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Abstract: Understanding groundwater-dependent ecosystems (i.e., areas with a relatively shallow
water table that plays a major role in supporting vegetation health) is key to sustaining water
resources in the western United States. Groundwater-dependent ecosystems (GDEs) in Colorado
have non-pristine temporal and spatial patterns, compared to agro-ecosystems, which make it
difficult to quantify how these ecosystems are impacted by changes in water availability. The goal
of this study is to examine how key hydrosocial parameters perturb GDE water use in time and in
space. The temporal approach tests for the additive impacts of precipitation, surface water discharge,
surface water mass balance as a surrogate for surface–groundwater exchange, and groundwater
depth on the monthly Landsat normalized difference vegetation index (NDVI). The spatial approach
tests for the additive impacts of river confluences, canal augmentation, development, perennial
tributary confluences, and farmland modification on temporally integrated NDVI. Model results
show a temporal trend (monthly, 1984–2019) is identifiable along segments of the Arkansas River at
resolutions finer than 10 km. The temporal impacts of river discharge correlate with riparian water
use sooner in time compared to precipitation, but this result is spatially variable and dependent on
the covariates tested. Spatially, areal segments of the Arkansas River that have confluences with
perennial streams have increased cumulative vegetation density. Quantifying temporal and spatial
dependencies between the sources and effects of GDEs could aid in preventing the loss of a vulnerable
ecosystem to increased water demand, changing climate, and evolving irrigation methodologies.

Keywords: groundwater-dependent ecosystem; Bayesian framework; hierarchical modeling; autoregressive

1. Introduction

Groundwater-supported ecosystems are under threat from the changing climate and
human encroachment in the form of land-use change and agriculture [1]. Groundwater-
dependent ecosystems (GDEs), or riparian ecosystems, like the ecosystems along the
Arkansas River in southeastern Colorado, USA, can be measured to identify shared
hydrologic connections between managed surface water and the adjacent agricultural
landscape [2]. This research focuses on terrestrial vegetation, referred to here as GDE
and riparian, because it is an ecosystem that (a) naturally emerges near the river bank,
(b) relies on groundwater for water requirements (b), and meets the third type of clas-
sification (i.e., terrestrial vegetation as opposed to aquatic) of a GDE as summarized by
Eamus et al. (2006) [3,4]. Understanding the interconnections between an agro-ecosystem
(i.e., human-modified area used for production of crops) and a riparian ecosystem can
improve the conjunctive management of groundwater and surface water [5]. The research
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dissecting the interconnections between riparian ecosystems and the surrounding landscape
are plentiful. Previous research has emphasized applications like the numerical modeling
of groundwater and surface water flow [5–9], theoretical with stochastic modeling [10,11],
and a plethora of geospatial approaches [12–15] that utilize satellite imagery all to quantify
the sources and effects for groundwater-dependent ecosystems. Groundwater plays a
critical role supplying water for terrestrial vegetation that, in turn, provides ecosystem
services like migratory bird habitats, water purification, and soil accumulation [16].

The background on quantifying the connectivity between an irrigated landscape and
riparian water use is incomplete [17]. There are little data about the temporal impact
of irrigation-perturbed return flow on riparian water use. Temporal lags and spatial
dependencies between the source (i.e., water supply) and effect (i.e., riparian water use)
should be examined to prevent the loss of a vulnerable ecosystem to increased water
demand, changing climate, and evolving irrigation methodologies. Temporal lag refers to
the relationship between two variables at earlier times. Floodplain activity in southeastern
Colorado consists of flood-furrow irrigation of agricultural crops with a portion of land
that utilizes center-pivot and drip technology [18]. Flooding as an irrigation method, as
opposed to center-pivot, can cause spatially dependent increases in surface–groundwater
exchange [7]. A review of groundwater recharge measurement methodologies by Scanlon,
Healy, and Cook (2002) shows irrigating activity can contribute a large portion of water to
return flow (i.e., from groundwater to surface water body) [19]. Recently, a global synthesis
of recharge data indicates that groundwater plays a larger role than previously thought
in controlling streamflow and evapotranspiration (ET) [20]. In turn, locations along the
riparian corridor that are in the path of irrigation-perturbed exchange flows can depend on
the extra flow as a water source [5]. Relevant research estimates 50% of the water applied
to agricultural areas in the Arkansas River basin is converted to return flow [21,22], and
irrigation-altered return flows are connected to riparian ecology along the Arkansas River
in Colorado [23].

Two unique layers of complexity to the water balance in southeastern Colorado consist
of a process known as canal augmentation and the influx of non-native vegetation. Canal
augmentation occurs when a water user (e.g., farmer) has switched from flood-furrow
practices to center-pivot irrigation. The Arkansas River then receives augmentation water,
in timing and amount, that would have occurred if the water user still required water from
a canal [24]. The augmentation water prevents changes in historic stream hydrology when
irrigation methods change [24]. The dual impact of canal augmentation and irrigation
methodology changes on GDE response (i.e., ET or vegetation density changes) are not
well understood. Similar to river systems in western USA, non-native species like saltcedar
(Tamarix ramosissima, also known as tamarisk or tamarix) grow unfettered given their
ability to withstand high temperatures and salt-laden soils [23,25–29]. Saltcedar growth
is more dependent on groundwater than precipitation, which has water use implications
in an irrigated river valley with groundwater reliance [30]. The research presented here
examines key human-influenced hydrologic factors (i.e., hydrosocial) on GDE vegetation
patterns to draw inferences on green vegetation abundance due to water supply. Ex-
change flow and return flow exist across many spatial and temporal scales [31]. We use
both terms interchangeably in this research because the methodology applied in the time
series approach examines irrigation-altered exchange flows from a near-river perspective
(i.e., upstream to downstream mass balance), and the spatial analysis examines which
floodplain characteristics can provide inference on the presence of return flow using point
and non-point source data (i.e., confluence location and irrigation methodology change).

