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Abstract: The significant differences in data domains between SAR images and the expensive and
time-consuming process of data labeling pose significant challenges to terrain classification. Current
terrain classification methodologies face challenges in addressing domain disparities and detecting
uncommon terrain effectively. Based on Style Transformation and Domain Metrics (STDMs), we
propose an unsupervised domain adaptive framework named STDM-UDA for terrain classification
in this paper, which consists of two steps: image style transfer and domain adaptive segmentation.
As a first step, image style transfer is performed within the image space to mitigate the differences
in low-level features between SAR image domains. Subsequently, leveraging this process, the
segmentation network extracts image features, employing domain metrics and adversarial training
to enhance alignment between domain gaps in the semantic feature space. Finally, experiments
conducted on several pairs of SAR images, each exhibiting varying degrees of differences in key
imaging parameters such as source, resolution, band, and polarization, demonstrate the robustness
of the proposed method. It achieves remarkably competitive classification accuracy, particularly for
unlabeled, high-resolution broad scenes, effectively overcoming the domain gaps introduced by the
diverse imaging parameters under studies.

Keywords: synthetic aperture radar (SAR); terrain classification; unsupervised learning; domain
adaptation; style transfer; domain metrics

1. Introduction

Synthetic aperture radar (SAR) is an active microwave remote sensing imaging radar
with the high resolution and the ability to continuously monitor within a short imaging
period. It is less affected by weather and can observe ground targets independent of
sunlight illumination. Its applications extend across military and civilian domains [1].
In environmental protection [2], disaster monitoring [3], ocean observation [4], resource
preservation [5], land-cover [6] analysis, precision agriculture [7], urban area detection [8],
and geographic mapping [9], SAR terrain classification task, predicting semantic labels
pixel by pixel, finds extensive usage.

In recent years, with the rapid growth and development of the number of available
SAR images and artificial intelligence technology, the exponentially increasing demand
for SAR image interpretation, especially for the task of terrain classification, has pushed
classification algorithms to gradually shift to automatic, end-to-end, and the hottest deep
learning-based [10] methods. The existing deep learning (DL) models integrate the essence
of traditional methods, which can learn multi-scale and multi-level feature representations,
such as FPN [11]. In addition, it can effectively capture the contextual information of the
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image, such as ViT [12]. With its powerful feature representation ability, DL methods have
made great progress in the field of SAR image terrain classification [13–15]. However,
the progression of deep learning methods in the domain of SAR image terrain classification
remains limited by two respects. On the one hand, different optical images, which are
highly consistent with human visual cognition,in SAR images display many abstract forms
such as foreshortening, shadow, and layover because of the active microwave imaging
process. This makes SAR image labeling arduous, infrequent, and costly to acquire. On the
other hand, owing to the distinctive imaging mechanism of SAR, radar imaging parameters
have a pronounced influence on SAR images, resulting in variations in data distribution,
gray levels, and texture due to different sensors, bands, polarizations, resolutions, or angles
of incidence. Figure 1 presents SAR images produced through various resolutions (imaging
area is Hanzhong, Shaanxi) and polarizations, where the data for the different polarizations
were taken from the study [16]. Notably, substantial variations in grayscale are apparent
across these SAR images, particularly when considering distinct imaging modes. Significant
domain differences in these complex data situations weaken classification performance
during model migration. As a result, the training and testing of deep methods are often
limited to the same scene, resulting in a deficiency in model generalization. Therefore,
the focus of this paper is to circumvent the constraints imposed by the scarcity of manually
labeled samples and the significant domain differences that challenge prevailing deep
terrain classification algorithms.

(a) (b) (c)

(d) (e)

（1）-（3）：同一场景同一极化不同分辨率的SAR影像样例1m,3m,25m

（4）-（5）：同一场景同一分辨率不同极化的SAR影像样例HH,VV

(a) (b) (c)

(d) (e)

（1）-（3）：同一场景同一极化不同分辨率的SAR影像样例1m,3m,25m

（4）-（5）：同一场景同一分辨率不同极化的SAR影像样例HH,VV

Figure 1. SAR images under different radar imaging parameters: (a) 1 m resolution, (b) 3 m resolution,
(c) 25 m resolution, (d) HH polarization, (e) VV polarization.

From the above description, the complexity and high dependency of SAR data hinder
model generalizability and feature learning. As a special case of transfer learning (TL),
domain adaptation (DA) uses the label learning of the source domain to execute new
tasks in the target domain. As a paradigm of cross-domain learning, deep DA methods,
particularly unsupervised DA (UDA), play a crucial role in enhancing the generalizability
of SAR image terrain classification methods. UDA solely depends on source domain
labels for model training, while autonomously adapting to the feature distribution of
the target domain. This approach significantly mitigates the requirement for manual
labeling, minimizes inconsistencies across domain features, and leverages commonalities
between the source and target domains. It has been extensively investigated and applied
in both natural and remote sensing domains. Existing UDA methods tend to consider
only the consistency of the domain in feature space, leading to a limited ability to perceive
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uncommon terrain features. Li et al. [17] proposed a BDL framework that reduces domain
differences through bidirectional learning in two sequential steps of image translation
and segmentation adaptation in both directions. It is essential to highlight that the image
translation network’s quality in the mentioned framework significantly influences the
image segmentation quality. The study demonstrates that maintaining consistency among
low-level features within the image space facilitates the model in capturing fundamental
terrain features, consequently enhancing domain alignment within the feature space.

