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Abstract: The exterior orientation parameters (EOPs) provided by the self-developed position and
orientation system (POS) of the first Chinese airborne three-line scanner mapping system, AMS-3000,
are impacted by jitter, resulting in waveform distortions in rectified images. This study introduces
a Gaussian Markov EOP refinement method enhanced by cubic spline interpolation to mitigate
stochastic jitter errors. Our method first projects tri-view images onto a mean elevation plane using
POS-provided EOPs to generate Level 1 images for dense matching. Matched points are then back-
projected to the original Level 0 images for the bundle adjustment based on the Gaussian Markov
model. Finally, cubic spline interpolation is employed to obtain EOPs for lines without observations.
Experimental comparisons with the piecewise polynomial model (PPM) and Lagrange interpolation
model (LIM) demonstrate that our method outperformed these models in terms of geo-referencing
accuracy, EOP refinement metric, and visual performance. Specifically, the line fitting accuracies of
four linear features on Level 1 images were evaluated to assess EOP refinement performance. The
refinement performance of our method showed improvements of 50%, 45.1%, 29.9%, and 44.6% over
the LIM, and 12.9%, 69.2%, 69.6%, and 49.3% over the PPM. Additionally, our method exhibited the
best visual performance on these linear features.

Keywords: photogrammetry; airborne three-line scanner; optical remote sensing; image orientation;
bundle adjustment

1. Introduction

The airborne three-line scanners have revolutionized the field of remote sensing, of-
fering unprecedented levels of mapping precision and geographical information richness.
These scanners feature three parallel line array charge-coupled device (CCD) sensors on
their focal plane, enabling them to continuously scan ground targets in forward, nadir,
and backward views at high frequencies. This technology has demonstrated significant
potential in diverse applications such as land surveying, urban planning, and environ-
mental monitoring [1–3]. Thus, the first Chinese airborne three-line scanner mapping
system, AMS-3000, was developed by the Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences, to support the rapidly growing demand for
geographic information in China. Leveraging the three-line scanner principle, the AMS-
3000 captures digital image triplets at a frequency of 1000 Hz in push-broom mode [4].
Since this design restricts the camera to capturing only three linear images per exposure,
effective geographic information requires collecting continuous strip images over time
and precisely determining six independent exterior orientation parameters (EOPs) (three
position and three attitude parameters) at each scan. Affected by the high dynamics of the
airborne environment, ensuring the georeferencing performance of linear array imagery
necessitates the integration of a position and orientation system (POS), encompassing
an Inertial Measurement Unit (IMU), Global Navigation Satellite System (GNSS), POS
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Computer System (PCS), and post-processing software [5,6]. As the imaging system and
POS operate independently during missions, the post-processing software, such as POS
Pac 8 and Inertial Explorer 8.9, filters and interpolates the EOPs based on timestamps [7–9].
When the EOPs provided by the POS system meet accuracy requirements, the distortion
caused by sensor motion can be rectified to support stereoscopic vision [10].

The accuracy of EOPs supporting airborne three-line scanners is critically dependent
on the frequency and accuracy of attitude measurements provided by the POS. Based
on Shannon’s theorem [11], the AMS-3000 necessitates a POS system capable of at least
2000 Hz attitude measurement frequency to ensure precise EOP recovery. However, the
currently employed POS system on the AMS-3000 exhibits a GNSS sampling frequency of
2 Hz and an IMU sampling frequency of 200 Hz. Additionally, the nominal 0.015-degree
attitude measurement accuracy would cause up to 6.8 pixels of error in the across-track
direction, posing a significant challenge. Despite employing post-processing software for
filtering and interpolation, the resulting EOPs still introduce waveform distortions in the
AMS-3000 rectified images, thus hindering the achievement of stereoscopic vision. Through
a comprehensive analysis of flight dynamics and environmental impacts, researchers have
attributed these distortions to platform jitter, a phenomenon known to affect the quality
of remote sensing data [12]. Previous studies have documented the adverse effects of
platform jitter on the positioning accuracy of various satellites and spacecraft. Amberg
et al. [13] emphasized that high-frequency perturbations exceeding the gyroscope cutoff
frequency significantly impact the high-precision positioning of the PLEIADES-HR satellite.
Kirk et al. [14] detected periodic artifacts in digital elevation models (DEMs) generated
from MOC-NA images, attributing them to spacecraft jitter. Girod et al. [15] observed that
jitter degrades the quality of ASTER’s DEM products, while Schwind et al. [16] identified
oscillations of approximately one pixel in ALOS PRISM images due to platform jitter.
Furthermore, Ayoub et al. [17] reported jitter distortions at 1 Hz and 4.3 Hz in QuickBird
images. The small amplitude and wide frequency range of platform jitter pose a significant
challenge for POS systems, limiting their ability to accurately measure the entire frequency
bandwidth required for precise EOP recovery [18].

Improving the accuracy of EOPs is essential for achieving better georeferencing results
in airborne mapping systems, such as the AMS-3000. To address this challenge, researchers
have developed various refinement models that can be integrated into the bundle adjust-
ment processes [5,10,19–25]. Among these, the Lagrange interpolation model (LIM) and
piecewise polynomial model (PPM) have demonstrated their effectiveness in approximat-
ing jitter errors using low-order polynomials [5,10,22,23,25]. While these models have
proven useful for systematic jitter, the inherent randomness of aircraft jitter presents a
unique set of challenges. McGlone [26] introduced the Gaussian Markov model as a means
to better manage this randomness. However, its sensitivity to noise can compromise its
robustness, especially when control points are inaccurate due to careless measurements or
incorrect matching results. To enhance the model’s performance, Lee et al. [27] proposed a
bundle adjustment approach based on the Gaussian Markov model, incorporating line con-
straints from reference images. This approach improved error compensation but increased
the dependency on reference data, limiting its applicability in uncontrolled settings.

