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Abstract: Several studies have used aerial images to predict physiological maturity (R8 stage) in
soybeans (Glycine max (L.) Merr.). However, information for making predictions in the current
growing season using models fitted in previous years is still necessary. Using the Random Forest
machine learning algorithm and time series of RGB (red, green, blue) and multispectral images taken
from a drone, this work aimed to study, in three breeding experiments of plant rows, how maturity
predictions are impacted by a number of factors. These include the type of camera used, the number
and time between flights, and whether models fitted with data obtained in one or more environments
can be used to make accurate predictions in an independent environment. Applying principal
component analysis (PCA), it was found that compared to the full set of 8–10 flights (R2 = 0.91–0.94;
RMSE = 1.8–1.3 days), using data from three to five fights before harvest had almost no effect on the
prediction error (RMSE increase ~0.1 days). Similar prediction accuracy was achieved using either a
multispectral or an affordable RGB camera, and the excess green index (ExG) was found to be the
important feature in making predictions. Using a model trained with data from two previous years
and using fielding notes from check cultivars planted in the test season, the R8 stage was predicted, in
2020, with an error of 2.1 days. Periodically adjusted models could help soybean breeding programs
save time when characterizing the cycle length of thousands of plant rows each season.

Keywords: agriculture; plant breeding; high-throughput phenotyping; UAV; physiological maturity;
vegetation indices; machine learning

1. Introduction

Soybean (Glycine max (L.) Merr.) breeding programs need to annually record pheno-
typic traits for thousands of experimental lines grown as plant rows to select those that
should be evaluated in preliminary yield tests. However, much of the data collected are
not used because most experimental lines will be discarded due to low grain yield or other
undesirable traits, such as when the germplasm has a short or very long cycle length for
a given environment. The cycle length is characterized by the date the plants reach their
physiological maturity (R8 stage), which is a trait of superlative importance in plant breed-
ing because it is associated with grain yield potential [1]. The R8 growth stage in soybean is
defined as when 95% of pods reach their mature color and maximum biomass accumulation
in the seed has occurred [2]. Taking maturity notes is time-consuming because it usually
requires going to the field every three or four days for about four to five weeks.

As imagery obtained by drones has become readily available and affordable, plant
breeders are more interested in applying high-throughput phenotyping (HTP) for classi-
fying and predicting agronomic traits such as date of physiological maturity, pubescence
color, lodging, plant biomass, and grain yield [3]. Applying HTP can help identify genomic
regions associated with these and other traits of interest; this is by combining phenomics
with genomics [4–6].
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Compared to standard methods of recording field notes, with an HTP platform, a larger
volume of information can be quickly collected, which could help breeders make selections
with greater accuracy and efficiency. However, even when research on applying HTP to
predict agronomic traits has been published, there has been difficulty in implementing
these methods in breeding programs [7]. This difficulty is mainly due to the uncertainty
about the validation and repeatability of the predictions and the challenges in processing
the data in a short time when data science is still an emerging discipline.

Multi-rotors carrying cheap digital RGB (red, green, blue) cameras are the most
common UAVs, while professionals often integrate more expensive multi or hyper-spectral
cameras. Although multispectral cameras have a lower resolution than RGB cameras,
a significant advantage is that their lenses can record images at frequencies beyond the
spectrum visible to the human eye, such as the red edge and near-infrared (NIR) spectral
bands. This means that more indices can be calculated with multispectral than with RGB
cameras. Two examples are NDVI, which is calculated with the red and NIR spectral
bands [8], and the normalized difference red edge (NDRE), calculated with the NIR and
red edge bands [9].

Random forest (RF) is one of the most commonly used machine learning algorithms
for conducting predictive analyses using an HTP platform [10]. Based on classification and
regression trees (CART), which is another machine learning algorithm, RF is an ensemble of
individual trees (i.e., the predictors) trained using the bootstrap aggregation method, also
known as the bagging method [11,12]. Even with the risk of high bias, the aim of training
different random subsets within the training set (i.e., bagging) is to decrease the correlations
between trees and the variance, which can cause overfitting of the trained model [13]. Using
RF and considering a binary prediction model for analyzing multispectral aerial images
taken over plant rows at the University of Illinois, Yu et al. [14] reported an overall accuracy
of ~93% for classifying R8 (mature or immature plots). Considering R8 as a classification
variable but using RGB images instead, high overall accuracies (>90%) were also reported
by other studies applying RF and other methods, including deep learning [15,16]. On
the other hand, considering R8 instead as a regression variable, Trevisan et al. [17] and
Moeinizade et al. [18] reported a root mean square error (RMSE) of approximately ±2 days
using RGB images and deep convolutional neural networks (CNN) to train the models.

Other studies to predict physiological maturity in soybean have been conducted
using different methods and instruments. Using a ground-based field spectroradiometer
to measure the canopy reflectance, Christenson et al. [19] applied partial least squares
regression (PLSR) to associate the R8 stage with 91 spectral bands; 27 versions of four
vegetation indices (VIs), RENDVI, and the blue, green, and red NDVIs, and 3 versions
for the water index. After the PLSR analysis, one model was adjusted with the most
significant indices and the other with the most significant spectral bands (RMSE = 5.51 and
5.19 days, respectively). Applying PLSR but using multispectral images taken from a drone,
Zhou et al. [20] explained up to 70% of the R8 stage variation (RMSE = 1.7 days). Handheld
crop sensors recording NDVI are another example [21], but as well as spectroradiometers,
both have the disadvantage of collecting fewer records per unit of time compared to taking
images from a drone or a manually operated cart [22].

Narayanan et al. [23] calculated a normalized green excess index and adjusted a piece-
wise linear regression model in function of time to forecast physiological maturity across
22 sites, achieving a Pearson correlation coefficient (r) from 0.79 to 0.92 for a subset of data.
Volpato et al. [24] later confirmed these findings but instead used a nonparametric local
polynomial regression (LOESS) model (r = 0.84–0.97). Meanwhile, the excess green index
(ExG) has become a prominent vegetation index due to its effectiveness in enhancing the
contrast between vegetation and soil pixels using only RGB bands for its calculation [25,26].
Yuan et al. [22] used RGB images and five regression and classification models to predict
various traits, including physiological maturity, though they reported a lower accuracy
(R2 = 0.76, RMSE = 3.7 days) than the abovementioned studies.
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On the other hand, Trevisan et al. [17] and Moeinizade et al. [18] highlighted the
advantages of deep learning methods like CNN for predicting complex traits, such as plant
development and plant stress [27]. However, Zhang et al. [28] found no significant accuracy
differences among various learning methods for predicting lodging in wheat: support
vector machine (SVM), RF, and three neural networks (GoogLeNet, CNN, and VGG-16).
When no significant accuracy differences occur, machine learning algorithms like RF would
have the advantage of having lower computational complexity than CNN [16].