Drawing inspiration from the above research, a multi-step unsupervised domain
adaptive SAR image terrain classification framework (STDM-UDA) based on style trans-
fer and domain metrics is proposed for unlabeled scenes, while considering the unique
characteristics and present state of SAR images. STDM-UDA, a two-step independent
domain adaptive network is constructed to reduce domain differences in image space and
semantic space and to migrate annotation information from the source to achieve terrain
classification in the target domain. In the first step, the style transfer network facilitates
the migration of SAR image style characteristics from the source to the target domain,
diminishing disparities in low-level statistical attributes like brightness and contrast among
images. This process narrows the domain gaps within the image space, aiding the network
in acquiring shared feature representations. In the second step, the network extracts se-
mantic features from the images and employs adversarial learning and domain metrics
to align the translated source and target domains within the feature space. STDM-UDA
enhances model generalization and accomplishes target domain image terrain classifica-
tion by leveraging source domain information, thus obviating the need for target domain
image annotation.

In summary, the main contributions of this paper are as follows:

1. A multi-step unsupervised domain adaptive SAR image terrain classification model
framework based on Style Transformation and Domain Metrics (STDM-UDA) is
proposed. The framework reduces the domain differences in both image space and
feature space through two independent domain adaptation networks to enhance the
generalization of the model.

2. STDM-UDA transfers source domain knowledge to an unlabeled target domain,
avoiding the need for labeled data in the target domain.

3. The effectiveness of STDM-UDA is convincingly demonstrated by the terrain classifi-
cation results in three high-resolution broad scenes without labels.

The rest of this paper is organized as follows. The related work is introduced in
Section 2. Section 3 details the method adopted in this paper. Section 4 presents the
classification experimental results on SAR images. Finally, discussion and conclusions are
summarized in Sections 5 and 6.

2. Related Works
2.1. SAR Image Terrain Classification

In practical applications, DL methods are divided into supervised learning and unsu-
pervised learning according to whether to use labeled data to learn the objective function.
Supervised learning has demonstrated significant advantages in nature and remote sensing
domains, while unsupervised learning offers broader application prospects.

One big challenge of supervised learning is generalization, i.e., how well a trained
model performs on test data. Therefore, various DL techniques and model structures
have been proposed to assist models in learning more general feature representations.
In [18], the authors proposed a region-level SAR image classification algorithm based
on RCC-MRF (RCC, region category confidence-degree) and CNN. The unary energy
function of RCC-MRF is used to explore the most probable regions of the CNN-predicted
label distribution, while the binary capability function is used to constrain the space of
neighboring superpixel regions. In [14], the authors extract image features on multi-scale
sub-images and feeds them into softmax classification. Then, the classification map is
optimized by the bilateral filtering method based on the spatial relationship to improve the
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smoothness of the classification map. Compared with [18], the work in [14] is more efficient
for spatial constraints in the label domain. In [19], the authors adopted a two-stage approach
for SAR image classification. In the first stage, the SAR classification network is directly
trained to obtain intermediate-layer image features. In the second stage, an end-to-end
metric network is trained to measure the relationship between sample features. This simple
approach can achieve better performance than a normal CNN structure. In addition to
using the CNN network, Geng et al. [20] proposed to use LSTM to learn the potential spatial
relationship of SAR images and use non-negative and Fisher-constrained autoencoders
for feature discrimination and classification. Zhang et al. [21] used the GAN network to
extract and integrate multi-scale image features in a semi-supervised manner, and perform
final classification.

Unsupervised learning aims to automatically mine potential modes in data, suitable
for unlabeled data. In [22], the authors use deep learning to cluster images as well as the
VGG16 model with batch normalization to extract SAR image features, and they build an
entropy-based loss function for training. However, its classification accuracy is low. In [23],
the authors propose a SAR image segmentation network that combines the modeling ability
of the conditional random field (CRF) model with the representation learning ability of the
unsupervised principal component analysis network (UPCANet). However, the network is
computationally intensive, slow, and has low robustness to speckle. In VQC-CAE [24], this
unsupervised PolSAR image classification model embeds the features extracted by the CAE
network into a vector quantization module for clustering and constructs a quantization loss
and reconstruction loss training model. The classification accuracy of this model is good,
but the number of cluster centers needs to be set manually. In [13], the authors propose a
GHCNN algorithmic framework that stacks multiple unsupervised trained convolutional
AE (CAE) modules to form a deep hierarchy to achieve SAR image classification through
fine-tuning supervised data. In [25], the authors directly use low-level superpixels and
CNN high-level semantic information to generate pseudo-labels and model training. Dur-
ing training, the quality of the labels generated by the model also continues to improve.
Inspired by the success of ViT [12] and MAE [26], in [27], based on the ViT model, the au-
thors use random mask self-encoding to pre-train on unlabeled data and apply them to
polSAR image classification. However, this random mask strategy will cause the model to
lose the ability to perceive small targets in remote sensing images and increase the difficulty
of image reconstruction. In [28], the authors propose to use the PImask strategy instead
of the random mask strategy for model pre-training to preserve the feature information
of small targets and obtain advanced classification performance. Overall, state-of-the-art
unsupervised learning has met them in terrain classification performance compared to
partially supervised learning methods.

