′
1, and b

′
1 are the learnable weights of the corresponding

point and overlap prediction linear layers in the output decoding module. We concatenate
the dense points located in the common area Po

2 with the predicted corresponding points Q̂o
2.

Similarly, we concatenate the dense points Qo
2 within the common area with the network-

predicted corresponding points Q̂o
2. After concatenation, we obtain dense matched points

P̂d
2 and Q̂d

2 in the overlapping region with a data length of Mo
2 + No

2 . The corresponding
overlap score is denoted as ôd

2, and the formulas are defined as follows:

P̂d =

[
Po

2
P̂o

2

]
, Q̂d =

[
Q̂o

2
Qo

2

]
, ôd =

[
ôP2

ôQ2

]
, (26)

we calculate the relative transformation matrix R̂ and t̂ of the point cloud to be matched by
minimizing the loss function of dense matching points:

R̂, t̂ = arg min
Mo

2+No
2

∑
j

ôj

∥∥∥Rp̂j + t − q̂j

∥∥∥2
, (27)

where Mo
2 and No

2 represent the data lengths of Po
2 and Q̂o

2, Qo
2, and P̂o

2, respectively. p̂j, q̂j,
and ôj are the estimated corresponding points and overlap score weights from Equation (26).
We obtain our estimated relative pose transformation matrix by solving Equation (27) using
the Kabsch–Umeyama algorithm [22,23] for the optimal solution.
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Figure 6. The overview of output decoder structure and transformation calculation.

2.6. Loss Function

Our optimization target loss L comprises two parts: the superpoint loss Ls and the
dense point loss Ld, i.e., L = Ls +Ld. The superpoint loss function constrains and predicts
superpoint correspondences located in the overlapping region, while the dense point loss
function directly enforces the architecture to predict dense correspondences.

2.6.1. Superpoint Correspondences Loss Function

We utilize the overlapping circle loss from [7] to choose the K best pairs of superpoints
with the greatest similarity scores. The function is defined as follows:

LP0
s =

1
|A| ∑

GP
j ∈A

log[1 + ∑
GQ

k ∈ε
j
p

eλk
j β

j,k
p (dk

j −∆p) · ∑
GQ

l ∈ε
j
n

eβ
j,l
n (∆n−dk

j )], (28)

where dk
j=∥F̃

pj
s − F̃qk

s ∥2 represents the distance between feature vectors and F̃
pj
s and F̃qk

s are
the features of superpoints in point clouds P0 and Q0, respectively. Following the three-level
downsampling of point clouds as shown in Figure 2, we have F̃

pj
s ∈ F̃P4

s and F̃qk
s ∈ F̃Q4

s and
λk

j = (ok
j )

1
2 , where ok

j denotes the degree of overlap between dense points corresponding to

the superpoint pair GP
j and GQ

k . We use β
j,k
p = γ(dk

j − ∆p) and β
j,l
n = γ(∆n − dl

j) to weight
the matching points and non-matching points, respectively, enhancing the discriminative
power of the function, where we set the hyperparameters ∆p = 0.1 and ∆n = 1.4 as
suggested in [7]. Similarly, the loss function LQ0

s for Q0 is computed using a similar
method, resulting in the complete superpoint loss function Ls = (LP0

s + LQ0
s )/2.

2.6.2. Point Correspondences Loss Function

The dense point loss function comprises three components: overlap loss, correspond-
ing point loss, and feature loss, i.e., Ld = Ldo + Ldc + Ld f , which, respectively, constrain
the overlapping regions in three-dimensional space, match corresponding points in three-
dimensional space, and supervise the learning of the joint network for feature vector
space matching.

