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Abstract: The corner reflector is an effective means of interference for radar seekers due to its high
jamming intensity, wide frequency band, and combat effectiveness ratio. Properly arranging multiple
corner reflectors in an array can form dilution jamming that resembles ships, substantially enhancing
the interference effect. This results in a significant decline in the precision attack efficiency of radar
seekers. Hence, it is critical to accurately identify corner reflector array. The common recognition
methods involve extracting features on the high-resolution range profile (HRRP) and polarization
domain. However, the former is constrained by the number of corner reflectors, while the latter is
affected by the accuracy of polarization measurement, both of which have limited performance on
the identification of corner reflector array. In terms of the evident variations in physical structures,
there must be differences in their scattering characteristics. To highlight the differences, this paper
proposes a new method based on the concept of mismatched filtering, which involves changing the
frequency modulation slope of the chirp signal in the filter. Then, the variance of width and intervals
within a specific scope are extracted as features to characterize these differences, and an identification
process is designed in combination with the support vector machine. The simulation experiments
demonstrate that the proposed method exhibits stable discriminative performance and can effectively
combat dilution jamming. Its accuracy rate exceeds 0.86 when the signal-to-noise ratio is greater than
0 dB. Compared to the HRRP methods, the recognition accuracy of the proposed algorithm improves
15% in relation to variations in the quantity of corner reflectors.

Keywords: corner reflector array; combat dilution jamming; change the frequency modulation slope;
mismatched filter; support vector machine

1. Introduction

In the field of radar electronic countermeasures, chaff jamming and corner reflector are
the primary methods of passive jamming [1]. In contrast to the chaff jamming, corner reflec-
tor has the advantages of long−lasting interference duration and stable interference effects.
In addition, corner reflector exhibits a number of advantageous properties with regard to
scattering characteristics, spectral characteristics, polarization properties, and resistance to
the technique of coherent accumulation. In recent years, the continuous advancement of
structure and surface reflection materials has led to significant improvements in the perfor-
mance metrics of corner reflectors, including coverage frequency bands, omnidirectionality,
and the cost−effectiveness ratio of interference [2]. Consequently, many countries have
devoted greater attention to the development of corner reflectors and deployed them in a
variety of scenarios where they are used to counter the radar detection.
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The corner reflector is composed of several orthogonal metallic planes that enable
the incident wave to reflect multiple times. This property results in the corner reflector
exhibiting a pronounced backward radar cross−section and the generation of a robust
jamming signal [3]. Proper assignment of multiple corner reflectors can simulate false
targets similar to ships, which will substantially enhance the interference effect [4–6].
Consequently, the array of corner reflectors has attracted greater interest [7,8]. According to
the jamming performance, corner reflector array can be classified into two types: dilution
jamming and centroid jamming [9,10]. The former takes effect in the tracking stage, in
which the corner reflectors released by the ship are in the same resolution unit with ship.
The radar echoes of the corner reflector are typically more pronounced than those of
the ship, which results in a bias towards the corner reflector in the tracking direction.
The dilution jamming is aimed at the seeking stage, generating multiple false targets
covering the detection area of radar. The distance between the corner reflector array and the
ship is sufficiently large to permit the clear division of two targets. In contrast to centroid
jamming, the implementation of dilution jamming is less constrained, presenting a more
significant and challenging issue. Consequently, it is of paramount importance to devise an
identification method for the dilution jamming.

It is important to note that the distinction between corner reflectors and ships is not
sufficiently obvious, which has made the identification of corner reflectors a challenging
problem. A number of studies have been conducted to extract features from different
domains with the objective of characterizing the differences between dilution jamming
and ship. These domains can be mainly divided into the time domain, frequency domain,
and polarization domain.

In the time domain, the majority of studies focus on the extraction of features in the
high−resolution range profile (HRRP) [11,12]. The HRRP can be employed to reflect the
construction information of the target, including its geometric shape, size, and material
composition [13]. Ref. [14] extracted the features in HRRP such as radial size, scattering
symmetry, and number of scattering points. Nevertheless, the efficacy of the HRRP method
is constrained by the observation angle and spatial geometry, which may not yield expected
precision in practical applications. In the frequency domain, the focus is typically on the
variances in the motion characteristics. Due to the differing velocity and fluctuation of the
corner reflector compared to the ship, the identification of the reflector is typically achieved
through doppler frequency shift [15] or micro−doppler frequency shift [16,17]. However,
the former cannot easily achieve the expected performance in the context of trailing the
corner reflectors, given that the velocity of the corner reflector array closely matches that of
the ship. And the latter cannot perform well in complex sea conditions. In the polarization
domain, the polarization decomposition theory is widely used [18,19]. This method is one
of the important parts of radar polarization technology, extracting the characteristics of the
object by decomposing polarization data into various components [20,21]. Nevertheless,
real targets exhibit pronounced angular sensitivity in their scattering responses, which
makes it difficult to accurately measure the polarization scattering matrix based on polar-
ization decomposition [22]. In order to reduce the impact of azimuth sensitivity of target
polarization scattering response, some studies have employed polarimetric roll-invariant
features for the identification of corner reflectors [23–25].