2.2. Deep Domain Adaptation in SAR Image

When transferring knowledge between SAR scenarios, it is often the case that there
exists some deterioration of performance on test scenes. DA aims to address the degradation
of classification performance by correcting the domain mismatch between training and
test data. Deep DA can be broadly divided into three categories: discrepancy-based [29],
adversarial-based [30], and self-training-based deep DA [31].

Difference-based SAR image domain adaptive segmentation aims to align feature
representations of source and target domains through fine-tuning deep networks with
target-domain-labeled or -unlabeled data. However, an effective representation of the
domain differences plays a crucial role in determining the domain generalizability of the
model [32,33]. In [34], the context features of SAR images are extracted through the LSTM
network. Then, the cross-domain features are mapped to a common feature subspace
through the edge adaptive network to alleviate the problem of different feature dimensions
and distribution edges of heterogeneous SAR data. The conditional distribution adaptive
network is used to resolve the feature differences within classes of heterogeneous SAR
images. In [35], the authors transfer the electro-optical (EO) domain knowledge to the
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domain of SAR image classification by minimizing the distribution between EO and SAR
images. Specifically, two coupled deep encoders map heterogeneous data to a shared
embedding space and then use SWD to minimize the two-domain feature distribution.
In [36], the authors used model distillation to transfer EO domain knowledge to the SAR
image domain. Huang et al. [37] proposed a multi-step DA method, using remote sensing
images as the transition domain, and transferring natural image information to SAR images
to adapt to the classification of SAR images. These methods strengthen the learning
of domain-invariant features while ignoring domain-specific representation information,
which will lead to a decrease in the discriminative performance of target domain features.

DA methods based on adversarial and self-training are also representative. Adversarial-
based methods aim to align different domains on intermediate features or network predic-
tions. This method circumvents the requirement to explicitly display domain differences.
However, it may lead to issues of instability and mode collapse in adversarial networks,
thus hindering the effective alignment of source and target domains. The style transfer [38]
is a typical adversarial-based model. Furthermore, in [39], the authors use an adversarial
domain translator as a general-purpose domain transference solution to learn cross-domain
features and conduct complete domain adaptation from optical images to SAR images.
The self-training methods are to iteratively generate pseudo-labels on the target domain
data to train the model. The training process of these methods is complex and usually
includes the joint training of multiple networks. In [31], a spherical spatial adaptive net-
work is proposed to tackle cross-domain unknown category data. In addition, the authors
believe that using only a single domain adversarial learning makes itdifficult to obtain
satisfactory classification performance on the target domain, and adding pseudo-labels
improves classification performance.

3. Methods

The technical details of STDM-UDA are described in this section. The complete
structure of the proposed framework is shown in Figure 2, in which STDM-UDA consists of
two independent steps based on adversarial DA: image style transfer network and adaptive
segmentation network. The networks in both steps of STDM-UDA employ the generative
adversarial network (GAN) training strategy for domain adaptive learning. The training
process for each network is conducted independently. In the first step, the network is
directed to achieve SAR image style transfer from the source to the target domain. This
process diminishes differences between the two domains in the low-level of image space,
encompassing brightness, contrast, dynamic range, and texture. Consequently, it eases the
visual discrepancies between domains and facilitates knowledge transfer. The generated
intermediate domain images along with the target domain images are trained for the
adaptive images segmentation network in the second step, and each pixel category of the
broad scenes in the target domain is acquired during testing.

ℒ���  ℒ����� 

ℒ��� 

source image

ℒ���   ℒ��&����

�������

�������

The first stage The second stage

 translated source image

target image

target prediction

source prediction source GT

data forward

backward 
propagation

Figure 2. The framework of STMD-UDA. STMD-UDA consists of two independent training processes,
marked by red and blue, respectively.
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In the remainder of this section, the data preprocessing of raw SAR images is described
in Section 3.1. The image translation network and adaptive segmentation network are
detailed in Section 3.2 and Section 3.3, respectively.

3.1. Data Preprocessing

This section describes the preprocessing of raw SAR images of a broad scene. SAR
images have a large dynamic range due to their spatial resolution. As a result, the raw
SAR images generally consist of 16-bit unsigned integer data with a highly asymmetric
distribution, where the majority of pixels are located in the low amplitude range (0 to
500). Standard CNNs are unable to handle such a large dynamic range, so dynamic
range compression is necessary. Applying a simple linear stretching to the SAR images
cause the compression of the majority of pixel points into a narrow range of small gray
levels, leading to a significant loss of detail information. As a consequence, the image
cannot be accurately displayed. This will cause the recognition of the neural network to
be misdirected. To mitigate this issue, we employ linear stretching with truncation for
processing raw SAR images. Specifically, the distribution and frequency of occurrence of
the gray levels of the raw SAR images are counted in ascending order and a distribution
function is accumulated. As the distribution function accumulates to a threshold, the gray
values of pixels with higher gray levels are overwritten by 255, and the remaining pixel
gray values are linearly stretched between 0 and 255. The definition is as follows:

pout
ij =


255×pin

ij

pth , if pin
ij < pth

255, if pin
ij ≥ pth

(1)

where pth represents the truncated gray value, and pin
ij and pout

ij represent the input and
output gray levels at pixel points (i, j), respectively.

The dynamic range-transformed SAR image is divided into a series of subimages using
dilated sampling. Figure 3 illustrates the difference between direct and dilated sampling.
Unlike direct sampling, the dilated sampling approach discards the prediction results of
boundary pixels with contextual information deprivation. Although this increases the
prediction overhead, it significantly enhances the consistency of predicted terrian at the
boundaries of the subimage predicted results.

