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Abstract: Identifying template watermarks under severe geometric distortions is a significant scien-
tific problem in the current watermarking research for remote sensing images. We propose a novel
watermarking algorithm that integrates the ring-shaped template watermark with the multiscale
local contrast measure (LCM) method. In the embedding stage, the ring-shaped template watermark
is embedded into the discrete Fourier transform (DFT) magnitude coefficients, converting the wa-
termark into small targets in the DFT domain. During the detection stage, the multiscale LCM, a
classic infrared small target detection method, enhances these small targets and generates a contrast
map. Peak detection is then performed on the contrast map to determine the radius of the template
watermark. Finally, circular edge local binarization is applied to extract the watermark information.
The proposed method enables synchronization recovery of watermarks under blind conditions.
The experimental results demonstrate that the method possesses strong robustness against various
geometric attacks such as rotation, scaling, translation, and cropping. It outperforms comparative
algorithms in terms of robustness and also exhibits good imperceptibility.

Keywords: watermarking; DFT; template watermark; local contrast measure; robustness; remote
sensing images

1. Introduction

Remote sensing images are a fundamental and strategic resource with broad appli-
cations in military, mapping, engineering planning, and disaster monitoring [1,2]. They
possess distinctive features, such as spatial resolution, spectral resolution, temporal resolu-
tion, radiometric resolution, geometric accuracy, and extensive coverage, which make them
highly valuable for detailed analysis and observation. Consequently, ensuring the security
of remote sensing images is of paramount importance.

Digital watermarking, an essential technique in data security, establishes a strong
relationship between digital data and watermarks. It can be categorized into various
types, including robust watermarking [3,4], fragile watermarking [5,6], and reversible
watermarking [7,8], among others. Robust watermarking can ensure that the embedded
watermark remains unaffected by attacks, a characteristic known as robustness. Thus, it
offers an effective solution for copyright protection of remote sensing images, wherein
robustness is a crucial metric in assessing digital watermarking algorithms. Present research
efforts to improve robustness primarily focus on minor geometric attacks. However,
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geometric correction, one of the basic processing methods for remote sensing images,
usually causes severe geometric deformations to the data. This makes it difficult to maintain
the watermark in Level 0 and Level 1 remote sensing image products after geometric
correction. Thus, it presents a significant challenge in watermark synchronization under
severe geometric distortions [9–11].

As a subset of image watermarking, remote sensing image watermarking algorithms
have significantly benefited from advancements in general image watermarking
research [12–14]. The template watermark is key to resisting geometric attacks [15–17].
Algorithms based on template watermarks employ regular watermark patterns. After an
attack, the template watermark can be extracted and corrected to reestablish watermark
synchronization. These algorithms can be divided into two categories.

The first category is the method based on spatial domain template watermarks [18,19].
This method generally involves periodically tiling template watermarks within the spatial
domain. During watermark extraction, the template watermark is identified through
correlation functions and other methods, which act as references for rectifying geometric
transformations. For instance, the literature [20] proposes a watermarking scheme based
on symmetry. In this method, watermark information is encoded through random patterns,
which serve as units of the template watermark and are subsequently embedded within
the spatial domain. Watermark synchronization is then achieved by employing the auto-
correlation function to detect the symmetrical template watermark. This type of method
couples the template watermark with the data in the spatial domain, effectively ensuring
watermark synchronization when data deformation is not severe. However, due to the
significant coupling between the template watermark and the data in the spatial domain,
severe data deformation will also deform the template watermark, thereby affecting the
extraction of the watermark.

