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Abstract: Cotton (Gossypium spp.), a crucial cash crop in the United States, requires the constant
monitoring of growth parameters for informed decision-making. Recently, forecasting models have
gained prominence for predicting canopy indicators, aiding in-season planning and management
decisions to optimize cotton production. This study employed unmanned aerial system (UAS)
technology to collect canopy cover (CC) data from a 40-hectare cotton field in Driscoll, Texas, in 2020
and 2021. Long short-term memory (LSTM) models, trained using 2020 data, were subsequently
applied to forecast the CC values for 2021. These models were compared with real-time auto-
regressive integrated moving average (ARIMA) models to assess their effectiveness in predicting
the CC values up to 14 days in advance, starting from the 28th day after crop emergence. The
results showed that multiple-input multi-step output LSTM models achieved higher accuracy in
predicting the in-season CC values during the early growth stages (up to the 56th day), with an
average testing RMSE of 3.86, significantly lower than other single-input LSTM models. Conversely,
when sufficient testing data are available, single-input stacked-LSTM models demonstrated precision
in CC predictions for later stages, achieving an average RMSE of 3.06. These findings highlight the
potential of LSTM models for in-season CC forecasting, facilitating effective management strategies
in cotton production.

Keywords: canopy cover; unmanned aerial system (UAS); long short-term memory (LSTM); ARIMA;
multiple-input multi-step output LSTM; stacked LSTM

1. Introduction

Artificial intelligence (AI) has emerged as a transformative tool in addressing both
food security and environmental sustainability concerns [1–12]. Researchers have lever-
aged AI techniques, such as machine learning (ML) and deep learning (DL), to optimize
agricultural practices and mitigate environmental risks. For instance, in aquaponic systems,
AI-based IoT monitoring systems enable real-time data collection and analysis, facilitating
precise nutrient management for optimal plant growth while minimizing resource usage.
Moreover, AI algorithms have been deployed to predict growth stages in crops cultivated
in hydroponic setups, enhancing yield and efficiency. In addition to improving agricultural
productivity, studies have demonstrated the efficacy of AI-driven approaches in reducing
heavy metal toxicity in food products like soybeans and milk, thereby ensuring food safety.
Furthermore, AI-powered processing techniques in the dairy sector not only enhance
food quality but also contribute to environmental sustainability by reducing the need for
chemical preservatives and minimizing waste. This integration of AI into food production
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and processing systems holds promise for promoting food security while safeguarding
the environment.

One of the critical aspects of ensuring food security is effectively monitoring crop
growth parameters with the goal of maximizing yield during the cultivation period. Crop
growth and development are multifaceted processes influenced by genetics, the environ-
ment, management practices, and their interactions. These growth dynamics are quantified
through phenotypic measures such as canopy cover (CC), canopy height (CH), and leaf
area index (LAI). Traditionally, crop growth forecasts rely on process-based simulation
models like the decision support system for agrotechnology (DSSAT) [13] or the Agricul-
tural Production Systems sIMulator (APSIM) [14], despite the need for comprehensive
calibration. However, there’s a growing interest in exploring alternative approaches, such
as machine learning (ML), particularly utilizing deep learning neural network models like
long short-term memory (LSTM) networks [15] and ARIMA-based models. These ML
techniques offer potentially viable options for forecasting temporal phenotypic parameters
like CC, CH, and LAI, providing a complementary or alternative framework to traditional
simulation models.

LSTM networks belong to the category of recurrent neural networks (RNNs) and
have the ability to identify and capture long-term dependencies. These networks possess a
remarkable ability to effectively acquire new knowledge, to the point that the retention of
this information seems to happen effortlessly and lasts for an extended period. Some of
the commonly used LSTM models for multi-temporal projections are stacked LSTM [16],
vanilla LSTM, bidirectional LSTM [17], and CNN-LSTM [18,19]. The stacked LSTM design
is characterized by its use of many linked LSTM layers. In contrast, the bidirectional
LSTM model is designed to train two input sequences simultaneously, whereby the first
and second sequences are exact replicas of each other. The architecture of this paradigm
enables the facilitation of fast learning. It is a kind of neural network that exhibits the
capability to capture sequential information in both forward and backward directions,
allowing for the retrieval of sequences from either the future to the past or vice versa.
This model is characterized by its capacity to handle input sequences in both forward
and backward directions, setting it apart from the traditional LSTM models, which are
limited to unidirectional input propagation. These models have traditionally been used
extensively in forecasting crop outputs [20–22], commodity prices [23], and pest and
disease incidence [24,25]. In these studies, five LSTM models were used to anticipate
the agricultural prices using time-series data from five crops: vanilla LSTM, bidirectional
LSTM, stacked LSTM, CNN-LSTM, and convolutional LSTM. The findings revealed the
possibility of more accurate price forecasting one month in advance. Similarly, the efficacy
of bidirectional LSTMs using multivariate time-series input to anticipate insect damage in
rice crops was compared to vanilla and stacked LSTMs.