In this paper, we present an EOP refinement approach for the AMS-3000 to address the
distortion issues caused by the self-developed POS system. Given the strong randomness
of undetected jitter resulting from airflow and engine operation on aerial platforms [28,29],
we propose a combined method utilizing the Gaussian Markov model and cubic spline
interpolation. Our approach first projects images onto a mean elevation plane using the
processed EOPs from the POS system to obtain Level 1 images for dense tie point matching.
The bundle adjustment is then performed based on a first-order Gaussian Markov process,
and orientation parameters provided by POS are refined through aerial triangulation.
Finally, cubic spline interpolation is applied to the orientation parameters to derive accurate
EOPs for all image lines.
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Our approach aims to address the shortcomings of existing methods, particularly their
inability to effectively describe random jitter. The proposed method was tested and com-
pared with the PPM and LIM using AMS-3000 experimental data. The results demonstrate
that our method outperforms these classical models in terms of geo-referencing accuracy,
EOP improvement metric, and visual performance. Specifically, our method achieves EOP
improvement metrics of 0.27 pixels, 0.28 pixels, 0.47 pixels, and 0.36 pixels along four
selected lines on the Level 1 image, representing improvements of up to 50% over the LIM
and 69.6% over the PPM. These results validate the effectiveness of our approach in refin-
ing EOPs for the AMS-3000, ultimately leading to improved visual outcomes and higher
geometric processing accuracy. The primary contributions of this work are as follows:

1. We developed an EOP refinement method that integrates cubic spline interpolation
with a first-order Gaussian Markov process, reducing reliance on reference data.

2. We conducted comparative experiments with the LIM and PPM, demonstrating
superior flexibility in the EOP refinement of airborne three-line scanners, resulting in
improved visual outcomes and higher geometric processing accuracy.

3. The proposed method was applied to the AMS-3000 data processing system, address-
ing the challenges faced by the AMS-3000 camera due to the low sampling rate and
accuracy of its POS system, providing significant support for its product application.

4. The remainder of this paper is organized as follows. Section 2 reviews related work
on EOP refinement. Section 3 describes the characteristics of the AMS-3000 camera
and the experimental data. Section 4 details the proposed method. Section 5 presents
and discusses the experimental results. Section 6 concludes the study.

2. Related Work

Accurate EOP measurement during imaging is crucial for optimal georeferencing
performance of high-resolution sensors. Current POS systems fail to provide the precise
EOPs needed for three-line scanners to achieve optimal georeferencing accuracy because of
their limited sampling frequency and measurement accuracy. Photogrammetrists strive
to enhance EOP precision by analyzing factors that affect sensor stability and developing
suitable refinement models. Tong et al. [30] summarized that jitter is a major factor impact-
ing the EOP accuracy of both aerospace and aerial high-resolution imagery. To address
this issue, some studies have employed high-performance attitude measurement devices
to accurately measure platform vibrations and enhance positioning accuracy by compen-
sating for jitter errors in EOPs [31–33]. Additionally, research using reliable attitude data
has effectively balanced noise filtering and attitude approximation with penalized spline
models [34,35]. However, these methods necessitate substantial financial and technical
investments in sophisticated attitude measurement equipment.

In addition to direct measurement with equipment, EOPs can also be estimated and
refined through algorithmic approaches. Currently, EOP refinement techniques primarily
fall into two categories: posteriori compensation methods and self-compensation methods.

Posteriori compensation methods do not model the random jitter error and typically
involve compensating for remaining errors in EOPs by analyzing residual patterns of
control or tie points after the bundle adjustments. Teshima and Iwasaki [36] estimated
a jitter frequency of approximately 1.5 Hz using tie point disparities between ASTER’s
short-wave infrared sensors. Mattson et al. [37] addressed the jitter in HiRISE images
through Fourier analysis, improving the EOPs by reducing the average amplitude of the
jitter to less than one pixel. Tong et al. [38] detected a jitter of 0.67 Hz with an amplitude
of 2.63 pixels in the ZY-3 three-line scanner using tie point disparities and compensated
for it using a first-order Fourier series. Liu et al. [39] utilized high-resolution reference
digital orthophoto map (DOM) and DEM to extract dense control points and modeled
control point residuals with Fourier series, detecting a 0.65 Hz jitter in ZY-3. Although
posteriori compensation methods effectively analyze the EOP error patterns, the EOP
errors in airborne mapping systems differ significantly from those in spaceborne sensors.
Airborne sensors’ EOP errors lack consistent periodicity and vary according to weather
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conditions, the coupled POS system, and the flight platform. Consequently, these variations
make such methods unsuitable for the automated data processing systems of airborne
mapping systems.

