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Abstract: The plasmasphere within Earth’s magnetosphere plays a crucial role in space physics,
with its electron density distribution being pivotal and strongly influenced by solar activity. Very
Low Frequency (VLF) waves, including whistlers, provide valuable insights into this distribution,
making the study of their propagation through the plasmasphere essential for predicting space
weather impacts on various technologies. In this study, we evaluate the performance of different
deep learning model sizes for lightning whistler detection using the YOLO (You Only Look Once)
architecture. To achieve this, we transformed the entirety of raw data from the Arase (ERG) Satellite
for August 2017 into 2736 images, which were then used to train the models. Our approach involves
exposing the models to spectrogram diagrams—visual representations of the frequency content
of signals—derived from the Arase Satellite’s WFC (WaveForm Capture) subsystem, with a focus
on analyzing whistler-mode plasma waves. We experimented with various model sizes, adjusting
epochs, and conducted performance analysis using a partial set of labeled data. The testing phase
confirmed the effectiveness of the models, with YOLOv5n emerging as the optimal choice due to its
compact size (3.7 MB) and impressive detection speed, making it suitable for resource-constrained
applications. Despite challenges such as image quality and the detection of smaller whistlers,
YOLOv5n demonstrated commendable accuracy in identifying scenarios with simple shapes, thereby
contributing to a deeper understanding of whistlers’ impact on Earth’s magnetosphere and fulfilling
the core objectives of this study.

Keywords: deep learning; lightning whistler; Arase/ERG (Exploration of Energization and Radiation
in Geospace); YOLO (You Only Look Once); detection

1. Introduction

To understand space physics, we need to clarify the features of the plasmasphere, a
region within the Earth’s magnetosphere. One crucial aspect of studying the plasmasphere
involves analyzing its electron density distribution, which is strongly affected by solar
activity and changes day by day [1]. Very Low Frequency (VLF) waves, such as whistlers
and OMEGA signals, provided valuable information for assessing electron density within
the plasmasphere [2]. By analyzing the propagation of these signals through the plas-
masphere, scientists could gain insights into its electron density distribution and better
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understand its behavior. This knowledge is essential for various applications, including
predicting space weather impacts on communication systems, satellite operations, and
navigation technologies.

Suarjaya et al. [3] developed a systematic approach for the automated detection
of OMEGA signals in PFX (Poynting Flux Analyzer) data from a VLF wave instrument
onboard the Akebono satellite [4]. Their approach involved steps such as identifying the
transmission station, calculating the signal delay time, and estimating signal intensity. They
showcased the reliability and effectiveness of this automated detection system, successfully
confirming the detection of OMEGA signals, propagation, and connection with solar
activity [5]. The OMEGA navigation system ceased transmissions in 2005. In 2016, JAXA
launched a new satellite named Arase to explore the magnetosphere. One of the space
weather phenomena that can still be captured today is the signal from lightning whistlers.
Therefore, researchers now rely primarily on whistler waves for studying the plasmasphere.

Storey [6] provided evidence that lightning generates various electromagnetic waves.
Some of these waves traverse the Earth’s magnetic field and influence the magneto-
sphere. The propagation path of these lightning-induced waves is affected by the inner-
magnetospheric plasma, making it crucial for estimating plasma distribution. Electromag-
netic waves originating from lightning interact with the ambient magnetic field of the
Earth and the plasma in the magnetosphere, resulting in whistler waves. These waves,
typically below 30 kHz, propagate through the plasma in the magnetosphere, resulting
in an intriguing phenomenon. They have different frequencies that travel at different
speeds, causing a delay where lower frequencies arrive later than higher frequencies [7].
This delay is due to the interactions between the whistler waves and the plasma within
the magnetosphere.