The acronym ARIMA refers to autoregressive integrated moving average models. The
time-series forecasting model discussed is a commonly employed approach that integrates
autoregressive (AR) and moving average (MA) components, together with differencing
techniques, to achieve stationarity in the time series. ARIMA models have demonstrated ef-
ficacy in forecasting future values by using past data sources. Several studies have explored
the use of ARIMA-based models to forecast crop growth. In one study [26], historical data
on sugarcane productivity from Tamil Nadu was utilized to create ARIMA models for
capturing time-series patterns and forecasting. The forecasts’ accuracy was determined
by comparing them to actual yield data. The outputs and performance indicators of the
models were investigated, providing insights into the usefulness and reliability of the
ARIMA approach for sugarcane crop growth forecasting. Elsamie et al. [27] employed an
ARIMA dynamic time-series model to capture the temporal changes in Egyptian cotton
and predicted key crop parameters.Similarly, the Box–Jenkins ARIMA [28] model was
employed to better understand the cotton output in India and discovered that the ARIMA
(2, 1, 1) model was appropriate for their data. The study included diagnostic tests to
ensure that the model was correct. Using the chosen ARIMA model, the researchers created
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projections for the years 2015–16 through 2020–21. Policymakers found these estimates
beneficial because they provided insight into future grain storage and import and export
requirements, allowing them to plan ahead of time.

In recent years, unmanned aerial vehicles (UAVs) equipped with various sensors,
collectively referred to as UAS, have been deployed to monitor plant growth at higher
spatial and temporal resolutions. Phenotypic traits, such as the CC, CH, and vegetation
indices (VIs) obtained from UAS, are utilized in estimating disease severity, crop input
status, and crop yield. For instance, Zhao et al. [29] employed UAS-derived vegetation
indicators to predict the in-season nitrogen status, while Ballester et al. [30] utilized similar
techniques to predict the lint yield on a commercial farm in Australia. These aspects
necessitate integration into crop management practices, such as optimizing fertilizer and
pesticide usage based on the variables affecting crop growth. Integrating models for
predicting canopy attributes can facilitate decision-making in crop management, including
irrigation, growth regulators, fertilizers, and harvest-aid treatments. As UAS provides
canopy attribute measurements at high temporal and spatial resolutions, ML models
such as the long short-term memory (LSTM) or autoregressive integrated moving average
(ARIMA) can be employed for the in-season predictions of these attributes as indirect
measures of crop growth. Consequently, predicted attributes can be used to make real-time
informed crop management decisions [31]. In this study, the use of the LSTM and ARIMA
models has been assessed for in-season forecasting of crop growth, with the CC obtained
from UAS serving as one of the parameters. Moreover, multiple LSTM models have been
compared to classic ARIMA strategies for in-season forecasting of CC.

The main objective of this study is to compare different forecasting models, including
variations of the long short-term memory (LSTM) models and the traditional autoregres-
sive integrated moving average (ARIMA) model, to identify the most accurate model
for predicting CC values 14 days in advance. An important innovation in this research
involves clustering data based on field variability using the K-means algorithm. Subse-
quently, pairwise cluster distances are computed using the dynamic time warping (DTW)
technique, with the clusters exhibiting the smallest DTW distance being used as inputs to
multiple-input multi-step output LSTM models. While this approach requires significant
computational resources, it provides optimal forecasting accuracy, which is particularly
beneficial for predicting cotton crop growth indices during the initial growth phase. For
forecasting in later growth stages, single-input LSTM models were utilized due to ample
data availability, yielding results comparable to the multiple-input multi-step output LSTM
models. By utilizing predicted CC values, in-season management decisions such as irriga-
tion scheduling, application of growth regulators, and harvest-aid chemicals can be planned
and optimized, thereby maximizing resource utilization and ensuring a higher yield.

