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Abstract: One of the most important and widespread corn/maize virus diseases is maize dwarf
mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a ma-
chine learning analysis of five-band multispectral imagery collected via an unmanned aerial system
(UAS) during the 2021 and 2022 seasons for SCMV disease detection in corn fields. The three primary
objectives are to (i) determine the spectral bands and vegetation indices that are most important or
correlated with SCMV infection in corn, (ii) compare spectral signatures of mock-inoculated and
SCMV-inoculated plants, and (iii) compare the performance of four machine learning algorithms,
including ridge regression, support vector machine (SVM), random forest, and XGBoost, in predict-
ing SCMV during early and late stages in corn. On average, SCMV-inoculated plants had higher
reflectance values for blue, green, red, and red-edge bands and lower reflectance for near-infrared as
compared to mock-inoculated samples. Across both years, the XGBoost regression model performed
best for predicting disease incidence percentage (R2 = 0.29, RMSE = 29.26), and SVM classification
performed best for the binary prediction of SCMV-inoculated vs. mock-inoculated samples (72.9%
accuracy). Generally, model performances appeared to increase as the season progressed into August
and September. According to Shapley additive explanations (SHAP analysis) of the top performing
models, the simplified canopy chlorophyll content index (SCCCI) and saturation index (SI) were the
vegetation indices that consistently had the strongest impacts on model behavior for SCMV disease
regression and classification prediction. The findings of this study demonstrate the potential for the
development of UAS image-based tools for farmers, aiming to facilitate the precise identification and
mapping of SCMV infection in corn.

Keywords: unmanned aerial systems; sugarcane mosaic virus; maize; multispectral sensor;
machine learning

1. Introduction

Corn/maize (Zea mays) is one of the most important food crops globally and is the
leading staple cereal in terms of annual production, exceeding 1 billion metric tons [1,2].
Ensuring the healthy and sustainable production of corn is, therefore, critical to maintaining
food security and successful agricultural development on a global and local scale. One of
the greatest challenges for farmers in maintaining profitable corn yields is the sustainable
management of pests and pathogens. Annual global yield loss for corn due to pests
and pathogens is approximately 22.5% of total yields [3]. One of the most important
and widespread virus diseases in corn is maize dwarf mosaic (MDM), which is widely
distributed in the USA and abroad.

MDM is induced by viruses in the family Potyviridae, most commonly by maize
dwarf mosaic virus (MDMV) or by sugarcane mosaic virus (SCMV) [4]. SCMV infects
various grain crops such as corn, sorghum, sugarcane, and other poaceous species, causing
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severe grain and forage yield losses among susceptible cultivars [4,5]. Monitoring the
spread and emergence of new virus variants is critical for disease management [6,7].
Recently, a novel and highly virulent SCMV isolate was discovered in South Asia [8,9].
Furthermore, potyviruses are known to enhance other virus diseases. Notably, maize lethal
necrosis (MLN) disease, caused by co-infection with maize chlorotic mottle virus and a
potyvirus, devastated corn production in regions of East Africa, Southeast Asia, and South
America [10–13]. The widespread distribution and diversity of MDM-inducing potyviruses,
combined with their ability to cause severe disease individually or in co-infection with
other viruses, highlight the long-term threat SCMV poses for the cultivation of corn and
other grains [14,15].

Symptoms associated with MDM include mosaic, chlorosis, plant stunting, reduced
biomass, and small ear size [16,17]. Early symptoms in young leaves appear as irregular,
light, or dark green mosaicking or mottling patterns that may develop into greenish or
yellowish streaks along the veins of the corn leaves [14]. Overall, visual symptoms alone are
often insufficient for a positive identification of SCMV infection, and, thus, serological or
molecular diagnostic tests are needed [14]. Currently, the preferred method for controlling
SCMV is to grow resistant corn varieties. However, most commercial field corn hybrids
commercially available in the USA are only partially resistant to SCMV and many sweet
corn lines and varieties are highly susceptible to both MDMV and SCMV [18–21]. Further-
more, changes in climate, seasonal patterns, and extreme weather events may shift spatial
and temporal SCMV population dynamics as well as the levels of SCMV virulence. For
these reasons, the proactive development of better monitoring and identification techniques
for virus detection is critical.

The early identification and continuous monitoring of pests and pathogens are key
components in effective disease management and can help improve yields while also
minimizing environmentally and economically costly control methods. Remote sensing
leverages electromagnetic radiation as the information carrier [22], and so by capturing
crop health information in the form of spectral signatures that cannot be detected by the
human eye during traditional scouting approaches, multispectral remote sensing may
provide an efficient and scalable approach to monitoring pathogen impacts [23]. UAS
technology plays a vital role in precision agriculture by supporting the four pillars of farm
input management: applying the right practice, at the right place, at the right time, and
in the right quantity [24]. From pre-season planning to post-harvest, UAS technology
can be integrated into every stage of production agriculture, enabling the collection of
high-spatial- and -temporal-resolution images that can support efficient decision making,
reductions in costs, and potential increases in yield and profit [24]. Since 2015, the use of
UAS-based remote sensing has seen a sharp increase in agricultural applications [25], and
there are now techniques that use spectral signatures, collected in the visible to near-infrared
wavelengths by a multispectral sensor, to assess vegetation health. Specifically, vegetation
indices derived from a combination of various spectral bands are useful in assessing the
structural, physiological, or biochemical properties of vegetation [26–29]. Typically, healthy
vegetation reflects large portions of near-infrared light and absorbs blue and red light
for photosynthetic processes and chlorophyll production [30]. The reflectance spectra of
vegetation can be analyzed via machine learning methods to identify anomalies or unique
vegetation characteristics such as the presence of disease or nutrient stresses [25,31,32].

Several studies have investigated the spectral characteristics of mosaic viruses in
crops, such as mosaic virus in sugarcane [33,34], mungbean yellow mosaic India virus in
soybeans [35], wheat streak mosaic virus in wheat [36], and yellow mosaic disease in black
beans [37]. In 2018, Moriya et al. [31] mapped the mosaic virus in sugarcane using in-field
identification, spectroradiometer readings, and UAS-collected hyperspectral imagery. This
involved creating a spectral reference library for healthy and infected leaves, weeds, and
bare soil, followed by a spectral information divergence classification process of collected
hyperspectral orthomosaics. The study successfully classified 74 out of 80 samples. Another
similar study [34] used satellite imagery and the random forest algorithm to classify maize
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streak virus in corn, showing that the inclusion of vegetation indices as compared to images
only improved classification accuracy by 3.4%, reaching 82.75%. However, hyperspectral
imagery is expensive and complex to process, and satellite imagery has spatial resolution
limitations.

Specific to corn, there have been a handful of studies that have investigated the
spectral signatures of diseases, including foliar fungal diseases [29], maize dwarf mosaic
virus [38,39], maize streak virus [40–42], northern leaf blight [43–45], grey leaf spot [46],
and tar spot complex [47]. These studies utilize various spectral methodologies and data
types, including multispectral satellite data, UAS-collected RGB/multispectral images, and
proximal spectroradiometer reflectance measurements. However, to our knowledge, there
have been no prior studies investigating the unique spectral characteristics of SCMV in
corn and its corresponding relation to yields.

This study integrates a machine learning analysis of multispectral imagery collected
via UAS for disease detection, focusing on three objectives: (i) identifying the most impor-
tant/correlated spectral bands and vegetation indices with SCMV infection, (ii) comparing
spectral signatures of mock-inoculated (noninfected) and SCMV-inoculated (infected) corn
plants, and (iii) evaluating model prediction performances for four algorithms concerning
early and late infections of SCMV.