We use publicly available data, cloud computing capabilities, and Bayesian techniques
to examine the spatial and temporal dependencies of riparian vegetation health [32]. The
models applied in this study deal with lagged covariates and autoregressive (AR) signa-
tures and are used in economic, hydrologic, and ecological studies to understand data
and make predictions [33–38]. Lagged temporal regression (e.g., estimation of depen-
dence on factors at earlier times) is appropriate for examining GDE vegetation greenness
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because the state of the ecosystem at a given time could be due to past inputs into the wa-
tershed [5,39]. Spatial regression combined with categorical covariates can test hypotheses
about the connections between floodplain activity and GDEs [40]. A family of Bayesian
linear regression models are used to investigate patterns of vegetation over time and space.
Linear models are used because advanced applications of remote sensing of ET have linear
functional forms [41–43], and though the underlying mechanisms that connect human-
made and natural ecosystems are complex, applying linear models is a necessary step in
understanding spatio-temporal processes [44].

This research evaluates what temporal and spatial statistical models can uncover about
the connections between natural ecosystem biomass, as a surrogate for water use, and
the adjacent landscape and if the findings agree with previous studies. The following hy-
potheses are addressed: (1) a temporal trend in monthly normalized difference vegetation
index (NDVI) covering the riparian vegetation along the Arkansas River is only detectable
at spatial scales smaller than catchment (10 km), (2) the time lag of monthly NDVI with
precipitation is shorter than that with river discharge, (3) riparian areas along the Arkansas
River that intersect with perennial streams have increased cumulative vegetation density
compared to other floodplain characteristics examined (e.g., agriculture transition to fal-
low). The first hypothesis is useful to determine if the spatial scale at which temporal trend
is identifiable (i.e., identifying ecosystem change) is spatially relevant to the scale at which
the Arkansas River is managed. This hypothesis has implications for the co-management of
water supply and ecosystem sustainability. The second hypothesis is useful in separating
the timing of inputs to the GDE. This hypothesis has implications for management action,
like environmental flows (i.e., managed surface water input) to support GDE function.
The third hypothesis associates floodplain characteristics with GDE response to inform
resource managers on the connectivity between two ecosystems. These hypotheses are
proposed to deduce the hydrosocial connections between human-built and natural ecosys-
tems to inform decision making at operational scales. The analysis conducted herein tests
these hypotheses using a time series modeling approach, previously used to highlight the
connections between vegetation life cycles and various external forcing [13,35,45–48] and
a spatial modeling approach with Gaussian-process regression techniques that has been
previously used on spatial data problems to account for spatial random effects between
similar regions [44,49,50].

2. Materials and Methods
2.1. Study Area

The GDE under examination borders a 96 km segment of the Arkansas River in
southeastern Colorado with an areal coverage of 52.5 km2. Figure 1 depicts the study area
that begins downstream of the John Martin Reservoir near Lamar, Colorado, and extends
to the Colorado–Kansas border. The climate is semiarid with rainfall ranging from 343 mm
to 394 mm [24]. We demarcated the extents of the GDE using Google’s platform of satellite
imagery (varies upon resolution) and a series of past cropping-pattern extents from the
National Land Cover Database collected in 2001 and 2016 [32].

2.2. The Landsat Data and Strategic Spatial Partitioning

Using Google Earth Engine (GEE), all Landsat 5, 7, and 8 imagery (path: 31 and
row: 34) from 1984–2019 are used to extract NDVI for the study area [32]. The NDVI
product is used in this study to track biomass, as a proxy for ET, due to the history the
product has as an effective parameter in satellite-based ET algorithms [41,53] and because
NDVI has been validated in tracking groundwater-dependent ecosystems [14,54,55]. In
total, data from 932 satellites are used. Each satellite pixel (30 m) centroid that falls within
the areal extent of the riparian corridor is defined as a sampling point to extract values
of surface-reflected NDVI from each satellite scene. This sampling scheme resulted in a
total of 58,443 satellite pixels covering the study area. All imagery is screened for clouds,
ice, and cloud shadows within the areal extent of the riparian corridor. We follow the



Remote Sens. 2024, 16, 2536 4 of 20

same methodology as Albano et al. (2020) using a built-in GEE algorithm that combines
image metadata and spectral reflectance data to mask-out erroneous pixel values [12,32].
Following Hungtington et al. (2016), Landsat 8 Operation Land Imager data are linearly
corrected for comparison with Landsat 5 and 7 [14]. The data are exported into R to be
organized [56]. All pixel values found in error, likely due to the presence of clouds or snow
and scan line corrector error, are assigned an NA value. Points that fall within the water
surface area of the Arkansas River are removed using the National Land Cover Database
Open Water classification [57]. All satellite pixels are divided into areal plots, hereafter
referred to as subregions, based on the location of the satellite pixel along the Arkansas River.
The landward extent of each sub-region is defined by past and present crop-patterning
extents and varies between ten to hundreds of meters. Table 1 provides a summary of the
subregions within the study area. The subregions in this study correspond to areas with
eight distinct hydrologic response functions as defined by the rainfall-runoff model that
Colorado’s Division of Water Resources (DWR) uses to model sections of the Arkansas
River with the Hydrologic Institutional Model to ensure compliance with the Arkansas
River Compact between Colorado and Kansas [58].
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Figure 1. General location map of the 96 km reach of the Arkansas River located downstream of the
John Martin Reservoir (JMR). Yellow stars indicate a township or city. Purple triangles represent
four of six U.S. Geological Survey (USGS) gages located on the Arkansas River: Below JMR
(ID: 07130500; 38.07◦, −102.93◦), at Lamar, CO (ID: 07133000; 38.11◦, −102.62◦), near Granada,
CO (ID: 07134180; 38.10◦, −102.31◦), near Coolidge, KS (ID: 07137500; 38.03◦, −102.01◦) [51].
Two gages, not shown for simplicity, used in the time series analysis are Big Sandy Creek near
Lamar, CO (ID: 07134100; 38.11◦, −102.48◦) and Wild Horse Creek above Holly, CO (ID: 07134990;
38.06◦, −102.14◦) (U.S. Geological Survey, 2016) [52].