Regarding complexity and its relationship to the number of features, Teodoro et al. [29]
noted improved predictions using RF and deep learning compared to SVM and linear
regression when predicting soybean maturity with RGB data. However, when additional
variables (VIs) were included in the model (alone or with the RGB bands), the authors
observed a prediction error increase when using deep learning, indicating that this method
shows higher sensitivity to including redundant features compared to machine learning
methods such as RF. This result highlights the importance of optimizing model architecture
and variable selection to enhance predictive performance while minimizing overfitting.

A few studies have used RF and CNN to predict the R8 stage with an overall accuracy
above 90% [14–16]; however, except for the study by Trevisan et al. [17], as far as we know,
no other study tested their models in independent environments. Thus, the hypothesis is
that soybean breeding programs could adjust scalable and repeatable models across the
years. We also hypothesized that optimizing the drone flights and variable selection would
enhance the predictive model performance while minimizing overfitting.

Applying the RF algorithm, we associated more than 32,000 field records across three
experiments (2018–2020) with a time series of images taken from a UAV to improve the
efficiency of characterizing physiological maturity in breeding populations (plant rows).
The objectives were (1) to evaluate whether using a time series of multispectral images can
predict the date the plant rows reached the R8 stage more accurately than RGB images; (2) to
study how the reliability of predictions is impacted by including classification variables
(check cultivars and germplasm relationships), the phenological stage of the plant rows
when the images are taken, the number and time between flights, and what image features
are the most informative in predictions; and (3) to test the consistency of the fitted models
across years to determine if a training set obtained previously can make accurate predictions
for an independent experiment or environment.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Soybean experiments were conducted during three consecutive growing seasons in
Savoy, IL, USA. Each experiment was planted nearby in fields under a corn–soybean
rotation. The planting dates were 22 May 2018 and 3 June in both 2019 and 2020. The
experiments comprised plots of F4:5 experimental lines developed by the soybean breeding
program at the University of Illinois at Urbana–Champaign. The lines were divided into five
or six blocks of plant rows each year according to breeding program objectives unrelated to
the cycle length (Table 1). Each experimental line was grown in a one-row nonreplicated
plot (plant row). The experimental lines were grouped by cross combination with lines from
the same cross, approximately 50 to 70 lines, arranged randomly and planted sequentially
in a serpentine arrangement. One of five check cultivars, representing the cycle length range
of the breeding germplasm (maturity groups II, III, and IV), was planted every 20 rows.
The plant row plots measured 1.2 m in length, had a 0.76 m row spacing, and alleys of
1.1 m between ranges of rows.



Remote Sens. 2024, 16, 4343 4 of 27

Table 1. Three soybean breeding experiments containing trials of plant rows of F4:5 experimental
lines grown at the University of Illinois Research and Education Center near Savoy, IL. Time series
of aerial images over the plant rows were taken from drones carrying a digital RGB camera (2018)
or a multispectral camera (2019 and 2020). The number of plant rows associated with images is the
difference between the rows in the field (plant rows) and the number of plant rows not included in the
analyses (NA and wrong field notes). The number of breeding blocks per experiment, the individuals
in the team that took ground-truth notes for physiological maturity (R8 stage), the number of ground
control points (GCPs), the sum of aerial images aligned per year (in brackets, the range per flight
date), and the orthomosaic resolution range between flights are also indicated.

2018 2019 2020

Drone Phantom 4 Pro
(DJI, Shenzhen, China)

Inspire 2
(DJI, Shenzhen, China)

Camera model Built-in FC6310
(DJI, Shenzhen, China)

Altum DJI SkyPort kit
(Micasense, Seattle, WA, USA)

Spectral bands RGB (red, green, blue) R, G, B, red edge, and near-infrared
Image resolution 5472 × 3648 pixels 2064 × 1544 pixels

Flight dates 1 22 and 28 August,
4, 10, 14, 18, 23, and 26 September

1, 10, 25, and 30 July,
6, 15, and 28 August,

10, 17, and
24 September

30 June, 15 July,
4, 18, and 31 August,

10, 14, 22, and
30 September

Flight heights ~80 m ~60 m, and ~40 m
(10 and 25 July) ~40 m

Plant rows 9360 11,800 11,400
Plant rows associated with images 9252 11,742 11,197
Breeding blocks 5 6 7
Team taking notes in the field 3 5 5
Ground control points (GCPs) 18 18–17 14
Aligned images (range per date) 1141 (114–221) 3589 (243–570) 3496 (302–558)
Orthomosaic resolution range 2.2–2.5 cm pixel−1 1.8–2.7 cm pixel−1 1.6–1.9 cm pixel−1

1 The flight carried out on 25 July 2019 was completed using a Matrice 600 Pro (DJI, Shenzhen, China) drone
with a RedEdge-M (Micasense, Seattle, WA, USA) multispectral camera mounted on a T1 gimbal kit (Gremsy,
Ho Chi Minh, Vietnam). The model RedEdge-M also records five spectral bands with the same center wavelength
as the Altum model, though this is with a lower image resolution (1280 × 960 pixels). Another difference is that
the model RedEdge-M does not have a thermal sensor.

2.2. Data Collection

On 25 August 2018, 9 September 2019, and 17 September 2020, the plant rows started to
be rated every 3–7 days for the date they matured (R8 stage). The field notes were recorded
by a team that varied from three to five individuals annually, with each person assigned
at least one breeding block (Table 1). In 2019 and 2020, a portion of replications in Block
1 decreased toward maturity (45 check plots each year) because they were destructively
sampled for other studies.