(a)

(b)

Figure 3. (a) Direct sampling. (b) Dilated sampling. The red region in the dilated sampling is the
dilated region for which predictions are discarded during the test phase. The blue boxes are reserved
predicted results.

3.2. Image Style Transfer Network

The GAN-based image style transfer network (STN) is used as the first step of STDM-
UDA as an adversarial domain adaptive network, which achieves the directional transfer
of style images from the source to the target domain. Reducing the domain differences at
the low level between the two domains in the image space provides a good starting point
for the second step of the adaptive segmentation network.
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In STDM-UDA, we adopt CycleGAN [38] as the unpaired SAR image style transfer
model. Rather than necessitating a direct correspondence between SAR images in the
source and target domains, CycleGAN encourages the generator to achieve SAR image
style transfer through adversarial learning. This entails the discriminator evaluating the
stylistic similarity between the generated (translated) image and the target domain image.
Its structure is shown in Figure 4 and consists of two pairs of the generator and the
discriminator. The generators G and F establish a bi-directional mapping relationship
between the images of the source domain S and the target domain T. The discriminators
DS and DT separately discriminate between the source images s and the translated source
images F(t), and the target images t and the translated target images G(s). For convenience,
it is defined Es∼pdata(s) as the sample space of the source domain S, and Et∼pdata(t) is the
sample space of the target domain T. In summary, the loss function of STN has the following
parts: an adversarial loss LGAN , a cycle consistency loss Lcyc, and an identity loss Lidentity.

G

F

source fake target

fake source

DTDS

target 

Figure 4. The framework of image-to-image translation network.

3.2.1. Adversarial Loss

The G learns the mapping from S to T (G : S → T), and the F learns the mapping
from T to S (F : T → S). We apply adversarial losses to both mapping functions such
that the mapped data distribution is close to that of the target domain. The adversarial
loss [40] is applied to both mappings so that the mapped data distribution is close to the
real-data distribution.

The adversarial loss of S → T is defined as follows:

LGAN(G, DT , S, T) = Et∼pdata(t)[log DT(t)]

+Es∼pdata(s)[log(1 − DT(G(s)))]
(2)

The G aims to generate plausible images of T. The DT is dedicated to distinguishing
between real and generated images of T so that the optimization objective for this loss is to
minimize G and maximize DT .

The adversarial loss of T → S is

LGAN(F, DS, T, S) = Es∼pdata(s)[log DS(s)]

+Et∼pdata(t)[log(1 − DS(F(t)))]
(3)

Similar to the process for S → T, the goal is to minimize F and maximize DS.
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3.2.2. Cycle Consistency Loss

Relying solely on an adversarial loss does not guarantee that the generator will
consistently map the input to the desired output, especially in the case of larger models.
To ensure that the learned G and F maintain consistency without contradicting each other,
the cycle consistency loss [38] is added to aim for the G(F(t)) to resemble the t, and the
F(G(s)) to resemble the s as closely as possible. The cycle consistency loss incorporates
the L1 loss to quantify the similarity between images during the learning process of the
two mappings. L1 is used in the loss to measure the consistency between SAR images.
The definitions are as follows:

Lcyc(G, F) = Es∼pdata(s)[||F(G(s))− s||1]
+Et∼pdata(t)[||G(F(t))− t||1]

(4)

Under the constraint of cycle consistency loss, both G and F satisfy the forward cycle
consistency for image s. The image style transfer cycle takes s back to the original image
after one cycle (s → G(s) → F(G(s)) ≈ s). The same holds for image t.

3.2.3. Identity Loss

The loss [38] is designed to train the network to recognize image styles. For the
generators, the output is an identity mapping when real samples are used as input. Its
expression is as follows:

Lidentity(G, F) = Es∼pdata(s)[||F(s)− s||1]
+Et∼pdata(t)[||G(t)− t||1]

(5)

3.2.4. Full Objective

The full objective of the image translation network is

L(G, F, DS, DT) = LGAN(G, DT , S, T)

+LGAN(F, Ds, T, S) + λLcyc(G, F)

+Lidentity(G, F)
(6)

where λ is the cycle consistency loss coefficient.
The ultimate goal is to optimize

G∗, F∗ = argmin
G,F

max
DS ,DT

ℓ(G, F, DS, DT) (7)

3.3. Adversarial Adaptive Segmentation Network

As shown in the second stage in Figure 2, based on the intermediate domain outputs
in the first step, the adversarial-based domain adaptive segmentation network achieves the
alignment of the semantic features of the two domains and outputs the terrain classification
results. The whole training process of STDM-UDA is listed in Algorithm 1.

The adaptive classification network consists of a segmentation network M and a
domain discrimination network D. The M output the segmentation probability map M(s′)
of translated source domain image s′ and the target domain image segmentation probability
map M(t). The predicted segmentation map of the image is obtained by using a softmax
operation on M(s′) and M(t). The D discriminates the domain features learned by the M
and measures the similarity between the two domain distributions to reduce the difference
between the source and target domain. On this basis, we add a measure of domain feature
similarity to complement the adversarial loss in an explicit metric to further facilitate the
learning of domain-invariant features by the M.
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Algorithm 1 The training process of STDM-UDA.

