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Abstract: The latest versions of the Ross-Li model include kernels that represent isotropic reflection of
the surface, describe backward reflection of soil and vegetation systems, characterize strong forward
reflection of snow, and adequately consider the hotspot effect (i.e., RossThick-LiSparseReciprocalChen-
Snow, RTLSRCS), theoretically able to effectively characterize BRDF/Albedo/ NBAR features for
various land surface types. However, a systematic evaluation of the RTLSRCS model is still lacking
for various land cover types. In this paper, we conducted a thorough assessment of the RTLSRCS
and RossThick-LiSparseReciprocalChen (RTLSRC) models in characterizing BRDF/Albedo/ NBAR
characteristics by using the global POLDER BRDF database. The primary highlights of this paper
include the following: (1) Both models demonstrate high accuracy in characterizing the BRDF
characteristics across 16 IGBP types. However, the accuracy of the RTLSRC model is notably reduced
for land cover types with high reflectance and strong forward reflection characteristics, such as
Snow and Ice (SI), Deciduous Needleleaf Forests (DNF), and Barren or Sparsely Vegetated (BSV).
In contrast, the RTLSRCS model shows a significant improvement in accuracy for these land cover
types. (2) These two models exhibit highly consistent albedo inversion across various land cover
types (R2 > 0.9), particularly in black-sky and blue-sky albedo, except for SI. However, significant
differences in white-sky albedo inversion persist between these two models for Evergreen Needleleaf
Forests (ENF), Evergreen Broadleaf Forests (EBF), Urban Areas (UA), and SI (p < 0.05). (3) The
NBAR values inverted by these two models are nearly identical across the other 15 land cover
types. However, the consistency of NBAR results is relatively poor for SI. The RTLSRC model tends
to overestimate compared to the RTLSRCS model, with a noticeable bias of approximately 0.024.
This study holds significant importance for understanding different versions of Ross-Li models and
improving the accuracy of satellite BRDF/Albedo/NBAR products.

Keywords: land cover types; reflectance; Ross-Li model; BRDF; albedo; NBAR; POLDER

1. Introduction

The reflection from natural objects is typically anisotropic, a fundamental trait effec-
tively described by the Bidirectional Reflectance Distribution Function (BRDF) [1,2], which
encapsulates information about their physical structure and composition. The BRDF mod-
eling of land surfaces plays a pivotal role in understanding the spatial variability of surface
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reflectance attributes, thereby enhancing the interpretability and applicability of remote
sensing [3,4]. Precise BRDF models enable quantitative delineation of surface reflection
attributes across diverse incidents and viewing geometries, capturing both intensity and
spatial distribution of reflectance [5,6]. Therefore, researchers can effectively distinguish
and classify distinct surface features, facilitating the inference of crucial parameters such as
physical structure, vegetation cover, and soil moisture, among others [7,8]. These insights
provide vital support and a robust foundation for environmental monitoring, resource
management, urban planning, and various other research domains.

The spatial distribution and magnitude variation of natural BRDF features are closely
linked to the spatial structural characteristics and optical properties of natural objects, pri-
marily determined by land cover types [9–11]. Vegetation and soil typically absorb incident
visible light, with their reflection characteristics gradually decreasing from backscatter-
ing to forward scattering directions [12]. Peak reflectance is generally achieved in the
backscattering direction when the incident and viewing angles align, known as the hotspot
effect [13]. Snow surfaces exhibit more isotropic behavior than other natural surfaces, often
displaying higher reflectance in the forward scattering direction, especially under large
incident and viewing geometries, in contrast to other natural surfaces [5,6,12]. Accurate
inversion of surface BRDF necessitates a substantial amount of multi-angle data capable of
depicting the surface anisotropic reflectance characteristics. However, due to limitations in
sensor observation capabilities and satellite orbits, satellites can only capture directional
reflectance from specific angular positions [14,15]. This limitation is more pronounced for
remote sensing sensors with higher spatial resolutions (e.g., Landsat and Sentinel), often
insufficient for adequately describing surface BRDF characteristics [16]. Therefore, to better
characterize the BRDF features of different natural objects, BRDF modeling for various land
cover types is typically essential, enabling the inverse estimation of various geophysical
parameters.

Currently, BRDF models encompass various surface types, including soil, vegeta-
tion, snow, sand, water, and others. These models meticulously account for the unique
composition and reflective properties of each natural surface. Moreover, there are spe-
cialized BRDF models designed for mixed scenes. Soil models include the Hapke model,
Global Spectral Vector (GSV) model, Brightness–Shape–Moisture (BSM) model, Multi-
layer Radiative Transfer Model of Soil Reflectance (MARMIT) model, and their respective
enhancements [12,17–21]. Vegetation models consist of the PROSPECT model, Scattering
by Arbitrarily Inclined Leaves (SAIL) model, and Needle Leaf Optical Properties (LIB-
ERTY) model, among others [22]. Snow models comprise the Discrete Ordinate Radiative
Transfer (DISORT) model, bicontinuous Photon Tracking (bic-PT) model, and Asymptotic
Radiative Transfer (ART) model, along with improved versions [5,6,23–27]. Sand models
are represented by the Spectral Light Transport (SPLITS) model and the Seven-Parameter
model [28,29]. Water models include the Morel2002, Lee2004, Park2005, Voer2008, and
Lee2011 models [30]. Mixed scene modeling primarily focuses on soil–vegetation systems,
exemplified by models like the PROSPECT + SAIL (PROSAIL) model, Kuusk model, Ross-
Li model (i.e., RossThick-LiSparseReciprocal, RTLSR), and LargE-Scale remote sensing data
and image Simulation framework (LESS) model [4,22,31,32]. Moreover, researchers are
increasingly interested in modeling the BRDF of soil–vegetation–snow systems, as demon-
strated by models such as the enhanced Ross-Li model (RossThick-LiSparseReciprocal-
Snow, RTLSRS), the LESS model coupled with ART, and the Snow-covered Forest Bidirec-
tional Reflectance (SFBR) model [32–34]. This holds significant scientific importance for
analyzing surface reflection characteristics and parameter inversion studies for various
land cover types.

The Ross-Li models have found widespread application in diverse realms, such as
correcting anisotropic reflection effects, monitoring dynamic changes in vegetation, esti-
mating vegetation structural parameters, and generating global albedo products [8,35,36].
Recently, these models have been employed to correct scattered light in ground-based multi-
angle observations [37], collaboratively invert vegetation structural characteristics with
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the PROSAIL model [38], correct the hotspot effect by geometric conditions (RossThick-
LiSparseReciprocalChen, RTLSRC) [39], and characterize complex mountainous BRDF
features and albedo inversion [40]. Nevertheless, these enhanced Ross-Li BRDF models
primarily focused on simulating the anisotropic reflection of soil–vegetation systems with
an emphasis on strong backscattering effects [34,41]. To enhance the portrayal of the
anisotropic features of snow, Jiao et al. introduced a snow kernel within the RTLSR model
framework, enhancing the representation of snow reflectance properties, termed the RTL-
SRS model [34]. Ding et al. conducted a comprehensive assessment of the capability of the
snow kernel to represent snow reflective characteristics [5,6,41]. Their findings indicated
that the RTLSRS model exhibits strong performance in describing snow BRDF features and
retrieving albedo.

The latest versions of the Ross-Li model include kernels that incorporate isotropic
reflection of the land surface, describe backward reflection of soil and vegetation systems,
characterize strong forward reflection of snow, and adequately consider the hotspot ef-
fect (i.e., RossThick-LiSparseReciprocalChen-Snow, RTLSRCS), theoretically capable of
effectively describing the BRDF/Albedo/Nadir BRDF Adjusted Reflectance (NBAR) char-
acteristics of various surface types [41]. However, there remains a paucity of systematic and
comprehensive evaluation of the enhanced Ross-Li models across diverse land cover types.
Therefore, this study utilizes the global Polarization and Directionality of the Earth’s Re-
flectance (POLDER) BRDF database, which includes 16 International Geosphere-Biosphere
Programme (IGBP) land cover types [9], to systematically assess the accuracy of enhanced
Ross-Li models in characterizing BRDF signatures and inverting albedo for different land
cover types. Furthermore, comparing the inversion results of the RTLSRCS and RTLSRC
models can better demonstrate the effectiveness of the snow kernel across other land cover
types. Such an evaluation holds substantial scientific significance for understanding the
reflective characteristics of different land cover types, constructing natural surface BRDF
models, and enhancing the accuracy of the satellite products.