Compared to posteriori compensation methods, self-compensation methods are more
efficient as they allow for the construction of various error description models and simulta-
neously yield precise orientation parameters and ground point coordinates. Bostelmann
and Heipke [22] used the LIM to compensate for EOP errors in HRSC images, but im-
provements in more complex attitude jitters were not significant. Li et al. [25] employed
a third-order PPM to mitigate EOP errors in HiRISE images, reducing checkpoint errors
from 4.4 pixels to 0.29 pixels; however, the compensation was subject to time-varying drift
errors. Thus, these two methods have limited application scenarios and do not adequately
address the complexity and non-periodicity of EOP errors in airborne sensors. In contrast,
the Gaussian Markov model offers greater flexibility in describing platform variations, but
its application in aerial triangulation with three-line scanners and recovery methods for
EOPs of scan lines without observations still requires further research [27,40]. McGlone [26]
proposed a method where the orientation parameters of scan lines without observations
can be obtained through linear interpolation after the bundle adjustment based on the
Gaussian Markov model. However, this approach suffers approximation errors because it
actually approximates a curve by a series of straight lines.

In summary, the Gaussian Markov model shows some potential in better describing
the platform variations and better refining the EOPs for three-line scanner data. However,
its effective application in aerial triangulation with three-line scanners and the recovery
methods for the EOPs of unobserved scan lines still require further research.

3. Materials
3.1. AMS-300 Mapping System

As depicted in Figure 1, the AMS-3000 is equipped with three panchromatic sensors,
each containing 32,768 detectors, for capturing ground objects in forward, nadir, and
backward views. In addition, it includes three color bands (red, green, and blue channels),
each with 16,378 detectors, which facilitate both true and false color imaging. The nominal
viewing angles of the forward, nadir, and backward CCD lines are 21, 0, and 27 degrees,
respectively, achieving a base–height ratio of 0.89 to enhance stereo imaging accuracy.
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The main parameters of the AMS-3000 are shown in Table 1. The 16-bit radiometric
resolution can provide rich details of the ground objects. Equipped with a 130 mm focal
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lens and 327,685 µm detectors, the AMS-3000 can capture swathes exceeding 2500 m in
width with a resolution of 0.08 m at an altitude of 2000 m.

Table 1. Main parameters of the AMS-3000.

Item Designed Parameter

Focal length (mm) 130
Radiometric resolution (bit) 16

Pixel size (µm) Panchromatic: 5, RGB: 10

Spectrum (nm) Panchromatic: 465–680, R: 608–662, G: 428–492,
B: 428–492

Field of view (degree) 64
Weight (kg) 72.5

3.2. Experimental Data

Figure 2 displays the coverage of two image strips captured by the AMS-3000 used
in this study. The data were collected by a Y-12 fixed-wing aircraft on 11 April 2022, at a
flying altitude of 2600 m over the urban area of Bayuquan District, Yingkou City, Liaoning
Province, China. The total coverage area spans approximately 73.7 square kilometers.
These images showcase numerous buildings and roads and feature a ground resolution
of 0.1 m. The Level 0 images of the left and right strips have row counts of 147,456 and
131,072, respectively.
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We surveyed 20 control points to assess the geometric positioning accuracy after aerial
triangulation, with 6 as checkpoints. Control points are marked with red triangles and
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checkpoints with red circles. The six checkpoints can validate the geometric accuracy
of different methods [41]. Considering that checkpoints discretely distributed across an
image spanning more than 130,000 lines are inadequate for assessing local EOP refinement
performance, we manually measured linear features in four specified areas to evaluate the
effectiveness of our method and others, as indicated by the yellow boxes in Figure 2.

3.3. EOP Problem Caused by the Self-Developed POS

The primary motivation for developing the AMS-3000 is its ability to meet the ac-
curacy requirements of 1:1000 scale topographic mapping, and Table 2 displays some
of the Chinese specifications for aerotriangulation of digital aerophotogrammetry [42].
Considering Canadian manufacturer Applanix’s leadership in aided inertial systems [6],
the AMS-3000 was initially equipped with their POS AV610 inertial navigation system,
with GNSS and IMU sampling frequencies of 200 Hz and 1000 Hz, respectively. Despite
Shannon’s theorem requiring an IMU frequency of at least 2000 Hz for precise attitude
recovery at 1000 Hz imaging frequency, the strict photogrammetric flight plan and POS Pac
8 processing software ensured that the provided EOPs were reliable. Previous work with
the AMS-3000 conducted the bundle adjustment using the LIM on the 0.1 m resolution
Yangjiang city dataset and achieved accuracies of 0.088 m, 0.092 m, and 0.176 m in the X, Y,
and Z directions, respectively [4,42]. The results indicated that the georeferencing accuracy
of the AMS-3000 coupled with the POS AV610 can meet the accuracy demands of 1:1000
scale topographic mapping.

Table 2. Chinese specifications for aerotriangulation of digital aerophotogrammetry (unit: meters).

Topographic
Mapping Scale

Planar RMSE Height RMSE

Flat Hills Mountains Flat Hills Mountains

1:1000 0.5 0.5 0.7 0.28 0.4 0.6
1:2000 1.0 1.0 1.4 0.28 0.4 1.0

However, due to hardware issues with the POS AV610, the AMS-3000 was subse-
quently equipped with a self-developed POS product for later missions, with the GNSS
and IMU sampling frequencies reduced to 2 Hz and 200 Hz, respectively—far below the
requirements suggested by Shannon’s theorem. The main parameters of the POS AV610
and the self-developed POS product are shown in Table 3. The roll and pitch accuracy of
the self-developed POS product is 0.015 degrees, and the heading accuracy is 0.03 degrees,
both of which are six times worse than that of the POS AV 610. Considering the 130 mm
focal length and 5 µm detector of AMS-3000, the 0.015-degree performance in roll angle
would cause up to a 6.8-pixel error.

