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Abstract: Lossy compression of remote-sensing images is a typical stage in their processing chain.
In design or selection of methods for lossy compression, it is commonly assumed that images are
noise-free. Meanwhile, there are many practical situations where an image or a set of its components
are noisy. This fact needs to be taken into account since noise presence leads to specific effects in
lossy compressed data. The main effect is the possible existence of the optimal operation point (OOP)
shown for JPEG, JPEG2000, some coders based on the discrete cosine transform (DCT), and the better
portable graphics (BPG) encoder. However, the performance of such modern coders as AVIF and
HEIF with application to noisy images has not been studied yet. In this paper, analysis is carried out
for the case of additive white Gaussian noise. We demonstrate that OOP can exist for AVIF and HEIF
and the performance characteristics in it are quite similar to those for the BPG encoder. OOP exists
with a higher probability for images of simpler structure and/or high-intensity noise, and this takes
place according to different metrics including visual quality ones. The problems of providing lossy
compression by AVIF or HEIF are shown and an initial solution is proposed. Examples for test and

real-life remote-sensing images are presented.

Keywords: image lossy compression; better portable graphics; optimal operation point; AVIF and
HEIF; additive white noise

1. Introduction

The number and volume of remote-sensing (RS) images are rapidly increasing. They
are widely employed in ecological monitoring, military, agriculture, and other fields [1-4].
To be useful, RS data often have to be processed and offered to customers quickly. This
explains the need for their efficient compression [5].

Lossless compression [6] does not introduce distortions into data but is characterized
by a relatively small compression ratio (CR) that can be inappropriate for practice. In
contrast, lossy compression approaches are possible [7-9] that allow introducing certain
distortions [10,11], but the CR for them is usually considerably larger and can be varied. A
problem that arises then is to produce a reasonable compromise between the CR and RS
data quality [10-13].

In this sense, it is usually assumed that a larger CR results in larger distortions [12,14,15].
In other words, it is supposed that rate/distortion curves (dependence of a parameter
characterizing quality on a parameter that controls compression (PCC), i.e., allows varying
of the CR) are monotonous. In most practical situations, the aforementioned assumptions
are valid. The examples are the dependence of the peak signal-to-noise ratio (PSNR) on the
quality factor for JPEG (that monotonically increases [16]) or the dependence of the PSNR on
the parameter Q (that serves as the PCC for the better portable graphics (BPG) encoder [17])
that monotonically decreases (see the plots in Figure 2 in [18]). Such behavior allows us to
find a trade-off between the CR and distortions quite easily. Note that distortions can be
characterized by conventional metrics such as the PSNR, visual quality metrics [15] such as,
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e.g., SSIM [14], and, indirectly, by their influence on the classification accuracy of compressed
RS data [11,13].

The aforementioned properties and tendencies in lossy compression take place if the
original images are noise-free or, at least, the noise intensity is low (the noise is practically
invisible). However, RS images (or, at least, some of their components) are not always noise-
free. There are applications (types of RS images) for which images are always noisy, e.g.,
radar images [10,19,20]. There are noisy (junk) component images in hyperspectral [21,22]
and multispectral [11] RS data. Night light images [23] are quite noisy as well.

The lossy compression of noisy images has specific features discovered almost three
decades ago [24-27]. These features were shown first for JPEG [28] and then for wavelet-
based coders [26]. A noise filtering effect that takes place due to lossy compression was
demonstrated. This effect can result in an optimal operation point (OOP) that is not always
observed, under certain properties of an image to be compressed and noise present in
this image. In fact, the OOP is a value of a used PCC for a given coder for which a
minimal “distance” (according to a considered metric) between the compressed and noise-
free images takes place. For the description of this distance, it is possible to apply both
traditional metrics (e.g., PSNR) and visual quality metrics such as PSNR-HVS-M [29] or
MS-SSIM [30]. In most cases, the OOP corresponds to a maximal value of a used similarity
measure (PSNR, PSNR-HVS-M, MS-SSIM), although it might also relate to minimal value
(e.g., for MSE).

After the design of new encoders, research in the area of the lossy compression of noisy
images was continued. The possible existence of an OOP was shown for JPEG2000 [31]
in [32]. In [32-34], the potential existence of an OOP was demonstrated for the coders
AGU [35] and adaptive DCT (ADCT) [36] based on the discrete cosine transform (DCT)
in fixed [35] and adaptively determined [36] size. An OOP also might exist in the lossy
compression of noisy images by the BPG encoder [18,37]. The possible existence of an OOP
has been recently shown for lossy compression based on the discrete atomic transform [38]
and tensor decomposition [22]. Also note that modern compression techniques are often
designed to carry out noise removal and compression simultaneously [39,40].

Thus, it can be concluded that the possible existence of an OOP is an inherent property
of lossy compression applied to noisy images including the cases of signal-dependent
noise [26,41]. An attractive advantage of the OOP is that, if it exists for a given image
and a coder used, then it is reasonable to compress this image in the OOP or its nearest
neighborhood since this provides the best achieved quality of the compressed image and
quite a large CR simultaneously [18,41].