2.2.1. Temporal Representation of NDVI

Each sub-region is represented as a time series vector with dimensions of T = 428 × 1,
where T is the length of the time series in months. Each value in the vector is the average
monthly NDVI ranging from May 1984 to December 2019. Subregions (d = 1, . . . , D = 8)
represent the number of separate time series vectors created for the entire study area.
Monthly NDVI is computed at the Landsat-pixel level first, and then, the areal average of
all satellite pixels located within a given sub-region creates a single average NDVI value
per month per subregion. The average NDVI for each month of the year at each Landsat
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pixel is computed using the xts package in R (v. 4.3.2) [59]. Temporally averaging all data
to a value per month compensates for gaps in satellite imagery from clouds and snow and
reduces noise [13,60].

Table 1. A summary of the sub-region demarcations that correspond to the Hydrologic Institutional
Model to simulate water processes on the Arkansas River. The ∆ Dist. (km) is the incremental length
of each river segment in a subregion.

No. Name Location (Long.◦) ∆ Dist. (km)

1 Below JMR to Below Fort Bent Canal (begin, −102.8◦] 10.03

2 Below Fort Bent Canal to Below Amity Canal (−102.8◦, −102.7◦] 11.38

3 Below Amity Canal to Lamar Gage (−102.7◦, −102.6◦] 10.48

4 Lamar Gage to Below Manvel Canal (−102.6◦, −102.5◦] 17.39

5 Below Manvel Canal to Below X-Y Graham Canal (−102.5◦, −102.4◦] 8.78

6 Below X-Y Graham Canal to Granada Gage (−102.4◦, −102.3◦] 11.28

7 Granada Gage to Below Sisson-Stubbs Canal (−102.3◦, −102.2◦] 14.43

8 Below Sisson-Stubbs Canal to CO-KS Border (−102.2◦, end] 12.80

2.2.2. Spatial Representation of NDVI

In order to represent ecosystem water use changes in a spatial format, temporal inte-
gration (i.e., sum) is applied to the average monthly NDVI to convert the time series into a
single value of cumulative density at every Landsat pixel within the study region. The ap-
proach to integrated NDVI included herein is simpler than the methods proposed by Reed,
Loveland, and Tiezen (1996), who defined the onset of greenness and summed all values of
NDVI to a point in time when the plant is considered dormant [61]. The time period chosen
to analyze temporally integrated NDVI is from January 2000 to December 2019. By 1996,
several major surface-irrigation canals in the study area had been affected by augmenta-
tion [24], so January 2000 serves as an inflection point for land-use change. Satellite pixels
are filtered in space and time to normalize each sub-region and thereby create an equal-area
analysis among subregions (i.e., all subregions have the same number of observations
of integrated NDVI per satellite pixel). The data filters are as follows: exclude data in
space by removing all pixels with five or more observations of monthly NDVI less than 0,
and exclude data in time by removing images with greater than 1% of missing areal data
covering our study area. The filtered data are randomly sampled to create a data vector
for the spatial analysis that is of size Nd = 250 × 1 (0.225 km2) where Nd is the number
of spatial observations for each sub-region (See Appendix A Figure A1). The data are
randomly sampled to reduce computational burden.

2.3. Temporal Covariates

Cumulative monthly precipitation (P), and average daily temperature per month (T)
for the Upper Arkansas hydrologic boundary (HUC: 11020002) are downloaded from West-
Wide Drought Tracker [62]. Precipitation and temperature are assumed spatially uniform in
the study area (i.e., all subregions share the same data), and these variables are standardized
before being analyzed to reduce collinearity and improve model convergence [44].

Monthly mean discharge for the Arkansas River is extracted from USGS Surface-Water
Monthly Statistics for the Nation (U.S. Geological Survey, 2016) [52]. To create a surrogate
variable for exchange flow, several USGS gages are used to perform a mass balance for
each sub-region in the study area. This mass-balance technique converts discharge into
a value of net stream gain or stream loss per month (QG/Lt ), hereafter referred to as
stream gain–loss. There are six USGS gages used in the stream gain–loss calculation with
four on-stream gages and two tributary gages (Figure 1). The stream gain–loss covariate
is used as the key proxy to connect the agro-ecosystem to the riparian ecosystem. The
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assumption is that when the river is gaining, then exchange flow (i.e., discharge from
the alluvium to the river) is occurring. Figure 2 depicts the monthly discharge (using the
nearest upstream gage) and monthly stream gain–loss applied to each subregion.
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Figure 2. (a) Time series of monthly stream gain–loss from 1 January 2002 to 1 January 2010; negative
values of stream gain–loss indicate a net gain (transparent blue) to the Arkansas River, and positive
values indicate a net loss (transparent red). The dashed black line demarcates the point at which no
exchange flow occurs. (b) Time series of monthly discharge from 1 January 2002 to 1 January 2010 for
the four USGS gages located on the main stem of the Arkansas River.