RGB images were collected in 2018 with a Phantom 4 Pro (DJI, Shenzhen, China) drone
with a built-in FC6310 (DJI, Shenzhen, China) digital camera. Except for one flight date,
the multispectral images were collected in 2019 and 2020 with an Altum multispectral
sensor DJI SkyPort kit (MicaSense, Seattle, USA) mounted on an Inspire 2 (DJI, Shenzhen,
China) drone (Table 1; Figure 1). The Altum camera senses five discrete spectral bands:
blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near-infrared (840 nm).
The camera also has a thermal sensor, but these data were not used in this work. The
flight date exception was on 25 July 2019, when a Matrice 600 Pro (DJI, Shenzhen, China)
drone with a RedEdge-M (Micasense, Seattle, WA, USA) multispectral camera mounted
on a T1 gimbal kit (Gremsy, Ho Chi Minh, Vietnam) was used. The RedEdge-M camera
has a lower image resolution than the Altum model, but the discrete spectral bands are
sensed at the same wavelengths. The built-in FC6310 digital camera used in 2018 has
different peak responses for the shared spectral bands: red = 594 nm, green = 524 nm,
and blue = 468 nm [30]. Finally, both Micasense models, Altum and RedEdge-M, included,
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from the manufacturer, a downwelling light sensor and a calibrated reflectance panel for
image calibration. Before and after each flight date, with both mentioned cameras, pictures
were taken of each panel to calibrate the reflectance between flights. The UAV and its
built-in camera used in 2018 do not include a light sensor and a calibration panel; therefore,
the flight dates occurred only on cloudless, sunny days.
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Figure 1. Pipeline workflow diagram of a high-throughput phenotyping platform for predicting
soybean physiological maturity (R8 stage) of three breeding experiments (2018–2020) containing
trials divided into plant rows of F4:5 experimental lines grown at the University of Illinois Research
and Education Center near Savoy, IL. On the top right, overlapped on the satellite image, © Google,
2024 [31], three selected orthophotos corresponding to these experiments were taken from a drone on
the same flight date (10 September). The colored polygons indicate the effective area of the soybean
breeding blocks (trials) for which physiological maturity was predicted. The magnified orthophoto
(10 September 2019) shows the cell grid that was used to associate the pixels within each cell to the
day of the year in which the plant row reached the R8 stage.

The software Pix4Dcapture version 4.2.1 (Pix4D, Lausanne, Switzerland) was used to
plan the missions of the three experiments. Of the possible options, the autopilot mission
for flying over grid-type designs was chosen and an image overlap of 80% forward and
60% of side was selected. There were 16, 17, and 14 georeferenced ground control points
(GCPs) placed around each group of trials during 2018, 2019, and 2020, respectively. In
2018, the flights started when plant rows showed initial signs of maturity and continued
until almost all plots reached the R8 stage. In 2019 and 2020, the flights began during the
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vegetative phase and continued through maturity. The number of flights and the difference
in days between flights varied over the years (Table 1).

2.3. Image Processing

The time series of RGB (2018) and multispectral images (2019–2020) obtained from
the three experiments were processed with the software Metashape version 1.6 (Agisoft,
St. Petersburg, Russia). After uploading the images from each flight date, redundant images
in the field corners and sides were discarded if the image overlapping of trials was not
affected. The option ‘use sun sensor’ was not enabled in the software to calibrate the
reflectance because the lighting of images was little or not affected by cloudiness during the
fly missions ultimately used in this study (~10:00 AM–3:00 PM). For the images recorded
in 2019 and 2020, the camera calibration function in Metashape was used to align the
reflectance parameters, considering that both the Altum and the RedEdge-M cameras come
with calibrated reflectance panels.

After calibration, the images were aligned for each flight date using the highest
accuracy software setting. The procedure was repeated for some photos when they could
not be aligned the first time. The camera calibration parameters of the first flight in
each year were then saved in three .xml files. These files were uploaded for flights that
followed during the same year (2018–2020) to adjust reflectance fluctuations due to different
lighting conditions across the season. The next step was building dense point clouds
setting quality and depth filtering as high and mild, respectively. To save time and space
resources, the portion of the dense point clouds not belonging to the trials was selected
and deleted. Based on these dense point clouds, a digital elevation model (DEM) for each
flight date was generated to represent the surface, and from these models, the orthomosaics
were generated.

The georeferenced GCPs were marked on the first orthomosaic for each year and
saved as a .csv file (i.e., reference markers). The same GCPs were marked again for the
following flight dates (2018–2020), but their geographical localization was realigned with
the reference markers previously saved. To the extent the global positioning system (GPS)
built-in the drones can yield slight localization differences for the respective GCPs, using
the same reference markers for each year is a warranty that the imagery matches across the
growing season without requiring the use of a real-time kinematic (RTK) GPS. Finally, with
the function ‘enable hole filling’ disabled, orthomosaics were built and saved as .tiff files
containing RGB (2018) or multispectral information (2019–2020). When this information in
each orthophoto (.tiff file) was RGB values, it was saved as integer values from 0 to 255,
and when it was multispectral values, it was saved as normalized data.

The orthophotos were uploaded to the software QGIS Geographic Information System
version 3.20.2 (Open Source Geospatial Foundation Project, Zurich, Switzerland, https:
//www.qgis.org, accessed on 20 August 2021), where the correct overlapping between flight
dates was visually checked. An orthophoto was then selected for each year (2018–2019)
to draw a vector layer (.gpkg file) with a series of polygons representing the area of the
breeding blocks (Figure 1). The areas in these three vector layers were used to extract the
raster area of interest (i.e., .tiff files with the breeding block pixels). Then, another three
vector layers were created using the software R version 4.1.3 (R Foundation for Statistical
Computing, Vienna, Austria, https://www.r-project.org, accessed on 15 March 2022) and
the package ‘sf’ [32] was used to divide the polygons into a grid of cells; this was conducted
according to the number of rows and columns per breeding block previously indicated in
QGIS with the tool ‘field calculator’. Hence, the pixels in the raster layer assigned by each
grid cell represent the values per plant row, which is the plot area of a unique experimental
line or a check cultivar replication (Figure 2). The resulting grid from each year was then
used to overlap the raster information of the other flight dates within that year.

https://www.qgis.org
https://www.qgis.org
https://www.r-project.org


Remote Sens. 2024, 16, 4343 7 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 27 
 

 

from each year was then used to overlap the raster information of the other flight dates 
within that year. 

 
Figure 2. Partial visualization of composed orthophotos obtained from time series of images taken 
from a drone flying over three soybean breeding experiments (2018–2020). The experiments, con-
taining plant rows of F4:5 experimental lines, were grown at the University of Illinois Research and 
Education Center near Savoy, IL. The imagery was collected in a total of eight flight dates in 2018, 
ten in 2019, and nine in 2020, although only four flight dates per year are shown according to the 
best matching day of the year. The raster information within each cell grid was used to predict the 
day of the year the plant row reached physiological maturity. All the orthophotos show the three 
visual spectral bands (red, green, and blue); however, while the images were taken with a digital 
RGB camera in 2018, in 2019 and 2020, they were with a multispectral camera of five bands: red, 
green, blue, red edge, and near-infrared. 