2. Materials and Methods

Before delving into the analysis, a schematic of the framework employed to forecast
the CC values in this approach is presented in Figure 1. As depicted in the figure, images are
gathered using a UAS for both the years 2020 and 2021. Subsequently, the CC is extracted
utilizing Agisoft Metashape 1.7.2 software. Initially, the CC data for 2020 is clustered using
the K-means algorithm and then utilized to train the LSTM models. Similarly, the CC data
for 2021 serves as the testing dataset after clustering the plots with the K-means algorithm.
The model with the lowest testing root mean squared error (RMSE) for forecasting CC
values 14 days in advance was selected as the best model.
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Figure 1. Flowchart of the analysis for in-season forecasting of CC obtained from unmanned aerial
systems (UAS) using LSTM frameworks.

2.1. Data Collection and Feature Extraction

UAS data were collected from an 80.16 hectares commercial field located at Driscoll,
Texas (27◦40′06.2′′N and 97◦97◦41′22.6′′W). The field is divided into two halves and follows
a cotton–sorghum rotation (Figure 2).

Data were collected in 2020 and 2021. Table 1 shows the planting date, data collection
schedule, defoliation date, and harvest date for both years.

Table 1. Seeding date, defoliation date, and harvest dates of cotton in 2020 and 2021.

Year Planting Date Emergence Date Defoliation Date Harvest Date

2020 29 February 2020 12 March 2020 13 July 2020 3 August 2020
2021 27 February 2021 10 March 2021 27 July 2021 13 August 2021
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Figure 2. Data collection site of cotton field.

Phantom 4 RTK, which is equipped with a one-inch COSMOS, a red-green-blue (RGB)
camera, and a Real-Time Kinematics (RTK) module, was used to collect the UAS data.
The procedure for image processing and feature extraction was followed as described by
Bhandari et al. [32]. The UAS flights were conducted at irregular intervals, with varying
time gaps between each flight, ranging from 10 to 14 days. The collected images were
processed using Agisoft Metashape PRO software version 1.8.2 (Agisoft LLC, St. Petersburg,
Russia) to generate geospatial data products such as orthomosaics and surface models. The
CC was obtained from the orthomosaics by employing the Canopeo algorithm [33], which
classifies the image into two classes: canopy and non-canopy. A 10 m by 10 m grid was
generated in QGIS software 3.36.2 and overlaid on the classified image to calculate the CC
for each grid (Equation (1)). A total of 3500 grids were generated.

CC(%) =
Number of pixels classified as canopy

Total number of pixels in the grid
× 100 (1)
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Based on the duration from emergence to defoliation application and the goal to
forecast two weeks in advance, it was determined to standardize the growth period to test
the forecasting frameworks to 116 days. To develop a consistent data framework, irregular
temporal datasets obtained during the season were interpolated using the polynomial
function, and daily measurements were derived. This approach facilitated the development
of equal interval time-series data across years, compensating for non-uniformity in the
data collection schedule and differing planting and defoliation timings. The data obtained
through the interpolation techniques, as mentioned in the Results section, was then em-
ployed as inputs for the LSTM and ARIMA models to forecast the CC values two weeks in
advance, beginning from the 28th day after the cotton crop’s germination.

2.2. Formation of Clusters for Analysis

Before fitting the LSTM models to the data, it was imperative to divide the plots into
similar clusters for ease of training and validation of the LSTM models. Since the CC data
were obtained for 3500 grids for 116 days, it was not possible to train the LSTM models,
considering all the time-series sequences, as it would have resulted in millions of training
sequences. Having a huge amount of training sequences would have led to a much slower
computation time, and due to hardware constraints, it was decided to cluster the grids with
similar CC values using the K-means algorithm. As the K-means algorithm is relatively fast
and computationally efficient for high-dimensional data due to its linear time complexity,
it was used because it helps us provide more control over the granularity of clustering.
The continuous time-series data for all the 3500 grids for 2020 and 2021 were grouped into
14 distinct training and testing clusters, respectively, taking the data until the 116th day
after emergence (DAP) into consideration. The number of plots which were grouped into
each of these 14 clusters for both the years 2020 and 2021 have been shown in Table 2.