Table 3. Main parameters of the POS AV610 and the self-developed POS product.

Performance POS AV610 Self-Developed POS Product

Position (m) Horizontal: 0.05, vertical: 0.1 Horizontal: 0.05, vertical: 0.1
Velocity (m/s) 0.005 0.02

Roll and pitch (degree) 0.0025 0.015
True heading (degree) 0.005 0.030
GNSS frequency (Hz) 200 2
IMU frequency (Hz) 1000 200

Post-processing software POS Pac 8 self-developed software

To demonstrate the EOP issues associated with the self-developed POS, we performed
a visual georeferencing performance comparison by projecting Level 0 images onto a mean
elevation plane using EOPs provided by two different POS systems. The dataset using the
POS AV610 was collected on 29 May 2020, covering the Yushu area in Jilin Province, China,
while the dataset using the self-developed POS was the experimental data described in
Section 3.2.
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As shown in Figure 3, the Level 0 images suffer severe distortion caused by the motion
of the sensor along with jitter. Comparing the Level 1 images, it is evident that the direct
georeferencing results based on the POS AV610 are significantly better than those based
on the self-developed POS in terms of recovering the shape of ground objects. The self-
developed POS failed to provide accurate EOPs to recover the shape of the same ground
objects observed at three different times. Impacted by the visible waveform distortions that
have a cycle of about 150 lines and continuously changing amplitude, the AMS-3000 loses
the ability to support stereoscopic vision.
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self-developed POS.

Thus, this study aims to rectify these waveform distortions to an acceptable level by
refining the EOPs provided by the self-developed POS, enabling the AMS-3000 to produce
1:1000 scale topographic maps that meet the Chinese specifications.
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4. Method

This study introduces a method to correct for image distortions in the three-line
scanner caused by inaccurate EOPs delivered by POS system on aerial platform. The
core idea of this approach involves utilizing a first-order Gaussian Markov process to
develop a more accurate model of the orientation parameters, followed by cubic spline
interpolation to obtain EOPs of all lines, thereby providing precise EOP error compensation.
As illustrated in Figure 4, the overall technical process can be divided into four key modules
based on AMS-3000 data:

1. Level 1 image generation: This step addresses severe distortions in the original images,
setting the stage for further processing.

2. Tie point matching: This involves obtaining tie points across images from different
views to collect extensive observations critical for the bundle adjustment.

3. Bundle adjustment: Utilizing the Gaussian Markov model, this stage accurately mod-
els the motion of the sensor and is incorporated into the bundle adjustment process.

4. Cubic spline interpolation: Applying cubic spline interpolation, EOPs of lines without
observations are obtained.
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4.1. Modeling the Sensor Motion with the First-Order Gauss-Markov Model

Aerial photogrammetry requires that the aircraft flies at a stable speed and attitude to
ensure that the nadir view is perpendicular to the ground and that there are no gaps in the
images. However, the atmospheric turbulence and the engine operation may cause random
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changes in attitude and position, which are generally processed as white noise [43]. The
simplified physical model describing sensor motion can be represented by Equation (1):

Xt+1
Yt+1
Zt+1
ωt+1
φt+1
κt+1

 =



Xt
Yt
Zt
ωt
φt
κt

+ ∆t



VX,t+1
VY,t+1
VZ,t+1
ΩX,t+1
ΩY,t+1
ΩZ,t+1

+ ∆t



VwX,t+1
VwY,t+1
VwZ,t+1
ΩwX,t+1
ΩwY,t+1
ΩwZ,t+1

 (1)

where Xt, Yt, and Zt represent the three positional parameters at time t; ωt, φt and κt are the
three attitude parameters at time t; VX,t+1, VY,t+1 and VZ,t+1 represent the velocities along
the X, Y, and Z axes at time t + 1, respectively; ΩX,t+1, ΩY,t+1 and ΩZ,t+1 represent the
angular velocities along the X, Y, and Z axes at time t + 1, respectively; VwX,t+1, VwY,t+1
and VwZ,t+1 represent the velocity noise caused by the environments along the X, Y, and
Z axes at time t + 1, respectively; ΩwX,t+1, ΩwY,t+1 and ΩwZ,t+1 represent the angular
velocity noise along the X, Y, and Z axes at time t + 1, respectively; ∆t is the imaging
time interval.

Equation (1) demonstrates that the exterior orientation elements at each moment are
closely related to those of the previous moment. Common methods typically utilize PPM
or LIM to describe the EOPs, assuming that EOPs can be expressed with smooth curves
over a certain time period. However, when the POS system cannot provide accurate EOPs
filtered of noise, using smooth curves to model these elements is inappropriate. This is
because they fail to account for random noise and lack the capability to estimate this noise
during the bundle adjustment process.

To more precisely describe and compensate for EOP errors, a first-order Gaussian
Markov model is employed. This model incorporates a noise observation for each exposure,
assuming strong correlations between consecutive exposures to enhance flexibility and
closely mimic real attitude dynamics. The model’s continuity and the relationships between
states are governed by the first derivatives, as detailed in Equation (2):

dx
dt

+ β1(t)x = w(t) (2)

where x represents the random variable and t denotes the time; β1(t) is a time-dependent
function that becomes constant if the process is assumed to be stationary; w(t) represents
random noise with zero mean and arbitrary variance.