Scientists have made significant progress in studying whistlers using advanced space-
craft data collection and computer modeling. These advancements have enhanced our com-
prehension of whistler waves and their impacts, resulting in significant scientific revelations
about their characteristics and behaviors in the geospace environment. Bayupati et al. [8]
studied lightning whistlers in two events using data from the Akebono satellite. By com-
paring observed and theoretical patterns and refining electron density profiles, scientists
can learn more about how electrons are distributed and behave in the magnetosphere.
Putri et al. [9] proposed a new method to reconstruct the global electron density using
lightning whistlers observed by the Arase satellite. They demonstrated the possibility
of the estimation of the electron density distribution along the whistler path. The facts
that lightning strikes happen daily worldwide, and whistlers are a result of these strikes,
suggest that whistlers also occur daily. This means that it is possible to reconstruct the
global electron density using whistlers observed by Arase or other satellites along their
paths. Note, that a tremendous amount of lightning whistlers are necessary to obtain the
global electron density, and the whistlers should be automatically detected for practical use.

In Ahmad et al.’s prior research [10], a decision tree was employed for lightning
whistler detection. It is expected that using deep learning will enhance the detection
outcomes. This approach is essential due to deep learning’s capacity to capture intricate
patterns and nuances in data, potentially leading to more accurate and robust detection
results. Therefore, the implementation of automated detection holds significant importance.
It is also important to acknowledge that the resources onboard the satellite are limited, thus
requiring a meticulous evaluation of the minimum size of the deep learning model.

In this study, we evaluate the deep learning model size performance for lightning
whistler detection using YOLO (You Only Look Once) [11]. Our proposed method trains
on lightning whistlers using numerous spectrogram diagrams, which are visual represen-
tations of the frequency content of signals.We evaluate the effectiveness of the proposed
method using the image dataset of the lightning whistlers observed by the Arase satel-
lite. We also evaluate the detection accuracy of lightning whistlers for different sizes of
the YOLO architecture and discuss the necessary and sufficient size of the deep learning
architecture to precisely detect lightning whistlers. This preliminary research introduces a
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novel approach by systematically evaluating the impact of deep learning model size on
the detection accuracy of lightning whistlers using the YOLO architecture. This study not
only establishes the necessary and sufficient model size for precise detection but also lays
the groundwork for future research aimed at quantifying whistler types, analyzing their
temporal and spectral occurrence patterns, and determining key characteristics such as the
dispersion parameter.

2. Lightning Whistlers Data Set
2.1. Arase

The Arase satellite, also known as the Exploration of Energization and Radiation in
Geospace (ERG) satellite, is a Japanese spacecraft dedicated to studying the Earth’s inner
magnetosphere and plasma dynamics with space weather phenomena [12]. Launched in
2016, it is equipped with a suite of instruments and sensors specifically designed to observe
and analyze various phenomena occurring in the magnetosphere.

The Arase satellite utilizes multiple instruments and techniques, including the Plasma
Wave Experiment (PWE), to study various phenomena in space. One notable phenomenon
that can be observed is the lightning whistler [13]. The PWE instrument comprises two
primary sensors: the Wire Probe Antenna (WPT) [14] and a Magnetic Search Coil (MSC) [15].
These sensors work together alongside other subsystems such as the Electric Field Detector
(EFD) [14], Waveform Capture and Onboard Frequency Analyzer (WFC/OFA) [16], and
High-Frequency Analyzer (HFA) [17], enabling the accurate measurement and analysis of
plasma waves onboard the Arase spacecraft [16].

The Arase satellite’s sensors efficiently detect and record the electric and magnetic
field signatures of whistlers. The captured data are then transmitted back to Earth for
further analysis and interpretation. We analyze the recorded electric and magnetic field
data to gain insights into the properties, characteristics, and behavior of the whistlers.
By observing whistlers using the Arase satellite, we can gain valuable insights into the
dynamics of the magnetosphere, the interaction between lightning discharges and the mag-
netosphere, and the distribution of electron density within this region. These observations
contribute to our deeper understanding of the Earth’s magnetosphere and significantly ad-
vance our knowledge of space weather and its potential impacts on technological systems
and infrastructure.