2.4. Data Analysis Methods 
The vector and raster information was read, labeled, and joined using the software R 

version 4.1.3 with the packages ‘rgdal’ [33], ‘raster’ [34], ‘sf’ [32], and ‘fasterize’ [35]. After 
the raster was read, a new image feature was created in R through calculating, for each 
pixel, the vegetation index ExG1 proposed by Woebbecke et al. [25]: Excess green index ሺ𝐸𝑥𝐺ሻ ൌ 2𝑔 െ 𝑟 െ 𝑏  (1)

where r, g, and b are normalized values of the bands red, green, and blue, respectively; 
this is, 𝑟 ൌ 𝑅௡௭௘ௗ𝑅௡௭௘ௗ ൅ 𝐺௡௭௘ௗ ൅ 𝐵௡௭௘ௗ  (2)

𝑔 ൌ 𝐺௡௭௘ௗ𝑅௡௭௘ௗ ൅ 𝐺௡௭௘ௗ ൅ 𝐵௡௭௘ௗ  (3)

𝑏 ൌ 𝐵௡௭௘ௗ𝑅௡௭௘ௗ ൅ 𝐺௡௭௘ௗ ൅ 𝐵௡௭௘ௗ  (4)

In turn, Rnzed, Gnzed, and Bnzed are calculated as R/Rsat, G/Gsat, and B/Bsat, where the numera-
tors are the band values of the orthophotos (from 0 to 255) and the denominators their 

Figure 2. Partial visualization of composed orthophotos obtained from time series of images taken
from a drone flying over three soybean breeding experiments (2018–2020). The experiments, con-
taining plant rows of F4:5 experimental lines, were grown at the University of Illinois Research and
Education Center near Savoy, IL. The imagery was collected in a total of eight flight dates in 2018,
ten in 2019, and nine in 2020, although only four flight dates per year are shown according to the
best matching day of the year. The raster information within each cell grid was used to predict the
day of the year the plant row reached physiological maturity. All the orthophotos show the three
visual spectral bands (red, green, and blue); however, while the images were taken with a digital RGB
camera in 2018, in 2019 and 2020, they were with a multispectral camera of five bands: red, green,
blue, red edge, and near-infrared.

2.4. Data Analysis Methods

The vector and raster information was read, labeled, and joined using the software R
version 4.1.3 with the packages ‘rgdal’ [33], ‘raster’ [34], ‘sf’ [32], and ‘fasterize’ [35]. After
the raster was read, a new image feature was created in R through calculating, for each
pixel, the vegetation index ExG1 proposed by Woebbecke et al. [25]:

Excess green index (ExG) = 2g − r − b (1)

where r, g, and b are normalized values of the bands red, green, and blue, respectively;
this is,

r =
Rnzed

Rnzed + Gnzed + Bnzed
(2)

g =
Gnzed

Rnzed + Gnzed + Bnzed
(3)

b =
Bnzed

Rnzed + Gnzed + Bnzed
(4)

In turn, Rnzed, Gnzed, and Bnzed are calculated as R/Rsat, G/Gsat, and B/Bsat, where the
numerators are the band values of the orthophotos (from 0 to 255) and the denominators
their saturated values (255). This index combines the subtraction of the green from the red
chromatic coordinate (r–g) and the blue from the green chromatic coordinate (g–b). Hence,
pixels with higher index values indicate an excess of green in the image scenario.
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In this manner, four image features were obtained from the digital 8-bit RGB im-
agery collected in 2018 (RGB and ExG). From the 16-bit multispectral imagery collected
in 2019–2020 with both Micasense camera models, six image features were obtained (red,
green, blue, red edge, near-infrared, and ExG). This resulted in the spectral bands that are
in common between years (red, green, and blue) having different scale values according to
the kind of data and how they were saved: 8-bit RGB (2018) and 16-bit multispectral saved
as normalized data (2019–2020). In all cases, the resulting values of the ExG index varied
between 0 and 1.

The median of all pixels per cell grid for each image feature was calculated when the
pixel values were equal to zero or greater. After this, the boundaries of the cell grids were
read (package sf) and each identification label was associated (package fasterize) with the
respective pixel medians per plant row in each one of the three first flight dates (2018–2020).
The joined information was saved in a data table (.csv file) and a new vector layer (.gpkg
file). These two files were also generated for the following flight dates but always using the
first same cell grid boundaries of the respective experiment.

2.4.1. Data Preparation and Prediction Model

The .csv files were joined and longitudinally arranged to conduct an image time
series analysis to predict soybean physiological maturity for each of the three experiments
(2018–2020). In the next step, records wrongly annotated by the team in the field were
removed, including values entirely out of range (vegetative stage or after harvest) or with
an incorrect number of digits. Next, the package ‘caret’ [36] was used to randomly divide
the data into 80:20 training and test data subsets, and the package ‘randomForest’ [37]
to run the RF machine learning algorithm [12] and training the model by associating the
image features to the response variable (date of R8). Finally, the trained model was tested
in the data subset to predict the date the plant rows reached the R8 stage.

2.4.2. Resampling Methods and Hyperparameter Tuning

Three resampling methods of estimating the error of predictions were studied in the
experiment 2018 to tune the RF algorithm: 10-fold cross-validation (‘cv’), repeated 10-fold
cross-validation (‘repeatedcv’) with three repeats, and out-of-bag (‘oob’) bootstrap samples.
The algorithm ran faster with ‘oob’, especially compared to ‘repeatedcv’, and without
affecting the overall prediction accuracy, so ‘oob’ was the final method used to train the
models and predict physiological maturity in the plant rows for the three experiments
(2018–2020). The split length of the number of randomly selected p-predictors (‘mtry’) was
set by default, mtry = p1/2 for categorical and mtry = p/3 for numerical data. The number
of trees (‘ntree’) and the node size (‘nodesize’) were also set by default, ntree = 500 and
nodesize = 1 when the R8 stage was considered a categorical variable, and ntree = 500 and
nodesize = 5 when it was considered a numerical variable.

2.4.3. Predictions Using Categorical or Numerical Data for the Response Variable

A second analysis (also using the RF algorithm) compared predictions by categorical or
numerical setting of the response variable. When the R8 stage was predicted as a categorical
variable, the field records indicating the day of the year (DOY) the plant rows reached
maturity were converted to factor levels. Thus, a classification analysis was made, and
the overall prediction accuracy and Cohen’s Kappa value were calculated. After this, the
predicted classes were converted to the date format (i.e., numerical values) so that the
indicators R2 and RMSE were also calculated for the categorical predictions, making the
comparison with the numerical predictions possible. When the R8 stage was predicted as
a numerical variable, DOY was converted to the date format and then to numerical data
to be handled by RF as a regression analysis. A regression analysis applies better than a
classification analysis because physiological maturity is a continuous process intimately
related to plant senescence at the end of ontogeny.
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After tuning the RF algorithm with one of the three resampling methods of estimating
the error (cv, repeatedcv, or oob) and setting the response variable (categorical or numerical),
the three objectives were answered by conducting the following analyses:

2.4.4. Predictions Using Multispectral Images

The analyses were divided into two model scenarios: (1) assume a breeding program
has a drone carrying only a digital RGB camera, so the image features for the three experi-
ments included the ExG index and only the spectral bands red, green, and blue (2018–2020);
and (2) assume a breeding program has a multispectral camera, so the images features also
included the red edge and near-infrared spectral bands (2019–2020).