In light of the limitations of single−domain approaches, recent studies have sought to
enhance performance by focusing on multi−dimensional joint features. The authors of [7],
based on the theory of polarization modulation, extracted the correlation characteristic
parameters on the polarization range 2D image. Simulation results indicate that this method
has stable recognition performance. Ref. [26] proposed a novel method of discrimination
for corner reflector arrays based on the time−spatial−polarization joint domains. Ref. [8]
optimized features and proposed new characteristics in the polarization domain and HRRP.
Then, based on the measured data, this paper provided performance analyses of different
features and their combinations. However, this method has certain reference value but
lacks universality.
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Considering the aforementioned constraints, this paper utilizes a novel method based
on mismatched filter, which involves modifying the frequency modulation slope of the
linear frequency modulated (LFM) signal in the filter. The LFM signal is the most prevalent
waveform employed in radar systems. Nevertheless, in comparison to the sophisticated
waveforms proposed in recent years [27,28], it is relatively ineffective in mitigating interfer-
ence and spoofing in radar detection. It is of great value to optimize the signal processing
in order to enhance the radar performance [29]. In some previous studies, this technology
was nearly applied at the transmitter by modifying the frequency modulation slope of the
transmitting LFM signal to enhance the complexity of the waveform. This method resulted
in the interference signal being mismatched with the transmitted signal, preventing it
from acquiring the corresponding gain of pulse compression. It has since developed many
applications, such as anti−interference [30] and defect detection [31]. On the contrary,
we utilize the side effect of this technology to broaden the main lobe of the signal output,
thereby reducing the degree of compression compared to matched filter. This will amplify
the potential differences in scattering characteristics between ships and corner reflector
arrays, thus improving the identification performance. Subsequently, this paper extracts
the pertinent characteristics and develops an identification method in conjunction with the
support vector machine (SVM). The advantages of this approach are as follows.

1. Stable performance. The recognition process aims to utilise the structural dissimilari-
ties between the two targets in order to achieve recognition, rather than relying on
some intuitive features, such as length or the number of scattering points, which is
applicable to complex environments. Compared to the methods applied in HRRP,
the proposed method is not limited to some environmental factors, such as the num-
ber of corner reflectors or the observation angle. In contrast to the aforementioned
frequency domain features, this approach is not limited to scenarios where there are
differences in the speed of targets.

2. Strong applicability. The primary objective of this method is to enhance the perfor-
mance of the LFM radar, which is a common waveform in radar systems. Nevertheless,
the efficacy of polarization decomposition is contingent upon the availability of a fully
polarimetric radar and a signal possessing a high degree of polarization isolation,
both of which are essential for the accurate measurement to guarantee its performance.
The methods employed in the frequency domain similarly necessitate the capacity for
coherent integration.

The remaining sections of this article are organized as follows. In Section 2, we es-
tablish the signal model and introduce the principle of mismatched filter by changing
the frequency modulation slope. In Section 3, we mainly simulate the output of the ship
and corner reflector array based on the proposed mismatch filter, identify the differences,
and extract corresponding characteristics. Subsequently, based on the extracted features,
we propose an identification method combine with SVM. In Section 4, based on the elec-
tromagnetic simulation data, we use the proposed method to evaluate the identification
performance under different parameters, and compare with other methods in different
conditions. In Section 5, some conclusions are drawn.

Notations: We use bold lowercase letters for vectors and bold uppercase letters for
matrices. (·)∗ represents the conjugate operation. ⊗ denotes the convolution operation. | · |
denotes the modulus. The letter j denotes the imaginary unit (i.e., j =

√
−1). The letter c is

the velocity of light.

2. Mismatched Filter by Changing Frequency Modulation Slope
2.1. Signal Model

The signal used in this paper is the common LFM signal, and its base band format can
be expressed as below.

s(t) = rect
(

t
Tp

)
exp

(
jπKt2

)
(1)
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In Equation (1), K = B/Tp is the frequency modulation slope of the LFM signal, where
Tp and B, respectively, denote the pulse width and bandwidth. When K > 0, it is up−chirp;
when K < 0, it is down−chirp. In addition, rect(t) is the function of rectangular pulse,
which can be expressed as below.

rect
(
t
)
=

1,
∣∣t∣∣ ≤ 1

2
0, else

(2)

When there exist targets within the detection range, the echoes can be represented
as sr(t) = ∑I

i=1 ais(t − τi), where I is the number of equivalent scattering points, ai repre-
sents the intensity of the ith scattering point, τi = ri/c denotes the time delay of the ith
scattering point.

According to the usual process [32], the impulse response of the matched filter is an
LFM signal, and the slopes of instantaneous frequency are opposite to K. For the signal in
Equation (1), its matched filter impulse response is h(t) = s∗(−t). To simplify the process
of analysis, we set I = 1, a = 1, and τ = 0. When the echo passes through the matched
filter, the filter output can be expressed as

Smatch(t) = s(t)⊗ s∗(−t)

= TP

sin
(

πB
(

1 − |t|
TP

)
t
)

πBt
rect

(
t

2TP

) (3)

It is evident that pulse compression can enhance the signal−to−noise ratio (SNR) and
further highlight targets. However, the scattering characteristics of targets and interference
can also be compressed, which can make it challenging to clearly distinguish them in the
range profile. Therefore, in this paper, we propose using mismatched filtering to enhance
and highlight these differences.

