
 
 

 

 
Remote Sens. 2024, 16, 2118. https://doi.org/10.3390/rs16122118 www.mdpi.com/journal/remotesensing 

Article 

Conceptual Model for Integrated Meso-Scale Fire Risk  
Assessment in the Coastal Catchments in Croatia 
Bojana Horvat * and Barbara Karleuša 

Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka, Croatia;  
barbara.karleusa@uniri.hr 
* Correspondence: bojana.horvat@uniri.hr 

Abstract: Various factors influence wildfire probability, including land use/land cover (LULC), fuel 
types, and their moisture content, meteorological conditions, and terrain characteristics. The Adri-
atic Sea coastal area in Croatia has a long record of devastating wildfires that have caused severe 
ecological and economic damages as well as the loss of human lives. Assessing the conditions favor-
able for wildfires and the possible damages are crucial in fire risk management. Adriatic settlements 
and ecosystems are highly vulnerable, especially during summer, when the pressure from tourist 
migration is the highest. However, available fire risk models designed to fit the macro-scale level of 
assessment cannot provide information detailed enough to meet the decision-making conditions at 
the local level. This paper describes a model designed to assess wildfire risks at the meso-scale, 
focusing on environmental and anthropogenic descriptors derived from moderate- to high-resolu-
tion remote sensing data (Sentinel-2), Copernicus Land Monitoring Service datasets, and other open 
sources. Risk indices were integrated using the multi-criteria decision analysis method, the analytic 
hierarchy process (AHP), in a GIS environment. The model was tested in three coastal catchments, 
each having recently experienced severe fire events. The approach successfully identified zones at 
risk and the level of risk, depending on the various environmental and anthropogenic conditions. 

Keywords: Adriatic coast; fire hazard; fire risk; meso-scale; Sentinel-2; open-source data; geospatial 
AHP 
 

1. Introduction 
Wildfires have in recent years become one of the most environmental and economic 

threats worldwide. In some regions, fires are an important factor in maintaining the health 
and function of ecosystems: many ecosystems are adapted to fire regimes [1]. However, 
wildfires, i.e., extreme free-burning fires, have a significant impact on ecosystems’ natural 
balance [2,3]. Fires affect ecosystems, causing change in vegetation patterns, soil proper-
ties, and hydrological processes, consequently altering the watershed conditions and wa-
ter quality and hence posing a threat to water supply sources [4–8]. They also have a dev-
astating impact on property, infrastructure, and populations’ health and lives. Of all the 
known factors that can cause a fire, approximately 10% are natural processes (e.g., light-
ning strikes), while the rest are of anthropogenic origin (accidental or intentional) [9,10]. 
Climate change plays a significant role in inducing fire risks [11]. Only in the last decade 
has the global surface temperature increased by 1.1 °C compared to the pre-industrial 
period of 1850–1900 [12]. Prolonged droughts and durations of fire seasons, alterations in 
precipitation, soil moisture, and wind patterns, an increased frequency of lightning 
strikes, etc., contribute greatly to susceptibility to wildfires [13–16]. Wildfires and climate 
change are intertwined processes [17,18]: wildfires are strongly influenced by climate 
change, but they also act as drivers of climate change. Fires have a deep impact on the 
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environment, as they contribute to releasing CO2 and aerosols into the atmosphere and 
increased removal of vegetation cover. 

Over the past years, wildfires have caused significant damage in Europe. With more 
than 1.2 million ha burned by wildfires in EU countries, the year 2017 holds a dramatic 
record [19], followed by the year 2022, with nearly 900,000 ha of land burned [20]. Ap-
proximately 96% of those wildfires were caused by people. Climatic and biophysical char-
acteristics of the Mediterranean (such as high temperatures during summer, the availabil-
ity of fuel, i.e., dry vegetation) make the region fire-prone: naturally induced open fires 
have historically been present and helped form and shape the current landscape. How-
ever, population migration from rural to urban areas and the abandonment of agricultural 
lands, coupled with the effects of climate change, have resulted in the increased frequency 
and magnitude of fires [21]. In 2021, approximately 5000 km2 of area was burned in the 
European Union [22]. According to the European Forest Fire Information System (EFFIS), 
in Croatia in 2017 alone for example, 108 fire events equal to or larger than approximately 
30 ha were mapped and the total area of 67,666 ha was burned as opposed to the average 
8395.64 ha burned in the period of 2006–2015 [23] (Figure 1). 

 
Figure 1. Wildfires mapped in EFFIS of approx. 30 ha or larger in Croatia for the period of 2006–
2023 [23]. 

Traditionally, fire management practices have been focused on eliminating open 
fires. As a consequence, in ecosystems that are dependent on open fires for maintaining 
their health, natural processes have been disrupted. Without open fires eliminating fuel 
circulation, the ignition of dead and dry vegetation led to severe wildfires which posed a 
significant threat to the environment and communities. Fire management therefore re-
quired a paradigm shift from the fire suppression policy that was practiced in the 20th 
century to reducing fire risk, which is a more integrated management approach that in-
sures the safety of people and their properties, infrastructures, economic activities, and 
ecosystem services. An integrated fire management strategy implies risk assessment rely-
ing on the analysis and evaluation of threat conditions (both spatially and temporally) 
[24], creating the conditions for making a threat-informed decision. The main goal of fire 
risk assessment is to reduce the negative impacts of wildfires. It is “the potential for ad-
verse consequences or impacts due to the interaction between one or more natural or hu-
man-induced hazards, exposure of humans, infrastructure and ecosystems, and systems’ 
vulnerabilities” [25]. Risk assessment includes the analysis of three main risk components: 
the hazard, exposure, and vulnerability [22,26,27]. A hazard is the probability of occur-
rence of an event that can cause damage to the exposed elements (e.g., the probability of 
fire occurrence) [25,28,29] while exposure indicates the presence of elements (people, 
properties, ecosystems) in areas where they could be adversely affected by wildfire. 
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Vulnerability is the predisposition of the exposed elements to be adversely affected by 
wildfire [25,28]. 

Factors that influence wildfires at all stages, i.e., ignition, behavior, and spread, are 
numerous, including topography, meteorology, vegetation, and anthropogenic activity 
[22,24,30]. To adequately reflect the complexity and non-linearity of fire risk assessment, 
various fire hazard and fire risk models have been proposed over the years (e.g., [26,29,31–
33]); however, there is no commonly accepted methodology. The geospatial concept of fire 
risk assessment integrates geospatial exposure analysis and the effect a fire of a certain 
probability will have on the exposed elements; hence, it involves geospatial analysis, fire 
simulation, and quantification of potential losses and benefits. Taking into consideration 
its geospatial nature, most fire risk assessment models are focused on computing fire be-
havior, fire danger, and fire effects to spatially assess a fire hazard and consequently the 
fire risk using simulation modeling of weather and fuel moistures [31,34]. Multi-criteria 
decision analysis (MCDA) integrated with a geographical information system (GIS) has 
proven to be a valuable tool in fire hazard and fire risk assessment and is often used to 
incorporate and evaluate characteristics of various fire risk components (e.g., [30,35–40]). 
Apart from the ability to consider various factors affecting the problem at hand, the 
MCDA approach allows for the efficient control of assigning the preferences to criteria/al-
ternatives considered and works well with both numerical and categorical data. The rat-
ing system is based on an expert opinion, which may increase the uncertainty of the results 
but is also very beneficial in many decision-making processes. The simplicity and trans-
parency of the weighting procedure enables better control over preference selection. In 
recent years, the growing availability of remote sensing data and development of climate 
models have induced interest in using machine learning (ML) methods to model wildfires 
[41], such as random forest (e.g., [26,42,43]), the support vector machine algorithm (e.g., 
[43–46]), and the Bayesian network model (e.g., [29]). Furthermore, data-driven models 
are flexible in terms of their adjustment to the availability of data in providing an adequate 
description of the spatiotemporal characteristics of fire drivers [47–49]. In general, both 
approaches (MCDA and ML methods) gain satisfactory results in natural hazard and risk 
assessment. Most of the comparisons of the ML and MCDA methods in natural hazard 
assessment are in favor of ML (e.g., [50–55]). MCDA methods, in general, have the ad-
vantage of accounting for an expert opinion, while ML methods provide more objectivity 
and do not necessarily require knowing the underlying physical processes, but they do 
require more detailed data (in terms of a high quality and quantity including climatic, 
biophysical, and anthropogenic drivers, such as air and land surface temperature, wind 
speed, and direction, fuel and soil moisture conditions, etc.) to train and to validate the 
model, which was not available for our study area. MCDA methods, despite having a 
somewhat poorer performance in comparison to ML methods, are able to perform with 
scarce data and provide realistic results. 