2.2. Lightning Whistlers Observed by Arase

The data collection process for studying whistlers using the WFC involves the mea-
surement of two electric field components and three magnetic field components. The WFC
is a waveform receiver specifically designed to capture and measure these field components
up to a frequency of 20 kHz [18]. The data used for this study were Lv.2 magnetic field
spectrum data [19] with time and frequency resolutions of 7.8125 ms and 32 Hz, respectively.
Our focus lies on analyzing the magnetic field (three magnetic field components) spectra
due to their superior signal-to-noise ratio, as noise can affect the shape of the whistlers and
influence the detection results. We made the spectrograms using PySPEDAS library [20],
which contains the data from the ERG science center [21].

The type of whistlers that are used in the classifications are [22]:

(a) Nose whistler: This type of whistler is characterized by a frequency–time curve
displaying both ascending and descending branches. The minimal delay occurs at
the frequency corresponding to the nose.

(b) Short whistler: This type has a simple one-way path that goes from a higher frequency
to a lower frequency. It has a duration of less than a second.

(c) Middle whistler: This type has a one-way path with a slight curve that goes from a
higher frequency to a lower frequency. It has a duration between 1 and 2 s.

(d) Long whistler: This type has a one-way path that goes from a higher frequency to a
lower frequency. It has a duration of more than 2 s.
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Figure 1 displays the dynamic power spectra produced from the WFC data captured on
15 August 2017 at 02:01:59–02:02:06 UT. This visual representation illustrates the frequency
components and their corresponding power levels, enabling further analysis and interpre-
tation of the lightning whistlers’ characteristics. From the figure, it is evident that several
lightning whistler events occurred. Between 02:02:01 and 02:02:03, a moderate-intensity
middle whistler event is observed. Subsequently, at 02:02:04, a higher-intensity middle
whistler event is recorded. Moreover, two nose whistler events are identified after 02:02:05.

Figure 1. Spectrogram of Arase (ERG) for 15 August 2017, 02:02 UT.

3. Detection Process
3.1. System Overview

Figure 2 provides an overview of our research pipeline, which focuses on the detection
and analysis of whistler-mode plasma waves using data from the Arase Satellite, specifically
from the WFC subsystem. The analysis requires examining both electric and magnetic
fields, with manual waveform acquisition based on observations from the OFA spectrum
data. After selecting relevant events, the data are reproduced from the Mission Data
Recorder (MDR).

Figure 2. Schematic overview of lightning whistler detection on Arase satellite dataset.

The workflow then continued with the generation of spectrograms—visual represen-
tations of the frequency content over time—using SPEDAS/PySPEDAS library version
1.4.47. These spectrograms were subsequently fed into a YOLOv5 deep learning object
detection model, specifically trained to identify whistlers. The model outputs bounding
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boxes around the detected whistlers, which were then classified into different categories
such as long, middle, short, and nose whistlers.

During the data preprocessing phase, manual data labeling played a crucial role. A
subset of labeled data was used for training, where various models were experimented
with, and the number of epochs was adjusted. This process was followed by perfor-
mance analysis and testing to evaluate the model’s accuracy in detecting and classifying
whistlers effectively.

3.2. Data Acquisition

In this research, the initial step involved reading the CDF file format followed by
the generation of spectrograms, which were then visualized through multiple images,
depicting both the frequency and time domains. This conversion was accomplished using
the PySPEDAS (Python Space Physics Environment Data Analysis Software) library [20].
PySPEDAS is a Python-based framework designed to facilitate the retrieval, analysis,
and visualization of heliophysics time series data from various missions and instruments.
Derived from the original SPEDAS framework developed in Interactive Data Language
(IDL), PySPEDAS aims to provide similar functionality and user experience but utilizes
Python, a more widely used and accessible language in scientific computing.