2.2. Mismatched Filter by Modifying Frequency Modulation Slope

In this paper, the way to change the frequency modulation slope is to modify the
bandwidth but maintain the time width, as shown in Figure 1a. And the modified slope can
be denoted as K1 = βB/Tp = βK, where β characterizes the degree of change in bandwidth.
The format of the modified LFM signal can be expressed as follows.

sr(t) = rect

(
t

Tp

)
exp

(
jπK1t2

)
(4)

To further simplify the analysis process, we use the same settings as Equation (3).
The output of the radar echo passing through this mismatched filter can be expressed as

y(t) = s(t)⊗ s∗r (−t)

=
∫ ∞

−∞
rect

(
τ

Tp

)
exp

(
jπKτ2

)
rect

(
t − τ

Tp

)
exp

[
− jπK1

(
t − τ

)2
]

dτ

= exp
(
−jπK1t2

) ∫ ∞

−∞
rect

(
τ

Tp

)
rect

(
t − τ

Tp

)
exp

[
jπ
(
K − K1

)
τ2 + 2jπK1tτ

]
dτ

= exp
(
−jπK1t2

) ∫ ∞

−∞
A(τ) exp

[
j
(

π(K − K1)τ
2 + 2πK1tτ

)]
dτ

(5)

In Equation (5), A(τ) is the rectangular envelope, and its value is 1 in the range[
−Tp/2 + t, Tp/2

]
. By using the method of stationary phase to analyze Equation (5), we

can obtain its approximate analytical expression as follows.
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y(t) ≈
√

1
|1 − β|K exp

[
jπ

β

β − 1
Kt2 + sgn

(
1 − β

)π

4

]
, t ∈

[
−|1 − β|

2β
Tp,

|1 − β|
2β

Tp

]
(6)

where sgn(·) is the sign function.
From Equation (6), it can be observed that the width of main lobe of the output after

mismatched filtering is approximately
∣∣1 − β

∣∣Tp/β, while the one of pulse compression out-
put is 1/B, resulting in a ratio of

∣∣1 − β
∣∣BTp/β between them. Since the time−bandwidth

product of the LFM signal is much greater than 1, it can be inferred that the width of main
lobe is significantly broadened after reception by changing the frequency modulation slope.
Likewise, the output amplitude of pulse compression is 1/Tp, so the decrease ratio of

amplitude can be expressed as
√(

|1 − β|BTp
)
.

Then, we take an example of LFM signal with a bandwidth of 150 MHz and a time
duration of 10 µs to validate the derivation above. The frequency modulation factors β
chosen for the LFM signal in mismatched filter are 0.8, 0.9, 1.1, and 1.2. The filtered outputs
of those factors are as graphed in Figure 1.

Now use the formula
∣∣1 − β

∣∣ to express the deviation level of frequency modulation
slope. Roughly speaking, Figure 1b shows that the larger the deviation level, the smaller
the output amplitude. And it can be observed that at a given deviation level, the main
lobe widens to a lesser extent when the modulation factor β is greater than 1. When the
deviation level equals 0.1, the decrease amplitude is near 22 dB, which is close to the
theoretical value.
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Figure 1. The mismatched filter by modifying frequency modulation slope. (a) Time−frequency
scheme of LFM signal in mismatched filter. (b) The outputs of different modulation factor.

2.3. Analysis on Echoes Simulated from Simple Scattering Points

The mismatched filter illustrated in Section 2.2 can largely broaden the width of the
main lobe, compared with pulse compression. Next, we simulate the mismatched filtering
output of multiple scattering points to investigate the effects of this method on reflecting
distribution, types, or other information of those scattering points.

Based on geometrical theory of diffraction (GTD) [33], we can establish backward
scattering characteristics of the target and reconstruct the echo signal according to the
transmitted signal. The backward scattering characteristics can be expressed as

E( f ) =
I

∑
i=1

Ai(j
f
f0
)αi exp(− j4π f ri

c
) (7)
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where I is the number of scattering points, Ai represents the intensity of the ith scattering
point, f0 is the initial frequency of the transmitted signal, αi denotes the type of the ith
scattering point, ri is the position of the ith scattering point.

Subsequently, four distinct scenarios are designed, with the requisite details presented
in Table 1. The modulation factor−range two−dimensional images of these above scenarios
are shown in Figure 2. The bandwidth of the LFM signal used in this simulation is 300 MHz,
with a pulse duration of 20 µs.

Table 1. Four types of scenarios.

Scenario Distribution of Position Types of Scattering Points

1 Uniform Consistent
2 Uniform Inconsistent
3 Cluster 1 Consistent
4 Cluster Inconsistent

1 clustered on two centers but the coverage range and the number of scattering points are the same.
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Figure 2. The modulation factor−range two−dimensional images of different scenarios. (a) Scenario
1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.

Figure 2 illustrates the outputs of multiple mismatched filters, which are based on
the received signal from scattering points with varying distributions and types. In these
images, we perform a process of normalization at each value of modulation factor β in
order to concentrate on the precise acquisition of alterations in the amplitude distribution.
Comparing Figure 2a with Figure 2c, it can be observed that the former output amplitude
is more concentrated and evenly distributed, forming a striped pattern. Conversely, the di-
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agram of the latter exhibits a wrinkled pattern. In the same way, analyzing Figure 2a,b,
we can find that the type of scatter points also contributes to a more intricate amplitude
variation. However, the most significant factor influencing the output of the matched filter
is the spatial distribution of the scattering points, which is closely related to the physical
structure of the target. Consequently, based on this mismatched filter, we can capture the
scattering characteristics of targets, including their structure and type, to a certain extent.

3. Character Extraction and Identification

The objective of this section is to employ this mismatched filter to distinguish between
corner reflector arrays and ships and to succinctly summarize the discernible features. Then
based on these features, an identification method is proposed.