The second category is the method based on transform domain template watermarks,
typically constructed using discrete wavelet transformation (DWT) [21], discrete cosine
transform (DCT), or discrete Fourier transform (DFT). Among these, template watermarks
based on DFT are the most extensively studied. Additionally, Chen [22] found that DFT
features exhibit greater robustness against screen-cam attacks involving geometric distor-
tions compared to DCT and DWT. These DFT-based watermarking algorithms involve
arranging watermark sequences into fixed patterns and replacing coefficients in the DFT
domain. A study [23] embedded watermarks in the annular area of the DFT magnitude. An-
other study [24] used circular DFT template watermarks. This type of method embeds the
template watermark in the transform domain, significantly reducing the spatial coupling
problem in the spatial domain. However, decoupling between the template watermark and
the attacked data is incomplete. For example, under cropping attacks, the proportion of the
template watermark in the data will encounter irreversible reduction. Therefore, precisely
identifying template watermarks in the transform domain remains challenging.

In summary, template watermarks are crucial for resisting geometric attacks in wa-
termarking algorithms for remote sensing images. The method based on spatial domain
template watermarks achieves watermark synchronization under some geometric attacks
but struggles with the spatial coupling issue. The method based on transform domain
template watermarks partially solves the former problem but still requires enhanced identi-
fication of template watermarks. Consequently, how to identify the template watermark
efficiently remains a scientific problem.

To address the above problem, this paper proposes a watermarking algorithm for
remote sensing images. In this method, we design a ring-shaped template watermark,
innovatively converting the watermark into small targets in the DFT domain. This is
followed by applying an infrared small target detection method, specifically the multiscale
local contrast measure (LCM) [25], to facilitate watermark synchronization. The main
contributions of this paper are as follows:

• Design of a ring-shaped template watermark.
• Conversion of the watermark into small targets.
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• Enhancement of the watermark using multiscale LCM.
• Peak detection based on remapping and column-wise summation.
• Watermark extraction based on the circular edge local binarization method.
• Robustness against geometric attacks.

The rest of this paper is organized as follows: Section 2 presents the methodology,
Section 3 describes the experimental design, Section 4 provides the results and analyses of
the experiments, and Section 5 offers discussions. Section 6 concludes the study.

2. Methodology

This paper proposes a watermarking algorithm for remote sensing images based on
a ring-shaped template watermark and the multiscale LCM method. Typically, template-
based watermarking algorithms divide the watermark into the template watermark and
the message watermark [15]. The template watermark is used for attack correction, while
the message watermark stores copyright information. In contrast, our algorithm treats the
template and message watermarks as one. The main idea of the proposed algorithm is
illustrated in Figure 1.
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Figure 1. The framework of the proposed method.

The core components include two main parts. (1) In the embedding stage, the ring-
shaped template watermark is utilized. This stage involves converting the watermark
into small targets in the DFT domain and embedding the watermark into the magnitude
coefficients of the DFT. These coefficients are the features of the remote sensing image used
by the proposed watermarking algorithm and serve as the watermark carrier. (2) In the
detection stage, multiscale LCM is employed to enhance the small target watermark and
obtain a contrast map. Peak detection is then performed on the contrast map to determine
the radius of the template watermark. Subsequently, circular edge local binarization is
applied to binarize the values at the corresponding radius, thereby extracting the watermark.
The specific details of the proposed algorithm are provided below.
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2.1. Ring-Shaped Template Watermark

The watermark to be embedded consists of a binary sequence of 0s and 1s, with a length
denoted as wmlen. The watermark is represented as W = {w i|wi ∈ 0, 1, i = 1, . . . , wmlen}.
A ring-shaped template watermark is constructed using the magnitude coefficients in the
DFT domain. Figure 2 shows a schematic diagram of the template watermark, where
black represents a DFT magnitude of 0, and white points represent non-zero magnitudes,
indicating watermark bits of 1. The watermark information is evenly distributed within
the ring. Due to the central symmetry of the magnitude spectrum, the calculation formula
for the interval denoted as step between two watermark bits is as follows:

step =
360

2·wmlen
(1)
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Let the rows and columns of image I be denoted as r and c, respectively. The cen-
ter (cenc, cenr) of the image is taken as the center of the template watermark. The for-
mulas are:

cenc =

{
c
2 + 1, mod(c, 2) = 0
c+1

2 , other
(2)

cenr =

{
r
2 + 1, mod(r, 2) = 0
r+1

2 , other
(3)

where the function mod( ) represents the modulo operation. The center is also the position
of the image’s direct current (DC) component after DFT. Around the center, similar to a
band-pass filter, a ring-shaped template watermark is constructed with a radius range
of [R − span, R + span]. Here, R is the radius of the concentric circle at the center of the
ring-shaped template watermark, referred to as the radius of the template watermark. This
radius divides the ring into two equal radial segments. The parameter span controls the
shape of the template. A recommended value for span is 2.