1: Input: s ∼ S, t ∼ T, and the ys.
2: Stage 1:
3: Initialize image translation network {G, F, DS, DT}.
4: for number of image translation iterations do
5: train {G, F, DS, DT} with Formula (7).
6: end for
7: Get the s′ by the G(S).
8: Stage 2:
9: Initialize the M and the D.

10: for number of segmentation iterations do
11: train M with Formula (10).
12: train D with Formula (11).
13: end for

The objective function of the M mainly consists of adversarial loss and segmentation
loss [41], which are expressed as

Lseg = − 1
HW ∑

H,W

C

∑
c=1

1[c=yhw
s ] log Phwc

s′ (8)

Ladv = Et∼T [D(M(t))] + Es∼S[1 − D(M(s′))] (9)

where ys is the label map of s, C is the number of classes, and 1[·] is an indicator function
with a value of 1 if the condition is true and 0 otherwise. H and W are the height and width
of the output probability map. Ps′ is the translated source domain probability of the output
of M, defined as Ps′ = M(s′).

LM =λsimLsim(D(M(s′)), D(M(t)))

+ ℓseg + λadvLadv
(10)

where Lsim represents a function that measures the similarity of features or distributions,
which is a linear combination of kl divergence and SSIM [42]. λadv and λsim represent the
adversarial loss coefficient and the similarity loss coefficient.

And the objective function of the D is the adversarial loss, which is expressed as
follows:

LD =− Es∼S[log D(M(s′))]

− Et∼T [log(1 − D(M(t)))]
(11)

Additionally, in the testing phase, we employed dilate prediction to mitigate errors
due to insufficient contextual information in pixels at the edges of image blocks.

4. Experiments

In this section, the experimental results and model setting of STDM-UDA are shown.
In Section 4.1, the experimental data and subgroups are introduced. The setting and index
are described in Section 4.2 and Section 4.3, respectively. The results of STDM-UDA are
shown in Section 4.4.

4.1. Experimental Dataset

To evaluate the effectiveness and robustness of the proposed method, experiments
were conducted on five high-resolution single-channel SAR images. Details of the experi-
mental data are shown in Table 1. Figure 5 shows the SAR image and its corresponding
ground truth of Shandong and Pohang are displayed in Figures 6 and 7. The data are
divided into three pairs according to the degree of the domain gap and the challenges of
migration. The aim is to demonstrate the feasibility of STDM-UDA at different levels of
domain differences. Differing only in the imaging region and polarization, the Shandong
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(China) and Pohang (Republic of Korea) data were used as the first pair of experimental
data. They have smaller differences in imaging mode and appearance. Considering only
the consistency of the bands, the PoDelt (Italy) and Rosenheim (Germany) data were the
second pair of experimental data. The PoDelta and JiuJiang (China) data with the largest
differences were used as the third pair of experimental data.

The broad scenes of the first group contain the same five terrain categories, i.e., water,
green, building, farmland, and road. The remaining two data groups contain four terrain
categories, i.e., water, forest, building, and farmland. Their color indicator is illustrated at
the bottom of Figure 5. The ground truth of all SAR images discussed in this study was
derived through manual labeling. With respect to the expertise required and the difficulty
of identification, all terrain types except the four mentioned were categorized as “other”.
Notably, the “other” class encompasses diverse and intricate terrains. Including it in the
training and testing phases would hinder the learning process for these labeled terrains
and diminish interpretability. Hence, the "other" class is disregarded during both training
and testing.

target SAR image (JiuJiang)  Ground Truth (JiuJiang)

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Water BuildingForest Farmland Other

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Ground Truth (shandong)target SAR image (shandong)  

source SAR image (Pohang)  Ground Truth (Pohang)

Water BuildingGreen Farmland OtherRoad

EPOSearch

Baseline DM-UDA STDM-UDA

AdaptSegNetAdvEnt

 Ground Truth (Rosenheim)target SAR image (Rosenheim) 

 Ground Truth (PoDelta)

Water BuildingForest Farmland Other

source SAR image (PoDelta) 

Figure 5. Visual classification results of various methods on Shandong.
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target SAR image (JiuJiang)  Ground Truth (JiuJiang)

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Water BuildingForest Farmland Other

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Ground Truth (shandong)target SAR image (shandong)  

source SAR image (Pohang)  Ground Truth (Pohang)

Water BuildingGreen Farmland OtherRoad

EPOSearch

Baseline DM-UDA STDM-UDA

AdaptSegNetAdvEnt

 Ground Truth (Rosenheim)target SAR image (Rosenheim) 

 Ground Truth (PoDelta)
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Figure 6. Visual classification results of various methods on Rosenheim.

target SAR image (JiuJiang)  Ground Truth (JiuJiang)

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Water BuildingForest Farmland Other

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Ground Truth (shandong)target SAR image (shandong)  

source SAR image (Pohang)  Ground Truth (Pohang)

Water BuildingGreen Farmland OtherRoad

EPOSearch

Baseline DM-UDA STDM-UDA

AdaptSegNetAdvEnt

 Ground Truth (Rosenheim)target SAR image (Rosenheim) 

 Ground Truth (PoDelta)

Water BuildingForest Farmland Other

source SAR image (PoDelta) 

Figure 7. Cont.