Table 2. Number of cluster-wise cultivation plots generated by K-means algorithm.

Cluster Number Number of Cultivation
Plots (2020)

Number of Cultivation
Plots (2021)

1 138 73
2 136 252
3 217 168
4 179 241
5 63 157
6 238 172
7 181 197
8 297 118
9 128 149

10 158 103
11 43 269
12 99 280
13 95 133
14 91 87

2.3. Selection of Appropriate Forecasting Models
2.3.1. Using Data from Individual Cultivation Clusters as LSTM Inputs

Five different LSTM models—two stacked LSTM variants, a bidirectional LSTM, the
CNN LSTM, and the encoder–decoder LSTM model—were used to predict the CC values
from the 28th day after crop emergence. All these variants of LSTM models were trained
on the data clusters obtained for 2020. For 2021, the average RMSE predictions over all the
testing clusters were calculated separately, and the best forecasting model was chosen by a
majority vote.
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2.3.2. Using Data from Similar Pairwise Cultivation Clusters as LSTM Inputs

The datasets created using the information from individual clusters were used as
inputs to the multiple-input multi-step output LSTM models to estimate the CC for the
next 14 days. For this, the dynamic time warping (DTW) technique was used to find
pairwise similar clusters to be given as inputs to the multiple-input multi-step output
LSTMs. Here, DTW worked on the principle of utilizing dynamic programming to find the
optimal alignment between two clusters, minimizing the total distance while allowing for
local variations in the alignment.

To forecast the forthcoming CC values for each cluster, the pairwise DTW distances
were computed between the cluster under consideration for the CC prediction and the
remaining 13 clusters. For each early season forecast, the clusters exhibiting the minimum
DTW distance were selected as inputs for the multiple-input multi-step output LSTM
model. However, the training process for this type of LSTM model necessitated significant
computational resources due to the pairwise training pairs, despite its potential to enhance
the accuracy of the forecasting models. The major drawback of this approach is that for
in-season forecasting, data needs to be available for multiple grids to be given as inputs to
this type of LSTM model, making it impossible to conduct any forecasting when the CC
data from only one grid was available.

2.3.3. Using ARIMA Models for a Comparative Analysis

A comparative study of the LSTM models with the traditional ARIMA-based CC
forecasting has been conducted to provide a more accurate estimate.

Contrary to the LSTM models that have been described before, it was imperative to
ensure the stationarity of the dataset before using an ARIMA model for analysis. A rising
trend component was noted in the values of the CC. Consequently, efforts were undertaken
to eliminate non-stationarity from the time-series dataset by implementing six distinct
procedures, as seen in Figure 3. The stages were executed in a sequential manner, and
the p-value was computed after each step until the time-series data achieved stationarity
(p-value < 0.005). The stationarity of the time-series data was verified by the application of
the augmented Dickey–Fuller (ADF) test.

The determination of the order of the ARIMA models was facilitated by the utilization
of the partial auto-correlation (PACF) plots and the auto-correlation (ACF) plots, which
provided valuable information on the major delays (p and q values) [34,35]. Hence, this
methodology was employed in the prediction analysis. If the variables p and q exhibited
a geometric fall when plotted together, it was inferred that the process conformed to an
ARIMA model with p and q both equal to zero. If the ACF plot showed a geometric
decrease and the PACF plot exhibited a complete cessation after p lags, it was inferred that
the ARIMA process adhered to a (p, D, 0) distribution, where D represents the degree of
differencing applied to the time-series data. In a similar vein, if the ACF plot reached zero
after a certain number of lags (q), but the PACF plot exhibited a geometric decrease, it may
be inferred that the ARIMA process adhered to a (0, D, q) distribution. The aforementioned
methodology was employed to develop the necessary components for conducting a time-
series analysis of the canopy’s characteristics. As ARIMA models followed a classical
statistical approach that did not require data for training the model, the data for 2021 from
all the cultivation plots were averaged to gauge the efficiency of this proposed framework,
and the average RMSE estimates have been shown in Table 3.
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Table 3. Comparison of RMSE estimates for different LSTM models.

