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Abstract: Chromophoric dissolved organic matter (CDOM) is a mixture of various types of organic 

matter and a useful parameter for monitoring complex inland surface waters. Remote sensing has 

been widely utilized to detect CDOM in various studies; however, in many cases, the dataset is 

relatively imbalanced in a single region. To address these concerns, data were acquired from hyper-

spectral images, field reflection spectra, and field monitoring data, and the imbalance problem was 

solved using a synthetic minority oversampling technique (SMOTE). Using the on-site reflectance 

ratio of the hyperspectral images, the input variables Rrs (452/497), Rrs (497/580), Rrs (497/618), and 

Rrs (684/618), which had the highest correlation with the CDOM absorption coefficient aCDOM (355), 

were extracted. Random forest and light gradient boosting machine algorithms were applied to cre-

ate a CDOM prediction algorithm via machine learning, and to apply SMOTE, low-concentration 

and high-concentration datasets of CDOM were distinguished by 5 m−1. The training and testing 

datasets were distinguished at a 75%:25% ratio at low and high concentrations, and SMOTE was 

applied to generate synthetic data based on the training dataset, which is a sub-dataset of the orig-

inal dataset. Datasets using SMOTE resulted in an overall improvement in the algorithmic accuracy 

of the training and test step. The random forest model was selected as the optimal model for CDOM 

prediction. In the best-case scenario of the random forest model, the SMOTE algorithm showed 

superior performance, with testing R2, absolute error (MAE), and root mean square error (RMSE) 

values of 0.838, 0.566, and 0.777 m−1, respectively, compared to the original algorithm’s test values 

of 0.722, 0.493, and 0.802 m−1. This study is anticipated to resolve imbalance problems using SMOTE 

when predicting remote sensing-based CDOM. It is expected to produce and implement a machine 

learning model with improved reliable performance. 

Keywords: chromophoric dissolved organic matter; absorption coefficient; data resampling; 

SMOTE; hyperspectral imagery; remote sensing; machine learning; reflectance band ratio 

 

1. Introduction 

Chromophoric dissolved organic matter (CDOM) is the light-absorbing portion of 

dissolved organic matter (DOM). It is composed of a mixture of various organic sub-

stances derived from freshwater, sewage, and sediment [1,2]. CDOM exhibits its highest 

light absorption capacity at short wavelengths, ranging from the ultraviolet to the blue 
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spectral range. These properties provide protection for phytoplankton and other aquatic 

organisms against UV-B radiation exposure; however, they can also alter the biological 

availability of dissolved CDOMs that are destroyed by sunlight and induce certain trace 

metal and redox reactions, thereby affecting dissolved oxygen levels due to the heat gen-

erated [3,4]. In addition, CDOM serves as the primary repository of dissolved organic car-

bon (DOC) in aquatic ecosystems and is invariably used as a tracer to estimate DOC flux 

and evaluate its spatial distribution [5]. 

Quantifying CDOM is essential for estimating DOC fluxes in terrestrial and marine 

environments. It is also necessary for monitoring spatial and seasonal variations in the 

carbon cycle. Numerous studies have solved this problem using remote sensing based on 

the absorption characteristics of CDOM [3,6–8]. Two main methods are commonly used 

to estimate CDOM via remote sensing: semi-analytical and empirical methods. Analytical 

methods involve analyzing the internal relationship between water composition and re-

mote sensing reflectance and combining bio-optical models and empirical parameters. 

Conversely, empirical methods are based on the empirical relationship between the 

CDOM absorption coefficient and remote sensing reflectance [5,9]. The analytical method 

has a clear theoretical basis for intrinsic optical properties based on the hypothesis that 

the CDOM spectral slope remains constant. However, some parameters with optical prop-

erties and geographical effects are currently being developed using statistical methods 

[10]. Moreover, its application in turbid areas with complex optical properties, such as 

inland water, can be challenging [11]. Empirical methods offer the advantage of requiring 

less knowledge about the relationship between the apparent properties of water and its 

intrinsic optical properties. However, they struggle to provide a clear explanation of the 

complex mechanism of CDOM. In addition, the commonality of empirical methods may 

deteriorate as more data are added, even within the same region. [12,13]. To compensate 

for the errors in empirical methods, it is imperative to construct an extensive and accurate 

dataset to facilitate cross-validation. 

Recent research has focused on the application of statistical methods, such as ma-

chine learning, for predicting CDOM to compensate for the shortcomings of empirical 

methods. Machine learning algorithms are capable of handling nonlinearity and complex 

regression problems, resulting in improved prediction accuracy for CDOM. Ruescas et al. 

[14] compared different models, including regularized linear regression (RLR), random 

forest regression (RFR), kernel ridge regression (KRR), Gaussian process regression 

(GPR), and support vector (SVR) machines in predicting CDOM. Keller et al. [15] com-

pared eight techniques to estimate five water quality parameters, including CDOM, and 

SVR machines showed the best performance with a coefficient of determination (R2) value 

of 0.915. Sun et al. [16] tested the Backpropagation (BP) neural network, SVR, RFR, and 

GPR to estimate CDOM using Landsat 8 OLI data and showed an accuracy of over 70% 

in most cases; however, underestimation and overestimation were observed in eutrophi-

cation and mesotrophic conditions, respectively. 

The occurrence of high-concentration events for CDOM estimation using statistical 

methods is considerably lower than that for low-concentration events, resulting in data 

imbalance problems. Data imbalance is a prevalent problem not only in CDOM but also 

in data related to most environmental fields, including algal blooms, red tides, and oil 

spills. Because machine learning algorithms are designed to improve the overall perfor-

mance of models, when encountering imbalanced data, biased learning may occur during 

the model learning process, which can thereby result in a decrease in model performance 

[17]. To solve these problems, recent studies have applied data resampling techniques. 