2.4.5. Impact on Predictions by Including Classification Variables in the Model, Plant Rows
That Mature After the Last Drone Flight, or Redundant Information from Flights or Images

The scenarios described in Section 2.4.4. were divided according to the inclusion
of five classification variables in the models. These variables are (1) the breeding block;
(2) the person who annotated the R8 stage to identify if there are biases when different
team members take notes in the field; (3) the check cultivar; (4) the F4:5 population the plant
rows belong to; and (5) the parental lines from which each F4:5 population was developed.
Histograms of the observed physiological maturity distribution and boxplots showing
prediction biases, depending on which individual took the field notes, were produced.

Another analysis was conducted to compare two subsets of plant rows according to
whether they reached maturity before or after the last drone flight (26, 24 and 30 September,
from 2018 to 2020, respectively). These models were trained using the red, green, and blue
spectral bands and three classification variables (breeding block, the individual who took
the field notes, and the check cultivar).

Two methods were used to study what drone flights and image features were best
associated with predicting the R8 stage in soybean: (1) multivariate adaptive regression
spline (MARS) to identify the 15 most relevant predictive variables; this is the variable
importance measure that typically is conducted after running RF [36,38]; and (2) principal
component analysis (PCA) to identify redundant variables and study how the loadings of
the image features are associated with the variation of the response variable (the R8 stage).
A principal component regression (PCR) analysis was also conducted to compare the results
with the RF predictions. According to the PCA results, some image features were discarded
to refit the model with those with higher loadings because of their higher association with
the R8 stage (i.e., dimensionality reduction).

2.4.6. Are Models Reliable When Tested in an Independent Environment?

A final analysis, using RF, was conducted to evaluate the reliability of the fitted models
for predicting physiological maturity when they are tested in an independent environment.
The independent test environment included related germplasm (from the University of
Illinois soybean breeding program) but grown in a different year. Four different data sets
were used to train models that were then tested on the data set from the experiment carried
out in 2020: (1) a training data set including field notes collected only in 2019 (Training 2019);
(2) a training data set including field notes collected in 2018 and 2019 (Training 2018–2019);
(3) the same as Training 2019 but including the records collected from the check cultivars
planted in 2020 (Training 2019plus 2020 checks); and (4) the same as Training 2018–2019 but
including the same mentioned checks (Training 2018–2019plus 2020 checks). From the above,
the resulting ratio of training:test data for the four models varied as follows: (1) 51:49
(Training 2019:Test 2020); (2) 65:35 (Training 2018–2019:Test 2020); (3) 53:47 (Training
2019plus 2020 checks:Test 2020wihout checks); and (4) 67:33 (Training 2018–2019plus 2020 checks:Test
2020wihout checks). The time series of images between years was arranged according to the
best possible matching dates that the drone flights were carried out.
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3. Results
3.1. Predictions Using Three Resampling Methods with Categorical or Numerical Data

The comparison between predicting the date of physiological maturity (R8 stage) as a
categorical or numerical variable indicates that when this variable was considered numeri-
cal, the models explained a greater proportion of the variation (R2) with a lower prediction
error (RMSE). This lower error was consistent using three different resampling methods (‘cv’,
‘repeatedcv’, and ‘oob’) to train the models (Table 2). The fact that Cohen’s Kappa values
((Agreements − Agreements by chance)/(Test data − Agreement by chance)) decrease rela-
tively little with respect to the overall accuracies ((Total Agreements/Test data) × 100) indicates
that most of the agreements are not due by chance, so the overall accuracy values are
reliable. The sum of both agreements is each paired matching between observed and
predicted dates (i.e., the diagonal of the confusion matrix).

Table 2. Prediction results of soybean physiological maturity (R8 stage) on test data (20%) from a
total of 9252 plant rows of F4:5 experimental lines grown at the University of Illinois Research and
Education Center near Savoy, IL (2018). The predictive analysis was conducted using the Random
Forest algorithm, where two variable classes and three resampling methods were tested to train the
model (80%). The two variable classes were: (1) the date when the plant rows reached the R8 stage
(categorical variable); and (2) numerical integer values representing the day of the year in which the
same event happened (numerical variable). The field notes were associated with features classified
by the breeding block obtained from time series of aerial RGB (red, green, blue) images taken from
a drone (eight flight dates). The excess green index (ExG) was calculated with the RGB bands and
included in the models as another image feature.

Resampling Method

Variable Class

Categorical 1 Numerical

Overall Accuracy
(%) Kappa R2 RMSE

(±Days) R2 RMSE
(±Days)

10-fold cross-validation (‘cv’) 41.46 0.3633 0.8837 2.069 0.9137 1.773
Repeated 10-fold cross-validation with
three repeats (‘repeatedcv’) 41.03 0.3585 0.8830 2.077 0.9138 1.773

Out-of-bag bootstrap samples (‘oob’) 40.21 0.3494 0.8832 2.072 0.9132 1.778
1 In this case, after running the Random Forest algorithm, the categorical values were converted to numerical
values to calculate a pseudo coefficient of regression (R2) and a pseudo root mean squared error (RMSE). Thus,
both indicators are comparable with the results obtained with the variable analyzed as a numerical class.

The overall accuracy for the predicted dates matching the observed R8 date is 40.2%
(using the ‘oob’ method). However, if one or two days are instead assumed as an acceptable
error range, the overall prediction accuracy increases to 52.9% and 88.3%, respectively.
Hence, if the latter error range (±2 days) was a priori assumed, it would be equivalent
to the extended error assumed when researchers calculate the RMSE, 2.072 days for the
mentioned example (Table 2). The three resampling methods show similar prediction
accuracies, but applying the method ‘oob’ uses less time for data processing, especially
compared to the ‘repeatedcv’ method and when the R8 stage is assumed to be a numerical
variable (i.e., ~8 vs. 150 min each time the code was run). When the trade-off efficiency vs.
best predictive indicator values (R2 and RMSE) is considered, the resampling method ‘oob’
with the R8 stage as a numerical variable was the most effective and efficient in predicting
the R8 stage, instead of a classification model as previously used by Yu et al. [14].