Overlap Loss

Through the superpoint matching module in Section 2.4, we obtained dense point
pairs located in the overlapping region. To facilitate the network in acquiring additional
characteristics of corresponding areas, we divide the point cloud match pairs into overlap-
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ping and non-overlapping regions. We further constrain the dense points corresponding to
matching superpoints with similar structures but low overlap rates using a cross-entropy
loss function. This helps reduce matching errors and improve matching accuracy, and the
formula for overlap score constraint is defined as follows:

LP0
do = − 1

Md

Md

∑
j

ogt
pj · log ôpj +

(
1 − ogt

pj

)
· log

(
1 − ôpj

)
, (29)

where ôpj represents the likelihood score of the network predicting if points are belong

the overlapping area, we calculate ogt
pj utilizing the method proposed in [17,24], defined by

the formula:

ogt
pj =

{
1,

∥∥T gt(pj
)
− NN

(
T gt(pj

)
, Q0

)∥∥ < rd

0, otherwise
, (30)

where T gt represents the rigid transformation matrix of the ground truth relative pose
change for the pair of point clouds, rd is the threshold to determine whether a pair of
dense matching points match, and NN(·) denotes the spatial nearest neighbor calculation.
Similarly, we can derive the dense overlap loss function LQ0

do of Q0, and the complete dense
point overlap loss function is given by Ldo = LP0

do + LQ0
do .

Corresponding Point Loss

We constrain the three-dimensional points in the overlapping region by minimizing
the Euclidean distance ℓ1 of the corresponding points in three-dimensional space. For dense
points outside the overlapping region, we use the overlap degree as a weight. The formula
is defined as follows:

LP0
dc =

1

∑j ogt
pj

Md

∑
j

ogt
pj

∣∣∣T gt
(

pd
j

)
− q̂d

j

∣∣∣, (31)

where ogt
pj is the ground truth overlap degree, pd

j and q̂d
k are a pair of dense matching points

as in Equation (26), and Md is the number of dense three-dimensional points within the
overlapped region in point cloud P0. Similarly, we calculate the corresponding point loss
function LQ0

dc for the point cloud Q0. The overall corresponding point loss function is given
by Ldc = LP0

dc + LQ0
dc .

Feature Loss

We utilize the infoNCE loss [10] to supervise the network learning of dense point
feature vectors, encouraging the network to learn more similar features for matching points.
Here, pd ∈ P̂d and qd ∈ Q̂d represent a pair of dense matching points as in Equation (26).
The definition of the feature loss function infoNCE is as follows:

LP0
d f = −Epd∈P̂d

log
g
(

pd, ppd

)
g
(

pd, ppd

)
+ ∑npd

g
(

p, npd

)
. (32)

We measure the similarity of features using a logarithmic bilinear function [10], where the
function g(·, ·) is defined as:

g(x, q) = exp(ḡT
pWgḡT

q ), (33)

where gp ∈ F̃P
d , with F̃P

d representing the dense feature obtained from the three times
downsampled and two times upsampled feature extraction network structure shown in
Figure 2. ḡq is the feature vector of its corresponding point. ppd and npd indicate whether
the point in Q̂d matches pd, with the matching determined by the positive boundary V
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and negative boundary 2V , where V is the radius of the voxel size. W f is a learnable
weight matrix that is diagonal and symmetric. Similarly, the overall feature loss is given by
Ld f = LP0

d f + LQ0
d f .

3. Results
3.1. Datasets
3.1.1. Indoor Benchmarks: 3DMatch and 3DLoMatch

The 3DMatch [25] and 3DLoMatch [17] datasets were introduced to address the
challenges of 3D scene understanding and alignment. The datasets consist of RGB-D scans
of various indoor scenes, and provide aligned point clouds and RGB images for each
scene, along with ground truth transformations that represent the accurate relative poses
between pairs of point clouds. One key feature of the datasets is their diversity in terms
of scene types, object categories, and sensor noise. The scenes include different indoor
environments, such as living rooms, kitchens, and offices, with varying levels of clutter
and occlusion. This diversity helps to analyze generalization capabilities for point cloud
registration algorithms. The 3DLoMatch dataset contains significant geometric variations,
occlusions, and partial overlaps (between 10% and 30%), but the overlaping regions are
smaller than those in 3DMatch (>30%), making accurate alignment and pose estimation
difficult. This makes the dataset suitable for evaluating the performance of various point
cloud registration methods under realistic conditions.