Bourel et al. [18] used the synthetic minority oversampling technique (SMOTE) and an 

SVM to improve the predictive ability of water pollution and mitigate health risks. Kim et 

al. [19] used the adaptive synthetic sampling technique for observation data from reser-

voirs to solve the data imbalance problem and predict the algal alert level. However, re-

search addressing the data imbalance problem in CDOM prediction remains insufficient. 
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In this study, a data synthesis technique was applied to introduce data imbalance 

issues previously addressed within the domain of CDOM. The specific objectives of this 

study were as follows: (1) to resolve data imbalance by applying a data resampling 

method to collect hyperspectral and CDOM data; (2) to apply original and resampled data 

to machine learning models to compare calculation performance; and (3) to evaluate per-

formance through a comparison of spatiotemporal distributions obtained from models. 

2. Materials and Methods 

2.1. Site Description and Data Acquisition 

2.1.1. Study Area 

The Geum River Basin is one of the four major river basins in South Korea, with a 

stream length of 398 km and a watershed area of 9913 km2. In the Geum River Basin, the 

Daecheong Dam (DCD) is located furthest upstream, while the Sejong reservoir (SJR) is 

34 km downstream from the DCD. In addition, the Gongju reservoir (GJR) is situated 18 

km downstream from the SJR. The Baekje reservoir (BJR) is located 23 km downstream 

from the GJR, while the BJR is 58.6 km away from the Geum River estuary bank. The BJR 

has a total water storage capacity of 24 million m3 and is an operational reservoir that 

provides agricultural water and electricity to surrounding agricultural lands (Figure 1). 

The BJR has become a problem owing to algal blooms caused by an increase in retention 

time in the Geum River Basin, the pollution load from urban areas, and climate change 

[20]. 

 

Figure 1. Location of Baekje reservoir (BJR) in the Geum River Basin and sampling points for each 

monitoring period. 

2.1.2. In Situ Reflectance Measurements and Airborne Hyperspectral Image 

To monitor the BJR, hyperspectral imaging and water sampling from seven cam-

paigns on four occasions in 2016 and three occasions in 2017 were conducted. For hyper-

spectral imaging, an AisaFENIX hyperspectral sensor (AISA Aero Survey Co., Ltd., Ka-

wasaki, Japan) was used, which has a spectral resolution of 400–970 nm at 4–5 nm intervals 

and a spatial resolution of 2 m. The airborne campaigns were conducted for 2 to 3 h start-

ing at 8:30 a.m. at an altitude of 3 km. Field sampling commenced at approximately 8:30 
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a.m. as well. Water sampling and in situ reflectance data were collected over a 3 h period 

at the monitoring stations. A total of 11–20 points were sampled for each monitoring 

event. The field reflectance for atmospheric correction was obtained using a FieldSpec 

Handheld2 spectroradiometer (ASD Inc., Boulder, CO, USA) in the wavelength range of 

325–1075 nm. The MODTRAN code was developed at Science Inc., and the Air Force Re-

search Laboratory was utilized to generate atmospheric correction parameters and subse-

quently calculate the surface reflectance of the hyperspectral images. The relationship be-

tween the atmospheric corrected reflectance and field reflectance through MODTRAN 6 

presented in Pyo et al. [20] showed that the NSE was higher than 0.8 and the RMSE value 

was lower than 0.0034 sr−1, and the parameter-related information is shown in Section A 

in the Supplementary Materials. 

2.1.3. CDOM Absorption Coefficient 

The CDOM absorption coefficient (𝑎𝐶𝐷𝑂𝑀) obtained from field monitoring was stored 

in polyvinyl chloride bottles under dark and refrigerated conditions before being trans-

ported to the laboratory. Upon arrival at the laboratory, the sample was filtered using a 

Millipore polycarbonate membrane (pore size = 0.22 um; Φ = 45 mm). This membrane 

was pre-rinsed in a 10% HCl solution prior to filtering. The filtered solution was analyzed 

using a Cary 5000 UV-vis-NIR spectrophotometer (Agilent Technologies, Inc., Santa Clara, 

CA, USA). A 0.1 m quartz cuvette was used for the measurement. The absorption spectra 

were determined in the wavelength range of 350–800 nm at 1 nm intervals. The absorbance 

was converted into an absorption coefficient using Equation (1). To minimize the interfer-

ence caused by light scattering, the average absorption at the highest end of the spectrum 

was subtracted and minimized, as shown in Equation (1) [21]. 

𝑎𝐶𝐷𝑂𝑀(𝜆) = 2.303 × 𝐴(𝜆)/𝐿 (1) 

𝛼𝜆 = 𝛼𝜆′ − 𝛼𝑎𝑣𝑔_𝑟𝑎𝑛𝑔𝑒′(𝜆/𝜆𝑎𝑣𝑔_𝑟𝑎𝑛𝑔𝑒) (2) 

where 𝐴(𝜆) is the absorption of filtered water at a specific wavelength measured over the 

quartz cuvette path length 𝐿. 𝛼𝜆 is absorption coefficient at specific wavelength (𝜆) and 

the 𝜆𝑎𝑣𝑔_𝑟𝑎𝑛𝑔𝑒was calculated considering an average absorption of 650–700 spectra [22]. 

Past studies have employed a range of wavelength intervals from 254 nm to 440 nm as 

reference wavelengths to characterize 𝑎𝐶𝐷𝑂𝑀 in inland aquatic environments. Xu et al. 