The organization of this study is outlined as follows: Section 2 introduces the POLDER
BRDF database, enhanced Ross-Li models, and evaluation approaches. Results and analysis
of the Ross-Li models are presented in Section 3. Finally, Sections 4 and 5 summarize
potential discussions and key findings of this study.

2. Materials and Methods
2.1. POLDER BRDF Database

The objective of the POLDER-3 instrument is to monitor Earth’s surface radiation
characteristics, encompassing reflection and absorption properties across diverse environ-
ments such as land, ocean, and atmosphere. It facilitates the quantitative estimation and
monitoring of remote sensing parameters, including aerosols, clouds, and surface albedo,
thereby offering crucial support for research in domains like climate change, environmental
conservation, and natural disasters. The POLDER instrument captures observations within
an angle range of up to 60–70◦ and a relative azimuth angle range spanning nearly all
directions from 0◦ to 360◦. During the passage of the POLDER satellite, multiple observa-
tions of natural features are made, ensuring ample BRDF sampling of the target [9,42]. The
POLDER BRDF database provides multi-angle reflectance data across six bands, spanning
the visible and near-infrared (NIR) spectra. These POLDER multi-angle observations un-
dergo atmospheric correction and cloud validation to derive the bidirectional reflectance
factor of natural features. Stringent quality control measures are implemented for the
POLDER BRDF database upon its release. However, given the focus of this study on
evaluating enhanced Ross-Li models accuracy across diverse land cover types, data with
homogeneity ≥ 90% from the POLDER BRDF database are initially filtered. Subsequently,
considering the reflection characteristics of each land cover type, further elimination of
unreasonable data is conducted (please refer to specific screening criteria in Table 1). Finally,
observations with a number < 50 and unreasonable surface BRDF shapes are excluded.
In total, 10,574 POLDER pixels, with their spatial distribution as shown in Figure 1, were
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utilized (6814 pixels from November 2005 to October 2006 and 3760 pixels from January
to December 2008) to evaluate enhanced Ross-Li models’ capabilities in characterizing
scattering features and retrieving albedo for diverse land cover types.

Table 1. The number of POLDER pixels, average values and standard deviation of incident-
observation geometric conditions, and reflectance in red and NIR bands across 16 IGBP types.

IGBP Screening
Criteria

Number of
Pixels SZA (◦) VZA (◦) RAA (◦) Red NIR

Evergreen Needleleaf Forests
(ENF) B3 < 0.2 579 48 ± 15 45 ± 2 166 ± 17 0.05 ± 0.02 0.22 ± 0.04

Evergreen Broadleaf Forests
(EBF) B3 < 0.2 730 41 ± 11 45 ± 2 181 ± 20 0.04 ± 0.01 0.28 ± 0.04

Deciduous Needleleaf Forests
(DNF) B3 < 0.6 336 53 ± 13 44 ± 3 170 ± 23 0.18 ± 0.17 0.29 ± 0.11

Deciduous Broadleaf Forests
(DBF) B3 < 0.2 466 42 ± 12 45 ± 3 174 ± 21 0.06 ± 0.02 0.24 ± 0.06

Mixed Forests (MiF) B3 < 0.2 477 44 ± 13 45 ± 2 165 ± 16 0.05 ± 0.02 0.23 ± 0.06
Closed Shrublands (CSh) B3 < 0.2 212 39 ± 13 45 ± 2 184 ± 18 0.11 ± 0.02 0.19 ± 0.02
Open Shrublands (OSh) B3 < 0.4 1373 39 ± 12 45 ± 2 184 ± 16 0.15 ± 0.05 0.24 ± 0.05
Woody Savannas (WSa) B3 < 0.3 618 40 ± 11 44 ± 2 181 ± 19 0.07 ± 0.02 0.21 ± 0.04

Savannas (Sav) B3 < 0.3 498 37 ± 8 44 ± 2 185 ± 18 0.10 ± 0.04 0.24 ± 0.05
Grasslands (GL) B3 < 0.4 881 39 ± 14 44 ± 2 171 ± 17 0.16 ± 0.06 0.26 ± 0.06

Permanent Wetlands (PW) B3 < 0.3 78 41 ± 9 45 ± 3 176 ± 24 0.06 ± 0.01 0.22 ± 0.04
Croplands (CL) B3 < 0.3 874 40 ± 14 45 ± 2 171 ± 18 0.12 ± 0.05 0.27 ± 0.06

Urban Areas (UA) B3 < 0.3 631 39 ± 14 45 ± 2 172 ± 18 0.13 ± 0.04 0.24 ± 0.04
Cropland Natural Vegetation

Mosaics (CNVM) B3 < 0.3 276 40 ± 14 45 ± 2 166 ± 18 0.09 ± 0.05 0.29 ± 0.05

Snow and Ice (SI) B1 > 0.4 945 62 ± 11 42 ± 3 191 ± 35 0.91 ± 0.04 0.84 ± 0.05
Barren or Sparsely Vegetated

(BSV) B3 < 0.6 1600 34 ± 15 44 ± 1 174 ± 14 0.31 ± 0.15 0.36 ± 0.15
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Table 1 presents the number of POLDER pixels, the average values and standard
deviation of incident-observation geometric conditions, and reflectance in the red and
NIR bands across 16 IGBP types. The variation in solar zenith angle (SZA) is primarily
influenced by the spatial distribution of various surface types. For instance, Evergreen
Needleleaf Forests (ENF), Deciduous Needleleaf Forests (DNF), and Snow and Ice (SI)
are mainly found in middle and high latitudes, resulting in relatively high SZA in these
regions. Specifically, the average SZAs for ENF and DNF are approximately 48◦ and 53◦,
respectively, while SI exhibits an average SZA of around 62◦. In contrast, Barren or Sparsely
Vegetated (BSV) is more prevalent in middle and low latitudes, where the SZA tends to
be lower, with an approximate mean value of around 34◦. Other land cover types are
more prevalent in mid-latitude areas, where the overall average SZA is approximately 40◦.
Variations in viewing zenith angle (VZA) are minimal. The average VZA is approximately
44◦, with a standard deviation of 2◦, while the mean relative azimuth angle (RAA) spans
the entire 2π space, averaging about 176◦ with a standard deviation of 20◦. Despite the
relatively large range of RAA values, the overall relative change is modest.

Among the 16 IGBP land cover types, the SI exhibits the highest reflectance, with
a mean value of approximately 0.90 in the red and 0.84 in the NIR band, followed by
BSV reflectance at approximately 0.30. Reflectance for other land cover types averages
around 0.10 (0.25) in the red (NIR) band. The DNF and BSV reflectance demonstrate the
highest standard deviation, indicating greater variability and uncertainty. The DNFs are
primarily located in middle and high latitudes, areas notably influenced by snow cover.
Conversely, the BSV reflectance shows considerable variability due to various factors, such
as its complex composition [12]. Additionally, reflectance in the NIR band typically exceeds
that in the red band, except for SI, primarily due to the relatively significant contribution
of multiple reflections [43]. This pattern is reversed in the case of SI compared to other
land cover types. The reflectance pattern of SI is highly anisotropic, markedly distinct from
other natural surfaces, particularly evident under extensive incident-observation geometry
conditions [5,6]. Analyzing the average angles and reflectance values of various land
cover types in the global POLDER BRDF datasets has theoretical and reference significance
for understanding the reflection characteristics of different land cover types, conducting
satellite data quality control, and improving land surface classification accuracy.

2.2. Enhanced Ross-Li BRDF Models

The Ross-Li model posits that the reflection of natural objects comprises three compo-
nents [4], which are defined as

R(θs, θv, φ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, φ) + fgeo(λ)Kgeo(θs, θv, φ) (1)

In this equation, R(θs, θv, φ, λ) is the surface reflectance. The isotropic scattering kernel
describes the Lambertian surface, the volume scattering kernel Kvol(θs, θv, φ) describes
continuous vegetation canopies, and the geometric optical kernel Kgeo(θs, θv, φ) describes
discrete vegetation canopies. The coefficients for these three kernels are represented by
f iso(λ), f vol(λ), and f geo(λ), respectively.