Recall here that the BPG encoder was proposed about ten years ago as a part of the
video format HEVC (High Efficiency Video Coding) and has already gained popularity [7,42].
Meanwhile, recently two other encoders, AV1 Image File Format (AVIF) [43] and High Effi-
ciency Image File Format (HEIF) [44], have been proposed. To the best of our knowledge,
their performance has not been studied for the compression of noisy and RS images. At the
same time, their performance for noise-free images has been compared to other coders and
shown to have certain benefits [45,46]. Thus, our first goal is to check whether or not an
OQP is possible for AVIF and HEIF encoders applied to noisy images and to compare the
coders’ performance to other known counterparts such as JPEG and the ADCT and
BPG encoders.

We have already mentioned the advantages of lossy compression in the OOP if it
exists. However, since noise-free images are absent, it is impossible to determine the OOP
by calculating the metric values for compressed and noise-free images using a set of PCC
values. Several solutions have been already proposed for the JPEG, JPEG2000, AGU, ADCT,
and BPG encoders. First, it has been shown for some coders that, in the OOP, the MSE
calculated between the compressed and original (noisy) images is approximately equal to
the equivalent variance of the noise in the original image [32] (here we assume that the
noise type and statistics are a priori known or pre-estimated with high accuracy [47,48]).
This allows us to find such a PCC value that this condition is satisfied. The problem is that
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such a procedure for reaching the OOP requires multiple compression/decompression of
a considered image. This might take too much time, especially if the number of required
iterations is large enough.

Second, it has been shown for the AGU, ADCT, and BPG coders that the OOP can be
reached considerably faster (without iterations) using simple expressions that connect the
optimal PCC (the quantization step (QS) for the AGU and ADCT coders and the parameter
Q for the BPG encoder) with the noise equivalent variance. However, if an OOP exists for
AVIF and HEIF, it is unclear how to reach it for a given image and noise variance. To study
this question is the second goal of this paper.

We carry out our study for the case of single-channel images corrupted by zero mean
additive white Gaussian noise (AWGN). The reasons for this are the following. First,
AWGN is considered to be a starting point in research dealing with many aspects of image
processing [49] including the blind estimation of noise variance [50], denoising [51,52], and
lossy compression [53]. Second, if the noise in original image is signal-dependent, it can be
converted to additive by the corresponding variance-stabilizing transform [41,54]. Then,
lossy compression is applied after the direct transform and the corresponding inverse trans-
form is applied after image decompression (the corresponding example is considered in
Section 4 of this paper). Third, we consider the single-channel image compression because
component-wise compression is sometimes applied to multichannel RS images and, also,
the preliminary analysis of component-wise compression allows us to understand what to
do for a multichannel case [41,53]. Note that the joint compression of several component
images usually provides better results than component-wise compression. However, to
exploit this property, component-wise images should be properly pre-processed (prepared)
for three-dimensional compression and the corresponding versions of coders have to exist
(be designed).

The structure of the paper is the following. The image/noise model and the used
metrics are considered in Section 2. Explanations of basic dependencies and results are
given in Section 3. It also deals with the main analysis of the dependence of the analyzed
metrics on the PCC for five encoders. Practical aspects of reaching OOP for AVIF and HEIF
and discussions are given in Section 4. Finally, the conclusions are presented.

2. Materials and Methods

Assuming that our noise follows the AWGN model, an observed noisy image can be
presented as
B =5 + g M

where Iit-rue, i=1,.,Im,j=1,.,Jim denotes the true or noise-free image, Ny is AWGN
in the ij-th pixel, and I}, and Jy,,, define the image size. AWGN variance is supposed to
be equal to ¢ and known or accurately pre-estimated in advance. Examples of noisy
component images from AVIRIS hyperspectral data are presented in Figure 1. Analysis
carried out in [41,48] has shown that the observed noise can be both close to purely additive
and signal-dependent. Note that the input PSNR for such component images for which
noise is clearly visible usually varies from 20 to 35 dB for hyperspectral data and can be
even smaller for radar images.

It is well-known that image processing efficiency considerably depends on image
complexity where, for noise-free images, their complexity can be described by entropy.
Because of this, we have carried out the main analysis for the test image Frisco (Figure 2a),
which is of simple structure, and the image Diego (Figure 2b), which contains a lot of
texture and small details. Both images have been taken from the database SIPI (https://
sipi.usc.edu/database/database.php?volume=aerials, accessed on 1 March 2024) where
they are presented as color images in tiff format. Their conversion to grayscale form has
been conducted.
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Figure 1. Two examples of noisy component images in hyperspectral AVIRIS data.

Figure 2. Test single-channel images Frisco (a) and Diego (b), both 512 x 512 pixels.