Figure 3 shows the magnitude spectrum of the image after embedding the template
watermark, where wmlen = 40, and the watermark is a periodic repetition of the combina-
tion of 01 bits. To better display the effect, the embedding strength of the watermark has
been appropriately enhanced. As shown in Figure 3a, the ring-shaped template watermark
is distinctly visible, with 40 bright spots in the ring. In Figure 3b, the corresponding bright
spots appear as 40 pillars forming a ring centered around the DC component.
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2.1.1. Radius of Template Watermark

Determining the radius of the template watermark is a critical issue. A smaller radius
means more low-frequency data will be replaced, resulting in a lower peak signal-to-noise
ratio (PSNR) value between the original and watermarked data. Conversely, a larger radius
results in a higher PSNR and better watermark imperceptibility but weaker robustness.
The choice of radius is critical when dealing with scaling attacks. After the entire data are
scaled up or down, the radius of the template watermark remains the same, that is, R.

For the image I, R has a maximum value, denoted as L, which is calculated as:

L = min(r − cenr, c − cenc) (4)

Let the image scaling factor be denoted as s. To resist scaling, it must also satisfy:

R ≤ s·L (5)

This algorithm recommends R = ⌈L/2⌉. When r and c are equal to 256, cenr = cenc = 129,
L = 64. Thus, s > 0.5. In this case, the algorithm can theoretically resist all scaling attacks
greater than 0.5. To resist scaling attacks with a smaller scaling factor, the value of R must
be correspondingly reduced.

2.1.2. Embedding of Template Watermark

Watermark embedding is achieved by replacing the magnitude values. First, the region
of the ring-shaped template watermark is preprocessed by setting the magnitude values to
0. The positions need to be determined before embedding the watermark information. With
R as the radius and step as the interval, the positions are embedded with the corresponding
watermark bit. Let the DFT coefficients of the image be denoted as B and the embedding
positions as (x, y). When θ is between 0 and (180 − step) degrees, the positions are
calculated as follows: {

x = cenc + R·cosd(θ)
y = cenr + R·sind(θ)

(6)
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where the cosd( ) and sind( ) functions first convert the input angle from degrees to radians
and then compute the cosine and sine, respectively. When θ is between 180 and (360 − step)
degrees, the symmetric positions (x_sym, y_sym) are obtained by:{

x_sym = 2·cenc − x
y_sym = 2·cenr − y

(7)

The replacement rule for the watermark is shown in the following equation:

Bx, y =

{
A·eangle(Bx, y), | wi = 1

0, | wi = 0
(8)

where angle( ) represents the phase angle of input B in the interval [−π, π], and A is a
fixed magnitude value that controls the watermark strength. A recommended value for A
is 40. For the symmetric position, the rule is:

Bx_sym, y_sym = conj
(

Bx, y
)

(9)

where conj( ) computes the complex conjugate.