3.1.2. Synthetic Benchmarks: ModelNet and ModelLoNet

We also utilize the ModelNet40 [26] benchmark to further assess our model. We
follow the dataset settings proposed by [10,17,27] to obtain ModelNet and ModelLoNet,
respectively. These datasets exhibit varying average overlapping regions, with ModelNet
at 73.5% overlap and ModelLoNet at 53.6%. The ModelNet40 dataset provides a well-
balanced distribution of object categories, including chairs, tables, airplanes, cars, and more,
guaranteeing representation from diverse classes. The objects within this dataset are
captured from multiple angles and poses, offering a realistic and comprehensive depiction
of real-world objects. This diversity presents challenges for algorithms, as they need to
handle the different orientations, partial views, and inherent noise present in the data.

3.2. Experiment Details

For 3DMatch and ModelNet40, we set the voxel size V to 0.025 m and 0.015 m,
respectively, with the voxel size doubling at each downsampling step. Training is conducted
only on 3DMatch and ModelNet datasets, and evaluation testing is performed not only on
3DMatch and ModelNet, but also on 3DLoMatch and ModelLonet. We select 32 superpoints,
with a maximum of 64 dense points associated with each superpoint in the training and
testing phases of 3DMatch. For the ModelNet40 dataset, we unify the data length of
training superpoint, testing superpoints, as well as the maximum length of dense points
associated with each superpoint to 128. We utilize the AdamW optimizer with a consistent
initial learning rate of 0.0001. For 3DMatch, the learning rate is decreased by half every
20 epochs, whereas for ModelNet, it is halved every 100 epochs. Training concludes upon
reaching 900k iterations. The training and testing processes are carried out on an Nvidia
RTX 3090Ti GPU. We set the batch size to 1 for both 3DMatch and ModelNet40.

3.3. Evaluation
3.3.1. Evaluation of 3DMatch and 3DLoMatch

In order to evaluate our approach’s effectiveness, we utilize the registration recall
(RR) metric configuration proposed in [10,17,28] for measuring the success rate of regis-
tration. Moreover, we apply the relative rotation error (RRE) to evaluate the accuracy of
rotation matrices and the relative translation error (RTE) to assess discrepancies in transla-
tion vector estimations, commonly employed for analyzing transformation matrix errors.
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RegTR [10] directly regresses poses using sparse superpoints, which serves as our baseline
for assessment (see Table 1).

Table 1. The registration performance on 3DMatch and 3DLoMatch datasets.

Model
3DMatch 3DLoMatch

RR (%)↑ RRE (◦)↓ RTE (m)↓ RR (%)↑ RRE (◦)↓ RTE (m)↓
3DSN [29] 78.4 2.199 0.071 33.0 3.528 0.103
FCGF [3] 85.1 1.949 0.066 40.1 3.147 0.100
D3Feat [28] 81.6 2.161 0.067 37.2 3.361 0.103
Predator-5k [17] 89.0 2.029 0.064 59.8 3.048 0.093
Predator-1k [17] 90.5 2.062 0.068 62.5 3.159 0.096
Predator-NR [17] 62.7 2.582 0.075 24.0 5.886 0.148

OMNet [30] 35.9 4.166 0.105 8.4 7.299 0.151
DGR [31] 85.3 2.103 0.067 48.7 3.954 0.113
PCAM [32] 85.5 1.808 0.059 54.9 3.529 0.099
RegTR [10] 92.0 1.567 0.049 64.8 2.827 0.077
HR-Net [12] 93.1 1.424 0.044 67.6 2.513 0.073

Ours 93.8 1.448 0.043 73.0 2.271 0.065
Note: ↑ represents the higher the better, ↓ indicates the lower the better, and bold font represents the best.