Remote Sens. 2024, 16, 1901 12 of 19

target SAR image (JiuJiang)  Ground Truth (JiuJiang)

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Water BuildingForest Farmland Other

AdaptSegNetAdvEnt EPOSearch

Baseline DM-UDA STDM-UDA

Ground Truth (shandong)target SAR image (shandong)  

source SAR image (Pohang)  Ground Truth (Pohang)

Water BuildingGreen Farmland OtherRoad

EPOSearch

Baseline DM-UDA STDM-UDA

AdaptSegNetAdvEnt

 Ground Truth (Rosenheim)target SAR image (Rosenheim) 

 Ground Truth (PoDelta)

Water BuildingForest Farmland Other

source SAR image (PoDelta) 

Figure 7. Visual classification results of various methods on JiuJiang.

Table 1. Details of the experimental SAR data.

Area Imaging Time Source Image Sizes Resolution Band Polarization S1 S2

PoDelta 27 September 2007 Cosmo-
SkyMed 18,308 × 16,716 2.5 m X HH 1120 3074

Rosenheim 27 January 2008 TerraSAR-X 7691 × 7224 1.75 m X HH 210 552

JiuJiang 24 November 2016 GF-3 8000 × 8000 3 m C DV 224 625

Shandong 16 April 2017 GF-3 10,240 × 9216 1 m C VV 360 928

Pohang 13 July 2018 GF-3 9728 × 7680 1 m C HH 285 744

S1: Number of samples without dilate sampling. S2: Number of samples with dilate sampling.

All experiments were performed using the online platform ModelArts, implemented
on the Mindspore 1.6.0 framework with Ascend-910 NPUs.

4.2. Implementation Details
4.2.1. Data Preprocessing

All broad scene data are compressed into dynamic ranges with a truncation threshold
of 95%. The preprocessed SAR images are sampled without dilation to obtain the train
set and dilation is employed to obtain the test set, where the dilated size is 100 and the
block size of both training and test images is 512. S1 and S2 in Table 1 show the number of
samples under different sampling methods. In addition, the single-channel SAR images
in the experiment are converted into pseudo-three-channel RGB images. The specific
method is to copy the single-channel data value of the image three times to form a three-
channel image.

The input SAR images utilized in all network experiments underwent no data augmen-
tation apart from dynamic range truncation and channel replication of the original data.
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4.2.2. Architecture

CycleGAN was used for the image style transfer network. The segmentation network
M uses the DeepLabv2 [41] architecture based on ResNet101 [43]. The discriminator D
consists of five convolutional layers, where the activation layer uses LeakyReLU and α is
0.2. The structure of D is shown in Table 2.

Table 2. Discriminator D network architecture.

Layers Input → Output Shape Layer Information

1 (w, h, c) → (w
2 , h

2 , 64) CONV-(N64, K4 × 4, S2, P1), LeakyReLU (0.2)
2 (w

2 , h
2 , 64) → (w

4 , h
4 , 128) CONV-(N128, K4 × 4, S2, P1), LeakyReLU (0.2)

3 (w
4 , h

4 , 128) → (w
8 , h

8 , 256) CONV-(N256, K4 × 4, S2, P1), LeakyReLU (0.2)
4 (w

8 , h
8 , 256) → ( w

16 , h
16 , 512) CONV-(N512, K4 × 4, S2, P1), LeakyReLU (0.2)

5 ( w
16 , h

16 , 512) → ( w
32 , h

32 , 1) CONV-(N1, K4 × 4, S2, P1)

4.2.3. Training Details

We train STDM-UDA for 56,000 iterations with non-dilated sampled data. The training
settings for the image style transformation network are consistent with CycleGAN. Our
batch size is 2 in the adaptive segmentation network. The segmentation network M uses an
SGD optimizer with a learning rate of 0.00025, a weight decay of 0.0005, and a momentum
of 0.9. The discriminator D uses the Adam optimizer with a learning rate of 0.0001, β1 of
0.9, and β2 of 0.99. Both learning rates adopt a linear decline strategy.

4.3. Classification Accuracy Index

The classification accuracy of the experiments is calculated quantitatively based on
the ground truth (GT) labels of the images. Overall classification [20,44] performance
was evaluated using overall accuracy (OA), kappa coefficient, mean intersection over
union (MIoU), and frequency-weighted intersection over union (FWIoU). The classification
performance of each category was evaluated using precision [45]. For the convenience of
representation, the total number of pixels whose real category j is identified as a category i
is denoted as pij, the total number of samples is denoted as N, and the number of categories
is denoted as C. The accuracy metrics are defined as follows:

OA: It is the percentage of accurately classified pixels out of all pixels.

OA =
∑C

i=0 pii

∑C
i=0 ∑C

j=0 pij
(12)

Kappa: It is an indicator for consistency check and can also be used to measure the
effect of classification.

Kappa =
OA − Pe

1 − Pe
, Pe =

1
N2

C

∑
i=1

(
C

∑
j=0

pij)× (
C

∑
j=0

pji) (13)

where Pe is the hypothetical probability of chance agreement.
MIoU: It calculates the ratio of the intersection and union of two sets of true and

predicted values.

MIoU =
1

C + 1

C

∑
i=0

pii

∑C
j=0 pij + ∑C

j=0 pji − pii
(14)

FWIoU: It is an improvement of MIoU, which sets weights according to the frequency
of occurrence of categories.
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FWIoU =
1

∑C
i=0 ∑C

j=0 pij
×

C

∑
i=0

pii ∑C
j=0 pij

∑C
j=0 pij + ∑C

j=0 pji − pii

(15)

Precision: It is the proportion of all correctly predicted positive samples to all positively
predicted positive samples.