2. Materials and Methods
2.1. Study Area and Experimental Setup

Experiments were conducted during corn growing seasons in 2021 and 2022 on re-
search plots at Snyder and Schaffter Farms of the Ohio State University (OSU) located in
Wooster, OH, USA (Figures 1 and 2). The Snyder Farm plots were approximately 0.64 acres
in 2021 and 0.33 acres in 2022, containing Canfield silt loam soils. The 2022 Schaffter Farm
plots were approximately 0.37 acres in size, containing Wooster-Riddles silt loams. Air
temperature and relative humidity were similar for both years; however, the cumulative
rainfall was greater for 2022 than for 2021 (Figure 3).
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replicates of inoculated (red) and noninfected/mock-inoculated (blue) for each of the 51 hybrid va-
rieties grown. (b) A corn crop that does not have SCMV infection or visual SCMV symptoms. (c) A 
corn crop that displays visual symptoms of SCMV infection. 

Forty-eight commercial field corn hybrid varieties, provided by Rich Minyo, OSU, 
from the remnant seed of the Ohio Corn Performance Tests, were evaluated using a ran-
domized block design in the 2021 field experiment. These varieties represent some of the 

Figure 1. (a) Experimental layout in Synder field in 2021, overlaid on an aerial image captured on
14 July 2021. Red and blue boxes represent the randomized block design containing four single-row
replicates of inoculated (red) and noninfected/mock-inoculated (blue) for each of the 51 hybrid
varieties grown. (b) A corn crop that does not have SCMV infection or visual SCMV symptoms. (c) A
corn crop that displays visual symptoms of SCMV infection.

Forty-eight commercial field corn hybrid varieties, provided by Rich Minyo, OSU, from
the remnant seed of the Ohio Corn Performance Tests, were evaluated using a randomized
block design in the 2021 field experiment. These varieties represent some of the highest-
yielding varieties currently available from five major commercial seed companies and were
found to be susceptible to SCMV from previous trials [20]. Thus, three in-house hybrid
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controls were used as SCMV-resistant (Oh28 × Pa405; Oh28 × Oh1VI) and -susceptible (Wf9
× Oh51A) controls. Seeds were planted with a Kinze 2100 planter (Kinze Manufacturing,
Williamsburg, IA, USA) with Almaco seed distribution cones in single-row plots on May
20 in 2021.

Based on the 2021 field experiment, four susceptible varieties were selected from the 48
commercial hybrids for more in-depth characterization in the 2022 experiment, considering
their disease incidence scores and yield penalty due to infection. Three hybrid controls were
used in 2021 and Wf9 × Oh51A (hybrid 4)-susceptible control was used in 2022 to evaluate
disease pressure and uniformity of inoculation. Seeds were planted in four-row plots on 23 May
2022. In each year, there were four replications per hybrid for each treatment (Figures 1 and 2).
Row length was 6.7 m with 35 kernels per row. Rows were 0.76 m in width. For both years,
the best agronomic practices achieved optimal yields without irrigation, as well as without
the application of insecticides or fungicides.

The replicates included both SCMV-inoculated and mock-inoculated treatments
(Figure 1). In 2021, Snyder Field had a total of 408 hybrid sample plots (rows) (51 hy-
brids with 4 replicates each). In 2022, each field had a total of 40 hybrid sample plots
(blocks). Hybrids were inoculated as previously described in [19]. Briefly, SCMV-infected
plant tissues were homogenized using a commercial blender in 0.01 M potassium phosphate
buffer in a 1:10 wt/v ratio. The homogenate was filtered through fine cheesecloth. Then,
2 g of carborundum was mixed with 6 L of inoculum and applied using a gas-powered
mist blower (Model 452 Solo, Newport News, VA, USA) at an approximate application rate
of 1 L per 75 m. Mock inoculations were similarly applied using only 0.01 M potassium
phosphate buffer and carborundum. Plants were inoculated between the V3 and V5 matu-
rity stages. Inoculations were performed five times at five-day intervals between June and
July (18 June, 24 June, 29 June, 1 July, and 6 July) in 2021 and four times (17 June, 22 June,
27 June, and 1 July) in 2022.
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Figure 2. Experimental layout in Schaffter (a) and Synder (b) fields in 2022, overlaid on an aerial
image captured on 1 September 2022, demonstrating randomized block designs with four 4-row
replicates for each of the five hybrid varieties (including one control hybrid). Each box contains a
unique plot number represented by a three-digit number, while the single-digit number corresponds
to the hybrid group of that plot.
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Figure 3. Cumulative rainfall (mm), average daily air temperature (Celsius), and average daily
relative humidity (%) for 2021 and 2022 corn field seasons (March–November). Rainfall is displayed
as bar plots that accumulate value as season progresses. Data collected from Ohio State University
CFAES Weather System at the Wooster Station.

2.2. Data Collection
2.2.1. Imagery via UAS Flights

UAS flights were conducted using a DJI Matrice 200 drone (DJI, Shenzhen, China) on
three dates each year for each field—(28 June, 14 July, and 28 July) in 2021 and (30 June, 28
June, and 1 September) in 2022—to capture trends in the spectral signatures of corn plants
resulting from inoculations. During these flights, multispectral imagery with five spectral
bands was collected using a MicaSense RedEdge-MX multispectral sensor (MicaSense,
Seattle, WA, USA) at an altitude of 30m. The flights maintained a 75% front-overlap
and 75% side-overlap, following a lawnmower pattern. To ensure the spatial accuracy of
images respective to treatments on the field, four permanent ground control points (GCPs)
were positioned at the corners of each corn field and remained visible and undisturbed
throughout the growing season. Precise GPS coordinates for these GCPs were recorded
using a Trimble real-time kinetic (RTK) GPS system (Trimble, Westminster, CO, USA).

Additional thermal imagery was collected with a DJI Zenmuse XT2 sensor (DJI, Shen-
zhen, China) using the same drone at an altitude of 20m with a 90% front-overlap and 90%
side-overlap. Due to challenges in stitching the orthomosaic thermal images, usable images
were obtained only for 28 June 2021 (Snyder), 14 July 2021 (Snyder), 30 June 2022 (Snyder),
30 June 2022 (Schaffter), 28 July 2022 (Snyder), and 1 September 2022 (Snyder).

LiDAR data were also collected using a Free Fly Alta X drone (Freefly Systems, Wood-
inville, WA, USA) at an altitude of 44m using a Velodyne VLP-16 Hi-Res sensor (Velodyne,
San Jose, CA, USA). LiDAR data were collected for both fields only on 28 July 2022 to assess
differences in canopy heights between treatments. For additional details on the data used
in model development, refer to the subscript description in Table 1.
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Table 1. Summary of available data collected for each field by date.

Dates 1,2 Snyder Field Schaffter Field

14 July 2021 Multispectral, Thermal IR NA

28 July 2021 Multispectral NA

28 July 2022 Multispectral, Thermal IR 3, LiDAR Multispectral, LiDAR

1 September 2022 Multispectral, Thermal IR 3 Multispectral
1 Observations from plots (104, 204, 504, 604, 103, 203, 204, 604 in Figure 2b) across all dates in 2022 were excluded
from the analyses due to flooding in the northwest corner of Snyder field. Additionally, observations from
‘hybrid 4’ were removed from analysis due to significant lodging. 2 All data collected during the June dates, i.e.,
28 June 2021 and 30 June 2022, were excluded from machine learning model analyses as SCMV inoculation events
had not yet been completed at this time, and, thus, the images do not reflect treatments implemented by the
randomized block design. These portions of data were removed because any yield response or spectral response
likely would not be due to the SCMV infection and would skew interpretation. The data from the June flights are
only included in the model covered in Section 3.7, which includes data derived from additional sensors and also
the models exploring the individual flight date performances. In total, 888 samples across both years were used
for analysis across all flights and fields with 768 observations occurring in 2021 and 120 observations occurring in
2021. Additionally, in 2021, due to a data collection issue, multispectral imagery was only captured for 144 of the
408 sample plots on 28 June 2021. The in-house hybrid controls were also removed from model analysis. 3 Minor
gaps were present in thermal orthomosaic representing 28 July 2022 and 1 September 2022 dates in Synder but
were deemed useful to represent variations in canopy temperature due to SCMV inoculation. NA: not available.