The quality of the original noisy image represented as 8-bit data can be characterized by

2
255 ) o)

PSNRn = 1010g10 (7

A conventional rate/distortion curve is the dependence of a metric PSNRy calculated
between an original (in our case, noisy) and compressed image on a PCC for a given coder.
Figure 3 presents such dependencies for all five coders for two images corrupted by AWGN
with a variance equal to 100. Before their analysis, recall the following. The horizontal axis
relates to PCCs that are different for different coders and vary in different limits. For the
BPG encoder, Q serves as the PCC; it can only be an integer and varies from 1 to 51. A
larger Q relates to a larger CR. For JPEG, AVIF, and HEIF, the quality factor (QF) serves as
the PCC, it can be only integer and a smaller QF relates to worse quality. Finally, QS serves
as the PCC for the ADCT coder, and it can be any positive value. Here, we analyze QS from
0 to 100 to be within the same range with other PCCs where a larger QS relates to a worse
quality (larger distortions).
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Figure 3. Traditional rate/distortion curves for the test images Frisco (a) and Diego (b) corrupted by
noise subject to compression by the five considered coders, o2 = 100.

Due to different PCCs, the dependencies are decreasing for the BPG and ADCT coders
and increasing for the three other encoders. PSNR values vary in wide limits from invisible
distortions (PSNRp¢ > 35. . .38 dB) to quite a low quality of the compressed images (PSNRp
about 25 dB for Frisco and about 20 dB for Diego images). All dependencies are not linear,
some of them are smooth whilst the plots for AVIF and HEIF are staircase ones.

Figure 3 does not allow to compare the performance of the considered coders. Hence,
we have presented PSNR,. values determined between the original and compressed images
as the functions of the CR (Figure 4). The main observations are the following. First, the
curves for four modern coders practically coincide for both test images. Only for JPEG are
the PSNR values significantly smaller, especially for large compression ratios. Second, for
the same CR, PSNRy, values for a simpler structure image are larger than for a textured
image (compare, e.g., the data for CR = 20 in Figure 4a,b).

DIEGO.BMP, noise std=10.0, psnr

80

— HEIF — HEIF
70 — AVIF 70 — AVIF
— ADCT — ADCT
60 — BPG 0 60 — BPG
JPEG © JPEG
50 o 50
a
40 40
30 30
20
o £ % o % %
compression ratio compression ratio
(a) (b)

Figure 4. Dependencies PSNRp(Q) for the images Frisco (a) and Diego (b), 02 =100.

Meanwhile, for the lossy compression of noisy images, we are more interested in the
dependencies of metrics calculated between compressed images and the corresponding
noise-free images on the PCC and/or CR. Such dependencies can be obtained only for
simulated data where one has a noise-free test image, artificially adds AWGN to it, and
compresses it using a set of PCC values to obtain the dependence of the metric Metr;.
on the PCC or CR where the index tc corresponds to “true” and “compressed”. These
dependencies are studied in the next section.

Recall here that, alongside conventional PSNR, it is worth analyzing visual quality
metrics that take into account some important features of the human vision system (HVS).
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PSNR-HVS-M is expressed in dB; MS-SSIM varies from 0 to 1. Larger values for both
metrics correspond to a better visual quality.

3. Results

The goals of this section are to study the dependencies of Metr;. on the PCC or CR
for different noise intensities as well as to compare the coders’ performance. The main
attention is paid to OOP existence and performance analysis for different coders (with the
main emphasis on AVIF and HEIF) in the neighborhood of the OOP (if it exists).

Dependencies PSNR(PCC) for the considered coders for AWGN having 02 =100 are
shown in Figure 5. In agreement with the theory [18,33,37], for the test image Frisco, there
are OOPs for the ADCT and BPG coders observed for QSpop ~ 4.20 and
Qoor ~ 14.9 + 20log;,(0), respectively. The PSNRy. values in these OOPs are the largest
and they are 7 dB larger than PSNR™ = 28.1 dB. OOPs are also observed for all three other
coders where the smallest PSNRoop is seen for JPEG (about 32 dB). AVIF and HEIF produce
approximately the same PSNRoop, this is seen for different values of QFoop. For the test
image Diego (Figure 5b), OOPs are not observed (there are no maxima since all dependen-
cies are either monotonically increasing or decreasing) and this shows the dependence of
OOP existence on image complexity.

frisco.bmp, noise std=10.0, psnr DIEGO.BMP, noise std=10.0, psnr

36

— HEIF 28 — HEIF

=3 — AVIF . — AVIF
— ADCT — ADCT
—BPG 26 —BPG

o 32 m
o / IPEG T 35 IPEG
G B
g 3° \\\ S 24
Q. Q
28! 23
22/
26 /|
21
0 k7 % % 0 k7 % S
pcc pcc
(a) (b)

Figure 5. Dependencies PSNR;.(PCC) for the images Frisco (a) and Diego (b), 02 =100.

Figures 6 and 7 demonstrate the dependencies PSNR-HVS-M;.(PCC) and MS-
SSIM;(PCC) for the same noise variance. For the metric PSNR-HVS-M (Figure 6),
OOPs are observed for the AVIF, HEIF, ADCT, and BPG encoders where the best results
are achieved for the two latter ones. Formally, an OOP is not observed for JPEG although
the dependence has a local maximum for the same QF as in Figure 5. For the test image
Diego, no OOPs are seen.