Most of the models available, including both ML and MCDA models, are focused on 
larger scales of assessment (macro-scale), using low- and moderate-resolution data, e.g., 
the pan-European Wildfire Risk Assessment (EWRA) (downloadable at 1 km resolution 
[23]), which are designed to be scalable up to the global extent [24]. The macro-scale has 
the advantages of data availability and also a level of generalization but the disadvantage 
of accessing spatial and thematical detail required at the catchment (meso-scale) level. 
Meso-scale fire risk is difficult to assess without an appropriate model and moderate- to 
high-resolution data. Due to the high heterogeneity of fire drivers (vegetation type and 
distribution, landscape, temporal variability of population density) in Adriatic coastal re-
gions, currently available models cannot provide adequate information for effective fire 
management. These areas are highly susceptible to wildfires, especially during summer 
when population density rapidly increases as a result of tourist migration. As an attempt 
to fill this gap and provide more reliable information suitable for decision-makers, we 
focused on designing a conceptual model for integrated meso-scale fire risk assessment, 
using the open data available in the Copernicus Land Monitoring Service and satellite 
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multispectral data (Sentinel-2). The data used are thematically and spatially better suited 
to addressing the variability of the factors influencing the fire risks at local levels and 
wildfires drivers. The described transparent selection of the preferences in assessing fire 
risk components enables the complexity of fire risk assessment to be broken down into 
manageable sections and simplifies the decision-making process. Visualization of the re-
sults is presented in the form of fire hazard and fire risk maps: fire hazard maps provide 
information on wildfire probability and fire behavior [27] while fire risk maps identify the 
areas most severely impact by a fire in terms of the exposed elements (people, infrastruc-
ture, ecosystems), their value, and their vulnerability. The framework was tested in three 
coastal catchments close to the town of Šibenik in Croatia. All three catchments recently 
experienced severe fire events that threatened the local communities and valuable ecosys-
tems. 

2. Materials and Methods 
2.1. Study Areas 

To assess the fire hazards and fire risks, three catchments were selected in the hinter-
land of the city of Šibenik in Dalmatia, Croatia (Figure 2): two Dubrava catchments (two 
neighboring catchments with areas of 70.99 km2 and 33.24 km2 and no permanent water-
course) and the Grebaštica catchment (with an area of 33.59 km2). The elevation of the 
catchments varied from the sea level up to 533 m a.s.l. in the Dubrava catchments and 654 
m a.s.l. in the Grebaštica catchment. All three experienced a severe fire event recently (as 
reported by the Croatian Firefighting Association). In the Dubrava catchments, the fire 
started on 27 July 2019 and lasted for 3 days, burning 7.15 km2. The Grebaštica catchment 
was affected by fire for 5 days, starting on 13 July 2023 and burning 3.29 km2. 

 
Figure 2. Location of the analyzed catchments. 

The climate of the area was typical of the Mediterranean, characterized by hot, dry 
summers and moderately cold, humid winters. The highest average air temperatures (24–
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25 °C) occurred in July. With average air temperatures of 6–7 °C, January was the coldest 
month. Both the absolute maximum of 39.2 °C and the absolute minimum of −10.2 °C were 
recorded in the city of Šibenik [56,57]. 

2.2. Land Use/Land Cover (LULC) Data 
The open LULC data used were collected from various sources and disaggregated to 

fit the catchment-scale analysis. Most of the data were derived from the Copernicus Land 
Monitoring LULC datasets, i.e., CORINE Land Cover (CLC), Coastal Zones (CZ), Natura 
2000 (N2K), and Urban Atlas (UA), depending on their coverage of the catchments. The 
nomenclature of all analyzed LULC datasets correspond to the Mapping and Assessment 
of Ecosystems and their Services (MAES) typology. 

Considering the sizes of the analyzed catchments, and the meso-scale (catchment 
level) of assessment, the CLC dataset, having a minimum mapping unit (MMU) of 25 ha 
and minimum width unit (MWU) of 100 m [58], was not selected for the assessment, alt-
hough its spatial coverage of the catchments was to their full extent. Instead, the more 
detailed CZ dataset was selected for all three catchments (MMU = 0.5 ha and MWU = 10 
m), despite its partial coverage of the Dubrava catchments (86% of the area). To fill in the 
missing data, the CLC dataset was downscaled to aggregated CZ nomenclature (depend-
ing on the significance of the LULC class for the wildfire ignition and spread), using a 
Sentinel-2 image acquired on 27 June 2019, the N2K and UA datasets, as well as a digital 
orthophoto as ancillary data. The Grebaštica catchment was fully covered by the CZ da-
taset; hence, only the aggregation of the CZ classes was applied to prepare the LULC data 
(Figure 3). 

  
 

(a) (b)  

Figure 3. LULC: (a) Dubrava catchments; (b) Grebaštica catchment. 

Apart from the LULC data, the high-resolution (10 m) Imperviousness Density (IMD) 
and Impervious Built-Up (IBU) datasets, providing a detailed overview of the settlements, 
were retrieved from the Copernicus Land Monitoring Service [59]. 

2.3. Terrain Characteristics 
Terrain characteristics (altitude, slope, aspect, concavity) were derived from the dig-

ital elevation model at the pan-European level (EU-DEM) with a spatial resolution of 25 
m (Figure 4). 
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(a) (e)  

   
(b) (f)  

   
(c) (g)  

   
(d) (h)  

Figure 4. Terrain characteristics: (a–d) Dubrava catchments; (e–h) Grebaštica catchment. 

2.4. Population Density Data 
Population density data were derived from the latest census data (2021) collected at 

the settlement level by the Croatian Bureau of Statistics [60]. The data collected correspond 
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to the values aggregated at the administrative level (settlements), which do not reflect the 
actual distribution of the inhabitants within the settlements. Hence, the disaggregation 
procedure proposed by Horvat and Krvavica (described in detail in [61]) was applied to 
estimate the spatial distribution of people within fire-prone areas. Assuming that the pop-
ulation density was related to the IMD and that inhabitants resided only in LULC built-
up areas, the applied disaggregation technique used the IMD and LULC datasets as an-
cillary data. The result was the spatial distribution of population density at the pixel level 
(Figure 5). 

   
(a) (b)  

Figure 5. Spatial distribution of the population density: (a) Dubrava catchments; (b) Grebaštica 
catchment. 

2.5. Natura 2000 
Habitats and species that are part of the Natura 2000 network are often subject to 

serious damage by wildfires and needed to be taken into consideration. Protected zones 
(based on the Birds and Habitat Directives) covered 8% of the Dubrava catchments’ total 
area and 3% of the Grebaštica catchment. Spatial and attribute data regarding the pro-
tected zones were derived from the freely available Natura 2000 site. 

2.6. Burned Areas and Burn Severity 
Burned areas and burn severity were derived from the multispectral satellite images 

acquired prior to and after the recorded fire events (Table 1). Burn severity is considered 
to be an important variable that defines the degree to which a fire affects an ecosystem 
and hence prompts ecosystem responses [62,63]. In other words, it describes the effects a 
fire has on surface characteristics. 

Table 1. Satellite images used. 