2.2.2. Grain Yield

Yield values were recorded at the end of the season during harvest on 9 November
2021 and 21 November 2022 using a tractor-mounted yield monitor. Weight, moisture
percentage, and bushels were used to calculate the standard ‘bushels per acre’ metric for
each hybrid plot/block, and these values were interpreted as ‘ground truth’ yield values.
Yields were normalized to a standard 15.5% moisture content and reported as kg/ha (or
Bu/A).

2.2.3. Plant Disease Incidence

The percentage of plants that displayed mosaic symptoms for each hybrid plot was
recorded using human scouting. Plant disease was evaluated based on the presence
or absence of visible mosaic symptoms. Disease incidence for each hybrid variety was
calculated based on the number of symptomatic plants divided by the final stand count.
During 2021, symptoms were evaluated on 30 June 2021, 8 July 2021, and 12 July 2021. In 2022,
the disease incidence scores were recorded on 15 July 2022 and 19 July 2022 for Schaffter Field
and on 6 July 2022, 15 July 2022, and 18 July 2022 for Snyder Field. The percentage of plants
symptomatic for SCMV within each hybrid sample plot (Figures 1 and 2) was recorded for
each date. The value on the final scouting date was interpreted as the respective disease
incidence rate and was used in subsequent analyses and modeling.

2.3. Data Processing
2.3.1. UAS Collected Imagery and Plant Reflectance

A flow diagram displaying the general methodological process implemented can be
seen in Figure 4. The multispectral images collected by UAS were stitched into single-
orthomosaic files of each field for each flight and for each of the five bands using Pix4D
Mapper software Version 4.2.27 (Pix4D SA, Lausanne, Switzerland) [48]. To ensure that all
images were aligned, the five-band composite files for each flight date were georeferenced
based on the GCPs using ArcGIS Pro 3.2.0 software [49]. This process was also performed
for the thermal images; however, some dates had stitching issues (see Table 1).
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Using the multispectral orthomosaics, mean pixel reflectance values were calculated
and extracted for each of the five bands within each individual hybrid sample plot using
the zonal statistics function in R v2022.07.0 Build 548 [50] for each field and flight date. To
remove spectral noise from soil pixels, only pixels with corn vegetation were considered
when summarizing reflectance values. For this, a threshold based on an excess green index,
which amplifies green reflectance over red and blue [51,52], was used. In the threshold
file, all vegetation pixels are assigned a value of one, and non-vegetation pixels are given a
value of zero. For each flight, pixel-wise reflectance data for the five multispectral bands
were extracted in R by multiplying each band file by the threshold file to remove non-
vegetation pixels and then using an extract function to isolate reflectance values within
each hybrid sample plot boundary. The same extraction process was applied to thermal
orthomosaic pixels. A crop canopy height model was created from the LiDAR data collected
using a .las file in CloudCompare v2.12.3 software [53], with more details reported in the
Supplementary Materials.

2.3.2. Vegetation Indices

To further understand the effect of SCMV on corn vigor, 36 vegetation indices based
on various combinations of spectral bands were calculated for each plot, alongside the
individual spectral bands from multispectral (5) and thermal (1) sensors (Table 2). These
vegetation indices include the following: BI, CI, CIG, CIRE, CVI, EVI, GARVI, GNDVI,
gWDRVI 1, gWDRVI 2, HI, IRVI, lnRE, MCARI 1, MCARI 2, MCARIOSAVI, MSAVI, MSR,
MTVI 1, MTVI 2, NDRE, NDVI, NGRDI, NIR/Green, NIR/Red, NIR/Red-Edge, OSAVI,
RDVI, RI, SAVI, SCCCI, SI, TCARI, TCARIOSAVI, WDRVI 1, and WDRVI 2 (see Table 2).

Table 2. Vegetation indices (VIs) derived from the five-band multispectral images. VIs were used as
features in modeling efforts.

Vegetation Index (VI) Equation Reference

Brightness
Index (BI) (((R2) + (G2) + (B2))/3)0.5 [54]

Coloration Index (CI) (R − G)/(R + G) [54]

Chlorophyll Index Green (CIG) (NIR/G) − 1 [55]

Chlorophyll Index Red-Edge (CIRE) (NIR/Rdg) − 1 [55]

Chlorophyll Vegetation Index (CVI) NIR−(R/(G2)) [56]

Enhanced Vegetation Index (EVI) (2.5 × (NIR−R))/((NIR + 6 × R−7.5 × B) + 1) [57]

Green Atmospherically Resistant Vegetation Index (GARVI) (NIR − (G − (B − R)))/(NIR + (G − (B − R))) [58]

Green Normalized Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [59]
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Table 2. Cont.

Vegetation Index (VI) Equation Reference

Green Wide Dynamic Vegetation Index (α = 0.1; gWDRVI 1) ((0.1 × NIR − R)/(0.1 × NIR + R)) + ((1 − 0.1)/(1 + 0.1)) [60]

Green Wide Dynamic Vegetation Index (α = 0.2, gWDRVI 2) ((0.2 × NIR−R)/(0.2 × NIR + R)) + ((1 − 0.2)/(1 + 0.2)) [60]

Hue Index (HI) (2 × R − G − B)/(G − B) [54]

Inverse Ratio Index (IRVI) R/NIR [61]

Neparian Logarithm of the Red-Edge (lnRE) 100 × (lnNIR − lnR) [62]

Modified Chlorophyll Absorption Ratio Index 1 (MCARI 1) 1.2 × (2.5 × (NIR − G) − 1.3 × (R − G)) [63,64]

MCARI 2 (3.75 × (NIR − R) − 1.95 × (NIR − G))/((((2 × NIR + 1)2)
− (6 × NIR − 5 × sqrtI) − 0.5))

[63,64]

Modified Chlorophyll Absorption Index/Optimized
Soil-Adjusted Vegetation Index (MCARI/OSAVI)

(((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R))/(1.16 × ((NIR
− R)/(NIR + R + 0.16))) [65]

Modified Soil-Adjusted Vegetation Index (MSAVI) (2 × NIR + 1 − sqrt(((2 × NIR + 1)2) − 8 × (NIR − R)))/2 [66]

Modified Simple Ratio (MSR) ((NIR/R) − 1)/(((NIR/R) + 1)0.5)) [67]

Modified Triangular Vegetation Index 1 (MTVI 1) (1.2 × (1.2 × (NIR − G) − 2.5 × (R − G))) [64]

MTVI Index 2 (1.8 × (NIR − G) − 3.75 × (R − G))/(sqrt(((2 × NIR + 1)2)
− (6 × NIR − 5 × sI(R)) − 0.5))

[64]

Normalized Difference Red-Edge (NDRE) (NIR − Rdg)/(NIR + Rdg) [68]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [69]

Normalized Green/REd Difference Index (NGRDI) (G − R)/(G + R) [70]

Ratio between NIR and Green bands (NIR/G) NIR/G [59]

Ratio between NIR and Red bands or Ratio Vegetation Index
(NIR/R) (or RVI) NIR/R [71]

Ratio between NIR and Red-Edge bands (NIR/R-Edge) NIR/Rdg [71]

Optimized Soil-Adjusted Vegetation Index (OSAVI) (1 + 0.16) × (NIR − R)/(NIR + R + 0.16) [65]

Renormalized Difference Vegetation Index (RDVI) (broadband) (NIR − R)/((NIR + R)0.5) [72]

Redness Index (RI) (R2)/(B × (G3)) [54]