Data on monthly depth to groundwater (dtgw) are collected from the geographical
information system hosted by Colorado’s Division of Water Resources [63]. There are
numerous groundwater wells in the study area. One groundwater observation well is
chosen for each sub-region based on the following criteria: duration of observations is
from 1980 to 2018, and the observation well is within the spatial extent of the Quartenary
Alluvium, shortest distance to the Arkansas River, and within the longitudinal extents of a
subregion. The only exception to this criterion is the well used for sub-region 8, which is
located at the downstream end of sub-region 7. This inconsistency is because sub-region 8
did not have observation wells that met the criteria above. Each observation record had
to be extended to 2019 so the WestWide Drought Tracker [62] was used to find a similar
hydrologic year, based on the percentage of normal precipitation, and the groundwater
data from the hydrologically similar year replaced the missing data in 2019.

2.4. Spatial Covariates

Using Colorado’s Decision Support Systems Map Viewer, data for several landscape
characteristics are compiled to explain spatial changes in temporally integrated riparian
NDVI per subregion [63]. Each explanatory variable used in the spatial analysis is called
a group, and each sub-region is assigned a value from each group. The groups are de-
scribed in order as they appear in Table 2: (1) number of confluences, (2) are the operating
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canals outside of the riparian corridor impacted by augmentation [yes (1) or no (0)], (3) is
there development (i.e., city or pastoral practices) located outside of the adjacent floodplain
[yes (1) or no (0)], (4) is there a confluence between the Arkansas River and a perennial
tributary [yes (1) or no (0)], and (5) is the sub-region adjoined by permanent dry up locations
of irrigated land identified by the Substitute Water Supply Plans or decrees in Colorado for
the Division of Water Resources [yes (1) or no (0)].

Table 2. A summary of the subregions with count and binary variables incorporated into a
coding matrix.

- Group 1 Group 2 Group 3 Group 4 Group 5

Subregion No. of
Confluences

Canal
Augmentation Development Perennial

Tributary Land Dry-Up

1 4 0 0 0 0
2 3 1 0 1 1
3 2 1 1 0 0
4 2 0 1 0 0
5 1 1 0 1 1
6 2 1 0 0 0
7 2 0 0 0 1
8 3 1 0 1 0

The spatial analysis includes count and binary variables that can be used to verify
predictions about the connections between a riparian ecosystem and the surrounding
landscape. The number of confluences is used as a count-covariate to account for the
presence of drainage ditches, canals, and ephemeral draws in a sub-region as an indication
for increased surface runoff and exchange flow (Group 1). Canal augmentation is coded
as a binary covariate to track changing water availability in a sub-region as a result of
altered soil-moisture and infiltration from modified irrigation methodologies (Group 2).
Floodplain activity is a broad covariate that tests if pastoral practices and cities impact
temporally integrated NDVI through altered surface runoff in timing and amount (Group 3).
Confluence type is used as a binary covariate to account for the presence of a perennial
tributary in a sub-region as an indication of a seasonally shallow groundwater table and
increased exchange flow (Group 4). Irrigated land dry-up indicates subregions that are
abutted by historic agricultural land that are no longer irrigated but can be re-irrigated
with groundwater under a plan for augmentation, dryland-farmed, or have revegetation
requirements (Group 5).

2.5. The Linear Models

The Bayesian multiple linear regression models used in the analyses are in Table 3.
Model 1 is a classic linear regression model in a Bayesian setting that is used as the
control model to validate the need to account for autocorrelation in our data. Model 2 is a
hierarchical Bayesian linear time series model that accounts for an autoregressive signature
of order one. Model 3 is a hierarchical Bayesian linear network model that accounts for
spatial dependence among pixel neighbors within a given subregion. The reader is directed
to Lurtz (2023) for a more in-depth understanding of the models used in this study [17]. A
custom Markov chain Monte Carlo (MCMC) sampler is created for the models shown in
Table 3 following the six general steps outlined by Hobbs and Hooten (2015) [44].

Model 2 equates to a fully Gibbs MCMC algorithm [17]. The model variables for the
time series case are described as follows: yt comes from a univariate normal distribution
and represents a measurement of monthly NDVI at time t = 1, . . . , T; xt is a p × 1 vector
of fixed covariates measured at time t where p represents the number of covariates; β is a
multivariate normal p × 1 vector of regression coefficients with a p × 1 prior mean vector
µβ and a p × p covariance matrix Σβ = σ2

βI; each I is an identity matrix with 1 on the
diagonal elements of the matrix and 0 elsewhere; zt represents the autoregressive error in
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the ecohydrologic process at time t; and α is a scalar autocorrelation parameter of order
one with hyperparameters µα and σ2

α . The data model variance, σ2
y , accounts for the leftover

variance not captured by the mean and autocorrelation components. The process model
variance, σ2

z , is a scalar that represents the variance in the autoregressive error, and z0 is the
initial state which comes from a univariate normal distribution.

Table 3. A summary of the models used in this study. The symbol ∼ implies two sides of an equation
are proportional to each other. The probability distribution abbreviations are as follows: Normal-
Gaussian (N), multivariate normal (MVN), and Inverse Gamma (IG).