According to the metric MS-SSIM. (Figure 7), OOPs are observed for all five coders
for the test image Frisco (Figure 7a) and they are absent for the test image Diego (Figure 7b).
MS-SSIMoop is the largest for the BPG encoder. Note that the OOPs for different metrics
for a given test image and noise variance practically coincide. For example, for the image
Frisco, 0% = 100, QFgop for HEIF is about 24 for the curves in Figures 5a, 6a and 7a. This is a
positive practical aspect. Really, if there is a way to determine the OOP, it is simultaneously
determined for both conventional and visual quality metrics. Recall that there are coders
(e.g., AGU [36]) for which the OOP values according to different quality metrics for a given
image and noise intensity do not coincide.

Let us see what happens for other values of noise variance. Data for o? = 25 are
represented in Figure 8. Again, OOPs are observed for the test image Frisco and they
are absent for the test image Diego, showing that image complexity plays a key role in
OOP existence.
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Figure 6. Dependencies PSNR-HVS-M;.(PCC) for the images Frisco (a) and Diego (b), o2 =100.
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Figure 7. Dependencies MS-SSIM(PCC) for the images Frisco (a) and Diego (b), 02 =100.
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40
— HEIF 34 — HEIF
38 — AVIF - — AVIF
36 — ADCT — ADCT
& =3 \\\ — BPG & 30 — BPG
o JPEG T JPEG
£ 32 =
2 30 L 26
28 24
26 22
) K2 % S ) k2 % S
pcc pcc

Figure 8. Dependencies PSNR.(PCC) for the images Frisco (a) and Diego (b), 02 =25.

The dependencies PSNR;.(PCC) for 62 = 196 are given in Figure 9. OOPs are observed
for all five encoders for the image Frisco where the best PSNRpop is seen for the BPG
encoder and the worst for JPEG (Figure 9a). It is interesting that OOPs appear for the
test image Diego (Figure 9b) for three out of five coders. Although formally for AVIF and
JPEG OOQPs are absent, the corresponding dependencies have local maxima. Joint analysis
of the dependencies in Figures 9 and 10 shows the following. First, again, OOPs for the
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psnrhvsm, dB

considered metrics PSNR and PSNR-HVS-M are observed for the same PCC values (for a
given image, compare data in Figures 9a and 10a). Second, it might be that an OOP exists
according to one metric (PSNR, Figure 9b) but does not exist according to another metric
(PSNR-HVS-M, Figure 10b). We have observed this phenomenon earlier [18,37] that OOPs

for visual quality metrics are observed more rarely than for PSNR.

frisco.bmp, noise std=14.0, psnr
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30 IPEG

o

26
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Figure 9. Dependencies PSNR.(PCC) for the images Frisco (a) and Diego (b), 02 = 196.

frisco.bmp, noise std=14.0, psnrhvsm

— HEIF
— AVIF
— ADCT
— BPG

26 /J \ JPEG

Figure 10. Dependencies PSNR-HVS-M;.(PCC) for the images Frisco (a) and Diego (b), 02 =196.

The dependencies of metrics on the PCC do not allow us to compare the coders’
performance clearly. Because of this, we have calculated the dependencies PSNR.(CR)—
they are presented in Figure 11 for o? = 100. As one can see, for the image Frisco, maximal
values of PSNR. are observed for different values of CR for different coders: CRoop is
approximately equal to 30 for JPEG, 40 for ADCT, 42 for BPG, 46 for AVIF, and 48 for HEIF
coders, respectively. Then, it might seem that HEIF and AVIF are better than the BPG and
ADCT coders. However, an analysis of the curves in Figure 11a clearly shows that in the
area of CR under interest (from 30 to 70), the largest PSNR¢. values are provided by the
BPG encoder. The analysis for the test image Diego (Figure 11b) shows that there are no
OOPs (this is in agreement with data in Figure 5b) and the best results (the largest PSNR.)
are again provided by the BPG encoder in a wide range of CR values. For the other three
encoders, the difference is negligible starting from CR = 20. JPEG obviously produces the

worst results.

psnrhvsm, dB

DIEGO.BMP, noise std=14.0, psnrhvsm
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28 — AVIF
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— BPG

24 JPEG
22
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187
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Figure 11. Dependencies PSNR;.(CR) for the images Frisco (a) and Diego (b), 02 =100.