3.1. Target Echo Acquisition

Due to the paucity of measured data concerning the scenarios of corner reflector
arrays or ships at sea, we have employed electromagnetic simulation software (CST Stu-
dio Suite 2021) to acquire the backward scattering characteristics of the target. Figure 3
presents a pair of range profiles obtained through electromagnetic simulation software,
which separately denote ship and corner reflector array. The blue solid lines in Figure 3
represent the range profiles acquired by electromagnetic simulation software. It is observed
that the range profile of the ship is manifested as a few pronounced peaks, interspersed
with a relatively weak region. In contrast, the range profile of the corner reflector array
appears as a combination of similarly strong peaks. This is due to the complex and large
structure of the ship, which can be considered as the superposition of echoes from multiple
scattering centers. The scattering characteristics of these centers are usually different. The
corner reflector is typically composed of multiple trihedral angles, with a simple structure
and strong symmetry. This can be considered as strong scattering points with similar
scattering characteristics.
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Figure 3. Simulated range profile and reconstructed range profile. (a) Ship. (b) Corner reflector array.

Due to the limitations imposed by the computational speed and time constraints, the num-
ber of sampling frequency points employed in the simulation of the one−dimensional range
profile did not match that of the transmitted LFM signal, which is unable to generate
the radar echoes through convolution in the frequency domain. Nevertheless, there are
currently many methods for inverting the target echoes based on range profile [34,35].
In this paper, we utilize the total least squares−estimating signal parameter via rotational
invariance techniques (TLS−ESPRIT) to reconstruct the range profile and to acquire the
radar echoes [36,37]. The following outlines the brief operational processes.

The initial step is to utilize the electromagnetic simulation software to obtain the
frequency response of the target. Based on this frequency response, the TLS−ESPRIT algo-
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rithm is employed to extract the parameters of the equivalent scattering centers, including
amplitude, type, and relative position. Subsequently, the frequency response of the target
is reconstructed based on the frequency sampling vector, according to the GTD listed in
Equation (7). Finally, multiply the reconstructed frequency response with the transmitted
signal in the frequency domain, and the target echoes can be obtained by Fourier transform.

The red dashed lines in Figure 3 are the reconstructed range profiles. A comparison of
the reconstructed results with the electromagnetic calculations reveals that they only differ
in regions heavily affected by clutter. Furthermore, the amplitudes at the peak positions
are essentially consistent, which demonstrates the effectiveness of the aforementioned
reconstruction method.

3.2. Character Extraction

Based on the reconstructed echoes of the target, we conduct the proposed mismatched
filter through changing the frequency modulation slope. The bandwidth of the LFM signal
used in this Section is 150 MHz, with a pulse duration of 10 µs.

From Figure 4, it can be observed that the image of the ship is concentrated on one
side, while the image of the corner reflector array is more evenly distributed, consisting of
multiple bright bands. The differences displayed in Figure 3 illustrate that the mismatched
filter has the capacity to amplify the discrepancies between ship and corner reflector arrays
to a considerable extent, which renders it more conducive to the process of identification.

In order to facilitate the process of identification, this section employs a process of
feature extraction, whereby the intuitive distribution differences are translated into mathe-
matical expressions. It can be observed from Figure 4 that the differences are concentrated
on the distribution of bright bands, where the points with larger amplitude are located.
Therefore, in order to accurately characterize the distinction, only those points whose
normalized amplitude falls within a specific range are retained.
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Figure 4. Modulation factor−range two−dimensional image. (a) Ship. (b) Corner reflector array.

Figure 5 illustrates the points within the range of −5 dB. As the preceding analysis,
the points of the ship are concentrated on one side, whereas those of the corner reflector
array are evenly and densely distributed. It can be observed that when β is less than 1,
the widening of the image becomes more pronounced compared to when β is greater than
1. This is consistent with the analysis presented in Section 2.2. However, if the widening
is too large, it will lead to excessive superposition in the outputs of the mismatched filter,
thereby affecting the effectiveness of feature extraction. Consequently, in the following
sections, this paper will only focus on the cases in which β is greater than 1.

Subsequently, this paper identifies two features that can be used to distinguish between
ships and corner reflector arrays, based on the observed distribution differences.

(1) Variance of width.
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A comparison of Figure 5a and Figure 5b reveals that the widths of the −5 dB regions
in the ship are largely disparate, while those of the corner reflector array are relatively
similar. Consequently, this paper calculates the variance of width to characterize this
difference, which can be expressed as

σ2
width,α =

1
N − 1

N

∑
i=1

(
xi − x

Nx

)2
(8)

where N refers to the number of regions under the modulation factor β, xi is the width of
the ith region, x expresses the average width of the regions. In this feature, the summary of
the width is used to normalize the variance.

0 200 400 600 800 1000 1200 1400

Range Cell

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

M
o
d
u
la

ti
o
n
 F

a
c
to

r 

(a)

0 200 400 600 800 1000 1200 1400

Range Cell

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

M
o
d
u
la

ti
o
n
 F

a
c
to

r 

(b)

Figure 5. The distribution of points within the range of −5 dB. (a) Ship. (b) Corner reflector array.

(2) Variance of intervals.
Similarly, it can be demonstrated that the regions of the ship are relatively concentrated,

with a few bright bands that are far apart. In contrast, the regions of the corner reflector
array are more evenly distributed. Therefore, the variance of intervals is used to characterize
the distribution characteristics, with the formula depicted below.

σ2
gap,α =

1
N − 2

N−1

∑
i=1

(
gi − g

L

)2

(9)

where gi represents the interval between the ith region and the i + 1th region, g denotes
the average interval, L represents the total width under the modulation factor β. Figure 6
takes the condition of β = 1.3 in Figure 5a as an example, where the specific meanings of
interval and width are explained.