Name of the LSTM Model

Average CC RMSE Estimates over 14 Testing Clusters.
(Cultivation Year 2021)

Number of Real Values of CC Used in the Training Set (in Days)

28 35 42 49 56 63 70 77 84 91 98

Stacked LSTM a

(number of epochs = 50, batch size = 8) 6.11 5.86 5.61 5.36 5.11 4.32 3.81 3.62 3.31 3.12 2.81

Stacked LSTM b (number of epochs = 100,
batch size = 32)

5.20 4.95 4.70 4.45 4.20 3.81 3.45 3.32 3.12 2.43 2.21

Bidirectional LSTM c 5.85 5.46 5.4 5.4 5.18 4.7 4.7 4.38 4.38 4.22 3.9

CNN LSTM d 6.11 5.86 5.61 5.36 5.11 4.86 4.61 4.36 4.11 3.86 3.61

Encoder–decoder LSTM model e 7.11 6.86 6.61 6.36 6.11 5.86 5.61 5.36 5.11 4.86 4.61

Multiple-input multi-step output LSTM model f 4.36 4.11 3.86 3.61 3.36 3.21 2.86 2.61 2.3 2.3 2.18

a = 50 input neurons in the LSTM layer, Dropout layer with 10%, 1st intermediate layer with 50 LSTM units,
Dropout layer with 10%, 2nd intermediate layer with 50 LSTM units, Dropout layer with 10%, 3rd intermediate
layer with 50 LSTM units, Dropout layer with 10%, Number of Dense Layers = 1, Optimizer = ‘Adam’. b = Same
specifications as the above-mentioned stacked LSTM with varied batch size input and number of training epochs.
c = 50 input neurons in LSTM model, activation = ‘relu’, Number of Dense layers = 1, Optimizer = ‘Adam’. d =
1D convolutional filter (number of filters = 64, kernel size = 1, activation = ‘relu’), 1D Max Pooling Layer (Pool
size = 2), Flatten layer, Number of neurons in LSTM model = 50, activation = ‘relu’, Number of Dense layers = 1,
Optimizer = ‘Adam’, Number of epochs = 200. e = Number of LSTM units in input layer = 100, Activation layer =
‘relu’, RepeatVector layer with the number of timesteps to forecast as the input, Number of LSTM units in input
layer = 100, Activation layer = ‘relu, TimeDistributed layer with number of Dense units = 100, Activation layer =
‘relu’, TimeDistributed layer with number of Dense units = 1, Optimizer = ‘Adam’. f = Number of LSTM units in
input layer = 100, Activation layer = ‘relu’, Number of LSTM units in the intermediate layer = 100, Activation
layer = ‘relu’, Number of Dense layers = 2, Optimizer = ‘Adam’.

3. Results
3.1. Analysis of the Dataset

Figure 4 shows the distribution of the CC measurements obtained throughout the
growing season for 2020 and 2021 for all the grids. A box plot was used to visualize the
data. In general, the trend of CCs showed a slow increase early in the season, followed by
a linear growth phase and steady growth. Additionally, the CC values ranged from 0 to
100% in both years, with a similar trend throughout the growing season.

In Figure 4, the box plot illustrates the CC data recorded using drone imagery. The
x-axis represents “Days after emergence”, while the y-axis represents “CC (%)”. Each box
plot, corresponding to the years 2020 and 2021, depicts the interquartile range, i.e., the
difference between the first and third quartiles for each day after emergence. Additionally,
the black dots signify outliers within the dataset.
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3.2. Removal of Outliers

Upon examination of the box plot, as depicted in Figure 4, it became evident that a
considerable number of outliers are present in the data collected from over 3500 cultivation
grids. Consequently, it became imperative to address these outliers before proceeding with
the data interpolation for the entire growth period. To accomplish this, we retained the
data points falling within the range defined by quartile 1 − (1.5 × interquartile range)
and quartile 3 + (1.5 × interquartile range) for analysis. Implementation of the IQR
method resulted in the removal of 1101 plots and 1437 grid data points from the 2020 and
2021 cultivation years, respectively. Subsequently, data from the remaining grids were
utilized for analysis, ensuring the reliability and accuracy of the subsequent interpretations
and conclusions.