It is worth comparing the coders’ performance for other noise-intensity and quality
metric. Figure 12 presents such data for the test image Diego corrupted by AWGN with
a variance of 196. According to the PSNR. (Figure 12a), an OOP exists for three coders
(and local maxima exist for two other coders) where the BPG encoder is again the best.
According to MS-SSIM. (Figure 12b) and PSNE-HVS-My, (Figure 12c), an OOP does not
exist, but the BPG encoder performs better than the others.
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T© JPEG
c 30
[}
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28
26
<0 k2 %
compression ratio
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S 245 M/\ JPEG
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S 24
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Figure 12. Dependencies PSNR(CR) (a), MS-SSIM.(CR) (b), and PSNR-HVS-M;.(CR) (c) for the

image Diego (b), 02 = 196.
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4. Discussion

It could be nice if the PCC to reach the OOP for a given coder and noise variance
was set automatically under the assumption that the noise variance is a priori known or
accurately estimated in a blind manner in advance. Such opportunities have been already
demonstrated for the AGU, ADCT, and BPG encoders.

From previous experience [32-34,37], it can be expected that the OOP for AVIF and
HEIF depends on the image, metric, coder, and noise intensity. To establish all dependencies,
a thorough study is needed. Because of this, let us try to obtain the main tendencies. For
this purpose, some data are collected in Tables 1-3 for situations when an OOP is observed.
We do not want to study the main tendencies for the BPG encoder since they have been
already investigated in [16]. The data are mainly presented for comparison purposes.

Table 1. Compression characteristics in OOP according to PSNR for Frisco.

JPEG AVIF HEIF BPG
Noise Variance
PSNRpmax CR PSNRmax CR PSNRpmax CR PSNRmax CR
36.5 38.0 37.7 39.3
25 13.2 26.5 31.6 22.4
(QF = 48) (QF =51) (QF=33) (Q=30)
32.2 34.7 34.6 35.7
100 29.8 46.8 49.8 41.2
(QF=14) (QF =35) (QF =25) (Q=36)
30.2 329 33.0 33.8
196 34.7 61.2 66.0 56.6
(QF =10) (QF =27) (QF =21) Q=39
Table 2. Compression characteristics in OOP according to MS-SSIM for Frisco.
JPEG AVIF HEIF BPG
Noise Variance
MS-SSIMpax CR MS-SSIMpax CR MS-SSIMpax CR MS-SSIMpax CR
0.9743 0.9814 0.9815 0.9856
25 18.3 30.2 31.6 224
(QF =33) (QF = 49) (QF =33) (Q=30)
0.9738 0.9659 0.9645 0.9716
100 31.7 57.8 61.1 41.2
(QF=13) (QF=33) (QF=23) (Q=36)
0.9002 0.9526 0.9508 0.9601
196 45.3 69.3 66.0 56.6
(QF=7) (QF =25) (QF =21) (Q=39)
Table 3. Compression characteristics in OOP according to PSNR for Diego.
JPEG AVIF HEIF BPG
Noise Variance
PSNRmax CR PSNRmax CR PSNRmax CR PSNRmax CR
249 24.8 25.5 25.9
196 (QF = 28) 7.6 (QF = 24 %) 16.9 (QF = 25) 115 Q=39) 10.4

* Data for local maximum.

For AVIF (Table 1), an increase in noise variance leads to a smaller maximal PSNR.
(denoted as PSNRmax), smaller QF, and larger CR. The same holds for HEIF but there are
some differences. The PSNRpyax values are practically the same, the QFoop values are
smaller, and the CRppp values are slightly larger than for AVIE.

According to the MS-SSIM (Table 2), an increase in noise intensity results in a smaller
maximal MS-SSIM. (MS-SS5IMmax), smaller QF, and larger CR for AVIE. The same tenden-
cies hold for HEIF. In general, the optimal QF values according to MS-SSIM are slightly
smaller than according to PSNR, but the difference is not essential (compare the correspond-
ing dependencies in Figures 5a and 7a).

For the test image Diego, there are only data for 0> = 196 (Table 3). Comparing the
optimal values of QF for the images Frisco and Diego for 02 =196 (Tables 1 and 3), it is seen
that they are quite close but not the same.



Remote Sens. 2024, 16, 2093

11 of 19

To show the direction of further research, Figure 13 presents one more test image (Fr02)
and the plots for it (6> = 100). This image is more complex than Frisco but less complex than
Diego. As seen, OOPs exist for four coders and the best results are again observed for the
BPG encoder. The OOPs are less obvious (PSNRpyax values are smaller) than for the image
Frisco (Figure 11a), and the CR values in the OOP are also significantly smaller. The QF in
the OOP is equal to 35 for AVIF and 31 for HEIF. Thus, the values of QFoop are slightly
other than in the previous considered case (Table 1), at least, for the HEIF encoder. Because
of this, we analyzed several other test images. The obtained results are the following. For
02 = 100, QFoop for AVIF is within the limits of 32-35 and for HEIF the limits are from
23 to 31. For 62 = 196, QFpop Vvaries within the limits of 22-27 for AVIF and from 20 to 28
for HEIF. Thus, the limits are quite wide and there is a tendency for a reduction in QFpop
if 02 increases. Maybe the position of OOP depends not only on the noise intensity but
on the image complexity. This hypothesis needs verification in the future. Maybe then,
non-iterative procedures for determining QFoop will be proposed.

fr02.bmp, noise std=10, psnr

30
— HEIF
— AVIF
28 — ADCT
. —BPG
T 26 IPEG
o~
c
v
o 24
22
. ; N2 o) %
= & e compression ratio

Figure 13. The test image Fr02 and dependencies PSNR;.(CR) for it, 02 =100.