Model 1 (General) Model 2 (Time) Model 3 (Space)

yi ∼ N(x
′

iβ, σ2) yt ∼ N(x
′
tβ + zt, σ2

y) yd ∼ MVN(X′
dβ + ηd, σ2

d I)
β ∼ MVN(µβ, Σβ) zt ∼ N(αzt−1, σ2

z ) ηd ∼ MVN(µη , Σ(σ2
ηd

, ρ))

σ2 ∼ IG(q, r) β ∼ MVN(µβ, Σβ) β ∼ MVN(µβ, Σβ)

α ∼ N(µα, σ2
α) ρ ∼ Gamma(γ1, γ2)

σ2
y ∼ IG(qy, ry) σ2

d ∼ IG(qd, rd)

σ2
z ∼ IG(qz, rz) σ2

ηd
∼ IG(qη , rη)

z0 ∼ N(µz0 , σ2
z0
)

The spatial model is a hybrid Gibbs and Metropolis–Hastings sampling scheme [17].
The spatial model is similar to the time series model in that the model accounts for a latent
correlated process directly (i.e., zt in the temporal model and ηd in the spatial model). The
correlated process (ηd) comes from a multivariate normal distribution; µηd

is the nd × 1
prior mean vector, and Σ(σ2

ηd
, ρ) is an nd × nd covariance matrix set equal to σ2

ηd
R(ρ) which

is equivalent to σ2
η(diag(W1d)− ρWd)

−1. diag(W1d) is a diagonal matrix with the row
sums of W as diagonal elements [33]. This network model has Wd as a binary distance
matrix where locations within a certain distance of a pixel are neighbors [33]. In this study,
the binary proximity matrix is developed for each sub-region by dictating that all pixels
within 150 m of each other are considered neighbors (e.g., similar plant functional group).
The spatial dependence parameter, ρ, is from a symmetric proposal with a univariate
normal distribution set as the mean and a variance with a tuning parameter [33]. In the
spatial formulation, σ2

d represents the leftover variability after accounting for correlation
among pixels that represent the same plant functional group. The variance in the spatially
correlated random effect, σ2

ηd
, is the expected error between the estimations of temporally

integrated NDVI for image pixels that are neighbors and contain a similar plant functional
group. The regression coefficients (β) and the spatial dependence parameter (ρ) are shared
among subregions which forces smoothing across the eight subregions [50].

2.5.1. The Priors

The prior distributions represent insights about a variable in a statistical model and
do not depend on the data being analyzed [44]. All variance structures are specified with
strictly positive distributions (e.g., Gamma and IG). The autocorrelation coefficient in the
time series model (α) is specified with a mean (µα) equal to 0.6 and a variance (σ2

α) equal
to one because the correlation parameter is between -1 and 1 for stationary time series.
The hyperparameters used to explain the covariance structures are vaguely specified with
qz = 0.001, rz = 1000, qy = 0.001, and ry = 1000. The initial state variable has a mean of
µz0 = 0 and a variance σ2

z0
= 1. The mean vector for the regression coefficients µβ is set

equal to zero, and Σβ is equal to 10,000I to control collinearity among covariates [33].
The priors in the spatial model are weakly informed similar to the time series approach,

except for the spatial dependence parameter (ρ) and the spatially correlated effect (ηd). The
spatial dependence parameter has hyperparameters set to γ1 = 9801 and γ2 = 9900, and
ρ is instantiated in the MCMC chain close to one (e.g., 0.999) with a small tuning parameter
(ρtune = 0.0005). The MCMC algorithm has an accept–reject sampling scheme so that
the spatial dependence parameter remains between 0 and 1 [33]. The model is informed
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so that σ2
ηd

comes from a mean of 5 and a variance of 4. This prior informing helps the
model identify the spatial dependence among like vegetation communities as the smaller
covariance between two covariance structures (e.g., σ2

d and σ2
ηd

). The independent error
variance, σ2

d , is vaguely informed with qd = 0.001 and rd = 1000.

2.5.2. Convergence, Model Checking, and Model Comparison

All models used in this analysis are checked for convergence by visual inspection
of the MCMC trace plots (See examples in Appendix A Figures A2 and A3). Posterior
predictive distributions are used to determine if the models are capable of generating data
that resemble the observed data [44]. The deviance information criterion (DIC) is used to
measure how each covariate impacts the model in the time series approach. The DIC score
is commonly used in Bayesian analysis and is good for comparing models of the same
class [44]. The DIC is calculated as follows:

DIC = −2log[y|E(θ|y)] + 2pD (1)

where the term −2log[y|E(θ|y)] represents the loss function, and 2pD represents a penalty
based on the number of model parameters [33]. The model with the lowest DIC score fits
the data the best [33].

2.6. Prediction Testing
2.6.1. Hypothesis 1: Identifiable Temporal Trend at Catchment Scale

The temporal trend (growth or decay) is predicted to be identifiable at scales finer
than catchment (10 km) because of first-hand experience with the vegetation distribution
in the study area and previous research on the riparian trend [12,46]. To determine the
spatial scale at which the temporal trend is identifiable, the study area is divided along the
Arkansas River into successively smaller areas, and Model 2 is used to derive the correlation
coefficient for the trend covariate. The baseline version of Model 2 consists of an inter-
cept, trend, periodicity, an AR(1) component, and an independent error component (e.g.,
yt = αzt + β0 + β1(t) + β2(Tt) + ϵt). This study adopts definitions of scale in hydrology
from Blöschl and Sivapalan (1995) [64]. The study area is divided into sub-areas with
resolutions of large-reach scale (1 km), small-catchment scale (<5 km), catchment scale
(>10 km), and sub-regional scale (100 km). If the 95% credible interval of the posterior
distribution for β1 does not overlap zero, this suggests there is growth or decay in time at a
given spatial resolution.