In Table 1, the methods above the line are based on RANSAC, and those below are non-
RANSAC methods. Our method notably enhances point cloud registration performance
within limited overlapping regions, with an increase of over 7 percentage points and lower
registration errors. Moreover, it also demonstrates better registration performance for
highly overlapping point clouds.

To showcase the exceptional capability of our suggested model, we illustrate the
validation set’s test performance curves throughout the training phase, as displayed in
Figure 7. The initial row illustrates the test curves for the 3DMatch dataset, whereas
the subsequent row exhibits the test curves for ModelNet. These graphs depict the RR,
RRE, and RTE. Our model converges rapidly, attains superior registration recall rates,
and demonstrates reduced matching errors.

(d) (e) (f)

RR RRE RTE

ModelNet

3DMatch

(a) (b) (c)

Figure 7. The evaluation curves during the training process for 3DMatch (a–c) and ModelNet (d–f).
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In Figure 8, we present the point cloud registration capability on the 3DLoMatch
dataset, focusing on areas with small degrees of overlap and high structural similarity
outside the overlapping regions. It can be observed that our method generates more
feature correspondences, predominantly within the overlap regions, while the baseline
method produces more correspondences within the overlap regions but also includes some
erroneous matches outside these regions, significantly impacting registration capability.

(a) 

Corrs 

of base

(b) 

Corres 

of ours

 (d) 

Registered 

of ours

 (e) 

Registered 

of GT

 (c) 

Registered 

of baseline

Figure 8. The performance of our method on 3DLoMath. Each column corresponds to different
pairs of point clouds. The red and green points signify point clouds P0 and Q0. Row (a) shows the
superpoint correspondences obtained by the baseline, row (b) displays the dense point correspon-
dences computed by our method, row (c) illustrates the registration of the baseline, row (d) depicts
the registration of our method, and row (e) showcases the registration using ground truth poses.
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3.3.2. Evaluation of ModelNet and ModelLoNet

In the case of the ModelNet and ModelLoNet benchmarks, we refer to the relevant
method [10,12] to evaluate point cloud registration error using the RRE, RTE, and Chamfer
distance (CD). Since RR is a key metric for assessing the success of point cloud registration,
we further assess the performance of our method in terms of its RR.

Similarly, we provide detailed demonstrations of the registration performance on
ModelNet and ModelLoNet in Table 2 and Figures 7 and 9. The experimental results
show that the proposed TTReg not only accomplishes strong performance in registration in
real-world scenarios but also achieves significant improvements on synthesized datasets.
The dense matching points computed by our method are mainly concentrated within the
overlap regions, effectively enhancing the registration performance.

 (c) 

Registered 

of baseline

(b) 

Corres 

of ours

 (d) 

Registered 

of ours

(e)  

Registered 

of GT

(a) 

Corres 

of base

Figure 9. The performance of our method on ModelLoNet. Columns correspond to different point
cloud pairs. The red and green points signify point cloud P0 and Q0. Row (a) shows the superpoint
correspondences obtained by the baseline method, row (b) displays the dense point correspondences
computed by our method, row (c) illustrates the registration of the baseline, row (d) depicts the
registration of our method, and row (e) showcases the registration using ground truth poses.
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Table 2. The registration performance on ModelNet and ModelLoNet datasets.