3.3. Identification Method Based on SVM

SVM is a classifier used for solving binary classification problems [38]. It achieves
non−linear classification through kernel functions that map data into higher dimensions,
aiming to find a separation hyperplane that correctly divides the training data with the
maximum geometric margin. SVM exhibits many unique advantages in addressing small
sample sizes, non−linearity, and high−dimensional pattern recognition tasks. Compared
to the SVM classifiers with linear kernel function, the SVM classifier using Gaussian radial
basis kernel function has advantages such as diverse boundaries and higher classification
accuracy. Therefore, this paper will use SVM based on the Gaussian radial basis kernel
function to distinguish corner reflector arrays. The SVM identification process of corner
reflector arrays is illustrated in Figure 7.
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Figure 7. The identification process of corner reflector array.

The identification process can be divided into two parts. The initial stage of the process
involves the extraction of characteristics. Firstly, the methods for interference suppression
should be employed in order to moderate the influence of strong noise and clutter. Secondly,
the search radius should be set to half of the maximum target size, after which the number
of targets in the range profile can be determined. In the event that multiple targets exist,
it is necessary to split their regions separately. Finally, the frequency modulation slope is
modified in order to construct the mismatched filter, which is then employed to generate
the modulation factor−range two−dimensional image and calculate the proposed features.

The second part is to train and to identify the corner reflector array. At first, add
the appropriate labels in order to construct the training dataset of ships and corner re-
flector arrays. The format of the training dataset for SVM classifier can be expressed as
D =

[
x1 x2 y

]
, where x1 and x2 separately represent the variance of width and intervals.

And y ∈
{
+1 −1

}
is the label set, where +1 represents ships and −1 represents corner re-

flector arrays. The SVM classifier can be used to train an optimal SVM classification model
through simulated data of corner reflector arrays or ships on the sea surface. Subsequently,
this model will be employed to identify corner reflector arrays within the testing dataset.

4. Simulation Experiment Analysis
4.1. Data Acquisition

In the experiments, we still utilize the electromagnetic simulation software (CST
Studio Suite 2021) to obtain the backward scattering characteristics of different targets.
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Multiple models are employed to ensure the validity of the results, as illustrated in Figure 8.
The shape parameters of four ship models are listed in Table 2.

(a) (b) (c) (d)

(e) (f)

Figure 8. The models of ships and corner reflector arrays. (a) Ship 1. (b) Ship 2. (c) Ship 3. (d) Ship 4.
(e) Corner reflector array 1. (f) Corner reflector array 2.

Table 2. Shape parameters of four ship models.

Type Length (m) Width (m) Height (m)

Ship 1 169.39 22.90 56.25
Ship 2 145.35 17.74 34.27
Ship 3 107.74 11.39 29.14
Ship 4 130.80 10.12 23.32

Considering the scenario of dilution jamming, the corner reflector array is positioned in
alignment with the ship’s navigation direction on the sea surface, with a sufficient distance
between them to ensure that both can be divided. Set the direction along the bow of the ship
as 0◦ in azimuth angle, and downward from the deck as 0◦ in pitch angle. The bandwidth
of the LFM signal used in these simulations is 150 MHz, with a pulse duration of 10 µs,
and the center frequency is 10 GHz. The electromagnetic scattering data utilized in this
paper are confined to the pitch angle range of 20◦ to 90◦ and azimuth angle range of 0◦ to
70◦. In this method, the polarization information is not utilized. Consequently, the data
employed in this method comprise only those of the same polarization type, both for the
transmission and reception. To better approximate the ship’s output, we also place one or
two groups of identical corner reflector arrays to acquire similar length in range profile.
The details of simulation experiments are listed in Table 3. It is important to note that
the training dataset is derived from data generated by a single model with corresponding
numbers, as indicated in Table 3. And the testing dataset comprises data simulated from
each sub−row in Table 3.

Table 3. Groups of simulation data.

Type of Ship Type of Array 1 Number of Arrays

Ship 1 Array 1 2
Array 2 2

Ship 2 Array 1 1
Array 2 2

Ship 3 Array 1 1
Array 2 2

Ship 4 Array 1 2
Array 2 2

1 Array denotes corner reflector array.
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4.2. Identification Based on a Single Modification Factor

To further investigate the application conditions of this method and seek better discrim-
ination performance, we first perform the identification process under a single modification
factor β. In this section, we choose seven modification factors and calculate the proposed
characters within the range of −5 dB. Meanwhile, we also test the condition of β = 1.1
within different ranges of selection area. Considering the impact of noise with varying am-
plitudes on classification accuracy, this paper introduces white Gaussian noise with varying
SNR and employs 20 Monte Carlo simulations to compute the accuracy rate. The accuracy
rates of these tests are graphed in Figure 9.
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Figure 9. The identification performance of single modulation factor. (a) Different modulation factor
but within the same range of −5 dB. (b) Same modulation factor within different ranges.

In Figure 9a, the red line represents the recognition accuracy rate under the condition
of β = 1, which can also be regarded as the matched filter scenario. It is evident that
the proposed features also demonstrate excellent discriminative performance on HRRP.
But this performance is also constrained by some factors such as the quantity of corner
reflectors, which will be discussed in Section 4.5. In addition, the bright−colored lines
represent the conditions of factor β greater than 1, and the dark−colored lines represent
the conditions of factor β less than 1. It can be observed that at the same deviation level∣∣1 − β

∣∣, there is a deterioration in identification performance when the modulation factor β
is less than 1.