Jiao et al. (2016) and Dong et al. (2019) modified the volume scattering and ge-
ometric optical kernels by considering the geometric conditions of illumination and
observation [36,39], proposing an improved expression to better characterize the hotspot
signatures, which are defined as

KRTC(θs, θv, φ) =
(π

2 − ξ) cos ξ + sin ξ

cos θs + cos θv
· (1 + C1e−

ξ
C2 )− π

2
(2)

cos ξ = cos θs cos θv + sin θs sin θv cos φ (3)

KLSRC(θ
′
s, θ′v, φ, λ) = O(θs, θv, φ) · (1 + C1e−

ξ
C2 )− sec θ′s − sec θ′v +

1
2
(1 + cos ξ ′) sec θ′s sec θ′v (4)
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O(θs, θv, φ) =
1
π
(arccosX − X

√
1 − X2)(sec θ′s + sec θ′v) (5)

X =
h
b

√
D2 + (tan θ′s tan θ′v sin φ)2

sec θ′s + sec θ′v
(6)

D =
√

tan2 θ′s tan2 θ′v − 2 tan θ′s tan θ′v cos φ (7)

θ′ = arctan(
b
r

tan θ) (8)

In these equations, ξ is the phase angle, and we chose the hotspot parameters C1 = 0.5
and C2 = 3.4 to simplify the computation process [39]. We refer to the combined form of the
KRTC(θs, θv, φ) and KLSRC(θs, θv, φ) kernel functions as the RTLSRC model.

To improve the depiction of snow reflectance properties, Jiao et al. (2019) developed a
snow kernel within the framework of the Ross-Li model [34], which is defined as

R(θs, θv, φ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, φ) + fgeo(λ)Kgeo(θs, θv, φ)+ fsnw(λ)Ksnw(θs, θv, φ) (9)

In this equation, f snw(λ) and Ksnw(θs, θv, φ) represent the weight coefficient and snow
kernel, respectively. The Ksnw(θs, θv, φ) is defined as

Ksnw(θs, θv, φ) = R0(θs, θv, φ)(1 − α fg(θs, θv, φ)) + k0 (10)

R0(θs, θv, φ) =
B1 + B2(cos θs + cos θv) + B3 cos θs cos θv + P(ξ)

4(cos θs + cos θv)
(11)

P(ξ) = 11.1e−0.087(180−ξ) + 1.1e−0.014(180−ξ) (12)

fg(θs, θv, φ) = cos ξ · exp(− cos ξ) (13)

In these equations, R0(θs, θv, φ) denotes the reflectance of a semi-infinite snow layer [36].
We refer to the combined form of the KRTC(θs, θv, φ), KLSRC(θs, θv, φ), and Ksnw(θs, θv, φ) as
the RTLSRCS model.

The weighting coefficients are utilized for the retrieval of the black-sky albedo (BSA)
and white-sky albedo (WSA), which are defined as

BSA(θs, λ) =
1
π

∫ 2π

0

∫ π/2

0
R(θs, θv, ϕ, λ) sin θv cos θvdθvdϕ (14)

WSA(λ) = 2
∫ π/2

0
BSA(θs, λ) sin θs cos θsdθs (15)

The blue-sky albedo is calculated as a linear combination of BSA and WSA, which is
defined as

ρ(θs) = [1 − P]BSA(θs) + P · WSA (16)

In this equation, ρ(θs) is the blue-sky albedo, and P denotes the proportion of diffuse
light.

For the shortwave broadband albedo of POLDER data, the conversion can be com-
puted utilizing the formula proposed by Liang et al. [44,45], where the band conversion
formula can be expressed as follows:

ρ = 0.112ρ1 + 0.388ρ2 − 0.266ρ3 + 0.668ρ4 + 0.0019 (17)

In this equation, ρ represents the shortwave broadband albedo of POLDER data, and
ρi represents the spectral albedo of the POLDER data.
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2.3. Evaluation Methods of the Enhanced Ross-Li Models

This paper begins with an assessment of the capabilities of two recently developed
kernel-driven models in characterizing BRDF features across various land cover types.
Following this, we conduct a comparative analysis to discern the discrepancies between
these two models in terms of albedo inversion. Finally, we extended our comparison to their
performance in the inversion of NBAR. Such systematic and comprehensive capabilities of
the kernel-driven models in describing BRDF/Albedo/NBAR characteristics for various
land cover types are crucial for understanding the reflectance characteristics and parameter
inversion of different land cover types. In this study, we utilize several quality assessment
indices to evaluate the performance of the models, including the coefficient of determination
(R2), root mean square error (RMSE), normalized RMSE (NRMSE), mean relative error
(MRE), and bias values. Additionally, we employ the T-test to evaluate the disparities
between the RTLSRC and RTLSRCS models concerning the retrieval of albedo and NBAR,
as expressed in Equations (18)–(22).

RMSE =

√
∑n

i=1 (y2 − y1)
2

n
(18)

NRMSE =
RMSE

ymax − ymin
× 100% (19)

MRE =
1
n∑n

i=1

∣∣∣∣y2 − y1

y1

∣∣∣∣× 100% (20)

bias = ∑n
i=1 (y2 − y1)

n
(21)

T =
|X1 − X2|√

(N1−1)S2
1+(N2−1)S2

2
N1+N2−2 ( 1

N1
+ 1

N2
)

(22)

In these equations, y1 denotes the POLDER reflectance, y2 denotes the reflectance of
model simulation, and n denotes the number of samples. X1 and X2 correspond to the
sample means, S1 and S2 represent the standard deviations of the samples, and N1 and N2
represent the numbers of samples.

3. Results and Analysis
3.1. Evaluating the Enhanced Ross-Li Models to Characterize the BRDF Characteristics

Firstly, we comprehensively validate the fitting accuracy of the RTLSRC and RTLSRCS
models for various land cover types using the global POLDER BRDF datasets in Figure 2.
Since the bias values of these two models fitting the POLDER data are close to 0, we
do not discuss them. For the overall R2 values, both versions of the enhanced Ross-Li
models achieve R2 greater than 0.9 for most land cover types. However, for the SI land
cover type, the RTLSRC model exhibits relatively poor fitting results, with an overall R2

of approximately 0.3. Conversely, the RTLSRCS model, designed specifically for the SI,
significantly enhances the accuracy compared to the RTLSRC model, achieving an overall
R2 of approximately 0.8. In contrast, these models demonstrate relatively poor performance
for PW in the red band, with an R2 of approximately 0.8. This phenomenon may be
attributed to the limited availability of PW data and the differences in BRDF characteristics
between PW and other land cover types [10]. For the overall RMSE values, both models
yield RMSE values of approximately 0.01 for most land cover types. However, the RMSE
results of these two models for DNF and SI are relatively higher. The RMSE values for SI
(DNF) using the RTLSRC model are approximately 0.056 (0.029), whereas for SI (DNF) using
the RTLSRCS model, there is a significant reduction in RMSE values to approximately 0.030
(0.025). This is because the RTLSRCS model better captures the reflection characteristics
of SI. As for DNF, although we conducted rigorous quality control, its higher SZA and
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reflectance (Table 1) compared to others may be influenced by snow cover. Regarding BSV,
the RMSE values fitted by the RTLSRCS model (~0.008) are significantly lower than those
of the RTLSRC model (~0.014), possibly due to BSV exhibiting relatively strong forward
reflection characteristics compared to others. Additionally, both models demonstrate better
performance in fitting RMSE results in the red band compared to the NIR band, attributable
to the lower reflectance in the red band relative to the NIR band, except for SI.
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To reduce the difference in reflectance magnitude of different surface types and wave-
lengths, we further utilize NRMSE and MRE values to assess the accuracy of these two
models. For the overall NRMSE values, both versions of the enhanced Ross-Li models
yield results below 6% for most cases, with relatively poorer fits observed for DNF, PW,
and SI. Regarding SI, the results of the RTLSRC model still exhibit issues, whereas the
performance of the RTLSRCS model, as normalized by NRMSE values, approaches that of
other types. Thus, the improvements made to the RTLSRCS model for SI are deemed highly
effective. The RTLSRCS model demonstrates notable enhancements in fitting accuracy
relative to the RTLSRC model, particularly in the red and NIR bands, sequentially for SI,
BSV, DNF, and PW, with average NRMSE values reduced by 2.34%, 0.43%, 0.37%, and
0.29%, respectively. For the overall MRE values, both models generally yield results below
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10%, showing significant disparities between the different bands. In the NIR band, both
models generally demonstrate lower MRE values compared to the red band, except for SI,
where the trend is reversed. The RTLSRCS model demonstrates notable improvements in
fitting accuracy relative to the RTLSRC model, particularly in the red band, sequentially
for SI, ENF, MiF, and DNF, with MRE values reduced by 1.95%, 1.30%, 0.89%, and 0.82%,
respectively. Conversely, the RTLSRCS model shows significant improvements in fitting
accuracy relative to the RTLSRC model in the NIR band, particularly for SI, DNF, and
ENF, with reductions of 2.37%, 0.57%, and 0.39%, respectively. In summary, both enhanced
Ross-Li models exhibit high fitting accuracy across all 16 land cover types. However, for
SI, the RTLSRC model demonstrates relatively poor fitting performance. This is attributed
to the model’s focus on soil–vegetation systems, making it unsuitable for characterizing
the reflective characteristics of snow. In contrast, the RTLSRCS model, designed specifi-
cally for SI, shows a significant improvement in accuracy over the RTLSRC model. For
DNF, ENF, and BSV, the RTLSRCS model demonstrates noticeable improvements in fitting
POLDER data accuracy compared to the RTLSRC model. For other land cover types, the
RTLSRCS model shows some degree of improvement in fitting accuracy relative to the
RTLSRC model. Regarding PW, both models demonstrate relatively poor performance in
the red band, potentially attributed to the limited availability of PW data and variations in
BRDF characteristics when compared to other surface types. These results indicate that the
RTLSRCS model is suitable for various IGBP types. The accuracy of the RTLSRC model
notably diminishes, particularly for land cover types characterized by high reflectance and
strong forward reflection, such as SI, BSV, and DNF.