Model

ModelNet ModelLoNet

RR
(%)↑

RRE
(◦)↓

RTE
(m)↓

CD
(m)↓

RR
(%)↑

RRE
(◦)↓

RTE
(m)↓

CD
(m)↓

PointNetLK [33] - 29.725 0.297 0.02350 - 48.567 0.507 0.0367
OMNet [30] - 2.9470 0.032 0.00150 - 6.5170 0.129 0.0074
DCP-v2 [34] - 11.975 0.171 0.01170 - 16.501 0.300 0.0268
RPM-Net [27] - 1.7120 0.018 0.00085 - 7.3420 0.124 0.0050
Predator [17] - 1.7390 0.019 0.00089 - 5.2350 0.132 0.0083
RegTR [10] 96.29 * 1.4730 0.014 0.00078 68.17 * 3.9300 0.087 0.0037
HR-Net [12] 97.71 * 1.1970 0.011 0.00072 74.33 * 3.5710 0.078 0.0034

Ours 97.24 1.3538 0.011 0.00078 72.35 3.9580 0.086 0.0039
Note: ↑ represents the higher the better, ↓ indicates the lower the better. - indicates that the original paper does
not provide these data. * represents the results we reproduce, and bold font represents the best.

3.4. Ablation

To corroborate the efficacy of our TTReg, we evaluate the impact of Ls repetitions of the
proposed RIG-Transformer on the 3DMatch and ModelNet; the low-overlap 3DLoMatch
and ModelLoNet benchmarks will also be evaluated. Following prior works [10,17,27], we
assess the RR, RRE, and RTE for 3DMatch and 3DLoMatch, while for the ModelNet and
ModelLoNet datasets, we evaluate the CD, RRE, and RTE. The quantitative performance
metrics for 3DMatch and 3DLoMatch are presented in Table 3, while those for ModelNet
and ModelLoNet are shown in Table 4.

We consider values of Ls = 3, 4, 5, with the maximum value limited to 5 due to com-
putational constraints. From Tables 3 and 4, we observed that increasing Ls appropriately
leads to improved matching performance, with optimal results achieved at Ls = 5. Fur-
ther increasing Ls may offer additional improvements. However, due to computational
limitations, we do not test cases where Ls > 5. Notably, our method incurs significantly
lower costs when increasing Ls compared to previous methods, as we only match the dense
points with the highest correspondence in the overlapping regions, greatly reducing the
computational resources required.

Table 3. The ablation performance on 3DMatch and 3DLoMatch datasets.

Model
3DMatch 3DLoMatch

RR (%)↑ RRE (◦)↓ RTE (m)↓ RR (%)↑ RRE (◦)↓ RTE (m)↓
Baseline [10] 92.0 1.567 0.049 64.8 2.827 0.077
Ls = 3 92.2 1.494 0.044 67.5 2.289 0.070
Ls = 4 93.8 1.516 0.045 71.4 2.212 0.068
Ls = 5 93.8 1.448 0.043 73.0 2.271 0.065

Note: ↑ represents the higher the better, ↓ indicates the lower the better, and bold font represents the best.

Table 4. The ablation performance on ModelNet and ModelLoNet datasets.

Model

ModelNet ModelLoNet

RR
(%)↑

RRE
(◦)↓

RTE
(m)↓

CD
(m)↓

RR
(%)↑

RRE
(◦)↓

RTE
(m)↓

CD
(m)↓

Baseline [10] 96.29 * 1.4730 0.014 0.00078 68.17 * 3.9300 0.087 0.0037
Ls = 3 96.05 1.8128 0.015 0.00086 70.14 4.5655 0.089 0.0038
Ls = 4 97.08 1.5521 0.013 0.00083 70.77 4.2219 0.086 0.0038
Ls = 5 97.24 1.3538 0.011 0.00078 72.35 3.9580 0.086 0.0039

Note: ↑ represents the higher the better, ↓ indicates the lower the better. * represents the results we reproduce, and
bold font represents the best.



Remote Sens. 2024, 16, 1898 18 of 22

4. Discussion

To further investigate the impact of Ls repetition times of RIG-Transformer during
the training process on registration performance, we visualize the evaluation curves for
3DMatch and ModelNet (see Figure 10). The RR improves with increasing Ls, while the
RRE and RTE decrease as Ls increases. The evaluation curves during the training process
align with the registration performance presented in Tables 3 and 4.