Meanwhile, currently there exists another opportunity to reach the OOP. As mentioned
above, the following fact [32] was observed for the OOP for JPEG, JPE2000, and some other
coders: MSE,, was approximately equal to ¢2. Let us check whether or not this happens
for the AVIF and HEIF encoders. Figure 14 presents some dependencies of the MSE,. on
the PCC. In Figure 14a (image Frisco, 02 = 25), MSEp. = 25 is seen for QF ~ 36 for HEIF
and for QF ~ 50 for AVIF. This is in good agreement with the data in Table 1. In Figure 14b
(image Frisco, 02 = 100), MSE = 100 is observed for QF ~ 26 for HEIF and for QF ~ 37
for AVIF. These data are in agreement with the corresponding data in Table 1 for ¢ = 100.
In Figure 14c (image Frisco, 02 = 196), MSE, = 196 is seen for QF ~ 22 for HEIF and for
QF = 27 for AVIF. Again, agreement with the corresponding data in Table 1 for 6% = 196
is observed. Finally, Figure 14b presents the plots for the image Diego, 62 = 196. MSE
~ 02 is observed for QF = 24 for HEIF and for QF ~ 27 for AVIF which agrees with the
corresponding data in Table 3.

Thus, the property that MSE,,. ~ 2 in the OOP is observed for AVIF and HEIF as well
for other encoders [32]. It allows us to propose quite a simple algorithm (further called
Algorithm 1, see below) for reaching the OOP:

(1) Suppose that 02 is known in advance; if it is unknown, estimate it;

(2) Set a starting QF; for a used coder according to the observations given above (see
also the data in Table 4);

(3) Compress and decompress a considered image using QFs; and calculate MSE,;

(4) 1f0.90% < MSE, < 1.10%, retain the compressed image obtained at Step 3 as the final
one; if MSEp. < 0.902, decrease QF by 2 and continue; if MSE,. > 1.1 02, increase QF
by 2 and continue;
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(5) For the new QF, compress and decompress the image, calculate MSE,,¢, and continue
checking the validity of 0.96? < MSE,,c < 1.102 as in Step 4; stop when it is valid and
retain the last obtained compressed image as the final one.

frisco.bmp, noise std=5.0, mse

frisco.bmp, noise std=10.0, mse

— HEIF 300 — HETF
200 — AVIF 250 — AVIF
— ADCT — ADCT
150 —BPG 2003 —BPG
@ \ JPEG ) JPEG
£ 100 g 1%
100
50 - fj/ i
0 ﬁu_ 0
) k2 % S ) % % %
pcc pcc
(a) (b)
frisco.bmp, noise std=14.0, mse DIEGO.BMP, noise std=14.0, mse
400 — HEIF 700 — HEIF
350 — AVIF 600\ — AVIF
3004 — ADCT — ADCT
250 —BPG 500 — BPG
JPEG © 400 JPEG
8 200 3
E 150 E 300
100 200
50 100
0 0
) k2 % S ) ) % %
pcc pcc
(c) (d)
Figure 14. Dependencies of MSE,. on PCC for Frisco (a-c) and Diego (d).
Table 4. Recommended QFg; for AVIF and HEIFE.
o? 20-30 31-44 45-64 65-90 91-130 131-180 >180
QFg; for AVIF 50 45 41 37 33 30 25
QFg¢ for HEIF 33 31 29 27 26 25 24

Note that we do not give any recommendation for o2 < 20 since the noise in such
images is invisible. The recommendations in Table 4 are based on the materials and data
presented above as well on data obtained for intermediate values of 6. The recommen-
dations given in Table 4 allow us to minimize (on the average) the number of iterations
needed to reach the OOP.

As one can see, the noise variance o? is used in the proposed algorithm as the
parameter. Although this algorithm produces MSEp. ~ ¢? and it is unable to provide
MSE,« = 02 since QF can only be an integer, errors of the noise variance estimation can
produce additional errors in the determination of the optimal QF. The negative impact
of such errors is negligible if the relative error of noise variance estimation is less than
5%—see the examples of MSE,,. changing with QF changing by 2 below.

We have checked the algorithm proposed above for the image Fr02 (Figure 13a)
corrupted by AWGN with a variance equal to 100.
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For AVIF, according to recommendations in Table 4, we use QFst = 33 and obtain
MSE; = 131.7 (MSE. = 98.7). According to the proposed algorithm, we have to increase
QF by 2. For QF = 35, one obtains MSE. = 121.1 (MSE. = 98.1), i.e., closer to the desired
value. At the next step, for QF = 37, MSE,,. = 108.8 (MSEj. = 99.0), i.e., the algorithm can be
stopped. In fact, QF = 35 corresponds to the OOP but the final result, QF = 37, produces a
result that is only slightly worse.