We treat the orientation parameters at each exposure as samples from a continuous
Gaussian Markov process, resulting in the discrete form presented in Equation (3):

xi − xi−1

∆t
+ β1(ti)xi−1 = w(ti) (3)

where xi represents the orientation parameters at time i; ∆t is the time interval.
Thus, orientation parameters at time i can be expressed by those at time i − 1, as

shown in Equation (4):

xi = (1 − ∆t·β1(ti))xi−1 + ∆t·w(ti)
= (1 − s)xi−1 + ni

(4)

where ni represents a Gaussian noise term with a mean of zero. Assuming a stationary
process, s = ∆t·β1(ti) serves as a constant that quantifies the correlation strength, with
s ≪ 1. The constant s can be adjusted based on practical conditions to determine how long
after the current moment the error’s influence becomes negligible.
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Finally, the errors in the EOPs at each exposure moment are established with a Gaus-
sian Markov model, as illustrated in Equation (5):

∆Xi = (1 − s)∆Xi−1 + nX,i
∆Yi = (1 − s)∆Yi−1 + nY,i
∆Zi = (1 − s)∆Zi−1 + nZ,i
∆ωi = (1 − s)∆ωi−1 + nω,i
∆φi = (1 − s)∆φi−1 + nφ,i
∆κi = (1 − s)∆κi−1 + nκ,i

(5)

where ∆Xi, ∆Yi and ∆Zi represent the positional errors at time i; ∆ωi, ∆φi and ∆κi are the
attitude errors at time i; nX,i, nY,i, nZ,i, nω,i, nφ,i and nκ,i represent the zero-mean noise terms
associated with the EOPs at time i.

Only scan lines that contain image point observations are needed for the bundle
adjustment. Considering the zero-mean assumption of the noise terms, EOP errors between
observed lines can be expressed by Equation (6):

∆Xi = (1 − s)m∆Xi−m + nX,i
∆Yi = (1 − s)m∆Yi−m + nY,i
∆Zi = (1 − s)m∆Zi−m + nZ,i
∆ωi = (1 − s)m∆ωi−m + nω,i
∆φi = (1 − s)m∆φi−m + nφ,i
∆κi = (1 − s)m∆κi−m + nκ,i

(6)

Since nX,i, nY,i, nZ,i, nω,i, nφ,i and nκ,i are considered as fictitious observations assigned
an a priori value of zero, for a control point observed on three image lines, the number of
unknown EOP errors is reduced from 18 to 6. Similarly, for a tie point observed on three
lines, the number is reduced from 21 to 9. Thus, this approach allows for significant savings
in computational effort and can prevent over-parameterization.

4.2. EOP Refinement Workflow
4.2.1. Level 1 Image Generation

As illustrated in Figure 3, the correspondences on Level 0 tri-view images of AMS-3000
exhibit different shape deformations due to varying jitter impacts. These deformations
severely limit the number and accuracy of matching points and may cause the subsequent
bundle adjustment to diverge.

To resolve this, Level 0 images are rectified to Level 1 images using EOPs provided
by the self-developed POS system. Despite the POS system’s unideal measurement per-
formance, post-processing software still managed to recover the motion of the sensor to a
certain extent for correcting jitter distortions. The remaining distortions, which can be seen
as the result of minor local rotations, have negligible effects on matching methods robust to
rotation and scale, such as SIFT [44].

It is critical to note that Level 1 images are used exclusively for feature point matching.
Once matched, these points are reprojected onto the original Level 0 images for further
bundle adjustment processing. The local affine transformation method is employed to
obtain each point location on the Level 0 image, which once emerged in the pseudo-code
provided by the Leica Geosystems software 2.2 development kit [45].

4.2.2. Tie Point Matching

The key to the bundle adjustment is minimizing the reprojection error of all tie points.
Therefore, ensuring the precision and adequacy of tie points is crucial for EOP refinement
without relying on reference data. This paper only uses the tri-view panchromatic images
for matching and strictly selects tie points with overlaps of three degrees or more for the
bundle adjustment. The implementation process is as follows: First, Level 1 tri-view images
undergo Wallis filtering to eliminate radiometric differences between images. Next, dense
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matching is performed between the nadir Level 1 images and the forward Level 1 images to
obtain points with double observations. These doubly observed points are then projected
onto the backward Level 1 image using geographic coordinates, obtaining seed points.
Local refinement matching is conducted around the seed points to precisely locate the tie
points on the backward images. For adjacent strip images, tie points are first matched on
the nadir Level 1 images, then similarly projected onto the forward and backward images
of each strip using geographic coordinates as seed points, where refined matching yields
points with sixfold observations.

During the dense matching process, we employ the two-step expansion dense match-
ing algorithm proposed by Zhang et al. [46]. This algorithm, robust to rotation and scale,
requires no prior information and can generate dense matching points on linear array im-
ages. The matching window size is adjustable, allowing for a variable number of matching
points to be obtained as needed.

To compensate for the waveform distortion, which has a cycle of about 150 lines as
shown in Figure 3b, observations with an interval of at least 37 lines are required. In our case,
at least 50 tie points are matched within a 37-line interval to provide redundant observations.

4.2.3. Bundle Adjustment

The first step in performing bundle adjustment is establishing the observation equation.
The initial observation equation is provided by establishing the relationship between the
object coordinates of ground points and their corresponding image coordinates, as shown
in Equation (7): X

Y
Z

 =

XS
YS
ZS

+ λR

x − x0
y − y0
− f

 (7)

where (x, y) are the image coordinates of a ground point; (x0, y0) are the coordinates of the
principal point; R is the rotation matrix defined by the three attitude parameters; (X, Y, Z)
are the ground point coordinates; (XS, YS, ZS) are the coordinates of the perspective center
in the object space coordinate system; f is the focal length of the camera; and λ is the
scale factor.