2.2. Multiscale LCM

Multiscale LCM was proposed in the literature [26]. LCM, local contrast measure, is an
effective contrast measurement method inspired by biological vision mechanisms, capable
of enhancing targets while suppressing the background, thus effectively extracting small
objects. A 3 × 3 window of an image, where each grid in the window may represent more
than one pixel, is shown in Figure 4, with each grid numbered 0–8. For this window, first,
calculate the maximum pixel value Ln in area 0. Then, calculate the average grayscale value
mi for each area in the window. The local contrast is calculated as shown in the following
equation:

cn
i =

Ln

mi
, i = 1, 2, . . . , 8 (10)
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Contrast is used to quantitatively describe the grayscale difference between the target
and the background. Based on Equation (10), the contrast between areas 1–8 and area
0 can be calculated. When area 0 contains the target, the contrast obtained for area 0 is
significantly lower than the surrounding areas. A contrast map of the image can be obtained
by sliding a 3 × 3 window across the entire image and calculating the local contrast. The
local contrast is enhanced according to the equation below.

Cn = min
i

Ln × cn
i = min

i
Ln ×

Ln

mi
= min

i

L2
n

mi
(11)

When the detection result in the contrast map exceeds the threshold T, the area is
considered to contain the target to be detected. The definition of threshold T is as shown in
the following equation:

T = Ic
+ k × σIc (12)

where Ic is the average grayscale value of the contrast map, σIc is the standard deviation of
the contrast map, and k is an empirical value. The final detection result can be obtained
after binarizing with the threshold T.



Remote Sens. 2024, 16, 2535 7 of 20

Since the target size is usually unknown and the size of the bright spots that contain
watermarks can change due to attacks, it is necessary to introduce a multiscale LCM
algorithm. Let the maximum size of the target be denoted as lmax in the unit of pixels, with
a recommended value of 10 in the proposed method. The LCM is performed sequentially
from 1 to lmax, producing a series of contrast maps. A maximum pooling operation is
finally applied to this series of contrast maps. Figure 5 shows the results after employing
the multiscale LCM to Figure 3a, with lmax set to 3 and k set to 4. As seen in Figure 5a,
the watermark information is significantly enhanced, and in Figure 5b, the watermark
information is precisely extracted as small targets.
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Figure 5. Results of multiscale LCM: (a) contrast map; (b) targets.

Before applying multiscale LCM, the magnitude coefficients in the DFT domain are
enhanced to facilitate watermark identification. Let the magnitude coefficients be denoted
as M and the enhanced results be denoted as E, with the enhancement formula as follows:

E = rescale(ln(1 + M)) (13)

where the function rescale() represents min-max normalization to the interval [0, 1]. In
addition, we found that normalizing the original data before applying multiscale LCM also
yields better results.

2.3. Peak Detection

In the process of watermark extraction, the radius of the template watermark is
extracted based on the contrast map of multiscale LCM. The main idea is to remap the
contrast map to polar coordinate space. The destination image size is L ×

(
πR2), and the

transformation center is (cenc, cenr). The radius of the bounding circle to transform is R.
The interpolation method used is bicubic interpolation. The result of the transformation of
Figure 5a is shown in Figure 6. From Figure 6, it is evident that the ring-shaped template
watermark is converted into a vertical stripe. It is important to note that if an attack does
not deform the ring-shaped template watermark, the stripe will remain vertical. However,
if an attack, such as affine transformations or projection transformations, deforms the
ring-shaped template watermark, the resulting stripe will also be distorted.
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than the average, it is considered a watermark bit 1; otherwise, it is considered a water-
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To resist rotation attacks, an offset degree from 0 to 180 with an interval is applied 
when computing extracting positions (𝑥ᇱ, 𝑦ᇱ) and (𝑥_𝑠𝑦𝑚ᇱ, 𝑦_𝑠𝑦𝑚ᇱ). The interval cannot 
be infinitely small to ensure each position corresponds to a unique pixel. The minimum 
interval must be larger than 360 2𝜋𝑅⁄  degrees. When 𝑅 is 64, this interval is approxi-
mately 0.9 degrees. In the proposed method, we use an interval of 1 degree. 

Figure 6. The remapping result of the contrast map.