3.3. Interpolation of the Dataset

Given that the data were gathered over 14 days at irregular intervals, spanning from
emergence to harvest, it was impractical to rely on the data from those specific days for
analysis solely. Hence, considering the data’s distribution, as evident from the box plots, the
approach was taken to employ a five-degree polynomial interpolation [36] to interpolate
the canopy data for both 2020 and 2021. This interpolation process provided enough data
for all the plots throughout the 116-day growth period to design the predictive approaches.
The distribution of the interpolated canopy data was visualized and is depicted in Figure 5.
The interpolated canopy data from emergence to harvest has been shown in different colors
to show how the distribution of the data varied over the plots.
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improvement in the data’s quality post-outlier removal, characterized by this ascending
trend, the refined data were utilized as inputs to the LSTM models and the ARIMA
approach, which have been elaborated in the subsequent sub-sections.

3.4. Formation of Clusters for Training LSTM Models

Before training the LSTM models, the data recorded for 2020 were clustered using
K-means for ease of computation. Utilizing the elbow method, the optimal number of
training clusters was determined to be 14, as the sum of squared errors (SSE) reached
a plateau. Similarly, to assess the effectiveness of the trained LSTM models, the data
for the year 2021 underwent clustering using the K-means algorithm. This process also
resulted in choosing 14 as the optimal number of clusters. Subsequently, the selection of
the best forecasting model was based on a majority vote, considering the model capable
of forecasting future CC values with a minimal root mean square error (RMSE) across
the majority of the testing clusters. Figure 6 illustrates the results of the elbow method
employed as a metric to ascertain the optimal number of training and testing clusters.
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However, before proceeding with training the LSTM models, it was imperative to
visualize the average interpolated CC data for the newly formed clusters using the K-means
algorithm. The average interpolated CC data have been depicted in Figure 7.
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From Figure 7, it can be inferred that the average cluster-wise CC in both 2020 and 2021
showed a steady increase in the indices, and as the line graphs are distinct, with minimal
overlap between them, it ascertained the decision of the optimal number of training and
testing clusters, which are chosen to be 14 in this case. The number of cultivation plots that
were grouped into each distinct cluster is shown in Table 2.

3.5. Training of Single-Input LSTM Models

To train the single-input LSTM models, the mean cultivation data across the clusters
for the year 2020 were utilized. Specifically, the training dataset comprised the canopy data
for the initial 28 days as inputs, while the corresponding output sequence encompassed the
canopy indices from day 29 to day 42. Thereafter, at each step, a real value of the CC was
appended to the dataset, and predictions were made for the subsequent 14 days of canopy
indices. This iterative process continued until the CC data for the first 98 days served as
inputs, and the CC values from day 99 to day 112 were utilized as the corresponding output
pair to train the single-input LSTM models. This procedure was repeated for all 14 training
clusters, resulting in a total of 42,432 training sequences. Despite varying in length, each
sequence maintained a consistent prediction window of 14.

These sequences were employed as inputs for various single-input LSTM models,
including stacked LSTMs, the bidirectional LSTM, the CNN LSTM, and encoder–decoder
LSTM models. To assess the forecasting performance of these trained LSTMs, the testing
dataset for the year 2021 was partitioned into 14 clusters and identified using the K-means
algorithm with the elbow method. Then, by taking the average of the testing MSEs across
the 14 clusters, the LSTM model, which forecasts the values of the CC, the best has been
chosen by a majority vote and has been described in detail below.