Catchment Platform Date of Acquisition 

Dubrava 
Sentinel-2 27/06/2019 (pre-fire) 
Sentinel-2 06/08/2019 (post-fire) 

Grebaštica 
Sentinel-2 26/06/2023 (pre-fire) 
Sentinel-2 16/07/2023 (post-fire) 

Fire effects can be analyzed through spectral indices that reveal the state of the sur-
face before and after a fire event. The most commonly used index to delineate burnt areas 
and to estimate burn severity is the normalized burn ratio (NBR). It integrates two spectral 
bands that respond most to burning and is calculated for a single date as the difference 
between the spectral reflectance in the near-infrared (NIR) and shortwave infrared (SWIR) 
bands, scaled by the sum of the two bands, i.e., [64]: 
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NBR = (NIR − SWIR)/(NIR + SWIR). (1) 

It can take on any value from −1 (recently burnt surface or bare ground) to 1 (healthy 
vegetation) depending on the surface conditions. To delineate a burned area and to quan-
tify the effect of fire on a surface in terms of burn severity, two NBR values are needed as 
the following: before and after the fire. The difference normalized burn ratio (dNBR) is 
calculated by subtracting the pre-fire NBR (NBRprefire) and post-fire NBR (NBRpostfire): 

dNBR = NBRprefire − NBRpostfire. (2) 

The result of Equations (1) and (2) describe the spatial distribution of a fire’s effect 
and can be attributed to the burn severity (Figure 6). 

   
(a) (b)  

Figure 6. dNBR values: (a) Dubrava catchments; (b) Grebaštica catchment. 

2.7. Framework for Fire Hazard and Risk Assessment 
Fire risk assessment integrates three main risk components, the hazard, exposure, 

and vulnerability, and expresses the probability of negative outcomes of a fire [22]. In 
general, the assessment follows the FirEUrisk conceptual scheme (Figure 7), with adjust-
ments depending on the availability and the quality of the data required for estimating 
specific risk components. The main methodological steps are the following: 
1. Generation of input variables for risk components; 
2. Assessment of risk components (hazard, exposure, and vulnerability); 
3. Fire risk assessment; 
4. Validation. 

 
Figure 7. Fire risk conceptual scheme (adapted from the FirEUrisk project [65]). 
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2.7.1. Fire Hazard 
A fire hazard depends on the fire ignition probability and the propagation of the fire 

describing its behavior. Fire ignition can be caused by natural processes (lightning) and 
by people; however, the majority of fires are caused by human factors (accidental or de-
liberate). Propensity to fire ignition therefore depends on the presence of people in 
wildland–urban interface (WUI) areas and the vicinity of roads. Once a fire is ignited, its 
propagation is mainly governed by environmental conditions: fuel and terrain character-
istics and weather conditions. 

In general, a WUI is the contact area of urban land use and fire-prone wildland veg-
etation [66–69]. Although there have been a number of WUI mapping methodologies pro-
posed and tested (e.g., [70–72]), a univocal definition of a WUI is not yet available for the 
Mediterranean region [73]. The WUI mapping procedure distinguishes two major classes, 
depending on the relationship between the built-up surfaces and the wildland vegetation: 
the (i) interface (where built-up areas meet wildland vegetation) and (ii) intermix (where 
built-up areas intermingle with wildland vegetation) [74]. At an intermix WUI, buildings 
are directly exposed to fire as they are surrounded by flammable vegetation, while at an 
interface WUI, buildings are within a spotting distance from large patches of flammable 
vegetation. The threshold for a building’s density that qualifies for WUI analysis varies; 
e.g., Carlson et al. [75] adopted 6.17 houses per km2 while Bar-Massada et al. [71] consid-
ered it to be all built-up surfaces. We applied the latter approach, i.e., all built-up surfaces, 
resulting from overlying LULC artificial classes (Table 2) with an IBU layer, were taken 
into consideration, regardless of their building densities. WUI mapping was based on the 
following assumptions: 
1. Any woody vegetation is prone to fire ignition and can support fire spread under 

sufficiently dry conditions [71]. 
2. All areas within a certain distance from built-up surfaces (home ignition zones) are 

assumed to be potentially at risk [74,76]. 

Table 2. Reclassification of the LULC data. 

Main LULC Class Reclassified LULC 
Urban fabric Built-up (artificial) surfaces 

Industrial, commercial, public, and military units 
Road networks and associated land 

Other 

Mineral extraction, dump, construction site 
Arable land 

Permanent crops 
Heterogenous agricultural areas 

Grassland 
Sparsely vegetated areas 

Bare ground 
Broad-leaved forest 

Woody vegetation 
Coniferous forest 

Mixed forest 
Transitional woodlands and shrubs 

Sclerophyllous shrubs 

Built-up and woody vegetation areas were derived from the LULC map (Table 2). 
Woody vegetation consists of all forest and transitional woodland vegetation. However, 
since urban fabric and industrial, commercial, public, and military units also include as-
sociated non-sealed and vegetated surfaces, artificial LULC surfaces were overlaid with 
the IBU layer to locate only the surfaces occupied by buildings. Once woody vegetation 
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and built-up surfaces were extracted, WUI areas were mapped based on the thresholds 
proposed by [71] (Table 3): 
1. A home ignition zone is located within a 100 m buffer from built-up areas. All sur-

faces inside the buffer are assumed to be potentially at risk (potential WUI areas). 
2. Fire behavior is influenced by the proportion of woody vegetation neighboring po-

tential WUI areas. If more than 50% of land cover surrounding buildings within a 500 
m radius from them is woody vegetation, buildings are directly exposed to fire and 
areas are identified as intermix WUI. 

3. Continuous woody vegetation cover close to buildings increases the risk from wild-
fire; therefore, patches of woody vegetation larger than 5 km2 [67] are delineated. 
Buildings within a 600 m radius from those large patches are identified as interface 
WUI. 
Assuming that population/housing density increased with the built-up density, so 

did the fire ignition probability. Following the definitions of intermix and interface WUIs, 
the appropriate susceptibility class was assigned to each WUI type (adapted from [71,77]) 
with respect to their fire ignition susceptibility (Table 3). 

Table 3. Susceptibility classes of fire hazard components. 

Fire Hazard  
Component Class Definition Component Threshold 

Susceptibility 
Class * 

WUI 
Intermix 

Vegetation density >50% 
1 Distance 500 m 

Interface 
Flammable patches of woody vegetation >5 km2 

2 Distance <600 m 

Distance from roads – – 

<50 m 5 
50–100 m 4 
100–200 m 3 
200–400 m 2 
400–600 m 1 

>600 m 0 

Fuel type 

Short grass Grassland 

– 

1 
Chaparral Sclerophyllous shrubs 2 

Brush Transitional woodlands and shrubs 3 

Hardwood litter 
Broad-leaved forest 

4 Coniferous forest 
Mixed forest 

FMC 

Low 

NDII 

<q1 ** 1 
Moderate q1 **–median 2 

High median–q3 ** 3 
Very high >3 ** 4 

Slope 

Flat 

– 

<2° 1 
Moderately steep 2°–5° 2 

Steep 5°–10° 3 
Very steep >10° 4 

Aspect 

North (N) 

– 

0°–22.5° 1 
Northeast (NE) 22.5°–67.5° 2 

East (E) 67.5°–112.5°  3 
Southeast (SE) 112.5°–157.5° 4 

South (S) 157.5°–202.5° 6 
Southwest (SW) 202.5°–247.5° 5 

West (W) 247.5°–292.5° 4 
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Northwest (NW) 292.5°–337.5° 3 
North (N) 337.5°–360° 1 

Concavity 
≤0 (convex) 

– 
≤0 1 

>0 (concave) >0 2 

Weather 

Very low (1) 

FWI 

<5.2 1 
Low (2) 5.2–11.2 2 

Moderate (3) 11.2–21.3 3 
High (4) 21.3–38.0 4 

Very high (5) 38.0–50.0 5 
Extreme (6) >50.0 6 
* Higher value indicates higher susceptibility to fire ignition. ** q1: the 1st quartile; q3: the 3rd quar-
tile. 

Previous research showed that proximity to roads has a significant influence on fire 
ignition (e.g., [78,79]): the highest influence is experienced within a 50 m [80] wide buffer 
and decreases as the distance from roads increases, until it reaches 600 m (corresponding 
to the radius around large patches of woody vegetation in the interface WUI identifica-
tion). Distances were classified into six distance classes and assigned categorical values 
indicating the susceptibility of each distance class to fire ignition (Table 3). In this context, 
susceptibility is the propensity to fire ignition, depending on the distance class. 

Fire behavior is greatly influenced by fire intensity, which is related to the heat en-
ergy released by a fire [22,26,62]. It mostly depends on the fuel type, fuel moisture content 
and topographic (slope) and climatic conditions (wind). 