Soil-Adjusted Vegetation Index (L = 0.5, intermediate vegetation;
SAVI) 1.5 × ((NIR − R)/(NIR + R + 0.5)) [73]

Simplified Canopy Chlorophyll Content Index (SCCCI)
NDRE/NDVI or
(NIR−Rdg)/(NIR+Rdg)

(NIR−R)/(NIR+R)
[68,74]

Saturation Index
or Normalized Pigment Chlorophyll Index (SI or NPCI) (R − B)/(R + B) [54,75]

Transformed Chlorophyll Absorption Reflectance Index (TCARI)
(broadband) (3 × ((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R)) [76]

TCARI/Optimized Soil-Adjusted Vegetation Index
(TCARI/OSAVI)

(3 × ((Rdg − R) − 0.2 × (Rdg − G)) × (Rdg/R))/(1.16 ×
((NIR − R)/(NIR + R + 0.16))) [76]

Wide Dynamic Vegetation Index 1 (α = 0.1; WDRVI 1) (0.1 × NIR − R)/(0.1 × NIR + R) [60]

WDRVI Index 2 (α = 0.2; WDRVI 2) (0.2 × NIR − R)/(0.2 × NIR + R) [60]

Note: The center wavelength and bandwidth of the five spectral bands included B—blue band (475 nm, 32 nm),
G—green band (560 nm, 27 nm), R—red band (668 nm, 16 nm), Rdg—red-edge (717 nm, 12 nm), and NIR—near-
infrared (842 nm, 57 nm).

2.4. Statistical Analysis and Machine Learning Models
2.4.1. Model Formation and Performance

A correlation scatterplot matrix was created using the psych library [77] in R [50]
to investigate the linear correlation between each pair of available variables/features,
including yield, canopy height, thermal value, disease incidence, the five spectral bands,
and the 36 vegetation indices for each flight date. Specifically, a Pearson correlation (r) was
analyzed for the SCMV-inoculated plots to explore the relationships between the spectral
bands/vegetation indices and the ‘disease incidence’ scores. Correlation matrices were
generated for all included variables and revealed the presence of multicollinearity, and this
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informed appropriate model selection. Kruskal–Wallis one-way analysis of variance [78]
was also performed to test for statistically significant differences between SCMV-inoculated
and mock-inoculated treatments for each of the spectral bands/vegetation indices.

To predict disease incidence and classify disease presence using multispectrally de-
rived features, the performance of four commonly used machine learning models—ridge
regression [79], support vector machine (SVM) [80], random forest (RF) [81], and XG-
Boost [82]—were evaluated. These models have robust capabilities for handling multi-
collinearity [79,83,84], which is often present among VIs derived using multispectral images.
While XGBoost, SVM, and RF were used to predict the presence or absence of SCMV infection,
XGBoost, SVM, RF, and ridge regression were used for predicting disease incidences.

For a detailed technical understanding of these algorithms, please see the original
articles as cited. The modeling approach taken can be described primarily as a super-
vised machine learning-based strategy rather than a deep learning- or statistics-based
approach [22]. Briefly outlining the selected models, ridge regression is a commonly
used multiple regression technique for analyzing data that suffer from multicollinear-
ity [79,85,86]. Ridge regression shrinks model coefficients and can help reduce overfitting
and model complexity. The value for the penalty term or regularization parameter, lambda,
was optimized for each ridge regression model using a grid search method. Support vector
machine regression (SVM or SVR) tends to have very good generalization capability, is
robust to outliers, and is effective even when the number of features/predictors is greater
than the number of samples/observations [87–89]. For both ridge and SVR algorithms,
all feature values were scaled to ensure features were contributing equally to the model.
Random forest (RF) is a commonly used machine learning algorithm that averages the
output of multiple individual regression trees to reach a single result [81]. RF models are an
extension of bagging, which also randomly selects subsets of features [90]. RF models tend
to be easily interpretable and efficient to train and display high generalization capabilities.
XGBoost is a decision tree algorithm that implements regularized gradient boosting [82].
XGBoost training proceeds iteratively as new trees predict residuals of prior trees and
then together yield a final result [82]. XGBoost is one of the leading machine learning
algorithms, works well with non-scaled data, and is efficient and scalable. The SVM, rF,
and XGboost algorithms were implemented in Python with scikit-learn libraries [91], while
ridge regression was implemented in R using the caret and glmnet packages.

2.4.2. Model Performance Optimization (Using Multispectrally Derived Data)

The hyperparameters of all SVM, RF, and XGBoost models were optimized using
Hyperopt in Python 3.7.16. Hyperopt is a library that provides sequential model-based
optimization (also known as Bayesian optimization) for efficient function minimization,
such as root mean squared error (RMSE), by exploring differing hyperparameter values [92].
While grid search (used for ridge regression) exhaustively examines all hyperparameter
permutations, it becomes computationally demanding for algorithms with many parame-
ters. Hyperopt navigates the hyperparameter space iteratively, leveraging prior evaluations
for efficient exploration. Detailed hyperparameter spaces explored for each model are
available in the Supplementary Materials (Table S1).

Initial models for predicting disease incidence used only multispectral-derived fea-
tures, encompassing 5 bands and 36 indices, totaling 41. Models were trained for each
individual year and combined years (all available data). Combined models included 888
samples across both years with 768 observations occurring in 2021 and 120 observations
occurring in 2022. For this, five-fold cross-validation with a randomized split of 70% and
30% for training and testing sets, respectively, was used. Additionally, we also implemented
the assigning of 2021 data for training and 2022 data for the testing of models, specifically
for the XGBoost regression and SVM classification models due to their strong performances.
Model performances were compared using RMSE and the coefficient of determination (R2)
as metrics.
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For a more effective analysis of spectral bands and vegetation indices crucial for
SCMV infection, a binary classification approach based on inoculation status was con-
sidered, rather than relying on a continuous ‘disease incidence’ score prone to human
error and environmental factors. Classification models were built with two categories:
SCMV-inoculated versus mock-inoculated. For the annotation of the classification models,
the inoculated plots, regardless of disease incidence score, were set to values of 1, and
non-inoculated plots were set to values of 0. Similar to regression models, all 41 features
were incorporated into these classification models.

After identifying the best-performing models with multispectral-derived features,
they were simplified using recursive feature elimination (RFE) as a feature selection tool
to mitigate overfitting and enhance generalizability. RFE was applied to both years of
data with the XGBoost model, maintaining optimized hyperparameters, and this was
carried out using boostrfe and shap-hypetune in Python [93]. Following this simplification,
feature importance and model behavior were analyzed using SHAP analysis. For the SVM
classification model, a confusion matrix [94] was created to summarize SCMV infection
status classification performance. Three metrics, including accuracy, precision, and recall,
were estimated using predicted and actual observations (Equations (1)–(3)).

In the confusion matrix, true positive (TP) and true negative (TN) are represented
by numbers in the diagonal and indicate the model’s ability to accurately detect mock
and SCMV inoculations, respectively. False positive (FP) refers to instances where the
model predicts mock inoculations as SCMV inoculations. False negative (FN) indicates the
model’s failure to detect mock inoculations.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

2.4.3. Modeling with Additional Available Data

Further models were investigated by incorporating additional features, such as LiDAR-
derived canopy height and thermal imagery-based temperature values, to assess potential
performance enhancement with data from extra sensors. These models utilized all avail-
able data from all sensors, extending beyond multispectral-derived information. XGBoost
was selected for training these models due to its consistently superior performance with
multispectral-only data. Hyperopt was employed once again to optimize the hyperpa-
rameters of these models. Additional variables such as thermal and canopy height that
were available across both fields and years (Table 1) were incorporated into these models.
This resulted in two additional features, totaling 43 features in the model. This modeling
was only performed for all data in aggregate as the additional data occurred sporadically
(i.e., both years were used and June dates were included so that all thermal data could be
leveraged). Five-fold cross-validation was used with a total of 1059 observations and with
a randomized split of 70% and 30% for training and testing sets, respectively.