For HEIF, according to the data in Table 4, we have to start from QFs = 26 and
then obtain MSE. = 169.0 (MSE;. = 104.8). Then, QS has to be increased by 2 and, for
QF = 28, one obtains MSE,, = 148.8 (MSE;. = 94.5). At the next step, for QS = 30, MSE¢
=128.1 (MSE. = 88.5). Finally, for QF = 32, one has MSE,, = 107.8 (MSE. = 86.4). The
algorithm stops and MSE. = 86.4 corresponds to the OOP. Thus, in this case, we have
exactly reached the OOP.

As one can see, three and four iteration steps were enough to reach the OOP or its
close neighborhood. Probably, some other algorithms of reaching the OOP are possible.

Let us also present some results of noisy image compression in the OOP. Figure 15a
shows the noisy image Frisco, 0* = 100. The image compressed by AVIF with QF = 36
is presented in Figure 15b whilst the same image compressed by HEIF with QF = 25 is
shown in Figure 15c. Finally, the image compressed by BPG with Q = 35 is demonstrated in
Figure 15d. As seen, the noise in all of the compressed images is significantly suppressed
whilst the details are preserved well enough. We did not notice any sufficient differences
between images compressed by the AVIF, HEIF, and BPG encoders in the corresponding
optimal operation points (Figure 15b—d).

Figure 15. Noisy image Frisco (a) and results of its compression in the OOP by AVIF (b), HEIF (c),
and BPG (d).
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All studies above are presented for AWGN which, as already mentioned, is the
simplified model. Hence, let us consider a practical case when noise is signal-dependent
as it usually happens to be for hyperspectral data. As an example, below we consider
Hyperion data, namely a fragment of the image E01H1800252002116110KZ, the 15th sub-
band, presented in Figure 16a. The input PSNR for this image is smaller than 40 dB [11]:
the minimal and maximal values are equal to 0 and 3000, respectively; the noise variance
model is

o = op + kI ®3)

where o3 is variance of the signal-independent (additive) component and k denotes the
parameter of the signal-dependent noise component where the estimated values of these
parameters are equal to 564 and 0.271, respectively. The equivalent noise variance equals to
1165 and this means that the contributions of the signal-independent and signal-dependent
noise components are approximately the same. Noise can be noticed in bright regions of
the sub-band image.

Figure 16. Visualized original image fragment (a), the corresponding image [GAL (b), and the image
after inverse transform (without compression) (c).

Since we have the algorithm suited for additive noise, let us use a variance-stabilizing
transform adapted to the aforementioned model of signal-dependent noise. This is the
so-called generalized Anscombe transform expressed as

2 3
GA
I6A (E> KL+ 5 4 o3 )

Its use for the data we analyze leads to the unity variance of the noise. For our case,
the range of the IgA values was from 175 to 290. To make the data fit the standard range

from 0 to 255, we have applied the transform IgAl = 2.22(15A — 175) and, thus, obtained

a noise variance slightly smaller than 5. The image I°A! is shown in Figure 16b. Note that
the distortions introduced by the direct transform and the corresponding inverse transform
are characterized by an MSEg;; equal to 22.0, i.e., these distortions are considerably smaller
than the equivalent noise variance and can be neglected (see the image in Figure 16¢ that
seems identical to the image in Figure 16a).

Lossy compression providing MSEy. ~ 5 was carried out for the image 154!, The
following values were obtained for different coders. For BPG, Q = 24 and CR = 8.3 (for
the original image, MSE, ~ 1036.3). For HEIF, QF = 50 and CR = 8.13 (for the original
image, MSEp. ~ 1100.9). Finally, for AVIEF, QF = 76 and CR = 7.38 (for the original image,
MSEp ~ 1064.5). Thus, we have provided an MSE,, for the original image approximately
equal to the equivalent noise variance (1165). Note that the CR values are given with
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respect to 8-bit data. Being calculated with respect to the original 16-bit data, the CR values
are twice as large.

The compressed images (after inverse VST) are shown in Figure 17 for all three
considered coders. As one can see, they are all very similar to the original image in
Figure 16a.

(b) (©)

Figure 17. Visualized compressed images for the BPG (a), HEIF (b), and AVIF (c) coders (after
inverse transform).

Above, we have concentrated on the case of grayscale (single-channel) images con-
taminated by AWGN (Sections 2 and 3) and the case of signal-dependent noise (Section 4)
represented by 8-bit integers (Sections 2 and 3) or normalized to the 0-255 range (Section 4).
For more general cases of signal-dependent noise and other ranges of acquired data repre-
sentation, the automatic compression procedure is shown in Figure 18. Note that not all
the blocks in Figure 18 may be needed. Block 1 may not be used if the noise characteristics
are known in advance. Block 2 is not needed if the noise is purely additive. Block 3 is not
needed if the acquired image is in the range of 0-255.