[23] proposed 355 nm as the appropriate absorption coefficient for Poyang Lake after eval-

uating three wavelengths: 355 nm, 400 nm, and 440 nm. Kim et al. [24] assessed CDOM 

reference wavelengths ranging from 350 nm to 440 nm and concluded that the optimal 

performance was achieved within the range of 350~355 nm. Therefore, in this study, 355 

nm was selected as the reference wavelength to quantify 𝑎𝐶𝐷𝑂𝑀(355) and was used as an 

output variable in the model. 

Rainfall and runoff observation data from the BJR were used to understand the spa-

tial distribution and trends of 𝑎𝐶𝐷𝑂𝑀 . Observation data were acquired from 

https://www.water.or.kr/ (accessed on 28 November 2023). 

2.2. Feature Selection and Data Resampling Method 

2.2.1. Feature Selection 

The airborne hyperspectral image used as an input variable had 127 reflectance in the 

400–970 nm range, but 66 bands in the 400–700 nm range of visible light were used. After 

imaging the entire BJR using a hyperspectral device mounted on an aircraft, atmospheri-

cally corrected reflectance values were obtained using MODTRAM 6. Figure 2 shows air-

borne hyperspectral values from 107 water sampling points from 12 August 2016 to 11 

November 2017. Correlation analysis was performed to investigate the relationship be-

tween 𝑎𝐶𝐷𝑂𝑀(355) and single-band reflectance 𝑅𝑟𝑠, and the final input variable was con-

structed by estimating the optimal value in the region of high correlation. 

https://www.water.or.kr/
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Figure 2. Airborne hyperspectral reflectance spectra of the sampling stations for seven campaigns 

in the Baekje reservoir (BJR). 

2.2.2. Data Resampling Method 

Data resampling was used to solve the data imbalance problem. It comprises an un-

dersampling technique that reduces the size of the majority class by deleting instances 

and an oversampling technique that adds new samples to the minority class. SMOTE is 

an oversampling technique that utilizes the k-NN algorithm to artificially generate new 

samples by respecting the distribution of minority classes. SMOTE operates on a “fea-

turespace” rather than a “dataspace,” and the nearest neighbors are randomly selected 

along the line segments connecting some or all of the classes [25]. SMOTE defines neigh-

bors for each element of the minority class, sets 𝑘 (usually five) close neighbors, and sub-

sequently randomly selects 𝑁 < 𝑘 elements and uses these elements to construct a new 

sample through interpolation. The synthetic sample is represented by Equation (3): 

𝑥𝑖
∗𝑝
= 𝑥𝑖 + 𝑢(𝑥𝑖

𝑝
− 𝑥𝑖)  (3) 

where a given sample 𝑋𝑖 is the data obtained from a minority class, and for a sample 𝑋𝑖
𝑝 

randomly selected from N neighbors; 𝑝 is 1,…; N refers to the synthetic sample 𝑥𝑖
∗𝑝; and 

𝑢 is a randomly generated number between 0 and 1. SMOTE has the advantage of a fast 

calculation speed and provides balanced and accurate performance [26,27]. 

When generating synthetic data using SMOTE, a standard for dividing the data must 

exist. As the 𝑎𝐶𝐷𝑂𝑀(355) data were continuous, the distribution of the data was investi-

gated in advance using a histogram to select the criteria for classification. Additionally, 

based on the results of the histogram and the literature review, a threshold for unbalanced 

data distribution was established, and the classes were divided based on this threshold to 

generate synthetic data for minority classes. 

2.3. Construction of Machine Learning Models and Evaluation of Model Performance 

2.3.1. Model Process 

Figure 3 shows a research flowchart of the model construction process. To introduce 

the SMOTE method, the training and testing data were first divided into a 75%:25% ratio 

for each class in the 𝑎𝐶𝐷𝑂𝑀(355) class and extracted through a histogram. An algorithm 

to quantify the nonlinear relationship between the reflectance ratio of the hyperspectral 

band and the absorption coefficient was constructed using random forest (RF) and light 

gradient boosting machine (LightGBM). RF and LightGBM were constructed for each of 



Remote Sens. 2024, 16, 2313 6 of 19 
 

 

the new datasets that generated synthetic data by applying SMOTE to the training data 

and the original dataset that was not applied. The testing data were not included in this 

process and were subsequently calculated to verify the performances of the two algo-

rithms. 

 

Figure 3. Scheme of the synthetic minority oversampling technique (SMOTE) application method 

to construct the random forest model. 

2.3.2. Random Forest Algorithm 

RF uses bootstrapping to generate 𝑇 random training sets S1, S2, … ST. After that, a 

decision tree (ntree) is constructed, divided into several homogeneous subsets, and input 

variables are selected and classified so that homogeneity increases within the ntree and 

heterogeneity between ntrees, the prediction average for each tree is calculated to produce 

the model prediction result [16,28]. RF can relieve the overfitting problem of simple deci-

sion trees and is very powerful in including a large number of input variables. It also pro-

vides good accuracy even when there are missing items and heterogeneous variables [14]. 

RF is simpler than other machine learning models, but it shows better performance, and 

it presents a powerful algorithm, especially when the number of data is small, as in this 

study. Based on the previous study Kim et al. [24], 𝑎𝐶𝐷𝑂𝑀(355) prediction was performed 

through RF, and the performance of average R2 0.845 and average RMSE 0.68 m−1 was 

inferred using variables of 𝑅𝑟𝑠(475), 𝑅𝑟𝑠(497), and 𝑅𝑟𝑠(660) in 𝑎𝐶𝐷𝑂𝑀(355). 

The python sklearn random forest library was used, and the parameters used were 

“n_estimators”, “max_depth”, “max_features”, and “min_samples_split”. The “n_estima-

tors” is the number of decision trees, and “max_depth” is the maximum depth of the tree. 

The “max_features” is the maximum number of features to consider for adversarial seg-

mentation, and “min_samples_split” is the minimum number of sample data to split a 

node. 