2.4.4. Shapely Additive Explanations Analysis

SHAP analysis [95] was used to investigate model behavior and examine the influence
of each feature on predicting the model output. This analysis was conducted for two
best-performing models, one for disease incidence percentage and another for disease
classification (inoculation vs. mock). TreeExplainer and KernelExplainer in Python were
used for the SHAP analysis, which aids in interpreting the inner workings of machine
learning models [96]. Feature importance and impact on model behavior were investigated
using bar and summary plots. SHAP values quantify the contribution of each feature to
model predictions. While SHAP values do not imply causation, they elucidate how the
model behaves concerning predictions. In a SHAP plot, leftward dots along the x-axis
indicate negative impacts, while rightward dots indicate a positive influence on the target
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variable (e.g., disease incidence percentage). The color gradient from red (high feature
value) to blue (low value) illustrates feature significance. For instance, a red dot on the
left side implies a negative contribution due to a high feature value. Features are ranked
by average SHAP value, mirrored in the bar plots showing mean SHAP values along the
x-axis, and offering insights into feature importance.

3. Results
3.1. Disease Incidence and Corn Yield

In 2021, disease incidence scores for commercial hybrids at Snyder Farm ranged from
5% to 100%, with median scores of 63% and mean scores of 60% (Figure 5). Susceptible
(Wf9 × Oh51A) control had a mean of 96%, resistant (Oh28 × Pa405) control had 6%, and
resistant (Oh28 × Oh1VI) control had 0%. Inoculated plot yields averaged 15,090 kg/ha
(224 Bu/A), while non-inoculated plots averaged 16,821 kg/ha (250 Bu/A).

In 2022, disease incidence at Synder varied between 15% and 89%, with median and
mean scores of 71% and 61%. Hybrid mean disease severities were 70%, 82%, 83%, 76%,
and 21% for hybrids 1, 2, 3, 4, and 5, respectively. Mean yields for the inoculated plots were
12,987 kg/ha (193 Bu/A), while non-inoculated plots were 13,123 kg/ha (195 Bu/A).

At Schaffter Farm, disease incidences varied between 15% and 99%, with median
and mean scores of 80% and 67%. Hybrid mean disease severities were 78%, 93%, 79%,
80%, and 18%, for hybrids 1, 2, 3, 4, and 5, respectively. The inoculated mean yield was
12,987 kg/ha (193 Bu/A), and the non-inoculated mean was 14,341 kg/ha (213 Bu/A).
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3.2. Feature Correlation

Significant relationships between disease incidence and various vegetation indices (or
spectral bands) were identified on 14 July 2021. SCCCI, TCARI/OSAVI, MACARI/OSAVI,
and CVI showed the most significant correlations, with r values of −0.40, 0.30, 0.30, and
0.26, respectively. On 28 July 2021, SCCCI was found again as the most strongly correlated
vegetation index with disease incidence, with an r value of −0.31, followed by NDRE,
CIRE, and NIR/Red with r values of −0.24 each.



Remote Sens. 2024, 16, 3296 12 of 25

On 28 July 2022, no significant correlations were detected for disease incidence at
Snyder. However, at Schaffter, disease incidence was significantly correlated with the NIR
spectral band (r = −0.63), MCARI1 (r = −0.61), and MTVI1 (r = −0.60). On 1 September
2022, towards the later growth stage of corn, significant correlations were discovered at both
locations. At Snyder, disease indices were most strongly correlated with NIR, MCARI1, and
MTVI1 with r values of −0.63, −0.61, and −0.56, respectively. In Schaffter Field, MCARI2,
NIR/Red, and MSR all had the highest r value of 0.56 (Table 3 and Supplementary Table S2).
Compared to other VIs or spectral bands, SCCCI and MACRI were identified as consistently
capturing variability in disease incidence at a higher percentage.

Table 3. Top vegetative indices and spectral bands with statistically significant correlation with
disease incidence at each trial location.

2021 Snyder Farm 2022 Snyder Farm Schaffter Farm

14 July 2021

SCCCI = −0.40

28 July 2022 Not Significant

NGRDI = 0.61
TCARI/OSAVI = 0.3

MACARI/OSAVI =
0.3 CI = −0.61

CVI = 0.26 HI = −0.60

28 July 2021

SCCCI = −0.31

1 September 2022

NIR = −0.63 MCARI2 = 0.56
NDRE = −0.24

CIRE = −0.24 MCARI1 = −0.61 NIR/Red = 0.56

NIR/Red = −0.24 MTVI1 = −0.56 MSR = 0.56

3.3. Analysis of Variance

On average for both years, SCMV-inoculated plots had a higher reflectance in the
visible (red, green, blue) and red-edge portions of the electromagnetic spectrum and a
lower average reflectance in the NIR portion as compared to mock-inoculated plots. On
14 July 2021, all bands showed significant differences, with significance in descending
order: red, green, near-infrared, red-edge, and blue. On 28 July 2021, only red-edge and
green had significant differences. Notably, no statistically significant differences were
found in individual flight dates during 2022. Aggregated data for 2021 revealed significant
differences in red-edge, red, and near-infrared bands, while no significant differences
were found in the 2022 aggregated data (Figures 5, 6 and S1). Please see Figure S1 in the
Supplementary Materials for boxplots displaying the comparison of the average reflectance
values for each of the spectral bands for SCMV-inoculated and mock-inoculated corn plants.

On 14 July 2021, 37 out of 41 bands/indices exhibited statistically significant differences
(p < 0.05) between SCMV-inoculated and mock-inoculated treatments. Of these variables,
SCCCI exhibited the most difference with the highest chi-squared value, followed by
NIR/Red-Edge, NDRE, and CIRE. On 28 July 2021, thirty of the variables showed significant
differences, with SCCCI, NIR/Red-Edge, NDRE, and CIRE identified as being at the top.

In 2022, fewer significant differences in bands/indices between treatments were de-
tected. On 28 July 2022, at Synder, no significant differences were found. However, at
Schaffter, nearly significant differences were discovered between treatments for NIR/Green,
CIG, and GNDVI (p = 0.0596). Similarly, on 1 September 2022 in Snyder Field, nearly sig-
nificant differences were detected for NIR/Red-Edge, NDRE, and CIRE s (p = 0.0596). On
1 September 2022, at the Schaffter location, three variables were statistically significant:
CVI, RI, and GARVI (ordered by descending chi-squared values).

Considering all 2021 data combined; thirty-seven variables (bands/indices) were
found to be significantly different between treatments. The highest chi-squared values
were found for SCCCI, followed by NIR/Red-Edge, NDRE, and CIRE. For all combined
data (both fields) in 2022, no variables were found to be statistically significant. Thirteen
variables were found to be significant for the aggregated Schaffter data in 2022. The
highest chi-squared values were found for NIR/Red, IRVI, lnRE, gWDRVI_01, gWDRVI_02,
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WDRVI_01, WDRVI_02, MSR, and NDVI. At Snyder in 2022, no variable was found to be
statistically significant between SCMV-inoculated and mock-inoculated treatments.

Despite challenges in collecting and processing thermal and LiDAR canopy height
data, useful insights were gained. On 28 July 2022, a positive and statistically significant
correlation was found between canopy height and disease incidence for both Snyder
(r = 0.34) and Schaffter (r = 0.53) fields. On the same date, Snyder showed no significant
correlation between canopy height and corn yield (r = 0.00), while Schaffter displayed a
statistically significant r value of 0.42. However, the relationship between thermal values
and disease incidences was not statistically significant for any available flight dates (r = 0.14
for thermal on 28 June 2021, 0.02 for 14 July 2021, 0.07 for Schaffter on 30 June 2022, −0.26
for Snyder on 30 June 2022, −0.50 for Snyder on 28 July 2022, and 0.21 for Snyder on 1
September 2022). Thermal correlations with corn yield were significant on 28 June 2021
(r = −0.27) and 14 July 2021 (r = −0.17). All other thermal correlations with yield were not
significant (r = −0.13, −0.32, −0.48, and −0.06 for 30 June 2022 at Snyder, 30 June 2022 at
Schaffter, 28 July 2022 at Snyder, and 1 September 2022 at Snyder, respectively).