3.2. Predictions Including Classification Variables Using RGB or Multispectral Images

The models adjusted with the RF algorithm explained a higher proportion of the varia-
tion in 2019 compared to 2018 and 2020; however, the error was lower in 2020, particularly
compared to 2018 (Table 3). When a classification variable for individuals who took notes in
the field was included in the model, higher R2 and lower RMSE values were observed in all
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cases, indicating a bias among individuals assigning the date that the plant rows reached
the R8 stage. There was no advantage in using multispectral images compared to RGB
images, indicating that the red edge and the near-infrared bands provide redundant infor-
mation in predicting soybean physiological maturity (the R8 stage) when the vegetation
index ExG is included among the images’ features. This shows that affordable cameras can
be as successful in predicting the R8 stage in soybeans as expensive multispectral cameras.

Table 3. Prediction results of soybean physiological maturity (R8 stage) on test data (20%) from a total
of 9252, 11,742, and 11,197 plant rows of F4:5 experimental lines grown at the University of Illinois
Research and Education Center near Savoy, IL (2018–2020). The predictive analysis was conducted
using the Random Forest algorithm where the field notes were associated with the breeding block,
the individual who took the field notes, and features obtained from time series of aerial images (8, 10,
and 9 drone flight dates, respectively, for 2018, 2019, and 2020).

Year 1 Camera

Explanatory and Classification Variables

Image
Features 2

Image Features and
Breeding Block

Image Features, Breeding Block, and the
Individual Who Took the Field Notes

R2 RMSE
(±Days) R2 RMSE

(±Days)

2018 Digital RGB Red, green, blue 0.9132 1.778 0.9141 1.767

2019 Multispectral (Only the bands) red, green, blue 0.9353 1.448 0.9380 1.417
Five bands 0.9354 1.448 0.9366 1.435

2020 Multispectral (Only the bands) red, green, blue 0.9049 1.370 0.9080 1.347
Five bands 0.9078 1.350 0.9111 1.325

1 For the latter two years, the predictive analyses were divided into (1) using the five bands: red, green, blue, red
edge, and near-infrared (normalized data); and (2) using only the red, green, and blue bands (values from 0 to
255) to compare the results with those obtained in 2018 (only RGB images). 2 For all scenarios, the excess green
index (ExG) was calculated with the RGB bands and included in the models as another image feature.

The predictions of the R8 date were affected by the individual who took the field notes,
the number of plant rows assigned per individual, and the fact that these plant rows were
assigned by breeding block and not randomly when the breeding blocks had plant rows
that reached the R8 stage with a different distribution (Figures 3 and 4). To the extent that
these predictions were made using data collected by each individual and then tested on
data collected by the other individuals of the team, biases between observed and predicted
dates in which the plant rows reached their physiological maturity, expressed in days, were
observed (Figure 4). Because experiments with F4:5 populations typically include thousands
of plant rows, breeders need to split the task of taking notes among several individuals.
In 2018, this task was given to three individuals (A–C) who had the same ‘eye’ to assign
the R8 stage in soybeans, as no systematic bias was revealed by the individual who took
the notes. In 2019, B and C did not take field notes, while in 2020, the field notes taken
by both individuals (B and C) could not be distinguished because they shared the same
two breeding trials. There was a slight overall bias in days among the five team individuals
in 2020. However, in 2019, biases between individuals were noticeably higher due to F
and G, who dated plant row maturity more than three days after the values predicted
using the data collected by the other three individuals (A, D, and E). As such, these results
suggest that breeding programs developing predictive models should consider including a
classification variable to account for the individual taking the field notes (Table 3).

Compared to including only the breeding block and the individual who took the
field notes in the predictive models (Table 3), a slight improvement in indicators R2 and
RMSE for 2018 and 2020 is observed after including the check cultivar in a stacked manner
(Table 4). When the F4:5 population and the female and male parents of lines were also
included as classification variables, a consistent but negligible improvement was observed
for the three years (2018–2020). Improved prediction using information from repeated
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check cultivars was also observed by Trevisan et al. [17], who trained the models with a
deep learning method (CNN) instead of the RF algorithm.
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Figure 3. The histograms (in green) show the distribution of soybean physiological maturity (R8 stage)
dates for three experiments of plant rows of F4:5 experimental lines grown at the University of Illinois
Research and Education Center near Savoy, IL (2018–2020). The histograms (in blue) also show the
distribution of the R8 stage dates, but according to what plant rows were assigned per individual
(A–F) to take the field notes.

Table 4. Prediction results of soybean physiological maturity (R8 stage) on test data (20%) from a
total of 9252, 11,742, and 11,197 plant rows of F4:5 experimental lines grown at the University of
Illinois Research and Education Center near Savoy, IL (2018–2020). The predictive analysis was
conducted using the Random Forest algorithm where the field notes were associated with germplasm
information keeping other variables in common: breeding block, the individual who took the field
notes, and features obtained from time series of aerial images (8, 10, and 9 drone flight dates,
respectively, for 2018, 2019, and 2020).

Year 1 Camera
Image

Features 2

Germplasm Information Including Variables in Common

Check Cultivar Check Cultivar and
F4:5 Population

Check Cultivar, F4:5
Population, and
Parental Lines

R2 RMSE
(±Days) R2 RMSE

(±Days) R2 RMSE
(±Days)

2018 Digital RGB Red, green, blue 0.9175 1.732 0.9191 1.714 0.9199 1.706

2019 Multispectral
(Only the bands) red,

green, blue 0.9380 1.417 0.9390 1.406 0.9396 1.399

Normalized data 0.9365 1.435 0.9375 1.425 0.9398 1.397
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Table 4. Cont.