Fuel types refer to the susceptibility of vegetation to burn. The EFFIS provided a fuel 
map of Europe [81] with 10 aggregated fuel classes, based on 13 fuel models used in fire 
behavior analysis [82,83] at a spatial resolution of 250 m, which was too coarse for this 
meso-scale analysis. To reduce spatial aggregation, a site-specific fuel map was created, 
based on the EFFIS description of fuel type classes (Table 3) and the available LULC data 
(Figure 3). 

Fuel moisture content (FMC) is a complex parameter dependent on the environment 
and the characteristics of vegetation. Vegetation with higher FMC values is not readily 
ignited as opposed to the low FMC vegetation that easily ignites and burn. Along with the 
fuel map, the EFFIS provided a spatial distribution of fuel moisture parameters, namely 
the fine fuel moisture content (FFMC), duff moisture code (DC), and drought code (DC), 
as well as the fire behavior indices, i.e., the initial spread index (ISI) and buildup index 
(BUI). However, data were available at 8 km spatial resolution that did not fit the require-
ments of the meso-scale level of this assessment. Methods for estimating both dead 
(DFMC) and live fuel moisture content (LFMC) are numerous and range from field meas-
urements to approaches based on remote sensing. Field measurements are costly and 
time-consuming, representing the instantaneous and site-specific conditions that are dif-
ficult to extrapolate over space and time [84]; however, they provide detailed species-spe-
cific FMC data (e.g., [85–87]). Remote sensing, on the other hand, enables the continuous 
monitoring of larger areas, providing data necessary to estimate the FMC at finer spatial 
and temporal resolutions (e.g., MODIS [88–92]), Landsat [93–95], Sentinel-2 [90,96]). 

Research focused on LFMC, investigating the relationship between the reflectance in 
various spectral regions and LFMC, showed that indices computed as a function of the 
reflectance in a shortwave infrared (SWIR) region are directly related to the LFMC (e.g., 
[90,94,97–99]) because of the strong absorption of water in that region. The normalized 
difference infrared index (NDII), calculated as a function of the NIR and SWIR reflectance, 
proved to perform well for all three major fuel type classes: grassland, shrubland, and 
forest [88,94]. Hence, we used it as an indicator of the live fuel moisture content. The equa-
tion used to calculate NDII is equal to NBR (Equation (1)) [100]. 
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The NDII value indicates susceptibility to fire based on the LFMC of an observed pixel 
(Table 3). The thresholds depended on the value ranges specific to each catchment (Table 4). 

Table 4. NDII classification thresholds. 

Catchment NDII Susceptibility Class 

Dubrava 

<−0.0.058 1 
−0.058–0.007 2 
0.007–0.087 3 

>0.087 4 

Grebaštica 

<−0.018 1 
−0.018–0.036 2 
0.036–0.088 3 

>0.088 4 

The terrain characteristics of slope, aspect, and concavity influence fire propagation. 
The amount of sunlight fuels receive influences the moisture content; hence, slopes facing 
south will be the more susceptible to fire that those facing other directions. Also, slopes 
facing east receive sunlight before noon while the temperatures are lower than the tem-
peratures in the afternoon when west slopes receive more solar radiation. Fire moving up 
a slope will spread faster than moving down a slope or on a horizontal plane because 
flames preheat and dry the fuels [24,101]. The concavity of a terrain also plays an im-
portant role as fire will spread faster on a concave terrain [24]. All four terrain character-
istics were derived from the DEM (Figure 4) and reclassified based on their susceptibility 
to fire (Table 3). 

The influence of weather parameters on fire behavior was evaluated with the dimen-
sionless fire weather index (FWI), a meteorologically based index that uses temperature, 
relative humidity, wind speed, and precipitation to evaluate the potential for wildland 
fire [22]. The index is accepted and used by the EFFIS for direct fire danger assessment 
due to weather conditions [102]. Calculations of the daily FWI were available from the 
Copernicus Climate Change Service (C3S) and from the Croatian Meteorological and Hy-
drological Service [103,104]. Threshold values used in the susceptibility classification were 
adopted from the EFFIS during the northern hemisphere fire season (June–September) 
(Table 3) [105]. 

An integrated fire risk approach implies merging the risk components. As previously 
described, all input components are assigned the categorical values that correspond to the 
susceptibility class. To evaluate each hazard component and finally the hazard and risk, 
all of the input data (maps) needed to be converted to a common metric. The normaliza-
tion technique that was used was the local weighted linear combination (WLC) method 
[106]: 

v(aki) = (aki − min{aki})/rk (3) 

where min{aki} is the minimum value of the input map, aki is the attribute value at the 
observed location, and rk is the range of the values in the input map. The method resulted 
in normalized input maps with values that range from 0 to 1. 

The weights of the normalized fire hazard components were evaluated using the an-
alytic hierarchy process [107] as the multi-criteria decision analysis (MCDA) method. Its 
hierarchical structure (Figure 8) includes decomposing the decision problem into a hier-
archy that consists of the most important elements [108]. 
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Figure 8. AHP hierarchical structure of the criteria and alternatives in a fire hazard. 

First, the hierarchy was constructed containing elements at four levels: the overall 
goal (fire hazard), criteria (fire behavior indicators, i.e., fire ignition and fire propagation), 
attributes (components that influence fire behavior, i.e., contact of people with the flam-
mable vegetation—settlements and roads), and alternatives (characteristics that impact 
the level of susceptibility to fire behavior indicators). The method is based on the pairwise 
comparison of the elements at each hierarchical level with respect to the parent element 
at the higher level: the elements that were compared were assigned a relative importance 
intensity described in (Table A1) and comparison matrices were constructed at each hier-
archical level. Relative weights for each hierarchical element were then computed. The 
consistency of the comparison was verified by the consistency ratio CR, not exceeding 
10%: 

CR = CI/RI (4) 

CI = (λmax − n)/(n − 1) (5) 

where CI is the consistency index and RI is the random consistency index given by Saaty 
[107] (Table A2). The value λmax is the maximum eigenvalue of the comparison matrix 
and n is the order of the matrix. The overall priority rating was then constructed by ag-
gregating the relative weights. 

Finally, a fire hazard map was computed as the sum of weighted components. 

2.7.2. Fire Exposure and Vulnerability 
Exposure refers to the extent to which people, assets, and ecosystems are affected by 

a fire while vulnerability indicates potential damages caused by a fire [24]. It enables lo-
cating the specific LULC features and people that might suffer the adverse consequences 
of a wildfire and links the fire hazard with vulnerability. Most fires are caused by humans 
and occur in WUI areas or close to them. Therefore, people living in WUI areas are more 
vulnerable to fires. Vulnerability assessment of the people exposed to fires was based on 
the presence of the people in WUIs. The intersection of the population density grid de-
rived from the census data (Figure 5) and WUIs resulted in the number of people exposed 
to fire. The vulnerability class was assigned depending on the population density of the 
observed pixel (Table 5). 
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Table 5. Vulnerability assessment of the people exposed to wildfires. 

Vulnerability 
Component Class Definition Component Threshold 

Vulnerability 
Class 

Population – 
Population density 

(inhabitants/ha) 

<2 0 
2–4 1 
4–8 2 
8–16 3 
>16 4 

Assets 

Residential areas IMD 

0% 0 
0–30% 1 
30–80% 2 

80–100% 3 

Non-residential areas 

Industrial, commercial, public, and mil-
itary units 

 3 

Road networks and associated land – 2 
Mineral extraction, dump, and con-

struction sites  1 

Ecological value – Natura 2000 – 1 

A similar approach was applied to the assets (all built-up areas: residential, indus-
trial, and commercial, road and railway networks, mineral extraction, dump and construc-
tion sites, etc.). Assets exposed to fire resulted from the intersection of the corresponding 
LULC classes and previously created fire hazard map. Assuming that the building density 
increased with the imperviousness density, vulnerability evaluation was based on the 
classification of the exposed residential areas with respect to the IMD value (Table 5). All 
remaining assets were derived from the LULC data (Figure 3), with vulnerability qualita-
tively expressed, depending on the type of asset (Table 5). 