3.4. Regression Modeling of Disease Incidence

In 2021, both the random forest and XGBoost models for disease incidence achieved
high performance, yielding R2 values of 0.40 each, with RMSE values of 26.23 and 26.32,
respectively (using a 70/30 random split). However, predictive ability declined notably in
2022, with R2 values close to zero across all models. Combining data from both years, the
XGBoost and random forest models remained the best performers, with R2 values of 0.29
each and RMSE values of 29.35 and 29.26, respectively (Table 4). When using 2021 data to
train and 2022 data to test XGBoost regression models, the model performed poorly, with
an average RMSE of 45.67 and an R2 value of −0.433.

Table 4. Model performances for prediction of disease incidence percentage by year.

Models 2021 2022 2021 and 2022
Combined

R2 RMSE R2 RMSE R2 RMSE

Ridge Regression 0.30 28.78 0.02 39.50 0.21 30.99

Support Vector Regression 0.39 26.52 −0.06 39.34 0.25 30.43

Random Forest 0.40 26.23 −0.11 40.28 0.29 29.35

XGBoost 0.40 26.32 −0.07 39.66 0.29 29.26

Note: Models used 41 features as independent variables, and R2 and RMSE are the average of three model
repetitions using three unique ‘seeds’ for partitioning training and testing data.

Following feature selection via RFE, a simplified XGBoost disease incidence regression
model incorporating data from both years with 14 features achieved an R2 of 0.31 and an
RMSE of 28.39. This closely matched the performance of the best XGBoost model utilizing
all 41 features, with an R2 of 0.29 and an RMSE of 29.26. The individual analysis of XGBoost
models by UAS flight date revealed a stronger predictive ability for later (July) dates in
2021, particularly on 28 July 2021 with an R2 of 0.43 and an RMSE of 26.19. This was closely
followed by 14 July 2021 with an R2 of 0.35 and an RMSE of 28.14. Despite the overall
weak performance in 2022, a progressive improvement trend in model performances was
observed throughout the season (Table 5).
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Table 5. Performance of XGBoost model for prediction of disease incidence percentage by flight date.

Dates R2 RMSE

28 June 2021 0.03 33.98

14 July 2021 0.35 28.14

28 July 2021 0.43 26.19

30 June 2022 −0.32 41.94

28 July 2022 −0.20 38.85

1 September 2022 −0.10 37.16

Note: Models used 41 features as independent variables, and R2 and RMSE are the average of three model
repetitions using three unique ‘seeds’ for partitioning training and testing data.

3.5. Classification Modeling of SCMV Inoculation Status (Mock- vs. SCMV-Inoculated)

When evaluating the binary disease classification models for each year independently
(using a 70/30 random split), SVM slightly outperformed XGBoost in 2021, with an accuracy
of 0.759 (Table 6). Conversely, in 2022, random forest exhibited the highest performance,
albeit poor, with an accuracy of 0.472. Combining data from both years, SVM remained
the top performer with an accuracy of 0.729. SVM classification models trained on 2021
data and tested on 2022 data showed a slight improvement, with an average test accuracy
of 57.2%. A confusion matrix is included alongside the SHAP analysis section for more
details regarding the precision and recall of the best SVM performance (Figure 7).

Table 6. Accuracy of classification models for predicting SCMV-inoculated vs. mock-inoculated plots.

Models 2021 2022 2021 & 2022

Support Vector Machine 0.759 0.361 0.729

Random Forest 0.742 0.472 0.708

XGBoost 0.756 0.417 0.705
Note: Models included 41 spectral features. Accuracy reported is the average of three model runs with three
unique ‘seeds’ for partitioning training and testing data.

3.6. XGBoost Regression Model for Disease Incidence

Based on the SHAP analysis of the best-performing XGBoost regression model for
disease incidence prediction, the feature that had the overall strongest impact on model
prediction behavior (i.e., most important) was the simplified canopy chlorophyll content
index (SCCCI), followed by SI and TCARI/OSAVI (Figure 6). With 14 features determined
by recursive feature elimination, the model achieved R2 = 0.312 and RMSE = 28.39. Medium
and low (purple and blue, respectively) values of SCCCI indicate a positive impact on the
prediction value of disease incidence. The trend for the saturation index (SI) feature is less
clear, but generally, low values have a negative impact, while medium to high values have
a positive impact. Similarly, for TCARI/OSAVI, low to medium values have a negative
impact, and mid–high to high values have a positive impact. The bar plot (5b) displays the
average magnitude of the SHAP value for each feature, indicating the relative impact on
XGBoost model predictions for disease incidence values.
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Figure 6. Summary plot ((a), left) and bar plot ((b), right) visualize SHAP analysis for the XGBoost
regression model for the prediction of disease incidence.

3.7. Support Vector Machine Classification Model for SMCV Inoculation Status

Based on the SHAP analysis of the best-performing SVM classification model for
binary SCMV infection prediction, the saturation index (SI) emerged as the feature with the
strongest impact on model prediction behavior (Figure 7a). Following SI, TCARI/OSAVI,
MCARI/OSAVI, and SCCCI were identified as the most impactful features. The confusion
matrix provides more detailed metrics on the SVM model performance with the testing data
(Figure 7b). For the test data, the model correctly recalled 100 out of 136 mock-inoculated
samples (0.73) and 98 out of 131 SCMV-inoculated samples (0.75). The model misclassified
‘mock-inoculated’ and ‘SCMV-inoculated’ a total of 33 and 36 times, respectively. Precision
scores for mock-inoculated and SCMV-inoculated samples were 0.75 and 0.73, respectively.
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3.8. Model Performance with Additional Features for Disease Incidence Prediction

The addition of thermal and canopy height features resulted in an R2 of 0.225 and
an RMSE of 30.73 for the XGBoost regression model trained on both years of data. This
is a decreased performance in comparison to an R2 of 0.29 and an RMSE of 29.26 for
the equivalent XGBoost model that used 41 multispectrally derived features. Also, the
equivalent RFE-simplified XGBoost model with just 14 multispectrally derived features
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outperformed both models with an R2 of 0.312 and RMSE of 28.39. So, it appears that the
additional sensor-based data did not improve model performance and that a reduction in
features through RFE slightly improved overall performance.

3.9. Important Indices: SCCCI and SI

SHAP analysis of both the top-performing XGBoost regression and SVM classification
models indicated that SCCCI and SI are two of the most important indices influencing
model behavior in SCMV prediction. Further investigation of the SCCCI values across
seasonal data indicates that, on average, mock-inoculated samples had consistently higher
SCCCI values than SCMV-inoculated samples at all times post-inoculation (Figure 8a). Peak
SCCCI values occurred during mid-to-late July and then declined as the season progressed
toward harvest. Conversely, SI values exhibited an almost opposite trend (Figure 8b).
Following inoculation, the SCMV-inoculated samples had higher SI values compared to
mock-inoculated samples, with SI values generally increasing as the season progressed,
peaking at the final data collection date.
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4. Discussion
4.1. Regression and Classification Modeling

In this study, various modeling approaches were used to investigate the presence
and absence of SCMV infection in corn. Given our primary metric for measuring disease
incidence was the ‘percentage of infected plants’ per sample plot, our approach can be
best viewed as exploratory, with the focus being on variable interpretation and impacts of
features on model behavior, as opposed to inferential or predictive analysis.