Year 1 Camera
Image

Features 2

Germplasm Information Including Variables in Common

Check Cultivar Check Cultivar and
F4:5 Population

Check Cultivar, F4:5
Population, and
Parental Lines

R2 RMSE
(±Days) R2 RMSE

(±Days) R2 RMSE
(±Days)

2020 Multispectral
(Only the bands) red,

green, blue 0.9087 1.342 0.9097 1.335 0.9107 1.327

Normalized data 0.9114 1.323 0.9121 1.317 0.9126 1.314
1 For the latter two years, the predictive analyses were divided into (1) using the five bands: red, green, blue, red
edge, and near-infrared (normalized data); and (2) using only the red, green, and blue bands (values from 0 to
255) to compare the results with those obtained in 2018 (only RGB images). 2 For all scenarios, the excess green
index (ExG) was calculated with the RGB bands and included in the models as another image feature.
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Figure 4. The boxplots show the bias of predictions (days) for soybean physiological maturity
(R8 stage) according to the individuals (A–F) who together took 9252, 11,742, and 11,197 field notes
from three experiments: 2018 (top), 2019 (middle), and 2020 (bottom), respectively. The experiments
contained plant rows of F4:5 experimental lines grown at the University of Illinois Research and
Education Center near Savoy, IL. The Random Forest algorithm was used to adjust the predictive
models using different training data sizes according to what plant rows were assigned per individual
(A–F). The empty boxplot spaces mean that 44.2%, 28.5%, and 27.2% of field notes, taken respectively
by A, B, and C, were used to train the models in 2018. In 2019, the proportions were 21.2%, 37.9%,
11.1%, 12.8%, and 17.0% (A, D–G); and in 2020, they were 45.3%, 19.6%, 17.5%, and 17.7% (A, B and
C, D, and E).
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3.3. Predictions Using Plant Rows That Mature Before or After the Last Drone Flight

In 2018, 239 out of 9252 plant rows reached the R8 stage after the last drone flight date
(26 September). The comparison between predicting the R8 stage using all data (Table 4)
and using only the plant rows that reached their maturity before 26 September resulted in
only a small change in the prediction error (RMSE), from 1.73 days using all data (9252 plant
rows) to 1.67 days (Figure 5). Conversely, disregarding these records from the distribution’s
right tail caused the model to explain a slightly lower proportion of the variation (R2 = 0.92
vs. R2 = 0.91). The above differences were greater in 2019 and 2020 because drone flights
could not be carried out late in the season, resulting in many more records being omitted
from the analyses. After removal, 6838 plant rows were used out of 11,742 in 2019 and
7197 out of 11,197 in 2020. Consequently, after disregarding the late plant rows, the errors
decreased from 1.42 to 1.11 days in 2019 and from 1.34 to 1.11 days in 2020. Despite this,
and as happened in 2018, the goodness of fit of the predictions also decreased in these two
years (2019 and 2020).
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Figure 5. Soybean physiological maturity (R8 stage) predictions corresponding to three breeding
experiments containing plant rows of F4:5 experimental lines grown at the University of Illinois
Research and Education Center near Savoy, IL (2018–2020). The Random Forest algorithm was
applied to associate the field recorded values with three classification variables (breeding block, the
individual who took the field notes, and the check cultivar) and 32 image features (red, green, blue,
and a calculated excess green index —ExG—) obtained from eight drone flights. (a–c) The relationship
between predicted vs. field recorded values using all the field records, and (d–f) the same, but after
filtering records of plant rows that reached the R8 stage after the last drone flight date (26, 24, and
30 September, respectively, for 2018, 2019, and 2020). An equal relationship training:test data ratio
(80:20) was maintained for the three experiments (n = test data). The deviation of the regression line
(blue) from the 1:1 line (gray) indicates the model’s prediction bias.
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Additional predictive analyses were conducted by selecting only the plant rows that
matured after the last drone flight to determine if these predictions had a high error. The
analysis for 2018 was omitted because only 239 plant rows matured after the last drone
flight, as previously mentioned. Surprisingly, in 2019 and 2020, the predictions selecting
the later plant rows (R2 = 0.88 and 0.82; RMSE = 1.28 and 1.10 days) almost did not differ
from the predictions of the earlier plant rows (Figure 5e,f). This shows that changes in
the image features before the plant rows reached their maturity can be used to predict R8
(Figure 5a–c).

3.4. Predictions After Discarding Redundant Information Using MAS and PCA

The variable importance measure of the 15 most relevant predictive variables indicates
that for predicting the R8 stage in soybean, ExG was the most important (Figure 6). The
variable importance measure, expressed as the cumulative percentage decrease of the
generalized cross-validation (GCV) estimate of error when all the predictors are included
in the model, is calculated using the backward pass method, subtracting one by one from
the least to the most important predictive variable [36,38]. Using RGB data, the second
most important predictive variable was the red spectral band, while using multispectral
data, the most important were the red and the near-infrared bands. Still, in 2019 and 2020,
the multispectral images with the two extra bands, the near-infrared and the red edge, did
not improve the maturity predictions compared to using RGB images (Table 3).
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Figure 6. Variable importance measure of 15 most relevant variables for predicting soybean physiolog-
ical maturity (R8 stage) of three experiments containing plant rows of F4:5 experimental lines grown
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at the University of Illinois Research and Education Center near Savoy, IL. Spectral bands extracted
from time series of images taken from a drone and the excess green index (ExG) were included in the
models as explanatory variables with three other classification variables: the breeding block (Block),
the individual who took the field notes (Ind.), and the check cultivar (that does not show relevant
importance). In 2018, the images were taken from a drone with a digital RGB (red, green, blue) camera,
whereas in 2019 and 2020, they were taken with a multispectral camera. For the latter two years, the
analyses were divided into using only the red (R), green (G), and blue (B) bands (simulating a digital
RGB camera) and using the five spectral bands: R, G, B, R edge, and near-infrared (NIR).

The latter two drone flight dates in both years (17 and 24 September 2019 and 22 and
30 September 2020) provided better predictive information than the earlier flight dates
(Figure 6). This is related to the fact that the mean date that the plant rows reached the
R8 stage for both experiments was 26 September (n = 11,742; sd = 5.7 days) in 2019 and
2 October (n = 11,197; sd = 4.5 days) in 2020. Meanwhile, the mean date of maturity for plant
rows in 2018 was 15 September (n = 9252; sd = 6.1 days), and the most informative flight
dates were 4 and 10 September. These last dates differ from the others mentioned because
the 2018 experiment was planted 12 days earlier (22 May) than the latter two experiments
(3 June).

The check cultivar was not identified among the 15 most important variables, but the
breeding block and the individual who took the field notes in 2019 and 2020 were (Figure 6).
This result is consistent with the fact that the R2 and RMSE were almost unchanged when
including the check cultivar in the analyses (Tables 3 and 4). The breeding block and the
individual who took the field notes were closely related variables because the task of taking
field notes was often assigned by blocks. Still, both variables were much less important
than the image features.