Precisioni =
pii

∑C
j=0 pij

(16)

Among all the above measures, OA is the most used. The higher value of these
accuracy metrics indicates the better semantic segmentation performance of the model.

4.4. Results and Comparison

The proposed SMDM-UDA model is compared with multiple domain adaptive meth-
ods for land-cover classification performance under three data conditions to demonstrate
its effectiveness. AdaptSegNet [46] treats semantic segmentation as a structured output
that includes spatial similarities between source and target domains and performs an
adaptation of the output space at different feature levels. In AdvEnt [47], the entropy loss
and the confrontation loss are used to complement each other to realize the UDA task
based on pixel prediction entropy loss. The EPOSearch [48] combines gradient descent
and carefully controlled ascent and traverses the Pareto front until the required solution
is reached. In the comparison, only the structure of the single-step adversarial domain
adaptive segmentation model is used as the Baseline. DM-UDA adds domain measure-
ment auxiliary information based on the Baseline. STDM-UDA adds style transfer and
domain metric auxiliary information on the Baseline. In all methods, the target domain
label information is not used for model training, but only for model evaluation.

4.4.1. Comparison Results on Shandong

The Pohang dataset exhibits a well-defined concentration of ground-category regions,
with distinct class boundaries and relatively straightforward classification challenges. Con-
versely, the Shandong dataset showcases a more dispersed and intertwined regional distri-
bution of terrain categories, leading to intricate classification complexities. Consequently,
for this group, we designated the Pohang dataset as the source domain and the Shandong
dataset as the target domain to increase the challenge to all models. Figure 5 shows the
visualization results of multiple comparison methods on the Pohang → Shandong data.
It can be seen that EPOSearch, Baseline, and DM-UDA are hardly able to identify green
regions effectively. The AdaptSegNet and AdvEnt, although they improve the ability of
green in homogeneous regions, still do not effectively identify green regions intermixed
with buildings. Compared to other methods, STDM-UDA has fewer misclassified isolated
pixel points and has better recognition of the remaining terrain categories except for water.

Table 3 compares the accuracy rate P and four overall evaluation indicators of each
classification method on the Pohang → Shandong data. These indicators of SMDM-UDA
are higher than other methods except that the P of the water category is slightly lower than
that of the Baseline. This is due to less degradation in precision caused by the high recall of
the model to the water regions. In addition, STDM-UDA has at least a 20% performance
improvement over Baseline in four overall metrics. It even has a nearly 30% improvement
in MIoU. This becomes achievable due to the inclusion of a two-step independent domain
adaptive network within STDM-UDA. This network facilitates the alignment of source
domain information with the target domain across multiple-level features.
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Table 3. Classification results on Shandong (%).

Method
Precision

OA Kappa MIoU FWIoU
Water Green Building Farmland Road

AdaptSegNet 90.3 30.9 67.8 67.3 44.7 55.4 40.4 36.6 41.6
AdvEnt 85.0 35.4 69.1 66.8 37.2 57.6 43.6 33.6 43.4

EPOSearch 88.0 41.0 70.1 63.8 49.3 63.4 50.3 41.2 46.7

Baseline 92.0 35.3 64.0 71.6 56.5 58.9 44.3 34.1 43.5
DM-UDA 90.0 40.2 62.1 71.0 60.4 60.6 45.9 39.7 43.6

STDM-UDA 89.7 64.3 88.5 82.5 74.2 80.0 73.2 63.4 68.0

The bold in a number indicates that it is the highest value in the column.

4.4.2. Comparison Results on Rosenheim

It is consistent with the previous set of source domain and target domain setting prin-
ciples. In the PoDelta data, the regional distribution of ground categories is concentrated.
We set the PoDelta data as the source domain and the Rosenheim data as the target domain.
Figure 6 shows the visualization results of multiple comparison methods on the PoDelta →
Rosenheim data. AdaptSegNet, AdvEnt, and Baseline methods have good classification
performance in forest regions, but poor classification ability in building regions. While
EPOSearch, DM-UDA, and STDM-UDA have better identification in building regions, they
lack identification in forests.

Table 4 compares the accuracy rate P and four overall evaluation indicators of each
classification method on the PoDelta → Rosenheim data. Baseline has the best classification
performance on regions of water and farmland. The STDM-UDA and DM-UDA have
strong discriminative abilities in forest and building regions. In addition, compared with
other networks, STDM-UDA has about 2% improvement in OA, Kappa, and FWIoU, and is
on par with EPOSearch in MIou.

Table 4. Classification results on Rosenheim (%).

Method
Precision

OA Kappa MIoU FWIoU
Water Forest Building Farmland

AdaptSegNet 81.6 80.5 57.1 79.4 66.9 51.4 51.3 51.5
AdvEnt 61.2 94.8 68.9 71.0 66.3 51.5 51.3 53.0

EPOSearch 94.4 84.0 70.6 72.6 66.6 50.2 52.3 52.2

Baseline 99.1 61.8 58.5 85.7 66.8 52.1 50.7 52.6
DM-UDA 88.0 96.0 77.5 71.8 67.5 51.2 50.6 53.6

STDM-UDA 86.6 94.7 78.6 71.9 69.0 53.1 52.3 55.0

The bold in a number indicates that it is the highest value in the column.