Ecological values (EVs) were represented by ecological indicators describing the rich-
ness and diversity of species. These indicators were available at the national level as pro-
tected areas (Natura 2000). Areas that are part of the Natura 2000 network (birds and hab-
itat directives) are considered highly vulnerable to wildfires (Table 5). 

Ecosystem services (ESs) influence our wellbeing and present the benefits people 
gain from the nature [109,110]. Estimation of the benefits each ecosystem service provided 
to the economy is complex and difficult as there is no monitoring system that can measure 
these services in detail [111]. The Integrated System for Natural Capital Accounting 
(INCA) developed a method of measuring ES potential and ES demand at the European 
scale [112], aggregating over an accounting area, and then estimating the actual ES use as 
the share of demand that can be satisfied by the potential. ES use was calculated for every 
ecosystem type that provided the service and was recorded in the supply table, but instead 
of monetary values (provided in an aggregated form for the entire EU), we used relative 
supply estimates (Table A3) [111]. The LULC maps of the catchments are based on the CZ 
classification, which built upon the Mapping and Assessment of Ecosystems and their 
Services (MAES) classes. Hence, nine ecosystem types in the supply table correspond to 
the aggregated LULC classes in both catchments. Each LULC class was assigned with a 
vulnerability class based on its relative supply (Table 6). 

Table 6. Vulnerability assessment of ecosystem types. 

Main LULC Class Ecosystem Type Relative Supply Per  
Ecosystem Type 

Vulnerability 
Class 

Urban fabric 
Urban 0.7% 1 Industrial, commercial, public, and 

military units 
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Road networks and associated land 
Mineral extraction, dump, and con-

struction sites 
Arable land 

Cropland 35.8% 5 Permanent crops 
Heterogenous agricultural areas 

Grassland Grassland 8.6% 4 
Sparsely vegetated areas Sparsely vegetated areas 1.7% 3 

Bare ground 
Broad-leaved forest 

Woodland and forest 47.5% 5 Coniferous forest 
Mixed forest 

Transitional woodlands and shrubs 
Sclerophyllous shrubs Heathland 0.9% 2 

Vulnerability components were converted to the same metric by applying the nor-
malization in Equation (3). Vulnerability assessment was also based on the AHP method, 
using the hierarchical structure shown in Figure 9. 

 
Figure 9. AHP hierarchical structure of criteria and alternatives in the vulnerability assessment. 

The vulnerability map was the result of the sum of weighted vulnerability compo-
nents. 

Finally, a fire hazard map was overlaid with the vulnerability classes to locate and 
classify fire risk in the catchments. It was assumed that hazard and vulnerability had equal 
weights in determining the risk. 

2.7.3. Validation of the Results 
Results were validated in all selected catchments using the burn severity derived 

from the previously mapped dNBR (Figure 6) as the severity indicator for both fire events. 
Burn severity describes the impact of a wildfire on the environment [62] and can be cor-
related with vegetation cover and fuel type [113], which are variables that significantly 
influence fire behavior, and consequently, fire hazard. Hence, it was used for the valida-
tion of the results. Based on the burn severity classes proposed for the dNBR classification 
[114] (Table 7), burned areas in all catchments were classified and compared to the over-
lapping fire hazard classes. 

Table 7. Burn severity classes (adapted from [114]). 

dNBR Fire Severity Class 
<0.1 Non-burned (0) 

0.1–0.27 Low severity (1) 
0.27–0.44 Moderately low severity (2) 
0.44–0.66 Moderately high severity (3) 
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>0.66 High severity (4) 

3. Results 
Fire hazard components were analyzed and classified depending on their suscepti-

bility to fire ignition and fire propagation. Conversion to a common metric with Equation 
(3) (Figures 10 and 11) enabled the overall fire hazard analysis and mapping. 

  
(a) (b) 

(c) (d) 

  
(e) (f) 

 
 

(g)  

Figure 10. Normalized susceptibility classes in Dubrava catchments: (a) WUI; (b) distance from 
roads; (c) fuel type; (d) NDII (LFMC; (e) slope; (f) aspect; (g) concavity. 
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(c) (d) 

(e) (f) 

 
 

(g)  

Figure 11. Normalized susceptibility classes in Grebaštica catchment: (a) WUI; (b) distance from 
roads; (c) fuel type; (d) NDII; (e) slope; (f) aspect; (g) concavity. 

The catchments were not densely populated (less than 2% of the total catchment area 
in the Dubrava catchments was covered by urban fabric and less than 1% in the Grebaštica 
catchment). In that respect, the interface WUI covered only 1.7% and 3% of the Dubrava 
and Grebaštica catchments, respectively (Table 8). However, road networks were dense in 
both catchments, increasing their propensity to fire ignition. 

Table 8. Portions of the urban fabrics and the WUI areas in the total catchment areas. 

Catchment Urban Fabric Intermix WUI Interface WUI 
Dubrava <2% 18.3% 1.7% 

Grebaštica <1% 9% 3% 

Reclassification of the LULC datasets showed that woody vegetation covered nearly 
50% in the Dubrava catchments and more than 50% in the Grebaštica catchment (Table 9). 
Such conditions are greatly in favor of fire propagation. 
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Table 9. Fuel type coverage. 

Catchment Short Grass Chaparral Brush 
Hardwood 

Litter Other 

Dubrava 16.2% 20.1% 4.4% 34.1% 25.2% 
Grebaštica 21.6% 40.5% – 16% 21.9% 

In the absence of FMC data, this parameter was evaluated indirectly, using the NDII 
index. Strong absorption of water in the SWIR region enabled the qualitative estimation 
of the moisture content: higher NDII values indicated lower moisture content in the fuel, 
hence the moisture conditions were in favor of fire propagation. Thresholds for NDII clas-
sification were determined as quartiles of the resulting values (Table 3), splitting the NDII 
into four susceptibility classes (Table 4). 

Terrain characteristics derived from the DEM were classified and assigned the appro-
priate susceptibility class as described in Table 3. 

The potential for wildland fire due to weather conditions was evaluated with the 
FWI. The spatial distribution of the FWI was available from the EFFIS for 2019; however, 
due to the coarse resolution of the available dataset, variation in the FWI was not detected 
in the Dubrava catchments. Furthermore, with no spatial distribution of the FWI available 
for the year 2023, point values obtained from the Šibenik meteorological station were used 
in the Grebaštica catchment (Table 10). 

Table 10. FWI susceptibility classification. 

Catchment Period FWI Class Reference 
Dubrava 23 July 2019–27 July 2019 4 (high) [105] 

Grebaštica 9 July 2023–13 July 2023 4 (high) [104] 

Weights of fire hazard components (priorities attributed to each component) were 
calculated using the AHP method, as described in Figure 8. Comparison matrices were 
constructed at each hierarchical level with the corresponding priorities (Table A4). The 
priorities of each alternative were finally calculated by multiplying priorities across all 
levels (Table 11). It was assumed that ignition and propagation had equal impact on fire 
hazard. However, in terms of fire ignition, higher priority was given to proximity to roads 
while the FMC was assumed to be the major factor in fire propagation, followed by the 
weather characteristics. 

Table 11. AHP priorities calculated for the fire hazard components. 

Goal 
Priorities vs. 

Goals Objectives 
Priorities vs. 
Objectives Attributes 

Priorities vs. 
Alternatives Alternatives Priorities 

Hazard 

0.5 Ignition 
0.125 Settlements 1 WUI 0.063 
0.875 Linear structures 1 Distance from roads 0.438 

0.5 Propagation 

0.558 Fuel 
0.25 Fuel type 0.070 
0.75 FMC 0.209 

0.122 Terrain 
0.648 Slope 0.040 
0.23 Aspect 0.014 
0.122 Concavity 0.007 

0.32 Weather 1 FWI 0.160 

The final fire hazard map was calculated as the sum of fire hazard components mul-
tiplied by the assigned priority (Figure 12): 

Fire hazard = 0.063 · WUI + 0.438 · Distance from roads + 0.070 · Fuel type + 
0.209 · FMC + 0.040 · Slope + 0.014 · Aspect + 0.007 · Concavity + 0.160 · FWI (6) 
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(a) (b)  

Figure 12. Fire hazard: (a) Dubrava catchments; (b) Grebaštica catchment. 