3.2. Analysis of BRDF Parameter Characteristics of the Enhanced Ross-Li Models

We analyze the differences in BRDF parameters between the RTLSRC and RTLSRCS
models across 16 IGBP types in Figure 3. For the f iso(λ) parameter, both models exhibit
variations for the f iso(λ) parameter. However, there is a high degree of consistency in the
f iso(λ) values between these two models, primarily due to the influence of differences in
reflectance among various land cover types. The f iso(λ) parameter represents the nadir
reflectance (i.e., SZA = 0, VZA = 0, and RAA = 0). The f iso(λ) values from the RTLSRCS
model are slightly higher than those from the RTLSRC model, with minimal differences
observed. Across both models, the f iso(λ) values in the NIR band are higher than those in
the red band, attributed to the influence of higher reflectance in the NIR band, except for SI.
Notably, the f iso(λ) values fitted by both models for DNF and BSV exhibit relatively larger
variability compared to other land cover types, with standard deviations in the red (NIR)
band approximately 0.17 (0.11) and 0.14 (0.15), respectively, while the standard deviations
for other land cover types are generally below 0.08. Both models also demonstrate relatively
high consistency in their f vol(λ) parameter. The f vol(λ) values from the RTLSRCS model
are slightly higher than those from the RTLSRC model, with minimal differences observed.
Across both models, the f vol(λ) values in the NIR band are higher than those in the red band,
except for SI and BSV. The f vol(λ) values fitted by both models exhibit larger variability in
the different bands. The average standard deviation of the f vol(λ) values from the RTLSRC
(RTLSRCS) model is approximately 0.03 (0.03) in the red band and approximately 0.05 (0.06)
in the NIR band. For the f geo(λ) parameter, the values from both models generally follow
the same patterns as those of the f iso(λ) and f vol(λ) parameters. However, the magnitude of
the f geo(λ) parameter is relatively lower overall compared to the other parameters, typically
ranging from 0 to 0.06 for 16 IGBP types. For SI, the results from the RTLSRC model are
predominantly close to 0. This suggests that for SI, it may be feasible to consider removing
the Kgeo(θs, θv, φ) kernel function, thereby reducing the number of multi-angle observations.
This has significant implications for enhancing the efficiency of model inversion while
maintaining inversion accuracy. Regarding the f snw(λ) parameter, its significance persists
across various land cover types. The Ksnw(θs, θv, φ) kernel function plays a key role in
improving the inversion accuracy of these two models. Among the land cover types, SI
demonstrates the highest importance, with the most notable enhancement observed in the
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RTLSRC model. Substantial improvements are also evident in DNF and BSV. For other land
cover types, the range of f snw(λ) parameter values is generally less than 0.1, particularly in
the red band. These results demonstrate that the snow kernel within the Ross-Li model
framework plays a role in improving the accuracy of model fitting for various land cover
types. The parameter values of f snw(λ) exhibit significant differences across different
land cover types, indicating variations in the efficacy of the snow kernel for improving
model accuracy across different land cover types. The f snw(λ) parameter demonstrates
greater importance in land cover types characterized by high reflectance and prominent
forward scattering or influenced by snow accumulation. By analyzing the variations in
BRDF model parameters across different land cover types, it becomes crucial to select the
appropriate combination of kernel functions for each land cover type. This optimization
of kernel functions allows for the reduction of multi-angle observation fitting models,
thereby enhancing the efficiency of model inversion while ensuring inversion accuracy.
For instance, pure snow-covered surfaces may benefit from the utilization of isotropic and
snow (i.e., Ksnw(θs, θv, φ)) kernels. Furthermore, analyzing the differences in the retrieval of
BRDF parameters by these two models is crucial for establishing the relationship between
their kernel parameters and improving the accuracy of the Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD43 products. These results also demonstrate the validity
and reliability of our previous approach for calibrating MODIS BRDF parameter products
(i.e., MCD43A1) [41].

3.3. Comparison of Albedo Retrieval Results Using the Enhanced Ross-Li Models

We compare the differences between the RTLSRC and RTLSRCS models in the in-
version of albedo for various land cover types using the globally distributed POLDER
BRDF datasets in Figure 4, which uses the RTLSRCS model as ‘reference data’ to assess
the differences in the inversion of albedo between the RTLSRC model. This is because the
RTLSRCS model has higher accuracy in fitting the globally distributed POLDER datasets,
thus theoretically providing higher precision in albedo inversion. Firstly, we examine the
disparities between the RTLSRC and RTLSRCS models in the inversion of narrowband
albedo. The overall R2 results for albedo inversion by both models demonstrate a very high
level of consistency, generally exceeding 0.9, but notable differences exist in the inversion
of both BSA and WSA between these two models. While BSA exhibits high consistency
across land cover types, with SI showing relatively smaller R2 values, WSA demonstrates
significant differences in inversion between the models, particularly notable for ENF, EBF,
CSh, WSa, and PW, resulting in lower overall R2 values, particularly in the red band. This
may be attributed to the stronger anisotropic characteristics exhibited in the red band. In-
terestingly, for SI, its results are opposite to other land cover types; the consistency between
these two models in BSA inversion for SI is poorer, possibly due to the differences in BRDF
characteristics between SI and other land cover types. Regarding the RMSE results, the
albedo inversion results from both models demonstrate high accuracy, with overall RMSE
values consistently below 0.02, except for SI. In terms of BSA, they demonstrate very high
consistency for other land cover types, except for DNF and SI. However, there are notable
disparities in the albedo inversion outcomes for WSA, particularly for ENF, EBF, DBF,
UA, and SI. The RMSE values are relatively higher, exceeding 0.01, especially in the NIR
band. Interestingly, for SI, the consistency in WSA inversion between these two models
is superior to that in BSA, which is opposite to other land cover types. Concerning the
bias results, there is very high consistency among other land cover types for BSA, except
for SI. The RTLSRC model exhibits significant underestimation compared to the RTLSRC
model in BSA inversion for this land cover type, underestimating by 0.015 and 0.017 in the
red and NIR bands, respectively. For WSA, the RTLSRC model demonstrates a noticeable
underestimation compared to the RTLSRC model, particularly in ENF and SI, with an
overall underestimation of approximately 0.01. In terms of the NRMSE results, for BSA,
there is very high consistency among various land cover types (NRMSE < 2%), except for SI,
where the NRMSE value for this land cover type is approximately 4.5%. Concerning WSA,
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it is similar to other evaluation metrics, showing significant differences in ENF, CSh, and
PW (NRMSE = ~4.0%), especially in the red band, with an NRMSE value of approximately
6.0%. Regarding the MRE results, for BSA, there is relatively high consistency among
various land cover types (MRE < 3.5%). However, for WSA, there are larger differences
in the inversion albedo in the red band, with an MRE value of approximately 9.7% for
ENF, while for EBF, MiF, WSa, and GNVM, the MRE values are approximately 5.0%. The
discrepancy may be attributed to the fact that WSA is derived from integrating BSA, thus
magnifying the disparity between the two models in BSA.