3.6. Training of Multiple-Input Multi-Step Output LSTM Models

However, for training the multiple-input multi-step LSTM models, for each cluster,
pairwise DTW distances were calculated between the averaged CC data calculated per
cluster. As the LSTM model that has been used has two inputs, the pairwise sequences that
had the least DTW distances between them were given as inputs for training the LSTM
model. For testing the efficiency of the trained LSTM model on the testing dataset, which
in this case is the 2021 CC data, the same process of clustering is repeated, and the DTW
distances are computed between the clusters. However, no training of the models is carried
out. The clusters with the least DTW distances are then given as inputs to the trained
model, and the results are computed.
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Table 3 displays the evaluation of the LSTM models capable of processing both single-
cluster and multi-cluster cultivation data. The first five models in Table 3 are trained on
variable-length single-cluster data sequences and generate predictions for a 14-day period.
Conversely, the final variant, termed the multiple-input multi-step output LSTM model,
is trained on pairwise cluster data using time-series sequences with the shortest DTW
distances between them. This training process is highly resource-intensive, demanding
significant computational power to calculate the forecasted values. Hence, it is recom-
mended to opt for the LSTMs that handle single-cluster data inputs. Nevertheless, despite
its computational demands, the multiple-input multi-step output LSTM model exhibits
superior performance, particularly in forecasting the early season growth indices, i.e., a
prediction of the CC up to the 56th day after emergence when there is not enough data to
be supplied as testing data to the trained LSTM models.

Another noteworthy observation from Table 3 is that a multiple-input multi-step
output LSTM model is used as the model to predict the future values of the CC when
the data from the 28th day of emergence to the 56th day after emergence are given as
inputs. However, due to the resource constraints associated with training the above-stated
model, it was decided that the second variant of the single-input LSTM, i.e., a stacked
LSTM trained for 100 epochs with a batch size of 32, yielded comparable results at par with
the multiple-input multi-step output LSTM models in forecasting the later season growth
indices (starting from the 63rd day to the 98th day after emergence). The main reason
for doing so is that training a stacked LSTM requires much less computational resources
compared to that of a multiple-input multi-step output LSTM model.

3.7. ARIMA Model Analysis

For a more efficient performance comparison of the trained LSTM models, a classical
ARIMA approach was used on the 2021 cultivation data. As the ARIMA approach did
not require any model training, the cultivation data for all the 2063 plots were averaged,
and the RMSE estimates were computed, which have been shown in Table 4. Based on the
results from the table, it is evident that the RMSE estimates obtained for forecasting the
growth parameters using initial CC data up to the 49th day of emergence were excessively
high. Consequently, employing the classical ARIMA approach to forecast the CC values
was deemed impractical. This comparison helped in fulfilling the objective, which was to
determine the most effective estimator for forecasting future values of the CC, namely from
the 28th day of emergence of the cotton crop to the conclusion of the cultivation season.

Table 4. RMSE estimates of ARIMA-based modeling on 2021 CC data.

Number of Days after
Emergence in the

Training Set

Methods to Standardize
the Dataset

Interpretation from ACF
and PACF Plots ARIMA Model RMSE Estimate

28

Differentiation of the
original data by 2 orders

Significant spike in both
ACF and PACF plots at lag

6; but none beyond that
6,2,6

27.62
35 21.96
42 20.14
49 10.07
56 8.39

63 Differentiation of the
original data by 2 orders

Significant spike in both
ACF and PACF plots at lag

0; but none beyond that
0,2,0 6.71

70
Cube root of the original

data; differentiation of the
cubed data by 2 orders

Significant spike in both
ACF and PACF plots at lag

0; but none beyond that
0,2,0 5.03

77
Differentiation of the

original data by 2 orders

Significant spike in both
ACF and PACF plots at lag

0; but none beyond that
0,2,0

4.87
84 4.32
91 3.82
98 3.36
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4. Discussion

The major goal of this study is to explore the use of ML models for in-season forecasting
of crop canopy features. For this, the CC was chosen as a canopy feature as it is significantly
important in measuring the canopy leaf area and subsequently for yield estimations [37–39]
and irrigation scheduling [40]. Our approach is to forecast CC features two weeks in
advance with accurate precision so that in-season management decisions can be made.
For this, different forecasting models have been used to do a comparative analysis and to
choose a model that predicted the indices with the highest accuracy at different phases of
the growth cycle.

In order to simplify the analysis and ensure that the forecasting models yielded an
unbiased estimate, the CC data recorded for the plots for the year 2020 were used as training
data, and the CC data over the year 2021 were used to gauge the efficiency of the trained
models. The recorded data for the year 2020 were clustered using the K-means algorithm
for ease of training the LSTM models. Similarly, in order to compute the efficiency of the
trained models, the CC data for the year 2021 were clustered, and the trained forecasting
models were tested. The best forecasting model was decided by a majority vote based on
the output of the models, which forecasted the values of CCs up to 14 days in advance with
minimal error.