In this study, treatment plots varied in size across years, making it challenging to
interpret the ‘percentage of symptomatic plants’ into an interpretable pixel-wise prediction
map. For disease mapping purposes, the classification of disease presence may be more
appropriate. Using only multispectral imagery-derived features, the XGBoost regression
model for disease incidence percentage had an RMSE value of 29.26, which was reduced
to 28.39 after feature reduction via RFE from 41 to 14 features. In contrast, the binary
classification SVM model for classifying SCMV inoculation vs. mock inoculation achieved
an overall accuracy of 72.9%, with 0.75 recall and 0.73 precision for SCMV inoculation.
While the classification model may not provide as much insight into the relationships
between spectral features and SCMV disease severity, it could effectively highlight areas
suspected to be infected with SCMV. Given that SCMV management largely relies on
planting resistant corn varieties, the SVM classification model’s performance may suffice
for identifying disease presence across a field. Very precise field locations may not be as
necessary as would be the case for a disease that may require the variable-rate precision
spraying of pesticides.

Effective models for the prediction of disease incidence were obtained only in 2021
when examining models by year. The models did not capture the variability in the 2022 data
very well, which may be attributed to several things. For instance, in 2021, the experimental
design had a larger number of hybrid varieties in smaller spatial block sizes, resulting
in a larger sample size compared to 2022 (768 observations vs. 120 observations for 2021
and 2022, respectively). This increased diversity of 48 unique hybrid varieties may have
resulted in a wider variation in spectral responses due to SCMV inoculation, unlike the
limited five hybrid samples in 2022. Generally, larger studies with more samples tend
to produce more robust outcomes with reduced margins of error, which may partially
explain the stronger fit in the XGBoost regression and SVM classification models for disease
incidence in 2021. The lack of significant correlation between disease incidence and spectral
variables at Snyder on 28 July 2022 may also be due to the small sample size. Additionally,
disease progression at this timestamp might not have yet reached a spectrally significant
stage since several significant correlations were noted at the next timestamp.

Furthermore, 2022 included an additional field location not used in the 2021 trials,
potentially introducing variation in biotic and abiotic field parameters that could contribute
to differences in disease response, thereby impacting model performances. Differences in
environmental factors such as temperature, irradiance, and moisture between two years
may have also contributed to differences in disease incidence and subsequent spectral
responses. While it appeared that both years had similar air temperature and humidity,
the 2022 season had higher cumulative rainfall than 2021. For mosaic disease in sugarcane
fields, it has been observed that drought conditions and reduced rainfall environments
favor the reproduction and activities of aphids, thereby facilitating the spread of mosaic
disease [97]. Additionally, excessively hot climates constrain disease transmission, resulting
in slower virus proliferation, fewer disease symptoms, and reduced severity of disease
outbreaks [97]. This interplay between environmental parameters could contribute to
different disease responses and subsequent spectral characteristics between the years.

Lastly, the timing of data collection differed between the years. In 2021, the last disease
score date was 12 July 2021, with UAS flight dates on 14 July 2021 and 28 July 2021. In 2022,
the last disease score date was 19 July 2022 for Schaffter and 18 July 2022 for Snyder, with
UAS flight dates on 28 July 2022 and 1 September 2022. So, all data collection that was
used for modeling occurred within 16 days during 2021 and within 46 days during 2022.
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This discrepancy between plant disease evaluation and UAS flight dates could further
explain the weaker model performance in 2022. There may have been continued disease
progression that occurred throughout the season and was not comprehensively recorded
by the disease incidence scores. Between the recording of disease incidence scores and
the last UAS flights (a 16-day gap in 2021 and a 46-day gap in 2022), the SCMV infection
may have progressed differently across plots, leading to shifts in disease scores that are
not strongly represented in the reported disease scores. Perhaps the disease progressed
strongly during this time period for plots that were initially recorded to have low disease
scores (a smaller percentage of infected plants). This would render the disease scores less
accurate and less informative, such that the ability of the regression model to capture a
strong trend in disease scores was diminished. The seemingly better performance of the
classification models indicates that the models were more effective at identifying infection
presence rather than the severity of the infection (percentage of infected plants).

4.2. Selection of Sensors

Efforts were made to collect temperature data via thermal imagery and canopy height
data via LiDAR sensors. However, the addition of these features did not notably en-
hance model performance for disease incidence prediction. Models built using all the
multispectral-derived features (41 bands and indices) performed similarly to the simplified
model (14 features). Given these findings, it may not be worth the resources and efforts to
collect additional thermal and LiDAR data for SCMV detection purposes as it will require
additional sensors and likely additional UAS flights. Moreover, the thermal data exhibited
limited correlation with disease incidence, and the collection and processing of thermal
data proved challenging, resulting in inconsistent data availability across fields and flight
dates. Further investigation into thermal imagery may unveil previously undiscovered
trends. However, it is essential to ensure that distinguishable physical characteristics are
present in the field when using aerial thermal imagery for remote sensing applications in
homogeneous agricultural fields. This will ensure smooth orthomosaic stitching processes.

4.3. Model Performance throughout the Season

This study aimed to compare the performance of models for SCMV detection across
time periods and crop growth stages throughout the growing season using 2021 and 2022
data. Each year involved three data collection dates for UAS flights, with the first flight
in June occurring before SCMV systemic infection. Thus, the June dates for both years
exhibited poor predictive ability, leading to their exclusion from the final model building.
Unfortunately, this resulted in less data available for modeling, suggesting potential benefits
from additional flights post-inoculation.

In 2021, the performance of models for disease incidence prediction gradually im-
proved throughout the season, whereas the effectiveness of disease prediction in 2022 gen-
erally lagged behind, although it did show improvement as the growing season progressed.
This trend aligns with the progression of infection and increasing plant physiological
symptoms. However, this trend may not hold true for MDM, as many hybrids lack visible
symptoms at later growth stages. Based on these findings, aerial imagery scouting for
SCMV infection during the latter half of July or potentially later into August may prove
most effective and economical. Generating a predicted disease presence map could also fa-
cilitate targeted on-ground investigation, enabling effective disease management strategies
for subsequent seasons, such as crop rotation or improved weed control, to mitigate virus
overwintering and its aphid vector.

4.4. Spectral Features and Model Behavior
4.4.1. Spectral Bands

SCMV infection can alter plant pigment and canopy structure, influencing spectral
reflectance values. In 2021, SCMV-inoculated plants displayed significant differences in red,
red-edge, and NIR bands compared to mock-inoculated plants. SCMV-inoculated plants
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generally had higher reflectance in the visible and red-edge bands but lower reflectance in
the NIR bands (Figure S1). These changes align with expected variations in spectral profiles
in healthy and unhealthy vegetation [98,99].

Using chlorophyll content as a positive proxy for healthy vegetation, it is expected that
healthier vegetation will have a higher absorption (lower reflectance) in the blue (peaks
at 430 and 453 nm for chlorophyll a) and red (peaks at 642 and 662nm for chlorophyll b)
bands and a lower absorption in green (in the 500–600 nm) bands as compared to unhealthy
plants that lack the equivalent amount of chlorophyll [99–101]. SCMV infection causes
initial chlorotic spotting, streaking, mosaicking, and the eventual progressive yellowing of
leaves, which may explain the average differences found in the visible reflectance values.
The higher reflectance values observed in SCMV-inoculated plots for both blue and red
bands suggest an impact on chlorophyll content due to SCMV infection. This finding is
supported by the significant differences observed in the red band, suggesting a stronger
influence on chlorophyll b content by SCMV infection, leading to reduced red reflectance.