Subsequently, we conducted a T-test on the albedo inverted by these two models to
better illustrate the differences in albedo inversion between the two enhanced Ross-Li
models in Figure 5a. The overall T values in BSA are essentially close to 0, while for SI,
the T value is generally higher, approaching 6.4 in the BSA. Various land cover types
exhibit significant differences in WSA, particularly in the red band. Higher T values are
predominantly associated with ENF, EBF, UA, and SI, approximately 3.3, 2.6, 2.1, and 4.6,
respectively. Regarding the overall p values, in BSA, only SI has a p value less than 0.05
in Figure 5b, while in WSA, the significant p values (p < 0.05) mainly include ENF, EBF,
and SI. These results indicate significant differences between the BSA inversion results of
these two models in SI and significant differences between the WSA inversion results of the
RTLSRC and RTLSRCS models in ENF, EBF, and SI. These findings represent statistically
significant differences that cannot be overlooked. In general, the albedo inversions by
the RTLSRC and RTLSRCS models exhibit very high consistency for various land cover
types, particularly in BSA, except for SI. However, significant differences still exist between
these two models, especially in calculating WSA, particularly evident in ENF, EBF, and SI,
where the albedo inversions by these two models show significant discrepancies (p < 0.05).
Regarding SI, substantial differences are observed between the albedo inversions by these
two models, both in characterizing BRDF features and estimating albedo. These differences
are significant and cannot be ignored. Therefore, using the RTLSRC model is not recom-
mended for characterizing BRDF features and albedo inversion for SI since this model is
not appropriate for this particular land cover type.
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serving as the reference data.

Tables 2–4 show the comparison results of the RTLSRC and RTLSRCS models for
the inversion of shortwave albedo across 16 land cover types. The overall R2 results of
these two models are mostly greater than 0.9, except for ENF and CSh in shortwave WSA,
indicating very high consistency in shortwave albedo inversion, especially in shortwave
BSA and blue-sky albedo, except for SI. Regarding the overall RMSE results, the trends for
shortwave broadband albedo and narrowband albedo are generally consistent, with RMSE
values approximately less than 0.01, except for SI. The differences between shortwave WSA
are relatively larger, while the differences in shortwave BSA inverted by these two models
are greater than in shortwave WSA for SI. The bias results of these two models exhibit high
consistency, which is similar to the conclusions drawn for narrowband albedo, with overall
biases less than 0.01, except for SI. Concerning the NRMSE results, for shortwave BSA and
blue-sky albedo, the inversion results of these two models show very high consistency
among other land cover types (NRMSE < 3%), except for SI. However, in shortwave
WSA, significant differences are observed in ENF, CSh, PW, and UA, with NRMSE values
of approximately 8.2%, 6.1%, 5.8%, and 5.5%, respectively. Regarding the MRE results,
for shortwave BSA, there is relatively high consistency among various land cover types
(MRE < 2.0%). However, in shortwave WSA, there are larger differences in the inverted
albedo, with MRE values of approximately 4.4%, 2.4%, and 2.7% for ENF, WSa, and UA,
respectively. Then, we further conducted a T-test on the inversion of broadband albedo
by these two models to better demonstrate the differences in their inversion results. For
shortwave BSA, the p value is less than 0.05 only for SI, indicating a significant difference.
However, for shortwave WSA, the results from the RTLSRC model exhibit significant
differences (i.e., p < 0.05) compared to the RTLSRCS model in ENF, EBF, CSh, WSa, CL, UA,
and SI. It should be noted that for blue-sky albedo, only SI shows a p value less than 0.05,
as blue-sky albedo is a linear weighting of shortwave BSA and WSA, and considering that
the POLDER BRDF dataset is primarily acquired under clear-sky conditions, the weight of
shortwave BSA is greater in computing shortwave blue-sky albedo, resulting in a value
closer to shortwave BSA. In summary, the overall results of the RTLSRC and RTLSRCS
models for albedo inversion are similar to the conclusions drawn for narrowband albedo.
These two models exhibit significant differences in shortwave WSA inversion, such as ENF,
WSa, UA, and SI, while they show high consistency in shortwave BSA and blue-sky albedo
results, except for SI.
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Table 2. The comparison results of the RTLSRC and RTLSRCS models for the inversion of shortwave
BSA across 16 land cover types, with the results from the RTLSRCS model serving as reference data.

IGBP R2 RMSE Bias NRMSE (%) MRE (%) T Value p Value

ENF 0.992 0.002 0.000 1.350 1.202 0.151 0.880
EBF 0.997 0.001 0.000 0.838 0.464 0.153 0.879
DNF 0.999 0.004 −0.001 0.930 0.911 0.074 0.941
DBF 0.995 0.002 0.000 1.583 0.574 0.136 0.892
MiF 0.997 0.001 0.000 1.127 0.703 0.272 0.786
CSh 0.995 0.001 0.000 1.336 0.402 0.101 0.920
OSh 1.000 0.001 0.000 0.351 0.233 0.043 0.966
WSa 0.996 0.001 0.000 0.785 0.771 0.273 0.785
Sav 0.998 0.001 0.000 0.630 0.373 0.014 0.989
GL 1.000 0.001 0.000 0.248 0.220 0.045 0.965
PW 0.998 0.001 0.000 0.933 0.458 0.047 0.962
CL 0.999 0.001 0.000 0.475 0.366 0.035 0.972
UA 0.997 0.001 0.000 0.931 0.560 0.059 0.953

CNVM 0.998 0.001 0.000 0.628 0.412 0.037 0.970
SI 0.946 0.018 −0.014 4.671 1.790 6.229 0.000

BSV 0.999 0.004 −0.001 0.533 0.211 0.138 0.890

Table 3. The comparison results of the RTLSRC and RTLSRCS models for the inversion of shortwave
WSA across 16 land cover types, with the results from the RTLSRCS model serving as reference data.

IGBP R2 RMSE Bias NRMSE (%) MRE (%) T Value p Value

ENF 0.851 0.010 −0.005 8.176 4.399 4.605 0.000
EBF 0.952 0.005 −0.002 3.706 1.748 2.406 0.016
DNF 0.999 0.005 −0.003 1.134 1.457 0.263 0.793
DBF 0.963 0.007 −0.003 4.668 1.906 1.479 0.140
MiF 0.971 0.006 −0.002 3.800 2.156 1.396 0.163
CSh 0.882 0.006 −0.003 6.092 2.090 1.985 0.048
OSh 0.990 0.004 −0.002 1.925 1.053 1.177 0.239
WSa 0.936 0.006 −0.003 3.421 2.446 2.199 0.028
Sav 0.962 0.006 −0.002 3.450 1.546 1.507 0.132
GL 0.993 0.004 −0.002 1.647 1.207 1.054 0.292
PW 0.951 0.005 −0.003 5.769 2.104 0.835 0.405
CL 0.976 0.006 −0.003 2.995 1.772 2.085 0.037
UA 0.947 0.009 −0.005 5.451 2.668 2.637 0.009

CNVM 0.960 0.007 −0.004 3.665 2.033 1.683 0.093
SI 0.963 0.012 −0.009 3.269 1.234 4.548 0.000

BSV 0.999 0.005 −0.002 0.687 0.827 0.486 0.627

Table 4. The comparison results of the RTLSRC and RTLSRCS models for the inversion of shortwave
blue-sky albedo across 16 land cover types, with the results from the RTLSRCS model serving as
reference data.

IGBP R2 RMSE Bias NRMSE (%) MRE (%) T Value p Value

ENF 0.976 0.003 −0.001 2.512 1.794 0.855 0.393
EBF 0.992 0.002 0.000 1.357 0.672 0.404 0.686
DNF 0.999 0.004 −0.001 0.890 0.811 0.110 0.913
DBF 0.990 0.002 0.000 2.317 0.828 0.262 0.793
MiF 0.994 0.002 0.000 1.692 0.925 0.114 0.909
CSh 0.981 0.002 −0.001 2.704 0.770 0.542 0.589
OSh 0.999 0.001 0.000 0.652 0.401 0.282 0.778
WSa 0.989 0.002 0.000 1.217 1.056 0.265 0.791
Sav 0.995 0.002 0.000 1.186 0.597 0.303 0.762
GL 0.999 0.001 −0.001 0.509 0.421 0.253 0.800
PW 0.994 0.002 0.000 1.612 0.712 0.137 0.891
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Table 4. Cont.