2.3.3. Light Gradient Boost Machine (Light GBM) 

Light GBM is an ensemble tree-based machine learning algorithm featuring two 

functions: Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling 

(EFB) based on GBDT (Gradient Boosting Decision Tree) [29]. GOSS selects a subset of the 
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training data using the gradients of the loss function determined by the current model 

and EFB groups sparse features into dense features, thereby improving computer effi-

ciency [30]. Light GBM employs the python lightgbm library, utilizing parameters such 

as “max_depth”, “num_leaves”, “bagging_fraction”, and “min_data_in_leaf”. The 

“max_depth” and “min_data_in_leaf” function similarly to “max_depth” and “min_sam-

ples_split” in RF. The “num_leaves” is the number of leaves in the entire tree, and “bag-

ging_fraction” accelerates training and mitigates overfitting by selecting a portion of the 

data used for each iteration. The selected parameters were optimized using GridSearch to 

evaluate the performance of both the RF and Light GBM models constructed from all pos-

sible combinations. 

2.3.4. Model Accuracy 

The accuracy of the observed and simulated CDOM absorption coefficients was eval-

uated using the coefficient of determination (R2), absolute error (MAE), and root mean 

square error (RMSE). The equations used are as follows: 

𝑅2 =

(

 
 ∑ (𝐶in situ

𝑡 − 𝐶i̅n situ)(𝐶algorthim 
𝑡 − 𝐶a̅lgorthim)

𝑇
𝑡=1

√∑ (𝐶in situ
𝑡 − 𝐶i̅n situ)

𝑇
𝑡=1 √∑ (𝐶algorthim 

𝑡 − 𝐶a̅lgorthim)
𝑇
𝑡=1

)

 
 

2

 (4) 

𝑀𝐴𝐸 =
∑ |𝐶algorithm

𝑡 − 𝐶in situ
𝑡 |𝑇

𝑡=1

𝑛
 (5) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐶algorithm

𝑡 − 𝐶in situ
𝑡 )

2𝑇
𝑡=1

𝑛
 (6) 

where 𝑇  denotes the number of samples; 𝐶in situ  is the observed 𝑎𝐶𝐷𝑂𝑀  in situ; and 

𝐶algorthim is the estimated 𝑎𝐶𝐷𝑂𝑀 using the RF and Light GBM models. 

After evaluating the accuracy, the CDOM distribution in the BJR was confirmed us-

ing the CDOM spatial distribution map based on the original and new datasets in the 

optimal-case scenario. Data analysis, model construction, and evaluation were performed 

using Python software, version 3.7. 

3. Results 

3.1. Descriptive Analysis of Chromophoric Dissolved Organic Matter (CDOM) in Reservoirs 

The 𝑎𝐶𝐷𝑂𝑀(355) data obtained via field sampling are shown in Figure 4. There was 

a total of 108 𝑎𝐶𝐷𝑂𝑀(355) data points, consisting of 74 in 2016 and 34 in 2017, and the 

distribution of daily 𝑎𝐶𝐷𝑂𝑀(355) is expressed as a boxplot in Figure 4a. 𝑎𝐶𝐷𝑂𝑀(355) for 

the 2016 data was highly dynamic, with 3.12–10.05 m−1 on 12 August 2016, 4.19–10.88 m−1 

on 24 August 2016, and 2.83–11.03 m−1 on 14 October 2016. The ranges are shown, and the 

coefficients of variation were 33%, 25%, and 45%, respectively, indicating significant var-

iability. Conversely, on 20 September 2016, and 15 September, 22 September, and 11 No-

vember 2017, the average values were 3.60 m−1, 2.90 m−1, 2.93 m−1, and 2.15 m−1, respec-

tively, and the standard deviations were 0.26 m−1, 0.04 m−1, 0.12 m−1, and 0.04 m−1, respec-

tively, indicating a coefficient of variation between 1 and 7%. 
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Figure 4. Distribution and histogram of CDOM data: (a) daily distribution of CDOM data; (b) his-

togram and section count of CDOM data and 5 m-1, which is the standard for class distinction, is 

indicated by a red line. 

Figure 4b shows the histogram and cumulative distribution functions of the total 

𝑎𝐶𝐷𝑂𝑀(355) data. The minimum and maximum value range, 2.09–11.03 m−1, was divided 

into 20 sections, and a histogram including the number of samples in each section is illus-

trated. Most of these sections were in the range of −4 m−1, and the probability density up 

to 4 m−1 was 80.0%. We set 5 m−1, which corresponded to half of the section, excluding the 

missing section, as the standard value for dividing the high- and low-concentration clas-

ses. 𝑎𝐶𝐷𝑂𝑀(355) values less than 5 m−1 were placed in Class 1, which was a low-concen-

tration range, and values over 5 m−1 were placed in Class 2, which was a high-concentra-

tion range. The probability of Class 2 was approximately 13.4%, and the number was 20. 
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3.2. Results of Feature Selection 

Correlation analysis was performed to investigate the relationship between CDOM 

and the band reflectance ratio 𝑅𝑟𝑠 in the spectral range of 400–700 nm. In Figure 5, the R2 

values between 𝑎𝐶𝐷𝑂𝑀(355) and the numerator/denominator reflectance ratio are shown 

as a heatmap; the higher the R2 value, the redder it appears. The discrepancy in wave-

length between the two spectral bands was fixed at 40 nm to minimize errors in field meas-

urements and to facilitate their utilization in multispectral remote sensing imagery via 

satellite imaging [23]. Furthermore, in cases where identical reflectance ratios are present 

(e.g., 𝑅𝑟𝑠(684/618) and 𝑅𝑟𝑠(618/684)), only the higher value was chosen, regardless of 

both exhibiting high R2 values. The chosen ratios consisted of 𝑅𝑟𝑠(452/497), 𝑅𝑟𝑠(497/

580), 𝑅𝑟𝑠(497/618), and 𝑅𝑟𝑠(684/618), exhibiting significant R2 values (p-values < 0.05) 

ranging from 0.408 to 0.527. 