The prediction of CC values from the 28th day to the 63rd day after emergence has
been achieved using a multiple-input multi-step output LSTM model. The superiority of the
multiple-input multi-step output LSTM model, which utilized similar cluster cultivation
data as multiple inputs to the model, over other forecasting methods, has prompted a
thorough examination of the data formulation and model architecture that contributed to
its enhanced prediction accuracy in predicting the early season growth indices.

Following the data preparation phase, it was crucial to examine the benefits of the
resulting curated dataset when utilized as inputs to the multiple-input multi-step output
and long short-term memory (LSTM) models. One significant benefit of utilizing these
models lies in their ability to effectively capture relationships and dependencies among
multiple interdependent input sequences. For instance, when provided with CC data for
clusters with low DTW distance as inputs, these models could exploit correlations between
different time-series inputs to generate more precise predictions. In this case, the DTW
technique was used to measure the similarity between different clusters by stretching or
compressing them along the time axis. This alignment allows similar clusters to be matched,
even if they are distorted by noise. Given how the data were recorded across all plots,
there is a high likelihood of the CC data being influenced by noise. Additionally, another
benefit of employing DTW to evaluate the similarity between clusters is that the alignment
process remains meaningful, prioritizing the alignment of genuinely similar patterns over
accommodating every minor fluctuation in the data [41–43].

Similarly, the prediction of CC values, starting from the 63rd day of emergence to
the end of the cultivation period, was achieved using a four-layered stacked LSTM model.
These models incorporate the CC values for the year 2020 as input variables to train the
model, enabling the prediction of CC indices for the year 2021. As anticipated, the root
mean square error (RMSE) values for the estimation of CCs exhibited a decline with the
inclusion of more actual values into the model. However, the main disadvantage of using
single-input LSTM models is that they suffer from a deficiency in capturing the interactions
between inputs, resulting in a decrease in predicting accuracy when there is not enough
testing data to make predictions. However, it is important to exercise caution to mitigate
the risk of overfitting when the input data sequences are not well aligned or curated.

Nonetheless, given the significant computational resources associated with employing
a multiple-input multi-step LSTM model, it is recommended to opt for a single-input
stacked LSTM architecture, as stated above, for computing growth indices starting from
63 days of cultivation. This approach ensures a more manageable computational load while
still achieving a reasonably low RMSE, thus enhancing the precision of forecasting future
CC indices.
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Another noteworthy insight, observed in Figure 8, is the alignment between all the
predicted values for the subsequent 14 days and the actual CC values. Anomalies typically
occurred within the predictions around days 6 to 8 while trying to predict the early season
growth indices (typically for predicting the future CC values when the real canopy values
until days 28 to 35 are given as inputs to the trained LSTM models.) Hence, it suggests the
potential application of more advanced time-series forecasting models like the Prophet [44],
VARMAX [45], or state-space models [46,47], which can be used to address these prediction
anomalies in future analyses.
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5. Conclusions and Future Work

Utilizing cultivation data from multiple clusters with a minimal DTW distance for
LSTM model training, a four-layered multiple-input multi-step output LSTM model demon-
strated superior performance compared to other LSTM models and the traditional ARIMA
approach. The RMSE estimates obtained from this model ranged from 4.36 to 2.18 across the
entire cultivation period. However, due to computational constraints, this model was only
employed for predicting growth indices up to the 56th day of emergence. Subsequently,
from the 56th to the 98th day of emergence, when sufficient data became available for
LSTM model testing, a stacked LSTM trained for 100 epochs with a batch size of 32 was
selected over other LSTM variants due to its cost-effectiveness and relatively low average
RMSE. Future research endeavors should incorporate datasets from diverse sites, soils, and
climates to develop robust and versatile forecasting models that are capable of accurately
predicting canopy features until the harvesting phase. Consequently, robust models are
imperative for effectively predicting in-season growth, thereby optimizing management
strategies and enhancing yield outcomes.
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