Meanwhile, we can observe that the recognition performance under other single
modulation factors is not satisfactory, with an accuracy rate that falls below 0.8 in each case.
Figure 9b demonstrates that there is a better identification performance within the range of
−5 dB. Nevertheless, the accuracy rate within each range remains not ideal.

The suboptimal discriminative performance under the condition of a single modu-
lation factor is primarily attributable to the widening of the main lobe. The proposed
mismatched filter does indeed amplify the differences of scattering characteristics to a
certain extent. However, due to the effects of attenuation and superposition, it is more
susceptible to the influence of incidental factors, thus making it difficult to accurately
guarantee its performance under individual modulation factors. From Figure 9a, we can
also find that the greater the extent of main lobe widening, the more unstable the robustness
of its performance under this modulation factor.

4.3. Identification Based on a Range of Modulation Factors

Due to the unsatisfactory and unstable identification performance under a single
modulation factor, this part will perform the identification process on a range of modulation
factors. Consequently, the proposed features will be acquired by calculating the mean value
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of features in different modulation factors, thereby characterizing the average fluctuation
of distribution differences.

As demonstrated in Section 4.2, the identification process exhibits a better performance
when β is set to 1 and the range is selected to be −5 dB. Accordingly, this section sets the
range of modulation factor as 1 to 1.1, with a step size of 100 (exclusive of β = 1). Based
on the training dataset, the distributions of the two features for ships and corner reflectors
arrays are, respectively, depicted below.

Figure 10 reveals a clear disparity in the distribution of the two features. In both
characteristics, the values of the corner reflector arrays are relatively low, concentrated near
the X−axis. In contrast, the ship’s values exhibit a higher concentration, with a higher
interquartile range compared to the corner reflector arrays. From the joint distribution in
Figure 11, it can be observed that the feature points of corner reflector arrays are relatively
concentrated, clustered near the origin. On the contrary, the ones of ships are relatively
dispersed, forming an arc−shaped distribution with only a few overlapping regions.
Consequently, subsequent validations of the method’s performance will be conducted
under these parameters.
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Figure 10. The distribution of characteristics. (a) The variance of width. (b) The variance of intervals.
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Figure 11. The joint distribution of the two features.

To further demonstrate the advantages of this method, several comparative methods
were employed in this experiment. It is very regrettable to note that since electromagnetic
simulation software is unable to accurately simulate the scattering characteristics of targets
in motion, identification methods based on frequency domain features cannot be introduced
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for comparison, such as doppler frequency and micro−motion period. These methods
for comparison in this section include the HRRP methods in [8], polarization decompo-
sition method including Cloude decomposition [39] and Krogager decomposition [40],
polarization−invariant method [41], and the method utilizing correlation characteristic
parameters from the polarization−range 2D image [7].

Krogager decomposition divides the polarimetric scattering matrix of scattering points
into three components: odd scattering, second−order scattering with rotation angle, and
helix scattering. Thus, we choose the first two as discriminative features for the SVM
classifier. In the method of Cloude decomposition, we utilize the scattering entropy and
average scattering angle as the features for identification. Regarding the feature selection of
polarization invariants, we chose three more important features based on the results in [24],
which are the shape factor, depolarization coefficient, and target aspect ratio.

In the context of simulation experiment scenarios, the angular size of the corner
reflector array and the ship are nearly similar on the HRRP. Consequently, the other
comparative experiment primarily utilizes two HRRP features in [8]. The two features
are total half−peak breadth (THPB) and mean differential amplitude (MDA), and their
expressions are as follows.

THPB =
k

∑
i=1

HPBi (10)

MDA =
1

pe − ps

pe−1

∑
n=ps

|xn+1 − xn|
maxps≤i≤pe xi

, ps ≤ n ≤ pe − 1 (11)

In Equations (10) and (11),
[
ps pe

]
represents the region of the target location, k

represents the number of peaks above the threshold within the region, HPBi refers to the
half−peak width of the ith peak, xi is the amplitude at the ith range unit.

Figure 12 shows the discriminative accuracy rate of various methods under different
SNR conditions, and Table 4 is the numerical comparison table. When SNR is greater than
−5 dB, it is evident that the identification accuracy of the proposed method is higher than
other methods, almost exceeding 0.86 when the SNR is between −5 and 30. When the
influence of noise is minimal, the accuracy of the proposed method can be approximated
to 0.9. Compared to the methods in polarization, the proposed method and the HRRP
method are significantly impacted by SNR, especially at a low SNR. This is mainly because
the features selected in this method are the distribution characteristics within the area
above the −5 dB region, which is relatively easily affected by strong noise or clutter.
However, the polarization methods usually analyze the scattering matrix of peaks on
polarization HRRP, which is minimally affected by noise. Nevertheless, it is noteworthy
that the proposed method has demonstrated enhanced robustness with regard to noise in
comparison to the HRRP method in [8].

Table 4. The comparison table of different methods.