2.6.2. Hypothesis 2: Precipitation Will Have a Shorter Lag Effect

Precipitation is assumed to have a shorter lag effect because the recent literature study-
ing a riparian ecosystem with similar climatic conditions suggests that there are stronger
relationships between riparian NDVI and precipitation compared to other hydrologic in-
puts like streamflow and reservoir stage [12,65,66]. We test this hypothesis by focusing
on the intra-seasonal impacts of hydrologic and hydrosocial covariates (i.e., precipitation,
discharge, exchange flow, and groundwater depth) on riparian NDVI using residual versus
standardized predictor plots. Residuals are computed by fitting the baseline model (e.g.,
yt = αzt + β0 + β1(t) + β2(Tt−2) + ϵt) to each NDVI time series to remove the autocorrela-
tion, periodicity, and trend from each monthly NDVI time series to examine the leftover
perturbations in NDVI as a function of lagged hydrologic and hydrosocial covariates (i.e., t,
t − 1, and t − 2). The DIC score confirmed that lagged monthly temperature (t − 2) was the
best predictor to remove seasonality in the NDVI data.

2.6.3. Hypothesis 3: Confluences with Perennial Streams Increase Cumulative
Vegetation Density

Perennial confluences with the Arkansas River are hypothesized to serve as a hydraulic
boundary that uplifts the local groundwater table creating an exchange flow hotspot that
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supports existing and emerging vegetation. A spatial random effects model is used with
a spatial partitioning approach, similar to one of many applied in Heaton et al. (2019) to
test how floodplain characteristics impact riparian vegetation [50]. This regression model
allows us to draw inferences about a variable relative to the other variables used in the
model. We test this hypothesis by examining a form of derived distributions called con-
trasts [33]. The derived quantities are x̄′aβ, x̄′bβ, x̄′cβ, and x̄′dβ (where x̄′a = (1, x̄2, 1, 0, 0, 0)′,
x̄′b = (1, x̄2, 0, 1, 0, 0)′, x̄′c = (1, x̄2, 0, 0, 1, 0)′), and x̄′d = (1, x̄2, 0, 0, 0, 1)′). These derived
quantities are the average integrated NDVI for a riparian zone that is abutted by either
augmentation or cities and pastoral practices or intersected by a perennial river or abutted
by permanent irrigated land dry-up. The 95% credible intervals of the derived distributions
are plotted to determine how perennial confluences impact cumulative vegetation density,
relative to other variables tested in the model.

3. Results
3.1. Hypothesis 1: Identifiable Temporal Trend at Catchment Scale

To address the first prediction, the study area is split into progressively finer scale riparian
areas to determine the spatial-scale threshold for detecting a trend. The posterior distributions
in Figure 3 corroborate the first hypothesis by indicating that a temporal trend, positive or
negative, is not detectable at spatial scales coarser than catchment size (>10 km).

As summarized in Figure 3a, the correlation coefficient for the trend covariate overlaps
zero (i.e., neutral trend) when the entire study area is examined using a single, areal average
value of NDVI per month. Out of eight catchment-scale segments, the correlation coefficient
for the trend covariate for sub-regionthree is positive, and the credible intervals do not
overlap zero (Figure 3b). At spatial scales finer than catchment size, 4 of 19 (21%) segments
of the Arkansas River have an identifiable trend (5 km scale), and 19 of 97 (20%) segments
have an identifiable trend (1 km scale), growth or decay, from 1984 to 2019.

3.2. Hypothesis 2: Precipitation Will Have a Shorter Lag Effect

The second hypothesis is not supported by our analysis. Precipitation was mostly
commonly correlated with model residuals at time t − 1 across all sites except for sub-
regioneight. Comparatively, river discharge showed slightly higher correlation with model
residuals at time t which indicates, on a monthly time scale, river fluctuations correlate
with riparian water use sooner in time than precipitation (Figure 4). All correlations
between the residuals of the baseline model fit and explanatory covariates were low
(i.e., R2 < 0.4).

There are a variety of patterns between the residuals of the fitted model and the tested
explanatory variables. While lagged precipitation showed consistent correlation to model
residuals across subregions, discharge showed a decreasing pattern (i.e., R2 decreased from
t to t − 2) of correlation at sub-region one, two, and three. Discharge showed the highest
correlation at sub-region one, two, and three and no correlation at all other subregions.
Stream gain–loss showed very poor to no correlation with model residuals at all sub-
regions. Groundwater depth showed the highest correlations with model residuals at
sub-region one (R2 = 0.28 at t − 1), two (R2 = 0.29 at t − 1), three (R2 = 0.31 at t − 1), and
eight (R2 = 0.34 at t − 1).

3.3. Hypothesis 3: Confluences with Perennial Streams Increase Vegetation Density

The marginal posterior density plots for key spatial model parameters can be seen in
Figure 5; this graph validates the third hypothesis. The mean and 95% central intervals (2.5%
and 97.5%) for the contrasts can be seen in Figure 5. For the average sub-region investigated
(e.g., average number of confluences), and with respect to all other model variables, areal
segments that are intersected with perennial streams have larger temporally integrated
NDVI. The contrast vector x̄′cβ indicates that subregions that have a perennial confluence
have noticeable larger temporally integrated NDVI, while x̄′bβ (floodplain activity) and x̄′dβ
(land dry-up) have a decreasing impact on temporally integrated NDVI.
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Figure 3. Marginal posterior densities for βtrend estimated at varying spatial resolutions:
(a) sub-regional scale (100 km); (b) catchment scale or operational scale based on subregions (>10 km);
(c) small-catchment scale (<5 km); (d) large-reach scale (1 km).
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Figure 4. Residual versus standardized predictor plots: (a,d) Sub-region one comparisons with
precipitation at t − 1 and discharge at time t; (b,e) Sub-region two comparisons with precipitation
at t − 1 and discharge at time t; (c,f) Sub-region three comparisons with precipitation at t − 1 and
discharge at time t.
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Figure 5. Derived distributions in the form of contrasts. The yellow circles represent the mean, and
the purple vertical lines represent the span of the 95% credible interval for each derived distribution.
The dashed black line represents the mean integrated NDVI value for a sub-region not impacted by
any of the floodplain characteristics analyzed in this study.