Vulnerability depends on the population density, assets, as well as services provided 
by ecosystems within catchments and the indicators describing the richness and the di-
versity of species. In this conceptual model, vulnerability was evaluated qualitatively, ra-
ther than by attaching monetary value. Similar to the fire risk components, vulnerability 
components were converted to the same metric, indicating the most vulnerable areas (Fig-
ures 13 and 14). 

  

 

(a) (b)  

  
 

(c) (d)  

Figure 13. Normalized vulnerability classes in Dubrava catchments: (a) ecosystem services; (b) eco-
logical value; (c) population; (d) assets. 

  

 

(a) (b)  
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(b) (c)  

Figure 14. Normalized vulnerability classes in Grebaštica catchment: (a) ecosystem services; (b) eco-
logical value; (c) population; (d) assets. 

The weights of the vulnerability components (Table 12) were calculated as priorities 
of the alternatives in the AHP hierarchical structure (Figure 9), based on a pairwise com-
parison (Table A5). The overall vulnerability within the catchments was determined as the 
sum of weighted vulnerability components: 

Vulnerability = 0.061 · Ecosystem services + 0.102 · Ecological value + 0.729 · Population + 0.108 · Assets (7)

Table 12. AHP priorities calculated for the vulnerability components. 

Goal Alternatives Priority 

Vulnerability 

Ecosystem services 0.061 
Ecological value 0.102 

Population 0.729 
Assets 0.108 

The final fire risk map was a result of overlaying the fire hazard map with the vul-
nerability classes (Figure 15). Classification into four risk classes based on equal frequen-
cies indicated different risk levels in the catchments. 

  
 

(a) (b)  

Figure 15. Fire risk: (a) Dubrava catchments; (b) Grebaštica catchment. 

As a comparison, Figure 16 shows the fire risk maps for the Dubrava catchments 
generated as an index that summarizes the combined effect of hazard and vulnerability, 
resulting from the EFFIS fire risk assessment [22]. It is an aggregated fire risk index (0–
100%), expressed as the percentage of each cell under each specific class. Lacking the ap-
propriate level of detail, such a coarse dataset clearly cannot meet the requirements at the 
micro- or meso-levels of fire management. 
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(a) (b) 

  
(c) (d) 

Figure 16. EFFIS fire risk maps for the Dubrava catchments (adapted from [23]): (a) low-risk; (b) 
intermediate-risk; (c) high-risk; (d) color composite of the low-, intermediate-, and high-risks result-
ing in the fire risk index classification. 

To validate the results of the described assessment, the fire hazard results were com-
pared to the severity of the fire events in the catchments by overlaying the hazard classes 
with the severity index, dNBR. The spatial distribution of the dNBR (Figure 6) describes 
the burn severity and was classified into five classes (Table 7). 

Fire hazard classes were extracted only for the burned areas and overlaid with the 
classified burn severity index (Table 13). In general, spatially comparing estimated fire 
hazard and burn severity, it performed better in the Dubrava catchments: moderately low 
and moderately high severity classes correspond well with moderate (52.6% overlap) and 
high hazard classes (40.3% overlap). In the Grebaštica catchment, the best match was 
achieved for the low hazard class (91% overlap). 

Table 13. Fire severity classes (adapted from [114]) compared to the fire hazard classes. 

Fire Hazard Class dNBR Class 
Area Overlap (%) 

Dubrava Grebaštica 

1 

1 23.4 91.0 
2 66.6 8.9 
3 9.9 0.1 
4 0.1 – 

2 

1 12.0 61.9 
2 52.6 37.8 
3 33.8 0.3 
4 1.51 – 

3 

1 10.8 49.4 
2 35.9 49.4 
3 40.3 1.1 
4 13.0 – 
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4 

1 6.3 37.5 
2 24.9 62.0 
3 45.5 0.4 
4 23.3 – 

To test the impact of changes in the weights of the decision criteria (priorities of the 
alternatives), a sensitivity analysis was applied. First, the most critical alternative was de-
tected, i.e., the alternative with the smallest change in value (dMIN) that changed the alter-
native ranking (Table 14) [115]: 

ΔMIN = P(i) − min [P(i) − P(i + 1), P(i) − P(i−1)] (8) 

dMIN = ΔMIN · 100/P(i) (9) 

where ΔMIN is the minimum difference between the alternative’s priority and the priority 
of the alternative closest in rank, P is the alternative’s priority, and i is the rank of the 
alternative. The most critical alternative in fire hazard assessment turned out to be fuel 
type. In the vulnerability assessment, the most critical alternative was the ecological value. 

Table 14. Hazard and vulnerability critical alternatives. 

Hazard 

Alternative 
Priority 

P(i) 
Rank 

(n) ΔMIN dMIN 

WUI 0.063 5 0.007 11,600 
Distance from roads 0.438 1 0.228 52.171 

Fuel type 0.070 4 0.007 10.394 
FMC 0.209 2 0.049 23.536 
Slope 0.040 6 0.023 58.116 

Aspect 0.014 7 0.007 46.957 
Concavity 0.007 8 0.007 88.525 

FWI 0.160 3 0.049 30.781 
Vulnerability 

Alternative 
Priority 

P(i) 
Rank 

(n) ΔMIN dMIN 

Ecosystem services 0.061 4 0.041 67.213 
Ecological value 0.102 3 0.006 5.882 

People 0.729 1 0.621 85.185 
Assets 0.108 2 0.047 43.519 

The priority of the most critical alternative was then changed by factor β (arbitrarily 
selected values of 10%, 15%, 20%, 25%) while priorities of the remaining alternatives were 
changed accordingly, using the following equations [115]: 

P’(i) = P(i)/[1 − α]    for non-critical alternatives 

P’(i) = [P(i) − α]/[1 − α·PCR]    for critical alternative 
(10) 

where α is the change in the current priority of the critical alternative PCR (i.e., β · PCR), 
keeping the condition ΣP’(i) = 1 true. The results are summarized in Table 15. 

Table 15. Hazard and vulnerability sensitivity analysis. 

Hazard 

Alternative P P’ (β = 10%) 
α = 0.007 

P’ (β = 20%) 
α = 0.014 

P’ (β = 30%) 
α = 0.021 

P’ (β = 40%) 
α = 0.028 

P’ (β = 50%) 
α = 0.035 
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WUI 0.063 0.063 0.063 0.064 0.064 0.065 
Distance from roads 0.438 0.441 0.444 0.447 0.450 0.453 

Fuel type 0.070 * 0.063 0.057 0.050 0.043 0.036 
FMC 0.209 0.211 0.212 0.214 0.215 0.217 
Slope 0.040 0.040 0.040 0.040 0.041 0.041 

Aspect 0.014 0.014 0.014 0.014 0.014 0.015 
Concavity 0.007 0.007 0.008 0.008 0.008 0.008 

FWI 0.160 0.161 0.162 0.163 0.165 0.166 
Vulnerability 

Alternative P P’ (β = 10%) 
α = 0.010 

P’ (β = 20%) 
α = 0.020 

P’ (β = 30%) 
α = 0.031 

P’ (β = 40%) 
α = 0.041 

P’ (β = 50%) 
α = 0.051 

Ecosystem services 0.061 0.062 0.062 0.063 0.064 0.064 
Ecological value 0.102 * 0.093 0.083 0.074 0.064 0.054 

People 0.729 0.737 0.744 0.752 0.760 0.768 
Assets 0.108 0.109 0.110 0.111 0.113 0.114 

* Priority of the critical alternative (PCR). 

The ranking of the hazard alternatives changed at 20% of the change in the critical 
priority value while the ranking of the vulnerability alternatives started changing at 50% 
of the change in the critical priority value; hence, the evaluation stability was greater for 
vulnerability than hazard. A change of priorities (Table 15) revealed a positive overall 
trend in hazard assessment (Figure 17). 

 
Figure 17. Effect of the change of priorities on the basic statistical parameters of the fire hazard 
assessment in the catchments. 