The warped contrast map is summed column-wise to obtain a one-dimensional se-
quence. The pixel position of the maximum prominence in this sequence can be found. The
vertical stripe from the previous step is crucial for this process. In the remapping result, the
position of the center of the template watermark is 1. Subtracting one from the position of
the maximum prominence gives the radius of the template watermark, denoted as R′. As
shown in Figure 7, the maximum prominence occurs at position 65, so R′ equals 64, which
matches the radius value used during embedding.
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2.4. Watermark Detection

The circular edge local binarization method is primarily used in the watermark extrac-
tion stage. Specifically, based on the obtained radius of the template watermark, a ring with
radius R′ is extracted from the enhanced magnitude results, denoted as E′. The average
value of this ring is then calculated. If the value of the position (x′, y′) is greater than the
average, it is considered a watermark bit 1; otherwise, it is considered a watermark bit 0.

To resist rotation attacks, an offset degree from 0 to 180 with an interval is applied
when computing extracting positions (x′, y′) and (x_sym′, y_sym′). The interval cannot
be infinitely small to ensure each position corresponds to a unique pixel. The minimum
interval must be larger than 360/2πR degrees. When R is 64, this interval is approximately
0.9 degrees. In the proposed method, we use an interval of 1 degree.
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3. Experiments
3.1. Datasets

To verify the effectiveness of the proposed algorithm, a Landsat 5 TM L0 image is
selected for the experiment, as shown in Figure 8. This image covers various geographical
features such as farmland, oceans, buildings, and mountains. The experimental data can
be downloaded from the Geospatial Data Cloud, https://www.gscloud.cn (accessed on
21 March 2024). The B1 band of image LT51480472011318KHC00, as shown in Figure 8a,
has a size of 7991 × 7051 pixels. Figure 8b shows a 256 × 256 pixel image of the central
block. Since the algorithm proposed in this paper is a block-based embedding algorithm,
we selected a block for the experiment. Given the translation invariance of the DFT, if the
algorithm can be applied to a single block, it can certainly be applied to the entire original
remote sensing image.
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3.2. Evaluation
3.2.1. Imperceptibility

The imperceptibility of the watermarking method is measured by the PSNR, which
assesses the similarity between the watermarked image and the original image. A higher
similarity indicates greater imperceptibility of the watermark before and after embedding.
The PSNR is calculated by measuring the ratio between the maximum value of the image
signal and the background noise, reflecting the quality of the processed image, as shown in
the equation below.

PSNR = 10 · log10

(
MAX2

MSE

)
(14)

where MAX is the maximum value for the image color depth; for an 8-bit color depth
image, the maximum value is 255. MSE is the mean-square error between the original
image and the watermarked image. A higher PSNR value indicates less distortion between
the processed and original images, meaning better image quality. When PSNR ≥ 40 dB, the
image quality is considered excellent. A PSNR between 30 and 40 dB typically indicates
good image quality.

https://www.gscloud.cn
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3.2.2. Robustness

The normalized correlation (NC) is used to measure the accuracy of the extracted
watermark [24]. A higher NC between the extracted watermark W ′ and the original
watermark W indicates higher accuracy in watermark extraction. The NC is defined as
shown in the following equation.

NC =
∑wmlen

i=1 WiW′
i√

∑wmlen
i=1 W2

i

√
∑wmlen

i=1 W′2
i

(15)

The threshold for NC is an empirical value. In this paper, a threshold of 0.75 is set. If
the NC exceeds or equals this threshold, the watermark detection is considered successful;
otherwise, it is regarded as a failure.

3.3. Experiment Design and Implementation
3.3.1. Comparative Methods and Parameter Settings

Two representative algorithms based on the transform domain are selected for com-
parison, which are referred to as Method Sun [24] and Method Heidari [11]. Method Sun
is based on DFT, while Method Heidari is based on DWT. All three algorithms use the
PSNR and NC as evaluation metrics in this experiment. For the watermark information,
the proposed algorithm and Method Sun use the same watermark with a length of 40, as
described in Section 2.1. Method Heidari uses a binary image as the watermark, as shown
in Figure 9, with a size of 32 × 32 pixels.
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Figure 9. The watermark used in Method Heidari.