The bundle adjustment optimizes the EOPs by minimizing the reprojection error observed
for each image point. By integrating Equation (6), which defines the stochastic behavior of
EOPs, with Equation (7), which establishes the geometric relationship of the points, we derive
the observational model for aerial triangulation, as shown in Equation (8):

vc = Axeo + Bxg − lc; PC
vg = Exg − lg; Pg

veo = Exeo,i − Cxeo,i−1; Peo

(8)

where xeo is the vector of unknown corrections for EOPs; xg is the ground coordinates
vector; A, B, C, and E are the corresponding design matrices; lc and lg are discrepancy
vector; and PC, Pg, and Peo are weight matrices.

4.2.4. Cubic Spline Interpolation

The first-order Gaussian Markov model does not perform smoothing or interpolation
of exterior orientation elements during the bundle adjustment, unlike PPM or LIM. This
approach increases the model’s flexibility but the EOPs of lines without observations are
not modeled with a smooth curve. To address this, after completing the bundle adjustment,
it is necessary to apply interpolation to derive the EOPs for scan lines without observations.
In this paper, spline regression is used to process the bundle adjustment results, specifically
employing cubic splines when the order is three [47,48].
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Let x denote the row number, and the essential idea of the cubic spline interpolation is
to fit a piecewise function of the form in Equation (9):

S(x) =


s1(x) x ∈ [x1, x2]
s2(x) x ∈ [x2, x3]

...
...

sn(x) x ∈ [xn−1, xn]

(9)

where n is the number of the numerical data to fit and si is a third-degree polynomial
defined by Equation (10):

si(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di (10)

where i = 1, 2, · · · , n − 1, ai, bi, ci and di are the spline coefficients.
For each si(x), the first and second derivatives are defined as Equation (11):

s′i(x)= 3ai(x − xi)
2 + 2bi(x − xi) + ci

s′′i (x)= 6ai(x − xi)
2 + 2bi

(11)

where i = 1, 2, · · · , n − 1.
To estimate the coefficients, the cubic spline must conform to the following conditions:
1. the piecewise function S(x) interpolates all points.
2. S(x) is twice continuously differentiable on [x1, xn].
Let δi = xi+1 − xi and impose these conditions on n points, and we can obtain

Equation (12):
aiδi

3 + biδi
2 + ciδi + di= yi+1

3aiδi
2 + 2biδi + ci − ci+1= 0

6aiδi
2 + 2bi − 2bi+1= 0

di= yi

(12)

where y denotes the orientation parameters.
If we let ηi = s′′i (x) = 2bi and perform several substitution steps in Equation (12), we

can obtain Equation (13):

δiηi + 2(δi + δi+1)ηi+1 + δi+1ηi+2 = 6(
yi+2 − yi+1

δi+1
− yi+1 − yi

δi
) (13)

According to Equation (13), we can establish n − 2 equations based on the points. To
solve for the n unknowns ηi(i = 1, 2, · · · , n) in Equation (13), two other conditions must
be imposed. Generally, several end conditions are employed to determine the unique
cubic spline, such as the natural end condition, clamped end condition, and not-a-knot end
condition [47]. In this paper, we use the natural end condition, which requires the second
derivatives of the spline being zero at the ends x1 and xn. After obtaining ηi(i = 1, 2, · · · , n),
the coefficients of the cubic spline can be determined by Equation (12).

5. Results and Discussion
5.1. Experimental Settings

To evaluate the performance of our method, we conducted a comparative analysis
of the proposed method with three other methods: the direct rectification method (DR),
PPM [25], and LIM [22]. DR uses EOPs provided by POS to directly derive 3D coordinates
for tie points and perform rectification without the bundle adjustment, which can be used
as a reference for evaluating improvement. In the experiments, both PPM and LIM used
third order and were set to intervals of 50 rows. All models used the same control points
and tie points without additional constraints like linear features.
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Given that checkpoints do not adequately demonstrate the effectiveness of EOP re-
finement by the three methods, a quantitative assessment was conducted by manually
measuring four linear features on the Level 1 nadir images, the positions of which are
delineated by the rectangular boxes in Figure 2. To ensure a consistent basis for evaluating
the EOP refinement performance of the three methods, the sample points on these linear
features were projected onto the Level 0 images (as depicted in Figure 5). During measure-
ment, the number and spacing of sample points should be sufficient to reflect the trend
of waveform distortions. Due to the differing frequencies and amplitudes of waveform
distortions on the four lines, the performance of the three methods on each line needs to
be compared individually. Therefore, the number of sampling points on the four lines
does not need to be consistent. Along these lines, sample points were manually collected,
yielding totals of 35, 57, 37, and 73 points, respectively.
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5.2. Overall Comparison
5.2.1. Quantitative Evaluation

Table 4 presents the standard deviations (std) of checkpoint residuals and the root
mean square errors (RMSE) for both DR and the three bundle adjustment methods. The
standard deviation of checkpoint residuals and RMSE are defined by Equation (14):

std =

√
∑n

i (ri − r)2

n − 1
, RMSE =

√
∑n

i (xi − x̂i)
2

n
(14)

where ri is the residual error of the i checkpoint; r is the mean value of the checkpoint
residual errors; xi is the ground coordinates of the i checkpoint using the space intersection;
x̂i is the true ground coordinates of the i checkpoint; n is the number of checkpoints.