IGBP R2 RMSE Bias NRMSE (%) MRE (%) T Value p Value

CL 0.997 0.002 −0.001 0.970 0.633 0.495 0.621
UA 0.992 0.003 −0.001 1.856 0.977 0.672 0.502

CNVM 0.993 0.002 −0.001 1.276 0.725 0.437 0.662
SI 0.956 0.016 −0.013 4.232 1.651 5.980 0.000

BSV 0.999 0.004 −0.001 0.504 0.329 0.207 0.836

3.4. Comparative Analysis of NBAR Inversion Results from the Enhanced Ross-Li Models

Finally, we further examine the disparities between the RTLSRC and RTLSRCS models
in the inversion of the NBAR values across 16 land cover types. Figure 6 illustrates the
average values and standard deviation of NBAR values obtained from both the RTLSRC
and RTLSRCS models. The NBAR values inverted by these two models exhibit remarkable
consistency across various IGBP types, both in terms of average values and standard
deviation. However, the consistency of NBAR results between these two models is relatively
poor for SI. In general, the RTLSRC model tends to be overestimated compared with
the results of the NBAR retrieved by the RTLSRCS model, which is consistent with our
previous research findings [41]. To better compare the differences in the inversion of NBAR
results across various land cover types between these two models, we further conducted
statistical analysis and T-test on both other 15 land cover types (i.e., LC15) and SI. Table 5
presents the comparison results of the RTLSRC and RTLSRCS models for the inversion
of NAR values across LC15 and SI. Clearly, the NBAR values inverted by the RTLSRC
and RTLSRCS models exhibit very high consistency for LC15, and the statistical results
reveal no significant disparities between these two models (p > 0.05). However, overall R2

values of the inverted results from these two models are relatively lower compared to other
land cover types for SI (R2 < 0.9), and the RMSE results approximate 0.03. Additionally,
the RTLSRC model tends to overestimate compared to the RTLSRCS model, with an
overall bias value approximating 0.024. This observation is consistent with our previous
comparisons using MODIS data. Furthermore, a T-test was conducted on the NBAR
values inverted by these two models, revealing significant statistical differences (p < 0.05).
Therefore, the differences in the inverted results from these two enhanced Ross-Li models
can be considered negligible across the other 15 land cover types. However, there are
significant discrepancies in the NBAR values inverted by these two models for SI (p < 0.05).
Specifically, the RTLSRC model tends to overestimate compared to the RTLSRCS model,
with a noticeable bias of approximately 0.024. Therefore, it is not recommended to use the
RTLSRC model to invert the NBAR value for SI.

We further validated the variations in the inverted NBAR values for SI with respect
to SZA in Figure 7, as previously verified using MODIS data. Overall, these findings are
consistent with our earlier observations regarding the changes in SZA. Specifically, between
SZA = 30◦ to 55◦, the differences in the average NBAR values inverted by these two models
are relatively minor for SI, but there is a relatively large variation in standard deviation.
Moreover, as the SZA increases, the difference in the inverted NBAR values between these
two models gradually decreases. This phenomenon is attributed to the transitional BRDF
shape exhibited by SI within the SZA range of 30◦ to 55◦. However, for SZA values ranging
from 55◦ to 74◦, the NBAR values obtained from the RTLSRC model are significantly higher
than those from the RTLSRCS model. Additionally, as SZA increases, the discrepancy in
NBAR values between these two models continues to grow while the overall variation in
standard deviation remains relatively small. These findings are largely consistent with our
previous research results [41], which attribute this phenomenon to the increasing forward
scattering properties of SI with higher SZA, resulting in a deeper bowl-shaped BRDF.
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Table 5. The comparison results of the RTLSRC and RTLSRCS models for the inversion of NAR
values across LC15 and SI, with the results from the RTLSRCS model serving as reference data. LC15
represents the other 15 land cover types, excluding SI.

IGBP Bands R2 RMSE Bias NRMSE (%) MRE (%) T Value p Value

LC15
Red 0.992 0.003 0.000 1.415 1.267 0.292 0.773
NIR 0.999 0.002 0.000 0.675 0.376 0.147 0.884

SI
Red 0.832 0.030 0.023 8.015 2.933 11.044 0.000
NIR 0.882 0.032 0.025 6.450 3.434 10.321 0.000
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4. Discussion

The BRDF characteristics are key to enhancing the interpretability and applicability
of remote sensing across various surface types. In this research, we conducted a com-
prehensive evaluation of the kernel-driven RTLSRC and RTLSRCS models to assess their
effectiveness in characterizing BRDF/Albedo/NBAR characteristics by using the global
POLDER BRDF database. The POLDER BRDF database contains inherent uncertainties
that warrant further discussion in this study. For the POLDER data, we opted for a 90%
coverage rate to ensure pixel uniformity and an adequate dataset. Nevertheless, the coarse
spatial resolution of POLDER data, around 6 × 7 km, presents challenges in maintaining
the uniformity of pure pixels [5,6]. The constraints of pure pixel uniformity are often
difficult to fully satisfy. While these PODER data contain uncertainty to some extent, these
uncertainties also affect the assessment of both models [46]. Therefore, this evaluation is
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fair and can provide compelling references. Due to the coarse spatial resolution of POLDER
data, validating the results of albedo and NBAR presents significant challenges [47]. This
study utilizes the results inverted by the RTLSRCS model as reference data. Inter-model
comparison is also an important reference (e.g., Radiation Transfer Model Intercomparison,
RAMI) [48,49]. Additionally, in previous studies, we used ground measurement data to
validate the ability of the RTLSR and RTLSRS models to retrieve snow albedo in snow-
covered areas [41]. The validation results showed high consistency with the comparison
results between the RTLSRCS and RTLSRC models in this study. These findings indicate
that inter-model comparison results can provide a certain level of reliability. Therefore, to
enhance the accuracy of this assessment, corresponding site observations of albedo and
NBAR are considered indispensable [41]. Consequently, in our future research plan, we
intend to utilize observational site data to carry out a more comprehensive and systematic
evaluation of various versions of the enhanced Ross-Li models.

We selected the enhanced kernel-driven RTLSRC and RTLSRCS models, as they repre-
sent the most advanced forms of kernel-driven models currently available and have demon-
strated high accuracy across various data sources. These models build upon previous
versions of kernel-driven models, such as the RTLSRC model, which includes hotspot cor-
rection over the widely used RTLSR model. Secondly, the hotspot-corrected RTLSRC model
and RTLSR model exhibit overall consistency in characterizing BRDF/Albedo/NBAR,
particularly when ignoring the hotspot direction [36]. Thus, the evaluation results of the
RTLSRC model in this paper can substitute for that of the RTLSR model, as our study does
not primarily focus on the hotspot direction. The aim of this research is to assess the differ-
ences between the enhanced RTLSRC and RTLSRCS models for 16 different land surface
types, which will better serve our subsequent analysis of surface reflection characteristics
and parameter inversion under mixed-pixel conditions. The reason is that the RTLSRCS
model comprehensively includes reflection characteristics of almost all natural objects
(e.g., isotropic reflection, soil–vegetation system backward reflection, and strong forward
reflection of snow). For the PW surface type, it is possible to improve the characterization
of BRDF features. Incorporating the BRDF shape of water into the kernel-driven model
could enhance its ability to represent PW surface characteristics. In future research, we will
consider focusing on this aspect. Despite these potential limitations, our research results
demonstrate that the RTLSRCS model can accurately fit the global POLDER BRDF database
across various land surface types. Therefore, in the near future, this model has the potential
to enhance many applications, such as mixed-pixel decomposition and surface parameters
inversion in snow-covered forests.

5. Conclusions

The RTLSRCS model integrates parameters representing the isotropic reflection of
the land surface, describing the backward reflection characteristics of soil and vegeta-
tion systems and characterizing the strong forward reflection of snow. Additionally, this
model adequately addresses hotspot effects within the KRTC(θs, θv, φ) and KLSRC(θs, θv, φ)
functions. Therefore, it can effectively capture the BRDF/Albedo/NBAR features across
various land surface types in theory. In this study, we conducted a thorough evaluation
of the effectiveness of the kernel-driven RTLSRC and RTLSRCS models in describing
BRDF/Albedo/NBAR characteristics by using the global POLDER BRDF database for
diverse land cover types. The primary findings of this paper are outlined below:

(1) Both enhanced Ross-Li models exhibit high fitting accuracy in characterizing the
POLDER BRDF characteristics across 16 land cover types. However, for SI, the RTL-
SRC model demonstrates relatively poor fitting accuracy (RMSE = ~0.056). In contrast,
the RTLSRCS model demonstrates a notable enhancement in accuracy compared to
the RTLSRC model (RMSE = ~0.030), with the RTLSRCS model reducing the NRMSE
values by approximately 2.34%. For DNF and BSV, the RTLSRCS model exhibits no-
ticeable improvements over the RTLSRC model, with the overall NRMSE decreasing
by 0.43% and 0.37%, respectively. For other land cover types, the improvement in
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fitting accuracy of the RTLSRCS model relative to the RTLSRC model is limited. While
the RTLSRCS model is suitable for various IGBP types, the accuracy of the RTLSRC
model is notably reduced for IGBP types with high reflectance and strong forward
reflection characteristics.