Methods −15 −10 −5 0 5 10 15 20 25 30

The Proposed Method 0.665 0.744 0.858 0.877 0.884 0.887 0.889 0.891 0.893 0.896

HRRP Method in [8] 0.548 0.741 0.827 0.857 0.856 0.862 0.864 0.866 0.869 0.871

Polarization Modulation [7] 0.727 0.804 0.838 0.855 0.863 0.876 0.878 0.878 0.878 0.879

Polarization Invariant [41] 0.654 0.742 0.801 0.824 0.829 0.831 0.832 0.836 0.837 0.840

Cloude Decomposition [39] 0.683 0.751 0.790 0.794 0.806 0.804 0.806 0.809 0.814 0.818

Krogager decomposition [40] 0.651 0.725 0.762 0.792 0.816 0.832 0.847 0.855 0.855 0.856
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Figure 12. The identification performance of different methods. Where the HRRP method is in Ref. [8],
polarization modulation is in Ref. [7], polarization invariant is in Ref. [41], Cloude decomposition is
in Ref. [39], krogager decomposition is in Ref. [40].

However, it should be pointed out that the method in the polarization domain has
extremely high requirements for measurement accuracy and utilizes information from
multiple channels. Consequently, the polarization method has extremely high requirements
on equipment, such as polarization measurement error and polarization isolation. On the
contrary, the proposed method only requires multiple mismatched filters of the transmitted
signal. Meanwhile, this method has relatively low requirements on target echoes, which
can be combined with the common suppression method for noise, clutter, and interference.
These methods include time−domain cancellation [42], blind source separation [43], cyclic
cancellation [44], and so on. Therefore, in a low−SNR environment, it is first necessary to
focus on improving the radar’s noise resistance and target detection effectiveness, and then
find solutions to suppress noise.

Considering that Gaussian noise may not easily simulate actual radar environments,
we simulate the noise under other distribution functions to further assess the identification
performance of the proposed method. These distribution functions include Rayleigh
distribution, K−distribution, lognormal distribution, and Weibull distribution. In order to
get closer to the actual situation, we simulate these distribution functions under different
sea conditions. The data are simulated under these distribution functions with reference
to the method in [45] and the parameters given in [46], which is most similar to the
amplitude distribution of the IPIX dataset [47]. The identification performance under
different distribution functions is plotted in Figure 13.

The black solid line in Figure 13 demonstrates the identification performance under
the Gaussian complex noise. In other colors of lines, the solid lines represent the accuracy
rate under high sea condition, and the dashed lines are the identification performance
under low sea condition. The proposed method exhibits a superior performance under
lognormal distribution in high sea conditions, while the other methods exhibit comparable
performance. In comparison to the identification performance under other distributions,
the maximum discrepancy in accuracy rate under Gaussian complex noise does not exceed
0.012 when SNR is greater than 0 dB. Therefore, in the remainder of this paper, we will still
use Gaussian complex noise to study the identification performance under different SNR.
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Figure 13. The identification performance under noise of different distributions.

4.4. Stability Tests under Different Conditions

The efficacy of the proposed method is contingent upon two parameters: the range of
modulation factor and the range of point extraction. The impact of varying these two factors
on the identification performance will be investigated in the following context. In this
section, we denote ∆R as the degree of range variation, which is the ratio of changed amount
to the original range. In the circumstances of different ∆R, the step size is maintained
at 100.

Figure 14a illustrates the accuracy rate of different ranges of modulation factors. It
can be observed that the identification performance remains relatively consistent across
different ranges, with differences within 0.01. Similarly, Figure 14b demonstrates that the
accuracy rate of identification varies slightly when the range of point extraction is above
−3 dB, with differences within 0.015. Nevertheless, when the range of point extraction is
equal to −3 dB, there is a slight decline in identification performance. This is attributed
to the excessively high threshold setting, which results in a limited extraction area for the
feature points. Consequently, this inadequate coverage fails to accurately represent the scat-
tering characteristics of targets. However, in general, the proposed method demonstrates
good robustness with respect to the variation of the two parameters.
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Figure 14. The identification performance under different parameters. (a) Different range of modula-
tion factors but within the same range of −5 dB. (b) Different range of point extraction but within the
same range of modulation factors.
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The HRRP−based method is significantly affected by the observation angle. Therefore,
it is imperative to investigate the recognition performance of the proposed method when
subjected to varying observation angles or the pitch and yaw angles of the ship.

As indicated in Section 4.1, the electromagnetic scattering data utilized in this paper
are confined to the pitch angle range of 20° to 90° and azimuth angle range of 0° to 70°,
with steps of 10°. To further validate the performance of the method under different
pitch and yaw angles, we designed relevant experiments based on the simulation data.
By extracting a portion of the data from specific angles to serve as the test set, while using
the remaining portion as the training set, we can evaluate the identification performance at
new angles.

Figure 15 illustrates the identification performance under two sorts of conditions,
which only change pitch angles or yaw angles. The designation “Train X & Test X” indicates
that the condition employs X groups of angles for training and utilizes other X groups of
angles for testing, resulting in a total of eight. To mitigate the impact of strong noise, SNR
was set to a range of 5 to 30. Each condition was randomly sampled eight times, and the
mean accuracy rate was calculated.
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Figure 15. The identification performance of different conditions. (a) Training and testing using
different pitch angles. (b) Training and testing using different yaw angles.

As can be seen from Figure 15, the recognition accuracy rate in each condition is
higher than 0.83. When there are more training data, containing data from more angles,
the recognition performance is better. However, the difference in recognition accuracy
under different conditions is not large, and the maximum discrepancy does not exceed
0.05. This phenomenon indicates that when the training data do not contain the current
angle of the ship, this method can still maintain good recognition performance. It is further
explained that this method mainly relies on the structural differences between targets for
identification, and its performance is less affected by factors such as yaw and pitch angles.