Table 4. Geo-referencing accuracy at checkpoints (unit: meters).

Method
X Y Z

Std RMSE Std RMSE Std RMSE

DR 3.943 4.040 3.835 3.947 0.587 6.007
PPM 0.102 0.115 0.079 0.089 0.200 0.208
LIM 0.097 0.112 0.074 0.083 0.198 0.205
Ours 0.076 0.088 0.069 0.078 0.145 0.150

Note: The best results are highlighted in bold.

The standard deviations of checkpoint residuals and the RMSE can indicate the con-
centration and the absolute accuracy of the results, respectively. By directly using the EOPs
provided by the POS, the geometric accuracies determined by DR along the X, Y, and Z
axes were 4.04 m, 3.947 m, and 6.007 m, respectively. The standard deviation of residuals in
the X-direction exceeded that in the Y-direction by 0.108 m, which corresponded to more
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than one pixel. This variation can be attributed to a more significant roll angle jitter, which
predominantly impacts accuracy in the X-direction [43,49]. This discrepancy may also be
influenced by the rigorous control over pitch and yaw angles by the flight platform to
prevent image fractures.

Following the implementation of the three comparison methods, there was a noticeable
enhancement in both the standard deviations of residuals and the RMSEs across all three
axes. Notably, the LIM achieved geometric positioning accuracies of 0.112 m, 0.083 m, and
0.205 m in the X, Y, and Z directions, respectively, slightly exceeding the performance of
the PPM by 0.003 m, 0.006 m, and 0.003 m in these respective directions. Our method
demonstrated RMSE of 0.088 m, 0.078 m, and 0.15 m in the X, Y, and Z axes, respectively,
which are better than the PPM by 0.027 m, 0.011 m, and 0.058 m, and better than the LIM
by 0.024 m, 0.005 m, and 0.055 m. Furthermore, our method’s residual standard deviation
along the X-axis was 0.076 m, indicating a high degree of reliability in geometric positioning
along this axis. However, these insignificant improvements, as evaluated by checkpoints
discretely distributed across the long strip images, cannot effectively demonstrate the local
compensation performance for waveform distortions.

Further analysis was performed on the fitting accuracy of four linear features across
different flight strip areas, as shown in Table 5. The results indicate that the DR method
achieved fitting accuracies of 0.85 pixels, 1.01 pixels, 1.24 pixels, and 1.5 pixels for lines 1, 2,
3, and 4, respectively. Notably, lines 1 and 4, located in the middle of the strip, and lines 2
and 3, at the ends, showed that EOP errors did not exhibit a straightforward linear trend.

Table 5. EOP refinement performance (unit: pixels).

Method
Line 1 Line 2 Line 3 Line 4

Max Min RMSE Max Min RMSE Max Min RMSE Max Min RMSE

DR 1.55 0.01 0.85 2.36 0.00 1.01 2.68 0.03 1.24 2.87 0.02 1.50
PPM 0.7 0.01 0.31 2.00 0.02 0.91 3.86 0.07 1.55 1.7 0.01 0.71
LIM 1.23 0.01 0.54 1.18 0.01 0.51 1.59 0.02 0.67 1.78 0.01 0.65
Ours 0.65 0.01 0.27 0.71 0.00 0.28 1.02 0.00 0.47 0.93 0.01 0.36

Note: The best results are highlighted in bold.

After the bundle adjustment, all three methods can refine the EOPs provided by the
POS, but their effectiveness varies. Our method demonstrated the highest refinement
performance across all approaches, achieving fitting accuracies of 0.27 pixels, 0.28 pixels,
0.47 pixels, and 0.36 pixels on the four lines. It outperformed the LIM by 50%, 45.1%, 29.9%,
and 44.6%, and the PPM by 12.9%, 69.2%, 69.6%, and 49.3%.

Compared to the PPM, our method demonstrates a more stable performance. The PPM
showed variable effectiveness, with sub-pixel accuracies on lines 1, 2, and 4 at 0.31 pixels,
0.91 pixels, and 0.71 pixels, respectively, but markedly underperformed on line 3 with an
accuracy of 1.55 pixels—exceeding DR’s 1.24 pixels. The inconsistency in PPM’s results
primarily stems from its fixed segment intervals, which lack the flexibility to adapt to the
stochastic nature of jitter, leading to suboptimal polynomial fitting.

Moreover, our method more accurately characterizes sensor jitter compared to the LIM.
Although the third-order LIM achieved accuracies of 0.54 pixels, 0.51 pixels, 0.67 pixels,
and 0.65 pixels, achieving pixel-level precision, its design constrained by four orientation
fixes restricts its ability to model stochastic jitter dynamically. This limitation impacts its
overall compensation accuracy, which our Gaussian Markov model approach effectively
addresses, offering a more adaptable and precise solution for jitter compensation.