(2) The RTLSRC and RTLSRCS models exhibit highly consistent albedo inversion across
various land cover types (R2 > 0.9), particularly in BSA and blue-sky albedo, except for
SI. However, significant differences in shortwave WSA inversion persist between these
two models for ENF, EBF, Csh, WSa, CL, UA, and SI (p < 0.05), with NRMSE values of
approximately 8.2%, 3.7%, 6.1%, 3.4%, 3.0%, 5.5%, and 3.3%, respectively. Addition-
ally, compared to the RTLSRCS model, the RTLSRC model demonstrates a notable
underestimation in albedo inversion for SI, with an approximate underestimation of
0.013 in shortwave blue-sky albedo inversion.

(3) The NABAR values inverted by these two models are nearly identical across the
other 15 land cover types. However, the consistency of NBAR results between these
two models is relatively poor for SI. Overall, the RTLSRC model tends to overes-
timate compared to the RTLSRCS model, with a noticeable bias of approximately
0.024. In addition, these two models show significant differences in the inverted
NBAR values with varying SZA (p < 0.05). Therefore, the RTLSRCS model is suit-
able for characterizing the BRDF/Albedo/NBAR characteristics across various IGBP
types. Conversely, using the RTLSRC model is not recommended for characteriz-
ing BRDF/Albedo/NBAR features for SI, as the model is not suitable for this land
cover type.

In summary, this study holds significant scientific importance for understanding the
reflective characteristics of different land cover types, angle correction, and remote sensing
parameter inversion. Additionally, this study reveals the accuracy of different versions of
Ross-Li models in fitting various land cover types and the variation characteristics of BRDF
parameters. This study is of significant importance for performing land cover classification
and improving the accuracy of satellite BRDF/Albedo/NBAR products (e.g., MODIS).

Author Contributions: Conceptualization, A.D.; Data curation, X.Z. and J.G.; Formal analysis, A.D.,
and Z.J.; Funding acquisition, A.D.; Investigation, X.Z.; Methodology, A.D., A.K., X.Z., J.G., P.Z., M.Z.,
H.J. and K.X.; Resources, H.J.; Validation, Z.J., A.K., J.G., P.Z. and M.Z.; Writing—original draft, A.D.;
Writing—review and editing, A.D., Z.J., A.K., H.J. and K.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was partially supported by the National Natural Science Foundation of China
(Nos. 42301363, 41971288, 42301364), Anhui Provincial Natural Science Foundation (No. 2308085QD118),
Fundamental Research Funds for the Central Universities (Nos. JZ2024HGTB0254, JZ2023HGQA0148),
and Open Fund of State Key Laboratory of Remote Sensing Science (No. E06102010A).

Data Availability Statement: The data are available upon request from the corresponding author.

Acknowledgments: The POLDER-3/PARASOL BRDF databases were elaborated by the Laboratoire
des Sciences du Climat et del‘Environment (LSCE) and were provided by the POSTEL Service Center.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jacquemoud, S. Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra, theoretical study.

Remote Sens. Environ. 1993, 44, 281–292. [CrossRef]
2. Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote

sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [CrossRef]
3. Jacquemoud, S. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [CrossRef]
4. Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the earths surface for the correction of remote-sensing

data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [CrossRef]
5. Ding, A.; Jiao, Z.; Dong, Y.; Qu, Y.; Zhang, X.; Xiong, C.; He, D.; Yin, S.; Cui, L.; Chang, Y. An assessment of the performance of

two snow kernels in characterizing snow scattering properties. Int. J. Remote Sens. 2019, 40, 6315–6335. [CrossRef]

https://doi.org/10.1016/0034-4257(93)90022-P
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.1016/0034-4257(92)90072-R
https://doi.org/10.1029/92JD01411
https://doi.org/10.1080/01431161.2019.1590878


Remote Sens. 2024, 16, 2119 20 of 21

6. Ding, A.; Jiao, Z.; Dong, Y.; Zhang, X.; Peltoniemi, J.I.; Mei, L.; Guo, J.; Yin, S.; Chang, Y.; Xie, R. Evaluation of the snow albedo
retrieved from the snow kernel improved the Ross-Roujean BRDF model. Remote Sens. 2019, 11, 1611. [CrossRef]

7. Bablet, A.; Vu, P.V.H.; Jacquemoud, S.; Viallefont-Robinet, F.; Fabre, S.; Briottet, X.; Sadeghi, M.; Whiting, M.L.; Baret, F.; Tian, J.
MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain
400–2500 nm. Remote Sens. Environ. 2018, 217, 1–17. [CrossRef]

8. Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J.; et al. An algorithm for
the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF
model. Remote Sens. Environ. 2018, 209, 594–611. [CrossRef]

9. Bréon, F.; Maignan, F. A BRDF-BPDF database for the analysis of Earth target reflectances. Earth Syst. Sci. Data 2017, 9, 31–45.
[CrossRef]

10. Gatebe, C.K.; King, M.D. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks,
smoke layers) for remote sensing applications. Remote Sens. Environ. 2016, 179, 131–148. [CrossRef]

11. Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of
crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [CrossRef]

12. Ding, A.; Ma, H.; Liang, S.; He, T. Extension of the Hapke model to the spectral domain to characterize soil physical properties.
Remote Sens. Environ. 2022, 269, 112843. [CrossRef]

13. Bréon, F.; Vermote, E. Correction of MODIS surface reflectance time series for BRDF effects. Remote Sens. Environ. 2012, 125, 1–9.
[CrossRef]

14. He, T.; Liang, S.; Wang, D.; Cao, Y.; Min, F. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI
data based on the unified direct estimation approach. Remote Sens. Environ. 2018, 204, 181–196. [CrossRef]

15. Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the
VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long-term MODIS record. Remote Sens.
Environ. 2017, 201, 256–274. [CrossRef]

16. Jiao, Z.; Hill, M.J.; Schaaf, B.C.; Zhang, H.; Wang, Z.; Li, X. An Anisotropic Flat Index (AFX) to derive BRDF archetypes from
MODIS. Remote Sens. Environ. 2014, 141, 168–187. [CrossRef]

17. Dupiau, A.; Jacquemoud, S.; Briottet, X.; Fabre, S.; Viallefont-Robinet, F.; Philpot, W.; Di Biagio, C.; Hébert, M.; Formenti, P.
MARMIT-2: An improved version of the MARMIT model to predict soil reflectance as a function of surface water content in the
solar domain. Remote Sens. Environ. 2022, 272, 112951. [CrossRef]

18. Hapke, B. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 1981, 4, 3039–3054. [CrossRef]
19. Hapke, B. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation. Icarus 2012, 221,

1079–1083. [CrossRef]
20. Jiang, C.; Fang, H. GSV: A general model for hyperspectral soil reflectance simulation. Int. J. Appl. Earth Obs. Geoinf. 2019, 83,

101932. [CrossRef]
21. Verhoef, W.; Christiaan, V.; Middleton, E.M. Hyperspectral radiative transfer modeling to explore the combined retrieval of

biophysical parameters and canopy fluorescence from FLEX-Sentinel-3 tandem mission multi-sensor data. Remote Sens. Environ.
2018, 204, 942–963. [CrossRef]

22. Jacquemoud, S.; Verhoef, W.; Baret, F. PROSPECT+SAIL models, A review of use for vegetation characterization. Remote Sens.
Environ. 2009, 1131, 56–66. [CrossRef]

23. Ding, A.; Liang, S.; Jiao, Z.; Ma, H.; Kokhanovsky, A.A.; Peltoniemi, J.I. Improving the asymptotic radiative transfer model to
better characterize the pure snow hyperspectral bidirectional reflectance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4303916.
[CrossRef]

24. Kokhanovsky, A.A.; Bréon, F.M. Validation of an analytical snow BRDF model using parasol multi-angular and multispectral
observations. IEEE Trans. Geosci. Remote Sens. 2012, 9, 928–932. [CrossRef]

25. Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the
reflectance spectroscopy of snow. Cryosphere 2018, 12, 2371–2382. [CrossRef]

26. Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer
in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [CrossRef] [PubMed]

27. Xiong, C.; Shi, J. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and monte
carlo ray tracing. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 177–189. [CrossRef]

28. Kimmel, B.W.; Baranoski, G.V.G. A novel approach for simulating light interaction with particulate materials, application to the
modeling of sand spectral properties. Opt. Express 2007, 15, 9755–9777. [CrossRef] [PubMed]

29. Yang, Y.; Li, W.S.; Zhang, H. A seven-parameter BRDF model with double-peak characteristic suitable for sandy soil. Math. Probl.
Eng. 2018, 2018, 9398608. [CrossRef]

30. Han, Z.; Gu, X.; Zuo, X.; Bi, K.; Shi, S. Semi-empirical models for the bidirectional water-leaving radiance, an analysis of a turbid
inland lake. Front. Environ. Sci. 2022, 9, 818557. [CrossRef]