 

Figure 5. R2 heatmap by hyperspectral band ratio combinations (X-axis/Y-axis wavelength reflec-

tance) versus 𝑎𝐶𝐷𝑂𝑀(355). The red circle indicates a high R2 region and shows the denominator/nu-

merator wavelength of the highest R2 value. The grey circle exhibits symmetry with the red circle 

and has a relatively lower R2 value than that of the red circle. 

3.3. Comparison of Machine Learning Model Performance 

The 𝑎𝐶𝐷𝑂𝑀(355) data with reflectance were divided into training and testing sets for 

each class at a ratio of 75%:25%, respectively. The original dataset was constructed using 

the training data, and a new dataset was constructed using the training and synthetic data 

generated using the SMOTE method. RF and Light GBM models were constructed by tar-

geting the original and new datasets, and the overall performance was evaluated by iter-

atively running the model 200 times. The RF tested hyperparameters included the number 

of trees within the range of 10–100; the maximum number of features calculated using the 

auto, sqrt, and log2 methods based on the number of data provided by the Python Ran-

domForestRegressor library; the maximum depth of the tree within the range of 2–20; and 

the minimum number of sample data points within the range of 2–10. Light GBM hy-

perparameters were tested in the range of “max_depth” from 2 to 10, “num_leaves” from 

8 to 200, “min_data_in_leaf” from 3 to 10, and “bagging_fraction” from 0.5 to 1.0. 

Table 1 displays the overall performance scenario for RF and Light GBM selected 

based on the R2, MAE, and RMSE metrics. The overall training of RF showed that the 

SMOTE R2 was 0.798, which was 0.152 higher than that of the original. Moreover, the MAE 
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and RMSE were 0.620 and 0.984 m−1, respectively, which were 0.025 and 0.092 m−1 lower 

than those of the original, respectively. For the test performance, the original R2 was 0.500, 

which was 0.024 higher than that of SMOTE. The MAE and RMSE were 0.716 and 1.012 

m−1, respectively, which were 0.164 and 0.326 m−1 lower than those of SMOTE, respec-

tively. In the overall training of Light GBM, SMOTE R2 was 0.844, which was 0.226 higher 

than the original R2. The test R2 was 0.456, which was 0.108 lower than the original R2, but 

the standard deviation was larger at 0.161. In other words, when SMOTE was applied, the 

fit in the training process was higher, and the accuracy in the testing process was more 

clearly distributed than in the original. Within the model, when SMOTE was applied, the 

training R2 of Light GBM was higher than that of RF, whereas the test R2 of RF was higher 

than that of Light GBM. The training MAE and RMSE of Light GBM were lower than those 

of RF, whereas the test MAE and RMSE of RF were lower than those of Light GBM. 

Table 1. Comparison of overall performance of random forest and light gradient boosting machine 

considering original data and new data using the synthetic minority oversampling technique 

(SMOTE) method. 

Model Method Train R2 Test R2 Train MAE Test MAE Train RMSE Test RMSE 

Random  

Forest 

Original 0.645 0.500 0.645 0.716 1.076 1.012 
 (±0.116) (±0.132) (±0.129) (±0.141) (±0.182) (±0.223) 

SMOTE 0.798 0.476 0.620 0.880 0.984 1.338 
 (±0.127) (±0.148) (±0.219) (±0.202) (±0.300) (±0.325) 

Light  

Gradient Boosting  

Machine 

Original 0.618 0.564 0.757 0.697 1.252 0.882 
 (±0.077) (±0.135) (±0.086) (±0.096) (±0.108) (±0.134) 

SMOTE 0.844 0.456 0.569 0.907 0.893 1.357 
 (±0.088) (±0.161) (±0.220) (±0.203) (±0.332) (±0.341) 

The best case was selected based on the R2, MAE, and RMSE (Table 2). The average 

train and test R2 of RF was 0.773 with the original method and 0.868 with SMOTE, while 

the average train and test R2 of Light GBM was 0.764 with the original method and 0.883 

with SMOTE. The R2 values for both models in the training and test steps increased when 

SMOTE was applied. Although the performance of Light GBM with SMOTE remained 

consistent across various evaluation metrics, its training R2 was excessively high at 0.993 

and its test R2 was relatively low at 0.772 compared to test R2 of 0.838 for the RF model. 

Thus, the RF model showed better generalization performance than Light GBM. 

Table 2. Comparison of the best-case performance of random forest and light gradient boosting 

machine by each model accuracy (R2, MAE, RMSE) considering original data and new data using 

the synthetic minority oversampling technique (SMOTE) method. 