5.2.2. Comparison of Residual Distributions at Tie Points

Figure 6 depicts a comparison of residual distributions at tie points, encompassing
approximately 3000 scan lines around Line 1. From the first row to the last row, the figure
shows the results of the original EOPs, PPM, LIM, and our method, respectively. The
original EOPs, provided by the self-developed POS, resulted in waveform distortions at
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about 6 Hz frequency in both the X and Y directions. The amplitude of the waveform
distortion in the X direction is about 3 pixels, significantly worse than the 1-pixel amplitude
in the Y direction. The residual distribution in both directions deviates from zero due to the
offset between the GNSS antenna and the projection center and the misalignment between
the IMU and the sensor.
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All three methods reduced the waveform distortion around Line 1 to within one
pixel and also compensated for the offset and misalignment errors. However, our method
exhibited the most concentrated residual distributions and did not show any waveform
distortion, unlike the LIM. The third-order LIM, limited by its four orientation fixes, reduces
its ability to model EOPs affected by jitter errors with varying frequency and amplitude.
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On the other hand, the PPM showed a more concentrated pattern than the LIM, indicating
that it better handles jitter errors around the Line 1 area.

5.2.3. Visual Performance of EOP Refinement

To more vividly demonstrate the superiority of our method in compensating for
EOP errors, Figure 7 compares the rectification results of the proposed method with the
three comparative methods across four lines. It is evident from Figure 7 that the DR
method led to significant waveform distortions, with varying degrees and frequencies of
distortion along each line. Notably, Line 4 exhibited high-frequency distortions, indicating
that the flight platform experienced complex jitter interference beyond the measurement
capabilities of the self-developed POS system. For the high-frequency distortions observed
particularly on Line 4, all three comparative methods effectively compensated through
smoothing techniques.
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Figure 7. Visual rectification performance comparison of different methods at Line 1 (top row), Line 2
(second row), Line 3 (third row), and Line 4 (bottom row).
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Our method consistently outperformed the PPM and LIM in compensating for jitter
across all four lines, avoiding issues such as the negative optimization observed with PPM
on Line 3. While minor distortions are still visible in the visual results from our method in
Figure 7, these primarily stem from the inherent limitations of relying solely on tie points
for jitter compensation. The accuracy of tie point matching can impact the final results, and
the bundle adjustment process can only reduce errors to an acceptable level, not eliminate
them entirely. As quantified in Table 5, these visually perceptible distortions are controlled
within 0.5 pixels. For an AMS-3000 dataset with a 0.1 m resolution, positioning errors due
to these distortions are kept below 0.05 m, meeting the 1:1000 scale topographic mapping
specifications in Table 2, which is acceptable.

5.3. Effectiveness of Cubic Spline Interpolation

The bundle adjustment improves the EOPs of those lines with observations, but
it is also important to recover the EOPs of lines without observations to ensure image
quality. Our method particularly emphasizes the importance of cubic spline interpolation
for obtaining EOPs of unobserved lines. Since the proposed method is established based
on Equation (6), we obtained a comparison group of EOPs by following Equation (6)
and set the noise term as zero to compare with the group of EOPs based on cubic spline
interpolation. The rectified nadir Level 1 images based on the original, the comparison,
and the cubic spline interpolation processed EOPs are shown in Figure 8.
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As shown in Figure 8a, distortions in the X direction are distinctly visible using original
EOPs for image rectification. After the bundle adjustment, as shown in Figure 8b,c, these
waveform distortions with a cycle of about 150 lines are visibly eliminated, confirming
that the jitter errors have been compensated. However, Figure 8b demonstrates that the
comparison EOP group leads to many jagged edges on Level 1 images. The main reason
is that it is too rigid to directly obtain EOPs of lines without observations by assuming
the noise term as zero. In contrast, cubic spline can obtain smooth results. Moreover, the
constraint of cubic spline crossing all points makes sure that the interpolation process would
not change the bundle adjustment result. Therefore, integrating cubic spline interpolation
with the Gaussian Markov model effectively refines the EOPs by compensating for jitter
errors beyond the measurement ability of the self-developed POS system, restoring the true
shape of ground targets.

6. Conclusions

In this paper, a novel Gaussian Markov EOP refinement method enhanced by cubic
spline interpolation is introduced to improve inaccurate EOPs provided by an unideal
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POS system. The method involves projecting tri-view images onto a mean elevation plane
using initial EOPs to generate Level 1 images for dense tie point matching. Matched points
are back-projected to the original Level 0 images as observations, followed by a bundle
adjustment based on the Gaussian Markov modeled EOPs, with cubic spline interpolation
applied to ensure image quality.

Based on the EOP challenge brought by the self-developed POS on the first Chinese
airborne mapping system AMS-3000 with 1000 HZ imaging frequency, comparative as-
sessments with the PPM and LIM revealed our method enhances geo-referencing accuracy,
EOP refinement performance, and visual performance. Specifically, our method achieved
geo-referencing accuracies of 0.088 m, 0.078 m, and 0.150 m in the X, Y, and Z directions, re-
spectively. It also attained EOP refinement accuracies of 0.27 pixels, 0.28 pixels, 0.47 pixels,
and 0.36 pixels on four lines, marking improvements over the LIM by 50%, 45.1%, 29.9%,
and 44.6%, and over the PPM by 12.9%, 69.2%, 69.6%, and 49.3%. These results underscore
the effectiveness of integrating Gaussian Markov modeling with cubic spline interpolation
in addressing complex EOP errors.

However, since the AMS-3000 is currently focused on collecting urban area data,
the experimental results only demonstrate that the proposed method allows the AMS-
3000 to meet the Chinese specifications for 1:1000 scale topographic mapping in flat areas.
Therefore, the reliability of our method will still need further evaluation if datasets covering
hills and mountains are collected by the AMS-3000 in the future.
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