4.5. Stability Tests under Different Quantities of Corner Reflectors

This section compares the proposed method with the HRRP method in [8] to examine
the stability of the discriminative performance when different quantities of corner reflectors
are employed in the testing set. Furthermore, the method that utilizes the proposed features
under the matched filter scenario is included as a comparison method. Based on the training
dataset simulated from the single models presented in Table 3, the two−dimensional
distributions of features for each method are plotted in Figure 16. To avoid the influence of
strong noise, this section set the SNR as 5 to 30.

Comparing Figure 11 with Figure 16a,b, it can be observed that in the proposed
method, the feature points of the corner reflector array are more concentrated in the area
near the origin. However, in the other methods that extract features based on HRRP, they
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are centralized into several regions. This difference may be related to the number of corner
reflectors. To validate this hypothesis, several sets of experiments were designed to assess
the discriminative performance of each method when the training and testing datasets
have different quantities of corner reflectors.
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Figure 16. The two−dimensional distribution of different methods. (a) The HRRP method in [8].
(b) The proposed features in HRRP.

Table 3 presents the simulated dataset, comprising two sets of corner reflector arrays
with different quantities, prompting us to conduct two sets of experiments. In each experi-
mental set, the SVM classifier will be trained with simulated data using a specific quantity
of corner reflectors, after which it will be tested with simulated data from a different
quantity. From this process, we can conduct the assessment of discriminative performance
across varying numbers of corner reflectors, based on different methods. The following
diagrams illustrate the distribution of the testing dataset across varying quantities of corner
reflector arrays, all under a SNR of 25 dB.

From Table 3, we can find that the dataset generated from a single group of corner
reflector arrays is considerably smaller than that derived from two groups. Consequently,
the number of feature points in the second row is markedly less than that in the first row
in Figure 17. Due to the compressive property induced by pulse compression and the
stretching variation of the range profile across different observation angles, the features
proposed in this paper for matched filter scenarios may yield numerous meaningless values,
necessitating filtration. As depicted in Figure 17c,f, it is evident that the number of feature
points in this condition is comparatively fewer than in the other two methods.

Analyzing the vertical subplots in Figure 17, we can find that in the proposed method,
the distribution areas of different quantities of corner reflectors are largely similar. However,
under the other two methods, there are significant differences in the feature distribution
among different quantities of corner reflectors. These figures suggest that the method
proposed in this paper is less affected by variations in the quantity of corner reflectors.
Subsequently, we will plot the identification accuracy rate under two sets of experiments in
order to further compare the robustness of each method on this condition.

The dash lines in Figure 18 represent the identification performance under the condi-
tion where the quantity of corner reflector is held constant, whereas the solid line illustrates
the alternative case. Correspondingly, the solid line denotes the experiment group. Com-
paring Figure 18a with Figure 18b, it can be observed that there exists an overall decrease
in accuracy in the right graph. This is because the training dataset used in Figure 18b only
consists of data from a single corner reflector array, resulting in a relatively small sample
size, which may have led to a less effective identification performance.

We can observe that when the testing dataset contains data from different quantities
of corner reflectors, the proposed method in this paper exhibits the smallest variation in



Remote Sens. 2024, 16, 2114 19 of 22

accuracy. Specifically in Figure 18b, the variation is within the range of 0.03. In contrast, ex-
tracting features on the HRRP is significantly influenced by the quantity of corner reflectors,
as evidenced by the sharp decrease in Figure 18. It is illustrated that the proposed method
demonstrates good robustness with respect to variations in the quantity of corner reflectors.
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Figure 17. The two−dimensional distribution of different methods under different quantities of
corner reflectors. (a,d) Based on the proposed method. (b,e) Based on the HRRP method in [8].
(c,f) Based on the proposed features in HRRP.
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Figure 18. The identification accuracy rate of different methods under two sets of experiments. (a) A
single array of corner reflectors. (b) Two arrays of corner reflectors.

5. Conclusions

To address the challenge of passive interference from corner reflector arrays in the
anti−ship scenarios, this paper proposes a mismatched filtering method based on changing
frequency modulation slope. Through analysis of the mismatched filtering output of
simple scattering points in different distributions or types, it can be seen that the proposed
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method is capable of reflecting the scattering characteristics of the target to some extent.
Then, based on the simulation data, we separately construct modulation factor−range
two−dimensional images of ships and corner reflector arrays. Focusing on the differences
in these images, this paper extracts the variance of width and intervals in a certain region
as characteristics and designs an identification process based on the SVM. The results of
numerical experiments conducted under different SNR conditions demonstrate that the
proposed method exhibits excellent identification performance, consistently exceeding 0.86
when the SNR is greater than 0 dB. In terms of comparative experimental results among
different methods, the proposed method is observed to exhibit superior discriminative
performance when SNR exceeds 0 dB. In contrast to the method that extracts features in
HRRP, this method demonstrates good robustness with respect to variations in the quantity
of corner reflectors and is less susceptible to noise.

In the future, measured data will be collected to investigate the performance of the
method in actual scenarios. Additionally, the data will be augmented by both simulation
and measured data, seeking to enhance the performance of the method by developing a
more effective classifier. In the meantime, additional research will focus on optimizing
methods for area selection to enhance accuracy rate and exploring interference suppression
techniques for application in environments with high levels of noise or clutter. The de-
ployment strategy of corner reflector arrays will be optimized in order to make them more
similar to ships in scattering characteristics or range profile to further validate the proposed
method. Finally, we will be make efforts to combine other domain information, such as
polarization, with the intention of enhancing the identification performance.
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