Regarding parameter settings, for Method Sun, the constant C added to the magnitude
of the DFT coefficient is set to 45, and the parameter b that controls the overall intensity
is set to 0.15. The predefined limit for thresholding Wiener filtered values is 0.8 of the
maximum. The width for removing horizontal and vertical lines is 5 pixels, and the radius
for setting low frequencies to zero is set to 0.3 L. Additionally, when the data to be detected
require padding, the padding value is set to 0 by default, and the padding direction is
bottom-right. If cropping is needed, it starts from the top-left part and then crops the
bottom-right part to ensure that the detected data and the original data are the same size,
as required by Method Heidari. Both the proposed algorithm and Method Sun require the
detected data to be square-shaped. That is, it should be padded to become square before
watermark detection.

3.3.2. Geometric Attacks

To verify the robustness of the algorithm, this experiment designs four types of
geometric attacks: rotation, scaling, translation, and cropping. Each type of attack is
applied with different intensities.

(1) Rotation attacks

As shown in Figure 10, the rotation attack in this experiment involves rotating the
image counterclockwise around its center by a certain degree, denoted as θ. The value of θ
ranges from 15 to 180 degrees in intervals of 15 degrees. The size of the data also changes
accordingly. For example, when θ = 15

◦
, the size becomes 314 × 314 pixels.
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Figure 10. The data after rotation attacks.

(2) Scaling attacks

Scaling attacks are common in image processing and involve interpolation and resam-
pling. In this experiment, the scaling factor s is set to be equal in both the horizontal and
vertical directions. The value of s ranges from 0.5 to 1 in intervals of 0.1 and then from
2 to 10 in intervals of 1. Table 1 shows the dimensions of the images after applying scaling
attacks with various scaling factors.

Table 1. The dimensions of images after scaling attacks.

Scaling Factor s Dimensions after Attack

0.5 128 × 128
0.6 154 × 154
0.7 180 × 180
0.8 205 × 205
0.9 231 × 231
1 256 × 256
2 512 × 512
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Table 1. Cont.

Scaling Factor s Dimensions after Attack

3 768 × 768
4 1024 × 1024
5 1280 × 1280
6 1536 × 1536
7 1792 × 1792
8 2048 × 2048
9 2304 × 2304
10 2560 × 2560

(3) Translation attacks

As shown in Figure 11, the translation attack involves simultaneously translating the
image by the same number of pixels t in both the horizontal and vertical directions. The
value of t ranges from 10 to 120 with a gap of 10. The translation starts from the top-left
corner of the data, and the space created by the translation is filled with 0s. The size of the
data remains unchanged.
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(4) Cropping attacks

As shown in Figure 12, the cropping attack in this experiment involves sequentially
cropping the edges of the image. The cropping ratio r is the ratio of the cropped area to the
original image area. The value of r ranges from 5% to 70% in intervals of 5%. It is evident
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that the size of the data continuously decreases. When the cropping ratio r = 70%, the data
size becomes 77 × 77 pixels.
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4. Results and Analyses
4.1. The Results of Imperceptibility

Table 2 presents the PSNR values for the three methods. The proposed method
achieves a PSNR of 45.13 dB, Method Sun achieves a PSNR of 41.30 dB, and Method
Heidari achieves a PSNR of 38.24 dB. The results indicate that the proposed method
significantly outperforms the other two methods in terms of imperceptibility.

Table 2. The PSNRs of the three methods.

Method Proposed Method Method Sun Method Heidari

PSNR (db) 45.13 41.30 38.24

4.2. The Results of Rotation Attacks

Figure 13 shows the results of rotation attacks. The NC values are used to evaluate the
performance of the proposed method, Method Sun, and Method Heidari under various
rotation angles. The rotation angle θ ranges from 15◦ to 180◦, in intervals of 15◦.
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The NC values of the proposed algorithm remain consistently high across all rotation
angles, demonstrating strong robustness against rotation attacks. The NC value stays
around 1.00, indicating an almost perfect correlation between the extracted and original
watermarks, regardless of the rotation angle. Specifically, the proposed method maintains
NC values above 0.93 for all tested angles.