31. Kuusk, A. A two-layer canopy reflectance model. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 1–9. [CrossRef]
32. Qi, J.; Xie, D.; Yin, T.; Yan, G.; Gastellu-Etchegorry, J.P.; Li, L. LESS, large-scale remote sensing data and image simulation

framework over heterogeneous 3D scenes. Remote Sens. Environ. 2018, 221, 695–706. [CrossRef]

https://doi.org/10.3390/rs11131611
https://doi.org/10.1016/j.rse.2018.07.031
https://doi.org/10.1016/j.rse.2018.02.041
https://doi.org/10.5194/essd-9-31-2017
https://doi.org/10.1016/j.rse.2016.03.029
https://doi.org/10.1109/36.134078
https://doi.org/10.1016/j.rse.2021.112843
https://doi.org/10.1016/j.rse.2012.06.025
https://doi.org/10.1016/j.rse.2017.10.031
https://doi.org/10.1016/j.rse.2017.09.020
https://doi.org/10.1016/j.rse.2013.10.017
https://doi.org/10.1016/j.rse.2022.112951
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1016/j.icarus.2012.10.022
https://doi.org/10.1016/j.jag.2019.101932
https://doi.org/10.1016/j.rse.2017.08.006
https://doi.org/10.1016/j.rse.2008.01.026
https://doi.org/10.1109/TGRS.2022.3144831
https://doi.org/10.1109/LGRS.2012.2185775
https://doi.org/10.5194/tc-12-2371-2018
https://doi.org/10.1364/AO.27.002502
https://www.ncbi.nlm.nih.gov/pubmed/20531783
https://doi.org/10.1016/j.jqsrt.2013.07.026
https://doi.org/10.1364/OE.15.009755
https://www.ncbi.nlm.nih.gov/pubmed/19547326
https://doi.org/10.1155/2018/9398608
https://doi.org/10.3389/fenvs.2021.818557
https://doi.org/10.1016/S0022-4073(01)00007-3
https://doi.org/10.1016/j.rse.2018.11.036


Remote Sens. 2024, 16, 2119 21 of 21

33. Chen, S.; Xiao, P.; Zhang, X.; Qi, J.; Yin, G.; Ma, W.; Liu, H. Simulating snow-covered forest bidirectional reflectance by extending
hybrid geometric optical–radiative transfer model. Remote Sens. Environ. 2023, 296, 113713. [CrossRef]

34. Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.; Dong, Y.; Wang, Z.; Liu, Y.; Zhang, X.; Yin, S.; et al. Development of a
snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens.
Environ. 2019, 55, 198–209. [CrossRef]

35. Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens.
Environ. 2016, 186, 32–46. [CrossRef]

36. Jiao, Z.; Schaaf, C.B.; Dong, Y.; Román, M.; Hill, M.J.; Chen, J.M.; Wang, Z.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A method for
improving hotspot directional signatures in BRDF models used for MODIS. Remote Sens. Environ. 2016, 186, 135–151. [CrossRef]

37. Dong, Y.; Jiao, Z.; Ding, A.; Zhang, H.; Zhang, X.; Li, Y.; He, D.; Yin, S.; Cui, L. A modified version of the kernel-driven model for
correcting the diffuse light of ground multi-angular measurements. Remote Sens. Environ. 2018, 210, 325–344. [CrossRef]

38. Zhang, X.; Jiao, Z.; Dong, Y.; Zhang, H.; Li, Y.; He, D.; Ding, A.; Yin, S.; Cui, L.; Chang, Y. Potential investigation of linking
PROSAIL with the Ross-Li BRDF model for vegetation characterization. Remote Sens. 2018, 10, 421–437. [CrossRef]

39. Dong, Y.; Jiao, Z.; Cui, L.; Zhang, H.; Zhang, X.; Yin, S.; Ding, A.; Chang, Y.; Xie, R.; Guo, J. Assessment of the hotspot effect for
the PROSAIL model with POLDER hotspot observations based on the hotspot-enhanced kernel-driven BRDF model. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 8048–8064. [CrossRef]

40. Wu, S.; Wen, J.; Xiao, Q.; Liu, Q.; Hao, D.; Lin, X.; You, D. Derivation of kernel functions for kernel-driven reflectance model over
sloping terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 396–409. [CrossRef]

41. Ding, A.; Jiao, Z.; Zhang, X.; Dong, Y.; Kokhanovsky, A.A.; Guo, J.; Jiang, H. A practical approach to improve the MODIS MCD43A
products in snow-covered areas. J. Remote Sens. 2023, 3, 0057. [CrossRef]

42. Lacaze, R.; Fédèle, E.; Bréon, F.M. POLDER-3/PARASOL BRDF Databases User Manual. 2009. Available online:
https://scholar.google.com/scholar_lookup?title=POLDER-3/PARASOL%20BRDF%20Databases%20User%20Manual&
author=R.%20Lacaze&publication_year=2009 (accessed on 10 April 2024).

43. Yang, P. Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photo-
chemical reflectance index. Remote Sens. Environ. 2022, 279, 113133. [CrossRef]

44. Liang, S. Narrowband to broadband conversions of land surface albedo: I. algorithms. Remote Sens. Environ. 2001, 76, 213–238.
[CrossRef]

45. Liang, S. Narrowband to broadband conversions of land surface albedo, II. validation. Remote Sens. Environ. 2003, 84, 25–41.
[CrossRef]

46. Jiao, Z.; Zhang, X.; Bréon, F.; Dong, Y.; Schaaf, C.B.; Román, M.; Wang, Z.; Cui, L.; Yin, S.; Ding, A.; et al. The influence of spatial
resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements. Remote
Sens. Environ. 2018, 215, 371–385. [CrossRef]

47. Chang, Y.; Jiao, Z.; Zhang, X.; Mei, L.; Dong, Y.; Yin, S.; Cui, L.; Ding, A.; Guo, J.; Xie, R.; et al. Assessment of improved ross-li brdf
models emphasizing albedo estimates at large solar angles using polder data. IEEE Trans. Geosci. Remote Sens. 2020, 99, 1–19.
[CrossRef]

48. Gobron, N.; Widlowski, J.; Pinty, B. The 4TH Radiation Transfer Model Intercomparison: Using ISO-13528 for Proficiency Testing
of Canopy Reflectance Models. J. Geophys. Res. Atmos. 2013, 118, 6869–6890. [CrossRef]

49. Widlowski, J.L.; Pinty, B.; Clerici, M.; Dai, Y.; De Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Meister, W.N.
RAMI4PILPS: An Intercomparison of Formulations for the Partitioning of Solar Radiation in Land Surface Models. J. Geophys.
Res. Biogeosciences 2015, 116, 264–265. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2023.113713
https://doi.org/10.1016/j.rse.2018.11.001
https://doi.org/10.1016/j.rse.2016.08.015
https://doi.org/10.1016/j.rse.2016.08.007
https://doi.org/10.1016/j.rse.2018.03.030
https://doi.org/10.3390/rs10030437
https://doi.org/10.1109/TGRS.2019.2917923
https://doi.org/10.1109/JSTARS.2018.2854771
https://doi.org/10.34133/remotesensing.0057
https://scholar.google.com/scholar_lookup?title=POLDER-3/PARASOL%20BRDF%20Databases%20User%20Manual&author=R.%20Lacaze&publication_year=2009
https://scholar.google.com/scholar_lookup?title=POLDER-3/PARASOL%20BRDF%20Databases%20User%20Manual&author=R.%20Lacaze&publication_year=2009
https://doi.org/10.1016/j.rse.2022.113133
https://doi.org/10.1016/S0034-4257(00)00205-4
https://doi.org/10.1016/S0034-4257(02)00068-8
https://doi.org/10.1016/j.rse.2018.06.025
https://doi.org/10.1109/TGRS.2020.3030948
https://doi.org/10.1002/jgrd.50497
https://doi.org/10.1029/2010JG001511

	Introduction 
	Materials and Methods 
	POLDER BRDF Database 
	Enhanced Ross-Li BRDF Models 
	Evaluation Methods of the Enhanced Ross-Li Models 

	Results and Analysis 
	Evaluating the Enhanced Ross-Li Models to Characterize the BRDF Characteristics 
	Analysis of BRDF Parameter Characteristics of the Enhanced Ross-Li Models 
	Comparison of Albedo Retrieval Results Using the Enhanced Ross-Li Models 
	Comparative Analysis of NBAR Inversion Results from the Enhanced Ross-Li Models 

	Discussion 
	Conclusions 
	References