The performance of the model for β = 20% (at which the ranking of the alternatives 
changed) showed only a slight change in the overlapped fire severity and fire hazard areas 
(Table 16). In the Dubrava catchments, moderately low and moderately high severity clas-
ses still corresponded well with moderate (52.6% overlap) and high hazard classes (39.3% 
overlap), while in the Grebaštica catchment, the best match was again achieved for the 
low hazard class (89.61% overlap). 

Table 16. Fire severity classes (adapted from [114]) compared to fire hazard classes for the β = 20% 
case and the deviation from the initial values (for β = 0%). 

Fire Hazard 
Class 

dNBR Class 
Area Overlap (%) 

for β = 20% 
Deviation from the Initial 

Values (%) for β = 0% 
Dubrava Grebaštica Dubrava Grebaštica 

1 
1 25.1 89.6 7.1 −1.5 
2 65.3 8.0 −2.0 −9.8 
3 9.6 0.07 −3.0 20.7 
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4 0.06 – 5.3 – 

2 

1 12.8 63.2 6.3 2.2 
2 52.2 34.3 −0.8 −9.2 
3 33.7 0.3 −0.4 9.9 
4 1.4 – −7.3 – 

3 

1 11.9 52.3 9.9 5.9 
2 34.2 44.7 −4.7 −9.5 
3 39.3 1.0 −2.4 −12.7 
4 14.7 – 13.1 – 

4 

1 7.6 42.0 20.6 12.0 
2 25.9 55.8 4.1 −10.1 
3 44.8 0.3 −1.5 −20.0 
4 21.6 – −7.4 – 

In general, the change of priorities did not cause a significant change in the overall 
performance of the model. 

4. Discussion 
The main goal of this paper was to design a conceptual model that would enable fire 

hazard and fire risk assessment at a more detailed level, using moderate- to high-resolu-
tion data that were already available. Different fire risk assessment methodologies have 
been proposed and applied over the past decades, covering large, macro-scale regions 
(e.g., Canada, USA, Europe, Australia [2,22,24,27,31,116]). However, fire drivers as well as 
their possible consequences are still not adequately described at a finer resolution, captur-
ing the heterogeneity of fire risk variables at the micro- or meso-scales. The extent of an 
area affected by fire plays an important role in determining the level of detail that needs 
to be addressed in a model itself and the data required for this assessment. The described 
conceptual model aims to assess the hazard and risk in the catchments that occupy areas 
that cannot be modeled using the global models currently available. However, micro- or 
meso-scale modeling requires data collected with an appropriate level of detail and spatial 
resolution that can describe various fire drivers’ characteristics, but they are difficult to 
acquire. Instead, coarse resolution data are often used. The spatial resolution of data gov-
erns the choice of an assessment model and significantly impact the results: coarse reso-
lution data cannot capture the dynamics and heterogeneity of vegetation cover (fuels) and 
fail to accurately represent landscapes and variables that influence fire behavior [117]. The 
data used in our model were derived from publicly available databases, such as the Co-
pernicus Land Monitoring Service, census, and satellite remote sensing data and disaggre-
gated to a detail compliant with the extent of the study area and the analyzed fire events. 
This approach accounts for fire ignition and fire propagation and integrates governing fire 
hazard and fire risk components with the AHP hierarchical weighting scheme, resulting 
in a qualitative evaluation of hazards and risks. 

In terms of fire ignition, the focus was solely on human ignition (intentional and de-
liberate). Areas that are susceptible to fire ignition are spatially closely related to residen-
tial areas and transport infrastructure. Zones of meeting or mixing with wildland vegeta-
tion were mapped as interface and intermix WUIs, respectively, based on the available 
LULC data, following the procedure adapted from [71,75]. Although the catchments were 
not densely populated, WUIs occupied approximately 20% of the Dubrava catchments 
and 30% of the Grebaštica catchment. At this point, LULC data, spatially improved with 
the IMD dataset, were classified only into three classes, built-up, woody vegetation, and 
other, assuming that any woody vegetation was equally prone to fire ignition while grass-
land and other (sparse) vegetation cover are not susceptible to fire ignition. Instead of 
classifying vegetation into the three described classes, vegetation may be classified with 
respect to the percentage of vegetation cover [118]. However, considering the surface and 
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vegetation characteristics typical of a karst environment, we found the first approach more 
appropriate. Apart from residential areas (including industrial and commercial zones), an 
important factor in analyzing fire ignition is the vicinity of transport infrastructure. It ev-
idently increases the propensity of fire ignition, but also depends on the surrounding 
LULC. The propensity to fire ignition is different for different LULCs and it is stronger in 
less impacted LULC regions [79]. In both catchments, a zonal buffer (Table 3) was created 
along the existing roads. With no traffic data available, traffic density was not taken into 
consideration at this point. 

The spatial distribution, condition (in terms of moisture), and depth of the various fuel 
types are crucial to their fire behavior. Some studies used the CLC dataset to identify and 
classify various fuel types (e.g., [26,119]). As previously discussed, the spatial characteristics 
of the CLC dataset could not meet the meso-scale requirements of this study regarding spa-
tial resolution. Instead, the more spatially detailed CZ dataset was used. Fuel type classifi-
cation adopted from the EFFIS fuel classification scheme recognized ten aggregated classes 
of which four were mapped in the analyzed catchments (short grass, chaparral, brush, and 
hardwood litter). Similarly to the CLC, with a 250 m spatial resolution, the EFFIS dataset 
was too spatially coarse to be used, hence classification was applied on the available LULC 
data. Considering the size of the catchments, thematical detail provided by the EFFIS clas-
sification scheme [81] was found to be satisfactory. A far more critical parameter in assessing 
fire propagation was the fuel moisture content. Since the data were not available, we used 
the NDII as a qualitative indicator of the FMC status in the catchments. As expected, higher 
NDII values coincided with forest and woodland vegetation that were classified as highly 
susceptible to fire propagation. The FMC can also be considered through the dimensionless 
FWI, which is calculated as the combination of the initial spread index (ISI) and buildup 
index (BUI) [22]. Both the ISI and BUI were derived from the FMC components, i.e., Fine 
Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and Drought Code (DC), which 
were calculated from the weather observations of temperature, wind speed, relative humid-
ity, and precipitation. The spatial distribution of the available FWI data could not capture 
the variability in the index within the catchments, so instead, uniform FWI values from two 
sources (the C3S and Croatian Meteorological and Hydrological Service) were adopted for 
both catchments. Based on the EFFIS classification scheme, the FWI susceptibility to fire 
propagation was evaluated as high. 

Relief in both catchments was well developed. High-resolution DEM adequately cap-
tured variable terrain characteristics in terms of parameters that strongly influenced fire 
propagation, i.e., the slope, aspect, and concavity. Reinforced with a favorable wind direc-
tion, they can significantly impact the spread of fire in a certain direction. Weather variables, 
in general, are a critical factor in fire hazard and risk assessment. Commonly used variables 
analyzing the weather patterns that precede fire events are precipitation, air temperature, 
relative humidity, wind speed, and wind direction, all incorporated in the FWI. 

The AHP is widely accepted and the most often used MCDA method for generating 
risk indices (e.g., [30,119,120]). The method effectively reduces the subjectivity of ranking 
alternatives and works well with a categorical domain. Various priorities of fire hazard com-
ponents were tested and the combination with the lowest consistency ratio was selected. In 
comparison with fire severity, the results varied among the catchments. In the Dubrava 
catchments, the moderate hazard class spatially matched well with the moderately low se-
verity class. For the low severity class, hazard was overestimated but underestimated for 
the high severity class. In the Grebaštica catchment, only the low hazard class corresponded 
well with the low severity class, but in areas with higher severity, fire hazard was underes-
timated. 

Fire exposure/vulnerability were observed jointly, indicating elements exposed in 
vulnerable areas [22], through major risk components: ecosystem services, ecological val-
ues, population density, and assets. Instead of assigning a monetary value, all components 
were analyzed quantitatively, based on their significance. The highest vulnerability was 
assigned to people. Fires have a great impact on socioeconomic vulnerability, not only in 



Remote Sens. 2024, 16, 2118 26 of 33 
 

 

terms of exposing people to physical injuries and loss of lives but also in terms of creating 
a significant stress that needs to be addressed when evaluating vulnerability. Ecological 
vulnerability was observed through ecological values and ecosystem services. Ecological 
values, presenting the benefits that biotic and abiotic components provide, were derived 
from the Natura 2000 sites. Assessing the ecosystem services was somewhat more com-
plex, as they represent the contribution of ecosystems to society and to the economy [110]. 
The data needed were derived from the LULC data, which were based on the MAES clas-
sification and combined with the economic values provided by the ecosystem services 
[111]. In other words, ecosystem services were directly derived from the LULC map and 
linked to the INCA method for measuring ES potential of each LULC class. 