4.4.3. Comparison Results on JiuJiang

The PoDelta data are still used as the source domain, and the target domain are
JiuJiang data. Figure 7 shows the visualization results of multiple comparison methods on
the PoDelta → JiuJiang data. The classification performance of AdaptSegNet and AdvEnt
on buildings and water is relatively poor. Compared with AdaptSegNet and AdvEnt, DM-
UDA improves the classification performance of water regions, but still cannot effectively
identify forest regions. EPOSearch, Baseline, and STDM-UDA are relatively close and better
in visualization results.

Table 5 compares the accuracy rate P and four overall evaluation indicators of each
classification method on the PoDelta → JiuJiang data. Compared with EPOSearch, Adapt-
SegNet, and AdvEnt, Baseline and DM-UDA have a small improvement in OA, Kappa,
and FWIou, while the STDM-UDA has a 7% improvement. This demonstrates that a
two-step domain adaptive framework facilitates SAR image terrain classification. But there
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is a large gap between the MIou of STDM-UDA and EPOSearch. This may be caused by
misclassification of forest regions with a small proportion of pixels.

Table 5. Classification results on JiuJiang (%).

Method
Precision

OA Kappa MIoU FWIoU
Water Forest Building Farmland

AdaptSegNet 86.5 89.1 98.3 85.5 65.0 50.8 45.7 59.0
AdvEnt 88.2 89.4 97.7 84.4 66.7 53.3 48.2 60.8

EPOSearch 99.3 87.7 93.9 79.6 76.6 66.7 63.7 70.2

Baseline 98.4 91.2 98.9 84.6 77.7 67.7 60.4 73.3
DM-UDA 99.2 99.6 98.8 76.3 79.9 69.8 55.7 72.6

STDM-UDA 97.8 96.6 96.9 89.7 83.7 75.9 50.4 79.9

The bold in a number indicates that it is the highest value in the column.

5. Discussion

In this section, the terrain classification results are critically analyzed and discussed in
order to place them in a broader context.

STDM-UDA comprises two distinct components. The style transfer network considers
only the coherence of low-level statistical data across images from both the source and
target domains, allowing for flexible selection of domains. Nevertheless, domain adaptive
segmentation networks must not only reconcile domain disparities in the semantic feature
space of an image but also accomplish image feature classification, thereby restricting the
choice of both source and target domains. As depicted in the ground truth of PoDelta
in Figure 6, there is a notable scarcity of forest and buildings compared to water and
farmland in this scene. When utilizing PoDelta as the source domain, the qualitative
classification outcomes of Rosenheim and JiuJiang indicate that the substantial imbalance
in data categories within the source domain significantly diminishes the model’s capability
to discern the boundaries of these sparse terrains in the target domain. Conversely, with the
Pohang source data, characterized by a more equitable terrain distribution, STDM-UDA
exhibits a marked advantage in both qualitative and quantitative classification evaluations.
The analyses above demonstrate that STDM-UDA effectively transfers terrain information
from source domains featuring balanced terrain distributions, while still retaining a certain
sparse terrain recognition capability on an unbalanced source.

Moreover, the efficacy of style transfer and domain metrics in STDM-UDA is show-
cased through both qualitative and quantitative terrain classification across the above
three experimental scenes in Section 4.4. The findings reveal that features extracted by the
model solely in feature space under single-step DA are inevitably influenced by low-level
statistical disparities among image domains, diminishing the model’s capability to discern
distinct terrain edges. Introducing domain metrics atop this framework can enhance the
model’s edge perception ability, yet it may diminish the feature disparities between rare
and other terrains. STDM-UDA incorporates a style transfer and extends single-step DA
into multi-step DA. This approach enhances the resemblance between SAR images from
source and target domains in image space, thus mitigating low-level feature interference
and yielding superior classification performance across the experiment’s entire dataset.
This indicates that aligning domain differences in both image space and feature space plays
a crucial role in the effectiveness of STDM-UDA for terrain classification tasks.

6. Conclusions

In this paper, a multi-step unsupervised domain adaptive framework called STDM-
UDA is proposed. STDM-UDA transfers the labeling information of SAR images into
the source domain and implements terrain classification on the unlabeled target domain
to reduce the dependence on labeled samples and improve model generalization. First,
the source domain image undergoes a style transformation via a network to produce a
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translated source domain with the target domain’s style, thus minimizing domain gaps in
image space. Then, an adaptive segmentation network extracts image features while simul-
taneously aligning domain differences in feature space and facilitating terrain classification.
Additionally, domain metrics are integrated to offer supplementary feature distribution
information to the model. Experiments conducted across three SAR scenes showcase the
efficacy of STDM-UDA’s learning and classification regarding domain disparities induced
by various imaging parameters under examination. The findings further indicate that
STDM-UDA exhibits enhanced capabilities in feature learning and migration, particularly
on source domain data characterized by balanced terrain classes. Furthermore, the ablation
analysis of STDM-UDA reveals the terrain classification task’s greater sensitivity to spatial
domain disparities in images over those in feature space. In other words, the efficacy of
the classification is significantly influenced by the quality of the style transfer network.
This underscores the imperative and effectiveness of concurrently constraining differences
between image and feature space domains.

In the future, we aim to address the bias stemming from the source domain’s terrain
distribution, thereby enhancing the adaptability of our proposed method across a broader
spectrum of source domain data. Furthermore, integrating multimodal data can offer a
more comprehensive and complementary terrain perspective. Hence, our future work will
try to explore the use of multimodal data semantic information to improve SAR terrain
classification method.
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