Model Method 
Model 

Accuracy 
Train R2 Test R2 Train MAE Test MAE 

Train 

RMSE 

Test 

RMSE 

Random  

Forest 

Original 
R2 0.823 0.722 0.433 0.493 0.756 0.802 

MAE/RMSE 0.900 0.628 0.341 0.556 0.604 0.830 

SMOTE 
R2 0.898 0.838 0.471 0.566 0.765 0.777 

MAE/RMSE 0.881 0.816 0.468 0.495 0.793 0.682 

Light  

Gradient 

Boosting  

Machine 

Original 

R2 0.945 0.583 0.590 0.691 0.906 0.867 

MAE 0.738 0.628 0.341 0.556 0.604 0.830 

RMSE 0.813 0.571 0.459 0.599 0.881 0.881 

SMOTE R2/MAE/RMSE 0.993 0.772 0.142 0.531 0.225 0.837 
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Figures 6 and S1 show the results of the best-case scenario for RF and Light GBM, 

illustrating a comparison between simulated and observed 𝑎𝐶𝐷𝑂𝑀(355) values; low-con-

centration (Class 1) and high-concentration (Class 2) prediction accuracy were based on 5 

m−1 without any distinction between training and testing datasets. Data synthesized with 

SMOTE were mainly interpolated between 5 and 10 m−1 in Class 2, and high-concentration 

data above 10 m−1 increased from 3 to 6–8. For the cases shown in Figure 6c,g, which were 

selected as R2, the Class 1 R2 was 0.696 and 0.741, respectively, and the Class 2 R2 was 0.606 

and 0.691, respectively, thereby showing relatively poor performance compared to the 

predicted values. In contrast, in Figure 6d,h, selected by MAE/RMSE, the Class 1 R2 was 

high at 0.709 and 0.684, respectively, and the Class 2 R2 was high at 0.787 and 0.839, re-

spectively. In addition, when SMOTE was applied to the values selected as MAE/RMSE, 

the MAE and RMSE were 0.485 and 0.712 m−1 in Class 2, respectively, which were 0.172 

and 0.265 m−1 lower than the original values, respectively. In addition, the trend in the 

graph appeared to improve in some areas that were somewhat underestimated. Finally, 

based on the MAE/RMSE, Figure 6b was selected from the original dataset, and Figure 6d 

was selected from the new dataset, where SMOTE was calculated and the spatial distri-

bution was performed. The optimal hyperparameters for “n_estimators”, “max_depth”, 

“max_features”, and “min_samples_split” were 10, 8, log2, and 2, respectively, in the orig-

inal dataset and 10, 16, log2, and 4, respectively, in the new dataset. The description of the 

Light GBM results was provided in Section B of the Supplementary Materials. 

 

Figure 6. Correlation analysis between observed 𝑎𝐶𝐷𝑂𝑀(355)  and simulated 𝑎𝐶𝐷𝑂𝑀(355)  calcu-

lated using random forest: (a) training/testing selected as R2 in the original dataset; (b) training/test-

ing selected as MAE/RMSE in the original dataset; (c) training/testing selected as R2 in the new da-

taset; (d) training/testing selected as MAE/RMSE in the new dataset. (a–d) are reclassified into Class 

1 (𝑎𝐶𝐷𝑂𝑀(355) < 5m
−1) and Class 2 (𝑎𝐶𝐷𝑂𝑀(355) ≥ 5m

−1), respectively, and the correlation and per-

formance for each class are calculated and expressed as (e–h). The blue line represents the trend line 

in Train dataset, and the orange line represents the trend line in test dataset in (a–d). The red line 

represents the trend line in Class 2, and the green line represents the trend line in Class 1 in (e–h). 

3.4. Analysis of CDOM High-Concentration Distribution Area 

Figure 7 exhibits the CDOM spatial distribution results when the original and new 

dataset-based RF model were applied. This shows the spatial distribution of areas with 

relatively high values within the concentration ranges. For points in Figure 7a,g, the ob-

served 𝑎𝐶𝐷𝑂𝑀(355) values were 10.1 m−1 and 11.1 m−1, respectively, and the result values 
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predicted from the spatial distribution were 8.1 m−1 and 8.2 m−1, respectively, based on the 

original data. SMOTE yielded values of 7.6 m−1 and 9.4 m−1. The area section on 12 August 

2016, showed a spatial range of 2.8–8.1 m−1 based on the original dataset and a spatial 

range of 2.9–7.7 m−1 based on the SMOTE dataset. The area section on 14 October 2016, 

showed a spatial range of 3.0–8.2 m−1 based on the original dataset and 3.1–9.3 m−1 based 

on the SMOTE dataset. The observed values were higher in the section measured at the 

waterside than at the center of the river. Conversely, 24 August 2016 had a value of 10.9 

m−1, and the original and SMOTE values were 8.8 m−1 and 9.8 m−1, respectively. The spatial 

area value ranged from 4.3 to 9.9 m−1 in the original and 4.2 to 10.2 m−1 in SMOTE, and the 

spatial average value was 6.0 (±0.62) m−1 in the original and 7.0 (±0.83) m−1 in SMOTE. This 

analysis appeared to provide a better understanding of the high concentrations in the cen-

tral part of the river center and along the waterside. 

  

Figure 7. Spatial distribution analysis of 𝑎𝐶𝐷𝑂𝑀(355) at three points in the high-concentration sec-

tion using hyperspectral imaging: hyperspectral images of (a) 12 August 2016, (d) 24 August 2016, 

and (g) 14 October 2016. (b,e,h) showed the CDOM spatial distribution constructed through the 
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random forest algorithm from the original dataset, and (c,f,i) showed the CDOM spatial distribution 

constructed through the random forest algorithm from the new dataset. 

4. Discussion 

4.1. Selection of Input Variables 

To predict 𝑎𝐶𝐷𝑂𝑀(355), the highest R2 value was selected from the reflectance ratio 

through hyperspectral images, and 𝑅𝑟𝑠 452/𝑅𝑟𝑠 497, 𝑅𝑟𝑠 497/𝑅𝑟𝑠 580, 𝑅𝑟𝑠 497/𝑅𝑟𝑠 618, and 

𝑅𝑟𝑠684/𝑅𝑟𝑠618 were used in this study. CDOM absorbs light in the range of 480–510 nm 

and weakly absorbs light in the range of 660–700 nm. In water, where CDOM was sus-

pended, more blue and green light was absorbed than red light; therefore, more red light 

can be reflected into the atmosphere. Wavelengths greater than 600 nm are important for 

accurately estimating CDOM in complex freshwater ecosystems [13,31]. In this study, R2 

values for input selection in 𝑅𝑟𝑠684/𝑅𝑟𝑠618, 𝑅𝑟𝑠497/𝑅𝑟𝑠580, and 𝑅𝑟𝑠497/𝑅𝑟𝑠618, which in-

cluded reflectance in the green and red regions, were the highest at 0.527, 0.441, and 0.438, 

respectively. Notably, numerous studies have also used reflectance that includes the 

green–red ratio [3,13,32]. 