The red-edge portion (680–740 nm) of the spectrum serves as a transition zone between
the red and NIR spectra where reflectance shifts from being primarily influenced by
photosynthetic pigments (chlorophyll) to vegetation structural properties [102–104]. Red-
edge radiation penetrates deeper into crop canopies than visible light, making red-edge-
based indices less susceptible to chlorophyll saturations with increasing values of the
leaf area index later in the growing season unlike NDVI [104,105]. Furthermore, the red-
edge position typically shifts towards longer wavelengths in healthy plants, while it shifts
towards shorter wavelengths in diseased plants [103,106]. In this study, SCMV-inoculated
plants exhibited higher average red-edge reflectance across both fields and years, suggesting
potential stress from disease infection. However, confirming this speculation is challenging
due to the use of broadband multispectral images in the analyses.

4.4.2. Vegetation Indices and Feature Importance

SCCCI was identified as the most impactful feature for model behavior in both XG-
Boost Regression and SVM classification models (Figure 6a). SCCCI, derived from NDRE
divided by NDVI, integrates NIR, red, and red-edge bands. Originally proposed as a
red-edge index for cotton, SCCCI offers robustness compared to NDVI, particularly in
avoiding early-season saturation [68,107,108]. Similarly, TCARI/OSAVI was ranked high in
both regression and classification analyses. These two indices, along with MCARI/OSAVI,
also show promise in explaining corn’s nitrogen status using multispectral aerial im-
agery [76,108]. The prominence of SCCCI in disease incidence prediction suggests that
SCMV-infected plants may exhibit reduced chlorophyll or photosynthetic pigment produc-
tion across the canopy, while the leaf area index and vegetation cover remain relatively
unaffected. This indicates that SCMV infection primarily impacts pigment performance
rather than the structural integrity of the plant from an aerial imagery perspective. While
SCMV infection may not drastically affect plant structure, it can lead to stunting or in-
creased bushiness. LiDAR-derived canopy heights on 28 July 2022 did not show significant
stunting between inoculated and mock-inoculated plants, but visible height differences in
August/September suggest some stunting due to SCMV infection.

The saturation index (SI), also known as the normalized pigment chlorophyll index
(NPCI), utilizes the red and blue regions and emerged as the most important feature for
SCMV infection classification by SVM and the second most crucial feature for disease
incidence prediction by XGBoost according to SHAP analyses. SI was originally designed
to assess the carotenoid-to-chlorophyll ratio and is higher in nitrogen-limited leaves and
inversely correlated with chlorophyll content [75]. The ratio between carotenoids and
chlorophyll a typically decreases as plants grow and then increases as they senesce [109,110].

Carotenoids, with their photoprotective role in photosynthesis [111], contribute simi-
larly to chlorophyll in visible absorption for wavelengths shorter than green [75]. However,
they do not absorb as strongly in the red region as chlorophyll does. SI may, therefore, relate
to the proportions of total photosynthetic pigments to chlorophyll proportions, influenced
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by nitrogen limitations or the protective effects of carotenoids [75,111]. The SHAP analysis
of the disease incidence model indicates an almost inverse relationship of SI on model
prediction compared to SCCCI. High SI values suggest increased disease incidence predic-
tion, potentially indicating a discrepancy in carotenoid to chlorophyll content in heavily
SCMV-infected plants [111]. However, these observations remain speculative without
quantified estimations of photosynthetic pigment content levels in SCMV-inoculated and
mock-inoculated plants. Notably, SI can be calculated using just an RGB camera, making it
a potentially more cost-efficient method for predicting disease incidence in corn compared
to using a multispectral camera.

4.5. Limitations and Steps Forward

The study revealed insights into the spectral characteristics of SCMV infection and
proposed a methodology for its detection using multispectral data. However, variations in
model performance between years suggested limited generalizability to new data. Specifi-
cally, the performance of the XGBoost regression model trained on 2021 data and tested
with 2022 data highlighted this issue. This could be attributed to the limited dataset,
particularly the lack of extensive 2022 data. This limitation can be addressed through
the further collection of annotated multispectral imagery and ground truth data covering
a range of field sites, environmental conditions, inoculation rates, corn hybrid varieties,
crop growth stages, and management practices. This helps to build a larger, more diverse
dataset, ultimately enhancing model performance and transferability to new fields and
new seasons. Additionally, we had success using sequential model-based optimization
(Hyperopt) to finalize model hyperparameters and then using recursive feature elimination
to minimize the included features for XGBoost regression modeling. However, the addi-
tional fine-tuning of all the models with more data would confirm that XGBoost is indeed
the best model and would also likely improve predictive accuracy.

The use of field scouting and disease incidence percentage as infection metrics to corre-
late with spectral properties can introduce human subjectivity and potential errors, which
might have influenced the modeling process. Although these methods are practical and
efficient, reflecting real-world SCMV scouting practices, obtaining quantitative estimates
of virus titer through serological and molecular testing for individual plants could offer a
deeper understanding of spectral relationships. However, these lab-based approaches are
costly and time-consuming. Using the average disease incidence value and the average
reflectance values of each hybrid plot has limitations regarding the precise mapping of
disease incidence. For instance, some of the plants within a specific inoculated plot may be
relatively healthy (e.g., they may have a high NDVI value) compared to other plants within
the same plot, and, thus, the detection of disease presence or severity may be reduced or
understated by averaging. Deriving a standard deviation from zonal statistics as a feature
may also yield insightful results. However, as stated, given that SCMV treatment largely
relies on planting resistant maize varieties during the next season, the identification of
disease presence from means within a general area of a field can still be very informative
for management decisions.

While limited observations of LiDAR and thermal imagery did not enhance model
performance, exploring them further by incorporating data collected at various stages of
SCMV infection may be valuable. To avoid concerns with the stitching of thermal imagery, it
is suggested that special consideration be given to ground control points and georeferencing
techniques specific to thermal imagery collection. Quantifying chlorophyll and pigment
content through leaf tissues or plant sap analysis may elucidate the biochemical and
physiological responses of corn to SCMV, which may then provide clarity on spectral
indices’ effectiveness for SCMV prediction. Additionally, hyperspectral imagery may offer
a higher-resolution understanding of SCMV’s impact on spectral characteristics and aid in
disease identification.
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5. Conclusions

This study primarily explores the potential of using UAS multispectral imagery for
the detection of SCMV infection in corn fields using data collected over the 2021 and 2022
growing seasons at two farms in Ohio, USA. Field experiments with randomized block de-
signs were implemented such that it was known which plots of each field were noninfected
or infected with SCMV. Using the multispectral orthomosaic images, mean pixel reflectance
values were calculated for each of the five spectral bands within each individual sample
treatment plot. On average, SCMV-inoculated plants had higher reflectance values for blue,
green, red, and red-edge bands and lower reflectance for near-infrared bands as compared
to mock-inoculated samples. Machine learning algorithms were used for the exploratory
analysis and predictive modeling of disease incidence percentage as regression and disease
presence as a binary classification. For data aggregated from both years, an XGBoost model
using just 14 multispectral image-derived features determined using recursive feature
elimination performed best for ‘disease incidence’ prediction with an R2 of 0.312 and an
RMSE of 28.39. The SVM model was the best classification model for predicting SCMV
disease presence with an accuracy of 0.729. A SHAP analysis demonstrated that the SCCCI,
SI, and TCARI/OSAVI vegetation indices were generally the most impactful on model
performance for the prediction and detection of SCMV in corn. A larger aerial multispectral
and thermal image dataset is needed to build models that transfer the high performance of
SCMV detection to additional unseen data and new fields. The methodology developed in
this study demonstrates the potential for the development of a tool for farmers that may
facilitate the precise identification and mapping of SCMV infection in corn.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/rs16173296/s1: Figure S1: Boxplots displaying the com-
parison of the average reflectance values for each of the spectral bands for SCMV-inoculated and
mock-inoculated corn plants; Table S1: Hyperparameters Spaces Explore; Table S2: Significant
Pearson r Correlations.
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