-

e = e = e e = e e = e e e = e e e e e e e e e e e e e e e Em e e e e e e e e e

Normalize the obtained image to the range 0-255 (if necessary) and calculate

additive noise variance for it

o o - - - o e = o = - - - - ——

o —

Apply Algorithm 1 and remember the parameters for the transformations

used

Figure 18. Flow-chart of image compression procedure.

Decompression should be carried out in inverse order. We do not concentrate on the
variance-stabilizing transforms to be used, assuming that this aspect is out of the paper’s
scope (for pure multiplicative noise, the logarithmic-type transform can be applied [55]).

If a multichannel image has to be compressed, one has to know the noise properties (at
least, the input PSNR" in component images). If the PSNR" is relatively high (e.g., larger
than 35 dB), the noise presence can be neglected and lossy compression of the corresponding
component images can be performed with quality (distortion) control (see, e.g., [15]). If the
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PSNR" is relatively low (e.g., does not exceed dB), lossy compression in the OOP can be
applied as described above. This can be performed component-wise. Meanwhile, we expect
that better compression can be provided by the joint (three-dimensional) compression of
several noisy component images [54]. This can be a direction of future studies.

Finally, let us present some data about computational expenses. We used a Python port
of the libheif library (https:/ /github.com/strukturag/libheif, accessed on 1 March 2024) as
the HEIF/AVIF codec. As it is claimed in the library documentation, libheif is an ISO/IEC
23008-12:2017 [56] HEIF and AVIF (AV1 Image File Format) file format decoder and encoder.
There is partial support for ISO/IEC 23008-12:2022 [56] (2nd Edition) capabilities; libheif
makes use of libde265 for HEIF image decoding and x265 for encoding. For AVIF, libaom,
davld, svt-avl, or ravle are used as codecs. For the BPG encoder, we used the source
available at https:/ /bellard.org/bpg/ (accessed on 1 March 2024) [17].

We used a laptop equipped with Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz,
16 GB RAM, Windows 10 x64. The grayscale image size was 512 x 512 pixels. We analyzed
two values of PCC for each coder. One of them (Q = 2 for BPG and QF = 98 for AVIF
and HEIF) relates to a small CR; the other one (Q = 40 for BPG and QF = 30 for AVIF
and HEIF) corresponds to the main range of coder operation. Since the compression and
decompression time differ significantly, we give them separately. The obtained data are
presented in Table 5.

Table 5. Computation expenses for compression and decompression.

Image Encoder PCC Compression Time Decompression Time
Frisco.bmp BPG 2 0.69 0.19
Frisco.bmp BPG 40 0.24 0.12

DIEGO.BMP BPG 2 0.74 0.24
DIEGO.BMP BPG 40 0.36 0.19
fr02.bmp BPG 2 0.73 0.22
fr02.bmp BPG 40 0.34 0.18
frisco.bmp HEIF 98 0.37 0.04
frisco.bmp HEIF 30 0.15 0.02
DIEGO.BMP HEIF 98 0.4 0.06
DIEGO.BMP HEIF 30 0.23 0.04
fr02.bmp HEIF 98 0.44 0.06
fr02.bmp HEIF 30 0.2 0.04
frisco.bmp AVIF 98 0.23 0.05
frisco.bmp AVIF 30 0.09 0.02
DIEGO.BMP AVIF 98 0.34 0.07
DIEGO.BMP AVIF 30 0.17 0.03
fr02.bmp AVIF 98 0.31 0.06
fr02.bmp AVIF 30 0.21 0.03

Their analysis shows the following. First, decompression is significantly faster than
compression. Second, the simple-structure image (Frisco) is compressed and decompressed
faster than complex-structure ones (Diego and Fr02) for all considered encoders. Third,
AVIF and HEIF seem to be faster than BPG (although it might also depend on software or
hardware implementation).

Meanwhile, even in the worst case of complex images and a small CR, the computation
time is rather small (recall that all considered encoders are used in video coding, this shows
that they are fast enough). Compression can be accelerated using FPGA [57].

5. Conclusions

The paper deals with the lossy compression of single-channel noisy images. The
main emphasis has been paid to the AVIF and HEIF coders and a comparison of their
performance to some known counterparts. We have demonstrated that, similarly to other
modern coders, AVIF and HEIF might have an OOP where the OOP might exist according
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to different quality metrics. Comparison has shown that compressed image characteristics
(PSNR and visual quality metrics) in the OOP for AVIF and HEIF are slightly worse than
for the BPG encoder, but the CR in the OOP is slightly larger. If the noise intensity increases,
the optimal QF for AVIF and HEIF decreases. The ranges of the optimal QF have been
determined. A procedure (algorithm) for reaching the OOP has been proposed. Examples
for real-life data corrupted by signal-dependent noise are presented.

We have not considered the task of predicting whether or not the OOP exists for AVIF
or HEIF. However, taking into account that such a task has been already solved for the BPG
and ADCT encoders, it seems possible that it will be also solved for AVIF and HEIF. It is
also worth considering in the future the cases of signal-dependent noise and multichannel
RS images.
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