In contrast, Method Sun and Method Heidari exhibit significant fluctuations in the
NC values as the rotation angle varies. For Method Sun, the NC values drop significantly
at certain angles, reaching as low as approximately 0.32 at 15◦, 30◦, 60◦, and 75◦, as well
as their symmetrical counterparts around 90◦. This indicates that Method Sun is highly
susceptible to rotation attacks. Method Heidari also shows considerable variation, with NC
values dropping to around 0.21 at 90◦, although it performs slightly better than Method
Sun at certain angles.

Overall, the proposed method outperforms the other two methods, maintaining high
NC values and demonstrating superior robustness against rotation attacks.

4.3. The Results of Scaling Attacks

Figure 14 shows the results of scaling attacks. The NC values are used to evaluate the
performance of the proposed method, Method Sun, and Method Heidari under various
scaling factors s. The scaling factors range from 0.5 to 1 in increments of 0.1 and from 2 to
10 in increments of 1.

The NC values of the proposed algorithm remain consistently high across most scaling
factors, demonstrating strong robustness against scaling attacks. The NC value stays above
0.87 for all tested scaling factors except when s = 0.5, indicating a high level of correlation
between the extracted watermark and the original watermark. When s = 0.5, the NC value
of the proposed method drops below the threshold of 0.75. However, it is consistent with
the theoretical analysis in Section 2.1.1.

In contrast, Method Sun and Method Heidari exhibit significant fluctuations in NC
values as the scaling factor varies. The NC values of Method Sun drop below the threshold
of 0.75 at certain scaling factors, particularly at s = 2 and higher, indicating that Method
Sun is less robust to more significant scaling factors. Method Heidari shows even more
pronounced variation, with NC values dropping to 0 at scaling factors greater than 1. This
demonstrates that Method Heidari is highly susceptible to scaling attacks, particularly at
larger scaling factors. The NC values for Method Heidari fluctuate between 0 and 1.00,
showing vulnerability to scaling attacks.
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Overall, the proposed method demonstrates better performance than the other two
methods, consistently achieving high NC values and showing greater robustness against
scaling attacks.

4.4. The Results of Translation Attacks

Figure 15 shows the results of translation attacks. The NC values are used to evaluate
the performance of the proposed method, Method Sun, and Method Heidari under various
translation distances t. The translation distances range from 10 to 120 pixels in increments
of 10 pixels.
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The proposed algorithm maintains relatively high NC values across most transla-
tion distances, with values above 0.86 for all tested distances. This indicates a good
level of correlation between the extracted watermark and the original watermark for the
proposed method.
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However, the proposed method’s performance is slightly lower than that of Method
Sun. Method Sun demonstrates superior robustness against translation attacks, maintaining
NC values of 1.0 for most translation distances, with a slight drop to around 0.83 at
100 pixels. This indicates that Method Sun is highly resilient to translation attacks. In
contrast, Method Heidari shows considerable variation, with NC values dropping below
the threshold at several distances. The NC values for Method Heidari fluctuate between
0.53 and 1.00, demonstrating higher susceptibility to translation attacks compared to both
the proposed method and Method Sun.

Overall, while Method Sun generally achieves higher NC values across all tested
distances, the proposed method performs well against translation attacks, consistently
achieving NC values above the threshold. Method Heidari performs adequately but shows
more variability in its NC values than the other methods.

4.5. The Results of Cropping Attacks

Figure 16 shows the results of cropping attacks. The NC values are used to evaluate
the performance of the proposed method, Method Sun, and Method Heidari under various
cropping ratios r. The cropping ratios range from 5% to 70% in increments of 5%.
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The proposed algorithm maintains relatively high NC values across most cropping
ratios, with values above 0.84 for all tested ratios. This indicates a good level of correlation
between the extracted watermark and the original watermark, even as significant portions
of the image are cropped.