The blue band has the strongest aerosol scattering, causing problems with atmos-

pheric correction, and was not mainly used in CDOM retrieval even though it is the area 

where the optical characteristics of CDOM are best revealed [33]. Nevertheless, in this 

study, a stronger correlation appears than other wavelength ratios around 490 nm, which 

is the standard for the diffuse attenuation coefficient for downward irradiance, and 443 

nm, which is the reference wavelength of CDOM. This blue band is also utilized through 

QAA analysis and the Carder algorithm of Lee et al. [34], Zhu et al. [35], Carder et al. [36], 

and the IOCCG.[37], and is used in CDOM retrieval through its relationship with 580 nm. 

Reflectance above 700 nm was not selected because there is no absorption of CDOM, for 

CDOM retrieval. Recent studies point out that near infrared radiation (NIR) bands were 

generally useful for easy separation of CDOM in turbid and eutrophic regions [23,38,39]. 

This is because the lowest absorption point of pure water occurs at 770 nm to 850 nm, and 

as eutrophication occurs, the backscattering coefficient increases and the reflection spec-

trum in NIR is affected [40,41]. 

4.2. Evaluation of Machine Learning Models and Application of Data Resampling 

A small dataset of 108 data points was used in this study. SMOTE, a data resampling 

method, was applied to resolve the data imbalance in high and low concentrations of 

CDOM and to increase the number of data in the training step. The CDOM prediction 

performance of the RF and Light GBM models trained using a dataset with added syn-

thetic data generated by SMOTE was reasonable. The Light GBM model showed a ten-

dency of overfitting in the training step, compared to the RF model in the best-case sce-

nario because the test performance of the RF model was higher than that of Light GBM. 

The optimal model for CDOM prediction was selected as RF, considering all performance 

indices and overfitting problems. RF can reduce data variance in small datasets and pre-

vent dependence on highly influential variables. RF can reduce the impact of overfitting 

values and outliers compared to artificial neural networks or deep learning and generate 

more accurate predictions than other algorithms, especially when there is an imbalanced 

class in the dataset [42,43]. 

Data resampling techniques are widely used for classification problems. To apply the 

data resampling technique to the regression problem, we created a histogram of the dis-

tribution of 𝑎𝐶𝐷𝑂𝑀(355) and established a threshold to differentiate between high and 

low concentrations. After constructing the synthetic data for low (Class 1) and high con-

centrations (Class 2) based on the threshold, the RF algorithm was applied. Consequently, 

the average R2 and MAE of the training and testing values in the best-case scenario in-

creased by 0.096 and 0.056, respectively, and the RMSE decreased by 0.008 compared with 

those that were not applied. The total number of CDOM data points generated in the best-
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case scenario was 47. When combined with 17 Class 2 data points, the same number of 

𝑎𝐶𝐷𝑂𝑀(355) data points were generated as in Class 1. The 𝑎𝐶𝐷𝑂𝑀(355) value significantly 

interpolated the imbalanced data in the high-concentration section, as shown in Figure 8. 

 

Figure 8. Distribution of data generated using SMOTE in the best-case scenario. 

In this study, the threshold for distinguishing between low and high 𝑎𝐶𝐷𝑂𝑀(355) 

was determined through statistical methods. The threshold identified in this research was 

5 m−1, which proved to be a reasonable outcome in comparison to findings from prior 

research. Brezonik et al. [7] noted that regions with a440 values exceeding 5 m−1 were dom-

inated by allochthonous (humic-rich) sources, while lower values were influenced by au-

tochthonous sources, highlighting distinct characteristics between the two reservoirs. 

Meler et al. [44] reconstructed the 𝑎𝐶𝐷𝑂𝑀(355) algorithm to incorporate high-concentra-

tion data based on a threshold of 5 m−1 using a Baltic Sea dataset. Jiang et al. [11] observed 

that 𝑎𝐶𝐷𝑂𝑀(375) values were predominantly distributed within the range of 0~5 m−1 and 

displayed limited sensitivity to the algorithm above 5 m−1. Consequently, multiple studies 

have yielded results aligning closely with our threshold value. 

Data imbalance problems can be solved by using models, and there is also a way to 

utilize the data themselves. In the classification model, various machine learning tech-

niques such as extreme gradient boost and light gradient boosting machine have already 

been introduced to solve the data imbalance problem using parameters such as 

class_weight [45]. For the data approach, when the amount of data is sufficiently supple-

mented, an undersampling technique can be applied to remove samples from the majority 

class until there is a balance between the minority and majority classes. In addition, a hy-

brid sampling method that combines oversampling and undersampling can be proposed. 