4. Discussion
4.1. Hypothesis 1: Identifiable Temporal Trend at Catchment Scale

All subregions in the study area showed a strong first-order autoregressive signature.
The relationship between the responses and covariates at time t and t − 1 created the
autoregressive structure, and the mean AR(1) value for all subregions combined was
approximately 0.5. Temporal dependence in a water resource time series like the data
analyzed in this study can be caused by atmospheric and hydrologic forcings, as well as
agriculture and pastoral practices [38,67].

After accounting for the autoregressive component of each subregion’s time series, a
temporal trend was identified in riparian NDVI at spatial resolutions finer than catchment
scale (Figure 3). In terms of the strategic areas that were examined, the sub-region from
the Amity canal to the Lamar gage was the only sub-region that showed a significant
temporal trend in monthly NDVI as indicated by the posterior histogram that does not
significantly overlap zero (95% credible interval), as summarized in Figure 3. Seven out of
eight subregions did not exhibit a temporal trend in monthly NDVI at the operational scale.
Figure 3a indicates a neutral trend at the sub-regional scale, but this result could be impacted
by the section of the Arkansas River we examined (i.e., other sub-regional segments of the
Arkansas River may show identifiable trends). In contrast, Nguyen et al. (2015) found a
clear decreasing trend using linear least-squares analysis on mean annual values of riparian
vegetation indices for a 39.51 km2 plot on the upper San Pedro River in Arizona [46]. The
differences in the results between these two studies could be explained by differences in
time series length (i.e., sample size), applied methodology, and the spatial scale at which
the temporal trend is examined. For example, a negative trend is identifiable at spatial
scales less than 5 km (Figure 3), although this could be due to landcover change (i.e, the
conversion of agriculture land to fallow land).

4.2. Hypothesis 2: Precipitation Will Have a Shorter Lag Effect

The correlation of a two-month lag, or less, between precipitation and riparian NDVI
is likely due to the area receiving most of its rainfall during the summer months and by
spring snow replenishing soil moisture and recharging the aquifer in time for riparian green-
up [24]. The lagged dependence between precipitation and riparian NDVI is consistent
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across all subregions, but this consistency could be due to the use of gridded precipitation
compared to point-based data (i.e., precipitation could have local impacts not detected at
the scale of analysis). Nguyen et al. (2015) found direct correlations between generalized
NDVI and precipitation [46]. Vanderhoof et al. (2019) tested the significance of lagged
precipitation to explain the temporal changes in riparian wetness and found that annual
precipitation with drought indices are good predictors of the observed decline of riparian
wetness [13]. Parsons and Thoms (2013) found discernible greenness changes in riparian
vegetation during periods of increased rainfall and flooding [68]. Huntington et al. (2016)
measured moderate but direct correlations between summer NDVI and annual precipitation
and groundwater depth [14].

The residual versus standardized predictor plots reveal that discharge is correlated
with riparian NDVI at the first three subregions downstream of the John Martin Reservoir
(Figure 4). This result contrasts with findings on the San Pedro River in Arizona, USA,
where remote sensing of ET showed perennial streams have higher correlation with at-
mospheric temperature than rainfall or stream discharge at the landscape scale [69]. The
connection between reservoir-controlled discharge and riparian-NDVI response implies
that connections between managed and natural ecosystems exist, and this evidence could
be used to promote the use of environmental flows in the Arkansas River to improve natural
ecosystem health. The variable QG/Lt is a proxy for exchange flow occurring between a
stream segment and the alluvial aquifer. The lack of correlation between riparian NDVI
and stream gain–loss is unexpected given the groundwater-dependent ecosystem being
studied, and our mass balance indicates a gaining Arkansas River (Figure 2). Previous
studies like Nagler et al. (2016) have used river discharge loss as a way to validate riparian
water use for approximately 380 km2 of red gum riparian forests in the Yanga National
Park, Australia [70]. Velpuri et al. (2020) used estimates of satellite-derived ET and river
discharge to quantify how irrigation curtailment impacted the water balance in the upper
Klamath Lake basin [71].

Most groundwater observations were recorded twice per year in the spring and fall
to capture static water levels at pre- and post-irrigation time stamps. Groundwater depth
had higher correlations with model residuals at time t − 1 and t − 2, which indicates that
changing groundwater depth has a delayed impact on riparian NDVI. While other studies
have shown agreement between groundwater depth and NDVI [72,73], few studies have
examined the delayed impact of groundwater depth on riparian water use.