The entirety of raw data from the Arase Satellite for August 2017 has been transformed
into 2736 images. All of the data used are 32-bit color PNG files with dimensions of
1200 × 500 pixels, as they are compatible with YOLO’s input data format (eight-bit depth,
three-channel png/jpg images). For the dynamic range of intensity, we used the default
value from PySPEDAS as mentioned in Section 2.2. If this value changes, it will affect
the image produced by PySPEDAS and also impact the detection results. The next step
involves identifying images containing whistlers and assigning appropriate labels.

3.3. Data Preprocessing

In this study, we classified whistlers into four classes: nose whistlers, short whistlers,
middle whistlers, and long whistlers, as mentioned in the previous section. This classifica-
tion allows the model to distinguish between different variations of whistlers that may be
encountered in the image data.

We used polygon annotation to label the images, which allows for more accurate
and flexible labeling compared to rectangle annotation. This is especially important for
whistlers, which can have irregular shapes and sizes. Although polygon annotation is more
time-consuming and requires more human effort, it provides more detailed information
about the whistlers in the images, which can be beneficial for training the object-detection
model. All labeling processes were performed manually by using an online annotation tool.

After preprocessing the data, the next step was to use the data on YOLO (You Only
Look Once) [11]. YOLO is a convolutional neural network [23]-based object detection
method for 2D images. In contrast to methods based on classifiers, YOLO undergoes
training using a loss function directly linked to detection performance, and the entire
model is trained simultaneously [11]. YOLO has a very simple architecture and is suitable
to be considered for implementation on board a scientific satellite. There are different
versions of YOLO, such as YOLOv3, YOLOv4, and YOLOv8. Each version has different
features and improvements over the previous ones. For example, YOLOv8 introduces a
novel NAS method to design optimal model architectures automatically [24]. It also uses
super-gradients to accelerate the training process and improve the model performance. Un-
fortunately, this version still has some issues with labeling using polygons [25]. Therefore,
in this study we used YOLOv5.

3.4. Training

As we mentioned in the first section, we needed to evaluate the minimum size of the
YOLO model, so we compared four YOLO models to evaluate their performance. Out of
2736 images in total, we manually identified and labeled 204 images containing whistler
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events for training purposes, along with 20 additional images for evaluation. Among
these, we classified 461 as short whistlers, 87 as long whistlers, 189 as middle whistlers,
and 20 as nose whistler events for training. Additionally, there were 55 short whistlers,
2 long whistlers, 10 middle whistlers, and 1 nose whistler for validation. In the context of
YOLOv5 training, the nano model (YOLOv5n) features a unique architectural configuration
with a depth multiple of 0.33 and a width multiple of 0.25, specifically tailored for its
compact design. Notably, the layer channel multiple is set as the default for other YOLOv5
variants. These parameters governing the depth and width of the model play a pivotal role
in shaping the nano model’s architecture, distinguishing it from other YOLOv5 models in
terms of performance and overall accuracy.

In this research, we are trying to see the performance of all models provided by
YOLOv5. There are four models: YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium),
and YOLOv5l (large). These models have differences in their complexities, performances,
and overall accuracy [26].

Figure 3 shows a graph of detection parameters used in object detection. The ‘Box’
graph depicts the loss incurred when the predicted bounding boxes fail to cover objects
accurately. The ‘Objectness’ graph signifies the loss attributed to erroneous object predic-
tions. ‘Classification’ loss reflects inaccuracies in identifying the correct object class. These
metrics collectively highlight the model’s proficiency in object detection, as evidenced
by the accurate prediction of bounding box sizes and high confidence in object presence.
YOLO generated this figure after the training process was completed.

Figure 3. The YOLOv5 nano model performance result. The x-axis corresponds to the epoch and the
y-axis corresponds to the respected title of each subfigure.