Chandra et al. [46] employed the SMOTE-TOMEK technique to solve the imbalance prob-

lem of air quality index data, and Kim et al. [47] used SMOTE-edited nearest neighbor 

(SMOTE-ENN), a hybrid sampling method. The alert levels for high algal concentrations 

were predicted using this method. In the field of remote sensing, Wen et al. [48] recently 

processed imbalanced data on a large scale using a method combining SMOTE and Gauss-

ian noise to predict suspended particulate matter (SPM) concentrations based on Landsat 

images; the results of RF improved from R2 = 0.46 and RMSE = 18.8 to R2 = 0.73 and RMSE 

= 14.1 in Chagan Lake. 
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4.3. Spatial Distribution Results 

In Figure 9, rainfall, temperature, and discharge in the BJR station are compared to 

determine the spatial distribution trend of the high-concentration section, and the sam-

pling date are indicated. In addition, the range, average, and standard deviation of 

𝑎𝐶𝐷𝑂𝑀(355) in the entire BJR section are shown in a table. Prior to 12 August 2016, rainfall 

of 17.5 mm and 4.5 mm occurred on August 2 and August 6, respectively. Subsequent to 

August 6, a high value of 𝑎𝐶𝐷𝑂𝑀(355) was observed near the BJR, where organic matter 

was deposited due to a runoff of less than 100 CMS. It is judged that deteriorating values 

appear in the riverside from the waterside area, and the overall 𝑎𝐶𝐷𝑂𝑀(355)  range is 

wide, ranging from 2.70 m−1 to 9.55 m−1. There was no rainfall between August 6 and Au-

gust 24. The discharge was limited at 36.1–87.2 CMS, and high temperatures of 34–36.2 °C 

persisted during this period, resulting in a high 𝑎𝐶𝐷𝑂𝑀(355). On October 14, 2016, it was 

observed that the 𝑎𝐶𝐷𝑂𝑀(355) at the waterside increased due to a low runoff of 47.5–63.5 

CMS from October 11 following 21.5 mm of rainfall on October 8. The 𝑎𝐶𝐷𝑂𝑀(355) was 

the highest when the Chl-a bloom collapsed, and high residual amounts appeared. Fur-

thermore, there was a delay between the peak values of Chl-a and 𝑎𝐶𝐷𝑂𝑀(355) [49]. This 

explains why CDOM showed the highest distribution on August 24, which differed from 

previous studies [20,50] where Chl-a was highest on August 12. 

 

Figure 9. Rainfall, temperature, and runoff time series data from 2016 to 2017 at the BJR and range, 

mean value, and standard deviation of 𝑎𝐶𝐷𝑂𝑀(355) obtained from spatial distribution in sampling date. 

5. Conclusions 

In this study, we examined a CDOM prediction model by employing random forest 

(RF) and light gradient boosting machine (Light GBM) and the SMOTE method to solve 

the data imbalance problem at high concentrations and increase prediction accuracy. To 

select the input variables, the reflectance extracted through atmospheric correction from 

the hyperspectral image was used, and the highest R2 value was applied through a band 

ratio heatmap. The main conclusions of this study are as follows: 

1. The selected input values that considered the overlap in the reflectance ratio R2 

heatmap of the hyperspectral images were 𝑅𝑟𝑠(452/497), 𝑅𝑟𝑠(497/580), 𝑅𝑟𝑠(497/
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618), and 𝑅𝑟𝑠(684/618) with R2 values of 0.420, 0.441, 0.438, and 0.527, respectively. 

The machine learning models were constructed using the four input variables with 

significant p-values. 

2. To solve the imbalance problem, low-concentration (Class 1) and high-concentration 

(Class 2) sections were separated by 5 m−1 in the small CDOM dataset, and training 

and testing datasets for each class were extracted. The training data were divided 

into two subsets: the original dataset, which used only the training data, and the 

SMOTE dataset, in which SMOTE was applied to the training dataset. The machine 

learning models were constructed and evaluated for each dataset to compare the 

CDOM prediction performance of the original and SMOTE datasets. 

3. Both RF and Light GBM demonstrated considerable performance improvements in 

the best-case scenario when SMOTE was applied. The R2 values of RF were 0.881 and 

0.816 in the training and test steps, whereas the R2 values of Light GBM were 0.993 

and 0.772 in the training and test steps. The RF model showed better generalization 

performance than Light GBM. 

4. Spatial distribution was performed using the results of this study, and it was con-

firmed that the SMOTE dataset detected CDOM on high-concentration days more 

accurately than the original dataset. 

Based on the results of this study, it is possible to solve the data imbalance problem 

and improve the prediction accuracy when the CDOM dataset is small. This will also aid 

in the accurate estimation of reservoir water quality monitoring, which is crucial for water 

resource management. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs16132313/s1, Section A: Atmospheric correction using 

MODTRAN6; Section B: Light GBM result; Table S1. MODTRAN input composition; Table S2. Solar 

angle for geometry specific input (Pyo et al. [20]); Figure S1. Atmospheric correction results using 

MODTRAN 6. Panels (a–d) show the average in-situ and corrected surface reflectance ρsurf𝜌surf, 

respectively. Panels (e–h) show the correlation between the observed and corrected results at differ-

ent wavelengths for each sampling point. (Pyo et al. [20]); Figure S2. Correlation analysis between 

observed 𝑎𝐶𝐷𝑂𝑀(355) and simulated 𝑎𝐶𝐷𝑂𝑀(355) calculated using Light Gradient Boosting Ma-

chine: (a) training/testing selected as R2 in the original dataset; (b) training/testing selected as MAE 

in the original dataset; (c) training/testing selected as RMSE in the original dataset; (d) training/test-

ing selected as R2/MAE/RMSE in the new dataset. (a–d) are reclassified into Class 1 (𝑎𝐶𝐷𝑂𝑀(355) <

5 m−1) and Class 2 (𝑎𝐶𝐷𝑂𝑀(355) ≥ 5 m
−1), respectively, and the correlation and performance for 

each class are calculated and expressed as (e–g), and (h). The blue line represents the trend line in 

Train dataset, and the orange line represents the trend line in test dataset in (a–d). The red line 

represents the trend line in Class 2, and the green line represents the trend line in Class 1 in (e–h). 

[51,52]. 
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