RRE RTERR

(a) (b) (c)

(d) (e) (f)

3DMatch

ModelNet

Figure 10. The impact of RIG-Transformer layer Ls on registration performance during the training
process for 3DMatch (a–c) and ModelNet (d–f).

Furthermore, we analyze the distribution of dense points in the overlapping regions
predicted by the RIG-Transformer module. The corresponding dense points are illustrated
in Figures 11 and 12. We first compute the sparse matching keypoints predicted by the
baseline [10] and the dense corresponding points obtained by our RIG-Transformer module.
Then, we align the point clouds P0 and Q0 using the ground truth point cloud relative
pose transformation. The gray connecting lines in the figures link the predicted matching
corresponding points. In point cloud pairs with high common ratios, sparse corresponding
keypoints are predominantly located in the overlapping regions. Conversely, for tow
point cloud with low common ratios, numerous unmatching keypoints appear within
non-overlapping areas. On the other hand, in point cloud pairs with low common area
ratios between point cloud pairs, numerous unmatched keypoints appear in the non-
overlapping areas.

Our model predicts dense points that are primarily clustered within the overlapping
regions, particularly in regions with low overlap ratios. This outcome is credited to our
model’s enhanced capacity to thoroughly investigate the structural characteristics of point
cloud sets, leading to improved registration performance by directly predicting the relative
pose transformation of point clouds.



Remote Sens. 2024, 16, 1898 19 of 22

(a) 

Corres of 

baseline

(b) 

Corres of 

ours

Figure 11. Predicted 3DLoMatch overlap area. Points in red and green represent point clouds P0

and Q0, respectively; gray lines represent the connection relationship between corresponding points.
The first row (a) shows the correspondence of sparse matching keypoints from the baseline, and the
second row (b) displays the correspondence of dense points predicted by our model located in the
overlapping area, with each row representing a pair of point clouds to be matched.

(a) 

Corres of 

baseline

(b) 

Corres of 

ours

Figure 12. Predicted ModelLoNet overlap area, where points in red represent point cloud P0, points
in green represent point cloud Q0, and gray lines represent the relationship between corresponding
points. The first row (a) shows the correspondence of sparse matching keypoints from the baseline,
and the second row (b) displays the correspondence of dense points predicted by our model located
in the overlapping area, with each row representing a pair of point clouds to be matched.
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5. Conclusions

Our proposed method calculates the relative transformation of point clouds by re-
gressing the corresponding point coordinates of dense point clouds using two cascaded
Transformers. We divide the point cloud registration into two steps. Firstly, we divide the
points of pairs of point clouds into overlapping and non-overlapping regions. The proposed
RIG-Transformer is used to distinguish the best-matching sparse superpoints located in the
overlapping region, which transforms the point-to-point matching into a binary classifi-
cation, reducing the difficulty of classification. The proposed RIG-Transformer integrates
point cloud geometric features and positional encoding, possessing rotational invariance.
By extracting more complex geometric features, and improving the robustness of feature
matching, RIG-Transformer can effectively filter out incorrect superpoint correspondences
with high structural similarity outside the overlapping area. Subsequently, the dense
point clouds are indexed through the spatial clustering relationship between point cloud
superpoints and dense point clouds. The dense point clouds located in the overlapping
region play a key role in point cloud registration and have high spatial coordinate accu-
racy. By using the Transformer Cross-Encoder, corresponding point coordinates can be
regressed with higher precision, thereby enhancing the estimated transformation accuracy
of point clouds. By combining RIG-Transformer with a Transformer Cross-Encoder, we
directly regress the transformation between dense points within the overlapping region.
Our approach leverages both the geometric properties of features and the precision of the
point coordinates in dense point clouds. Importantly, our regression mechanism avoids the
time overhead incurred by using RANSAC. However, due to constraints on computational
resources, we did not conduct extensive testing on the interaction times of RIG-Transformer.
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