Moreover, the ‘Precision’ metric evaluates object detection accuracy by determining the
ratio of correctly detected objects to the total number of predicted objects, showcasing the
model’s effectiveness in correctly identifying objects. Similarly, ’Recall’ assesses the model’s
ability to detect all existing objects by dividing the number of correctly detected objects by
the total number of objects in the image, demonstrating the model’s comprehensiveness
in object detection. ‘mAPval@0.5’ represents the mean Average Precision (mAP) at an
Intersection over Union (IoU) threshold of 0.5, indicating the model’s accuracy in detecting
objects with an IoU of 0.5. Conversely, ‘mAPval@0.5:0.95’ averages precision across IoU
thresholds ranging from 0.5 to 0.95, offering insights into the model’s accuracy across a
broader range of IoU values. These parameters collectively underscore the model’s robust
performance in object detection. Figure 3 shows that this model performs quite well in
object detection, since the precision reaches above 0.8 and the recall value reaches above 0.3.
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3.5. Result and Evaluation

Four models were trained for 1000 epochs and all models achieved their best mAP at
varied epochs. Notably, the nano model attained its best mAP at epoch 503. The result is
shown in Table 1. YOLOv5l, despite having the largest file size with 46,638,261 parameters
and the best mAP (0.245) for mAPval 0.5, experienced a notable decline in precision for
mAPval 0.5:0.95 (0.101). YOLOv5m, featuring a smaller file size and 7,072,789 parameters,
demonstrated a slightly higher mAP for mAPval 0.5 and thus reveals an improved pre-
cision for mAPval 0.5:0.95 (0.114). YOLOv5s, with a significantly smaller file size and
21,065,925 parameters, obtained a commendable mAP for mAPval 0.5 but underwent a re-
duction in precision for mAPval 0.5:0.95 (0.103). YOLOv5n, having the smallest file size and
780,293 parameters, registered the lowest mAP for mAPval 0.5 and an even lower precision
for mAPval 0.5:0.95 (0.0773).

Table 1. Best mAP values of YOLOv5 models.

Model Filesize mAPval 0.5 mAPval 0.5:0.95

YOLOv5l 89.5MB 0.245 0.101
YOLOv5m 40.6MB 0.371 0.114
YOLOv5s 13.8MB 0.32 0.103
YOLOv5n 3.7MB 0.186 0.0773

Considering the parameter details, it becomes apparent that the precision of the
models is influenced not only by the file size but also by the number of parameters. Smaller
models may achieve a balance between file size and precision, as seen with YOLOv5m. The
larger models, while demonstrating higher precision for certain thresholds, may experience
diminishing returns in precision for broader threshold ranges, as observed with YOLOv5l.
The choice of a YOLOv5 model should thus factor in file size, parameter count, and
precision, aligning with the specific requirements of the application.

YOLOv5n may prove adequate for detecting whistlers in images characterized by
simple shapes. This suitability stems from several key factors. First and foremost, YOLOv5n
boasts a small model size, specifically 3.7 MB, rendering it ideal for applications with
resource constraints, such as mobile devices. Additionally, the model exhibits a high
detection speed, surpassing other YOLOv5 variants, which is particularly advantageous for
real-time applications like surveillance systems. Furthermore, given that whistlers typically
feature uncomplicated shapes, such as straight or curved lines, YOLOv5n demonstrates the
capability to accurately detect these straightforward configurations. However, it is essential
to acknowledge that various factors may impact YOLOv5n’s performance in whistler
detection. Issues such as image quality, with blurry or noisy images potentially diminishing
YOLOv5n’s efficacy, and the size of whistlers, especially smaller and thinner ones, might
pose challenges for detection. Moreover, the complexity of the background, particularly in
busy and intricate scenarios, could potentially disrupt YOLOv5n’s overall performance.

Figure 4 illustrates how effectively the four models can detect four types of whistlers:
short, long, middle, and nose whistlers. The red rectangles indicate the bounding box
detections, accompanied by the type of whistler and the corresponding confidence scores.
From this, we can observe two important points. First, the nano model performed well,
comparable to the other models, detecting all types of whistlers and registering a similar
number with confidence values above the threshold of 0.5.