Method Sun generally demonstrates strong robustness against cropping attacks, main-
taining NC values above the threshold of 0.75 for most cropping ratios. However, the
NC values fluctuate more compared to the proposed method, with significant drops at
specific points, such as 15% and 35%. Method Heidari shows the most significant variation,
with NC values gradually declining and then dropping below the threshold at cropping
ratios above 45%, indicating higher susceptibility to cropping attacks compared to both the
proposed method and Method Sun.

Overall, the proposed method maintains high NC values and demonstrates good
robustness against cropping attacks compared with the other two methods.

5. Discussion

The above experimental results show that the proposed method excels in both imper-
ceptibility and robustness, making it a more reliable and effective choice for watermarking
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than Method Sun and Method Heidari. More discussions are provided to illustrate the
characteristics of the proposed algorithm.

5.1. Scaling Factor of 0.5

As shown in Figure 14, when the scaling factor is 0.5, the NC value of the proposed
method drops below the threshold of 0.75. The underlying reason is that the watermark,
being at the edge in the DFT domain, is partially cropped during scaling. As discussed in
Section 2.1.1, when R = ⌈L/2⌉ and R is set to 64, a scaling factor of 0.5 becomes a critical
value.

Figure 17 shows the results after a 0.5 scaling attack, where the watermark is already at
the edge, leading to loss of watermark information, as is evident in both the pre-enhanced
and post-enhanced images in Figure 17a,b. The extracted watermark does not show a peak
at position 65, indicating a failure in watermark extraction. This is further illustrated in
Figure 18, which displays the prominence after a 0.5 scaling attack. The absence of a peak
at the expected position confirms the loss of watermark data due to the scaling process.
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5.2. Watermark Capacity

The watermark capacity is a crucial metric for evaluating a watermarking algorithm;
it is typically measured in bits per pixel (BPP) [27] and is especially important in multiple
watermarking scenarios [28,29]. The proposed method does not belong to multiple water-
marking. It embeds one or more identical watermarks into the data. In this method, a 40-bit
watermark is embedded into a 256 × 256 dataset. For a 1024 × 1024 dataset, the watermark
is embedded in blocks, each containing the same watermark. Therefore, the theoretical
watermark capacity of our algorithm is calculated as 40/(256 × 256) = 0.0006 BPP.

However, issues may arise during peak detection if the watermark contains too many
0s and too few 1s. For example, when the watermark contains only ten 1s, as shown
in Figure 19, the watermark detection succeeds. However, the peak value at x = 65 is
significantly lower than that shown in Figure 7.
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Therefore, the number of watermark bits set to 1 must maintain a certain proportion.
We recommend a ratio of at least 1/2, meaning at least 20 bits should be 1s to achieve
the robustness demonstrated in our experiments. Consequently, while maintaining good
robustness against geometric attacks, the watermark capacity of the proposed method
remains unchanged, but the number of qualified usable watermarks is reduced.

6. Conclusions and Outlooks

In this paper, we proposed a watermarking algorithm for remote sensing images
based on a ring-shaped DFT template watermark and multiscale LCM. The method ad-
dresses the significant challenge of accurately identifying and synchronizing template
watermarks under severe geometric distortions, which is crucial in watermarking research
for remote sensing images. The experimental results demonstrate the proposed method’s
strong robustness against various geometric attacks, including rotation, scaling, translation,
and cropping. It consistently outperforms comparative algorithms, such as Method Sun
and Method Heidari, in terms of robustness while exhibiting superior imperceptibility.
These findings indicate that the proposed method excels in maintaining the integrity and
synchronization of the watermark under challenging conditions, making it a more reliable
and practical choice for watermarking remote sensing images. Future work will focus on
further enhancing the algorithm’s robustness against a wider variety of attack scenarios,
such as affine transformations and projection transformations.
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