4.3. Hypothesis 3: Confluences with Perennial Streams Increase Vegetation Density

Quantifying the connection of irrigating communities and riparian water use remains
an elusive component of the hydrosocial framework. Spatial autoregressive statistics, like
the model used here, are required when the data have spatial dependence and have been
used to detect land use change from driving factors [74]. Based on the spatial analysis,
a sub-region that has a confluence with a perennial stream (e.g., Mud, Big Sandy, and
Wild Horse Creek) has increased integrated NDVI when compared to sites that are im-
pacted by augmentation, floodplain activity, or permanent irrigated land dry-up (Figure 5).
Albano et al. (2020) analyzed the residuals of a vegetation–climate regression analysis in
relation to non-climatic forcings in Nevada and found, outside of the model, negative tempo-
ral trends in riparian vegetation were abutted by agriculture [12]. Albano et al. (2020) found
growth in the temporal patterns of riparian vegetation that were connected to tributaries
and perennial ponds and wetlands [12]. Vanderhoof et al. (2019), outside of the ran-
dom forest regression, related the trend in the residuals of a climate–vegetation model
fit to changing irrigation methodologies over a given area [13]. The spatial knowledge
acquired from this work could be used to inform strategic field efforts aimed at preserving
vulnerable ecosystems.
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5. Conclusions

This work using statistical analysis on publicly available water resources data can be
used to help resource managers understand lagged catchment processes in perturbed sys-
tems, but there are a few key drawbacks to this study to consider. We relied on the previous
use of NDVI to measure groundwater-dependent ecosystems and did not investigate NDVI
saturation [75]; however, semiarid GDEs typically include sparse vegetation. The spatial
resolution of the Landsat NDVI product is coarse in that pixel-wide observations likely
include more than one type of vegetation. The coarseness of the imagery makes inference
on a specific vegetation type difficult in a heterogeneous riparian corridor. Future work on
this subject could include imagery from new satellite platforms to overcome coarseness
in time and space [76]. In the temporal and spatial analysis, the data model is Gaussian,
which has support from −∞ to ∞, and NDVI is strictly positive. This drawback is quickly
overcome using conjugate relationships between the data, process, and parameters.

With the use of temporal and spatial statistics, this work provides an alternate way
of validating previous observations and modeling that highlight floodplain connections
to riparian ecosystems in groundwater-dependent regions. This work highlights that
(a) temporal trend is spatial-scale-dependent (Figure 3), (b) gridded precipitation has a
<2-month lagged correlation with riparian NDVI but varies upon sub-region (Figure 4)
indicating an intra-seasonal dependence, and (c) perennial tributary confluences explain
increased vegetation density (Figure 5). Future efforts in this direction may consider
combining the independent analyses used in this investigation into a single spatio-temporal
approach similar to Hooten and Wikle (2007) [77]. There is opportunity to link well-known
models for handling spatial data with those for handling latent temporal patterns [78].

Author Contributions: Conceptualization, M.R.L. and R.R.M.; methodology, M.R.L.; formal anal-
ysis, M.R.L.; writing—original draft preparation, M.R.L., R.R.M. and P.L.N.; writing—review and
editing, M.R.L., R.R.M. and P.L.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was originally funded by the Colorado Agricultural Experiment Station under
Contract COL00756. Additional funding to continue and expand on this work was supported by a
Graduate Teaching Fellowship in the Department of Civil Engineering at Colorado State University
and by the National Science Foundation under Award No. 2305449. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. Any use of trade, firm, or product
name is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Data Availability Statement: The datasets used in this study were derived from the following
resources available in the public domain: Google Earth Engine [32], Colorado’s Division of Water
Resources (https://dwr.colorado.gov/, accessed on 1 January 2023), and Surface-Water Monthly
Statistics for the Nation United States Geological Survey (U.S. Geological Survey, 2016) [52]. The raw
data and code supporting the conclusions of this article will be made available by the main author
on request.

Acknowledgments: The authors would like to thank several representatives from Colorado’s Division
of Water Resources in the Department of Natural Resources for guidance on data acquisition using the
Decision Support Systems Map Viewer: Bill Tyner, Kelley Thompson, Monica Long, and Ivan Valles.

Conflicts of Interest: The authors declare no conflicts of interest. Pamela Nagler is an Associate
Editor for the journal Remote Sensing. She is also the lead Guest Editor for the Special Issue on
Monitoring Ecohydrology with Remote Sensing. She is not the handling editor for this submission.
The funders had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript, or in the decision to publish the results.

https://dwr.colorado.gov/


Remote Sens. 2024, 16, 2536 15 of 20

Appendix A

Appendix A.1

38.090°N

38.095°N

38.100°N

38.105°N

38.110°N
10

2.
74

°W

10
2.

72
°W

10
2.

70
°W

10
2.

68
°W

10
2.

66
°W

10
2.

64
°W

(a)

38.090°N

38.095°N

38.100°N

38.105°N

38.110°N

10
2.

74
°W

10
2.

72
°W

10
2.

70
°W

10
2.

68
°W

10
2.

66
°W

10
2.

64
°W

40

50

TIN(b)

Figure A1. Spatial representation of temporally integrated NDVI: (a) Location map for sub-region
three with GDE delineation (transparent-yellow polygon), Arkansas River (blue line), and sub-
region demarcations (purple points); (b) Location map for sub-region three with Arkansas River
(blue line), sub-region demarcations (purple points) and 250 randomly sampled estimates of tempo-
rally integrated NDVI (TIN, blue points). Coordinate reference system: WGS84.
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Figure A2. Time series convergence summary plot for sub-region three in the form of Markov chain
Monte-Carlo (MCMC) trace plots: (a) intercept (β0), (b) trend (β1), (c) temperature/seasonality (β2),
(d) autogressive component (α), (e) data model variance (σ2

y ), and (f) process model variance (σ2
z ).

MCMC iterations were 30,000 with 20% removed for the burn-in period.
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Figure A3. Convergence summary plot for the spatial analysis in the form of Markov chain
Monte-Carlo (MCMC) trace plots: (a) intercept (β0), (b) number of confluences (β1), (c) canal aug-
mentation (β2), (d) development (β3), (e) perennial tributary (β4), (f) land dry up (β5).
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