The described approach integrates various indicators into components with a com-
mon domain which allows for the simple evaluation and assessment first of fire hazard 
and vulnerability, and finally, the risk. The final fire risk map showing categorical risk 
classes resulted from overlaying the fire hazard map with the vulnerability components. 
Assessing both fire hazard and fire risk is a difficult and complex task. Nevertheless, it is 
essential for designing fire management strategies, especially at the meso-scale level, and 
it requires more detailed insight into the driving factors and possible consequences that 
existing global models cannot provide. 

With this model, we aimed to reduce the complexity of the procedures and the data 
needed to evaluate the hazard and risk in small, heterogenous catchments with a popula-
tion density that was highly susceptible to seasonal (tourist) migration. It provides the 
basic information local authorities need to develop management plans and adaptation 
strategies. 

There are potential limitations to the presented approach. First and foremost, it is a 
conceptual model that provides a conceptual description of fire-driving factors. A critical 
step in assessing a fire hazard is estimating the fuel moisture content. Remote sensing and 
qualitative analysis can provide various, easily accessible indicators that can be related to 
FMC but the future focus should be on providing high-resolution LFMC and DFMC data 
that will improve the model’s accuracy. Land surface temperature (LST) is another im-
portant environmental factor that contributes to fire susceptibility. Higher LST values are 
a result of overheating the ground surface and also depend on numerous factors such as 
air temperature, vegetation cover, incoming solar radiation, etc. At this stage, it was taken 
into consideration indirectly through indices used in assessing the fire hazard. A next step 
in improving the model is improving the spatial resolution of the currently available LST 
data (e.g., MODIS LST data at 1 km) and fitting the data into the proposed model. 

Furthermore, exposure to people and hence vulnerability was analyzed as a static 
parameter. Coastline regions experience significant migrations during the summer 
months. The tourist season coincides with the fire season and it is necessary to take into 
consideration this increase in population density. 

5. Conclusions 
Wildfires are serious and an increasing threat, especially in fire-prone areas such as the 

Mediterranean, including the Croatian coastline. Small communities affected by wildfires 
are faced with the need to reduce the negative impacts of wildfire and improve communi-
ties’ resilience. The availability of high-resolution data is crucial. Most of the models that are 
available today provide fire risk information at relatively coarse spatial scales that cannot 
adequately meet the decision-making requirements at the local levels. The aforementioned 
EFFIS wildfire risk assessment provides fire risk maps based on data at 8 km spatial resolu-
tion. In the global assessment of wildfire risk, that is a sufficient level of detail; however, in 
terms of regional assessment, the information derived from such models is not sufficient. 

The conceptual model used in the preliminary research described in this paper pro-
vides a tool that uses already available data and assesses fire risks without additional ex-
tensive measurements. It provides a decision-making tool adapted to risk assessment at 
smaller scales. However, it is not scale-dependent and can easily be adjusted to different 
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scales, depending on the data available. Although it is based on the qualitative assessment 
of risk and its components, it is not limited by them and can be adjusted to quantitative 
assessment. 

This preliminary research, despite its pinpointed limitations, provides a more de-
tailed insight into the factors affecting fire ignition and behavior, and hence fire hazards 
as well as the vulnerability of anthropogenic and environmental factors that are essential 
for the decision-making process at the local level, and thus enables a better articulation of 
the mitigation strategies. Further improvement will be focused on collecting the high-
quality and high quantity data needed to incorporate more sophisticated approaches such 
as applying ML methods. 

Author Contributions: Conceptualization, B.H. and B.K.; methodology, B.H. and B.K.; software, 
B.H.; validation, B.H. and B.K.; formal analysis, B.H.; investigation, B.H.; resources, B.H. and B.K.; 
data curation, B.H.; writing—original draft preparation, B.H.; writing—review and editing, B.H. 
and B.K.; visualization, B.H.; project administration, B.K.; funding acquisition, B.K. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research was fully supported by the University of Rijeka projects: uniri-technic-18-
129 and uniri-technic-18-54, 23-67, and 23-74. 

Data Availability Statement: The Coastal Zones land cover, Natura 2000 land cover, Urban Atlas 
land cover, Imperviousness Density, and Imperviousness Built-Up datasets from the Copernicus 
Land Monitoring Service are available at https://land.copernicus.eu/ (accessed on 21 September 
2023). The Census 2021 data from the Croatian Bureau of Statistics are available at https://dzs.gov.hr/ 
(accessed on 21 September 2023). The Natura 2000 data from the Ministry of Economy and Regional 
Development are available at https://bioportal.hr/ (accessed on 20 March 2024). 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

Table A1. AHP pairwise comparison table (adapted from [107]). 

Relative  
Importance 

Intensity 
Definition Description 

1 Equal importance Two activities contribute equally to the objective 

3 
Weak importance of one over 

another 
Experience and judgement slightly favor one activ-

ity over another 

5 
Strong importance of one over 

another 
Experience and judgement strongly favor one activ-

ity over another 

7 
Very strong importance of one 

over another 
An activity is strongly favored and its dominance 

demonstrated 

9 Absolute importance 
The evidence favoring one activity over another is 

of the highest possible order or affirmation 

2, 4, 6, 8 Intermediate values 
When compromise is needed between two levels of 

importance  
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Table A2. Random consistency index (adapted from [107]). 

n 1 2 3 4 5 6 7 8 9 10 
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 

Table A3. Supply estimates of seven ecosystem services from nine ecosystem types (adapted from 
[111]). 

 Urban Cropland Grassland Woodland 
and Forest Wetland Heathland 

Sparsely 
Vegetated 

Areas 

Rivers and 
Lakes 

Marine  
Inlets and 

Transi-
tional  
Waters 

Crop provision 0 100% 0 0 0 0 0 0 0 
Timber provision 0 0 0 100 0 0 0 0 0 
Crop pollination N/A * 100% N/A * N/A * 0 N/A * 0 0 0 

Carbon sequestration 0 0 0 100 0 0 0 N/A * N/A * 
Flood control 0.6% 6.2% 19.2% 69.8% 2% 2.2% 0.01% N/A * N/A * 

Water purification 2% 55.9% 7.4% 27.7% 0.6% 0.6% 0.3% 5.6% N/A * 
Nature-based recreation 0.2% 8.1% 14.9% 61% 4.6% 6.2% 2.7% 2% 0.6% 
Relative supply per eco-

system type 
0.7% 35.8 % 8.6% 47.5% 2.2% 0.9% 1.7% 2.4% 0.2% 

* N/A: not available. 

Table A4. Hazard comparison matrices. 

Alternatives vs. Attributes 
 Fuel Type FMC Slope Aspect Concavity Priority CR 

Fuel type 1 0.33 – – – 0.25 
0.7% 

FMC 3 1 – – – 0.75 
Slope – – 1 3 5 0.648 

0.4% Aspect – – 0.33 1 2 0.23 
Concavity – – 0.2 0.5 1 0.122 

FWI        
Attributes vs. Objectives 

 Settlements Roads Fuels Terrain Weather Priority CR 
Settlements 1 0.14 – – – 0.125 

0.7% 
Roads 7 1 – – – 0.875 
Fuels – – 1 4 2 0.558 

1.9% Terrain – – 0.25 1 0.33 0.122 
Weather – – 0.5 3 1 0.32 

Table A5. Vulnerability comparison matrices. 

Alternatives vs. Attributes 
 Ecosystem Services Ecological Value Population Assets Priority CR 

Ecosystem services 1 0.5 0.11 0.5 0.061 

1.7% 
Ecological value 2 1 0.11 1 0.102 

Population 9 9 1 7 0.729 
Assets 2 1 0.14 1 0.108 
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