Additionally, the shapes of the whistlers that the models found are not very com-
plicated. This suggests that even though more complex models exist, they might not
significantly affect how well they find whistlers. Therefore, it seems like the nano model is
a good choice for finding whistlers. The high confidence score of the nano model, exceed-
ing the threshold of 0.5, indicates its capability to detect whistlers effectively. It performs
similarly to other models, but its smaller size makes it efficient and saves resources for
different uses.
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Figure 4. The detection result of four YOLOv5 models. Event of 15 August 2017, at 02:02 UT.

4. Discussion

Table 2 shows the confusion matrix of test data for the YOLOv5 nano model of
whistlers. There, 65% of short whistlers and 60% of middle whistlers were detected
correctly. It is crucial to acknowledge that the dataset we employed is predominantly
characterized by short and middle whistlers, with a limited occurrence of nose whistlers
and long whistler events during August 2017. Hence, it is crucial to acknowledge that the
results might be influenced by unlabeled whistlers in the dataset, especially regarding long
whistlers and nose whistlers. Despite the nano model’s performance not being optimal,
it remains a viable option for onboard detection and model selection on satellites, as its
confidence score still surpasses the detection threshold, as previously mentioned.
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Table 2. Confusion matrix of test data for YOLOv5 nano (Bg: Background; FN: False Negative; FP:
False Positive).

Pr
ed

ic
te

d

Short 0.65 0.50 0.20 0 0.89
Long 0 0 0 0 0

Middle 0.07 0 0.60 0 0.11
Nose 0 0 0 0 0

Bg FN 0.27 0.50 0.20 1.00 0

Short Long Middle Nose Bg FP

True

We show one of the examples of the unlabeled dataset in Figure 5. From the annotation
image, we can see that not all whistlers are labeled. This is due to our limitations in manually
labeling the entire dataset. However, testing results indicate that the model can successfully
detect all whistlers, even those that are not labeled. This suggests that the model shows
promise for application in automated detection, given that whistler events occur frequently
at all times in the atmosphere. In the test results, we observe that this model is unable to
detect certain low-intensity whistlers within the time range of 16:44:54 to 16:44:55 due to
faint and discontinuous lines that do not meet the detection criteria. This limitation arises
because we only labeled whistlers with clear shapes and higher intensities, specifically
those above 10−2, pT2/Hz, based on our current spectrogram.

Figure 5. Annotated and predicted spectrogram of YOLOv5 nano.

The nano model’s compact size distinguishes it from others, offering significant ef-
ficiency benefits for computational performance and resource utilization, particularly in
whistler detection. Despite the YOLOv5n model’s slightly lower accuracy compared to
alternatives, the nano model’s efficiency advantages highlight its practical suitability, espe-
cially in scenarios where manual labeling of whistlers presents challenges. In such cases,
this model excels in detecting unlabeled whistlers effectively.
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5. Conclusions

In this study, we evaluated the deep learning model (YOLOv5) size performance for
lightning whistler detection by using the dataset for a month observed by the Arase satellite.
We compared four different sizes of YOLOv5 models to clarify the appropriate size for
lightning whistler detection.

Based on the training results, YOLOv5n stands out as a favorable choice for whistler
detection, given its compact size (3.7 MB) and impressive detection speed, making it partic-
ularly well-suited for resource-constrained applications like mobile devices or satellites.
Despite potential challenges with image quality, smaller whistlers, and complex back-
grounds, YOLOv5n’s capabilities make it a commendable option for accurate and efficient
detection in scenarios characterized by simple shapes.

As mentioned in the discussion section, future investigations could be refined by
focusing on improving the dataset, fine-tuning parameters for enhanced mAP accuracy,
and exploring model optimization. This strategic approach seeks to achieve an optimal
balance between accuracy and efficiency, ultimately enhancing the model’s effectiveness in
real-world applications.
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