The PCA of the 2018 results shows eigenvalues > 1 for the first five principal compo-
nents (PC), which together explain 87.3% of the total variance of 32 image features collected
in 8 drone flights (Table 5). The largest absolute loading scores indicate that PC1 (56.8%)
was more associated with the canopy color variation shown on 4, 14, 18, and 23 September
(Table 6). On these dates, the loadings were mostly associated with the blue spectral band
followed by the red band, which agrees with the literature concerning the relative quantum
yield of green leaves [39]. For each PC explaining a portion of the variance (%), a loading
score indicates the magnitude (positive or negative) of the effect of a given feature (or
variable) relative to the effects of the other features. For PC2, the greatest loading scores
were from the first two and the last flight dates: 22 and 28 August and 26 September,
respectively. PC1 loadings represented relatively more variation of the three RGB bands,
while PC2, PC3, and PC4 loadings represented relatively more ExG variation.

Table 5. Principal component analysis (PCA) of 32 predictive variables corresponding to a time
series of RGB (red, green, blue) images taken across 8 drone flights during 2018 (22 August to
26 September). These predictive variables include the excess green index (ExG). Eigenvalues, their
proportion explaining the variance, and the cumulative proportion are shown.

Principal
Component

Eigen-
Values

Proportion
of Variance

Cumulative
Proportion

Principal
Component

Eigen-
Values

Proportion
of Variance

Cumulative
Proportion

1 18.169 0.568 0.568 17 0.072 0.002 0.994
2 4.085 0.128 0.696 18 0.041 0.001 0.995
3 2.873 0.090 0.785 19 0.033 0.001 0.996
4 1.513 0.047 0.833 20 0.027 0.001 0.997
5 1.303 0.041 0.873 21 0.017 0.001 0.998
6 0.875 0.027 0.901 22 0.012 0.000 0.998
7 0.809 0.025 0.926 23 0.011 0.000 0.999
8 0.537 0.017 0.943 24 0.010 0.000 0.999
9 0.433 0.014 0.956 25 0.007 0.000 0.999



Remote Sens. 2024, 16, 4343 17 of 27

Table 5. Cont.

Principal
Component

Eigen-
Values

Proportion
of Variance

Cumulative
Proportion

Principal
Component

Eigen-
Values

Proportion
of Variance

Cumulative
Proportion

10 0.279 0.009 0.965 26 0.007 0.000 0.999
11 0.218 0.007 0.972 27 0.006 0.000 0.999
12 0.191 0.006 0.978 28 0.006 0.000 1.000
13 0.150 0.005 0.982 29 0.004 0.000 1.000
14 0.116 0.004 0.986 30 0.003 0.000 1.000
15 0.103 0.003 0.989 31 0.002 0.000 1.000
16 0.087 0.003 0.992 32 0.002 0.000 1.000

Table 6. Loading scores of a principal component analysis (PCA) that was carried out on 32 predictive
variables corresponding to a time series of RGB (red, green, blue) images taken across 8 drone
flights (22 August to 26 September 2018). These predictive variables include the excess green index
(ExG). The first four principal components (PC) and, in parentheses, their proportion explaining the
variance is shown. The score values above |0.15| are arbitrarily in bold letters to highlight the most
important variables.

Variable
Loading Scores

Variable
Loading Scores

PC1
(0.568)

PC2
(0.128)

PC3
(0.090)

PC4
(0.047)

PC1
(0.568)

PC2
(0.128)

PC3
(0.090)

PC4
(0.047)

22 August R −0.16 −0.28 −0.08 0.23 14 September R −0.20 0.21 −0.03 0.07
22 August G −0.17 −0.27 −0.07 0.09 14 September G −0.16 0.15 −0.31 0.02
22 August B −0.12 −0.24 −0.16 0.28 14 September B −0.23 0.01 0.00 −0.07

22 August ExG 0.02 0.16 0.14 −0.60 14 September ExG 0.19 −0.08 −0.31 −0.04
28 August R −0.19 −0.23 0.01 −0.07 18 September R −0.20 0.13 −0.13 0.06
28 August G −0.19 −0.17 0.03 −0.19 18 September G −0.19 0.01 −0.25 −0.07
28 August B −0.16 −0.19 −0.11 0.02 18 September B −0.23 0.02 0.01 −0.02

28 August ExG 0.14 0.28 0.08 −0.19 18 September ExG 0.16 −0.18 −0.31 −0.21
4 September R −0.21 −0.08 0.19 −0.18 23 September R −0.19 0.14 −0.14 0.05
4 September G −0.19 0.02 0.17 −0.17 23 September G −0.21 0.03 −0.18 −0.07
4 September B −0.21 −0.17 0.02 −0.09 23 September B −0.23 0.03 −0.01 0.00

4 September ExG 0.20 0.17 −0.15 0.10 23 September ExG 0.12 −0.21 −0.31 −0.32
10 September R −0.20 0.12 0.08 −0.12 26 September R −0.05 0.32 −0.24 0.07
10 September G −0.10 0.27 −0.22 −0.02 26 September G −0.11 0.23 −0.26 −0.04
10 September B −0.21 0.00 −0.08 −0.15 26 September B −0.19 0.18 −0.03 0.04

10 September ExG 0.20 0.07 −0.23 0.12 26 September ExG 0.11 −0.20 −0.29 −0.33

After conducting the PCA, a high correlation coefficient (r = 0.82) between PC1 and
the R8 stage is observed (Table 7). A principal component regression (PCR) analysis also
shows this relationship between PC1 and the R8 stage (Figure 7a). By combining the PCA
results with linear regression, this method helps the interpretability and comparison of
results with other methods and removes the ‘multicollinearity problem’ [40] that occurs
when the explanatory variables are intercorrelated (e.g., plot correlation should occur in
time series, and ExG is an index calculated with the RGB bands). In Figure 7a, a PC score
with a value of zero indicates the centroid value of the regression, which for 2018 occurred
116 days after the planting date (22 May), when the mean distribution of the plant rows
reached their physiological maturity (15 September).

Even though using a single linear combination of the original features (PC1), the PCR
of 2018 results indicate that RF is an algorithm that can explain a higher proportion of
the variation of the soybean physiological maturity (Figure 7a; Tables 2–4). Nonetheless,
applying PCA helps visually identify a posteriori what image features were more associated
with the response variable (R8 stage), as is shown on the biplot for 2018 (Figure 7b). It is
important to mention that the PCA must be carried out without including the response
variable to avoid autocorrelation [41], which is why the cumulative proportions of variance
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of PC1 and PC2 shown in the figure slightly differ from the values shown in Table 5.
Compared to the other five flight dates, the RGB image features collected on 10, 18, and
26 September show less association with the R8 stage (Tables 6 and 7, Figure 7b). Therefore,
for the 2018 experiment, the red, green, and blue spectral bands and the calculated ExG
index were disregarded for these three flight dates before running RF a second time (Table 8).
Compared to the results using all data, disregarding three out of eight flight dates did not
cause a relevant change in the prediction error (RMSE) and the percentage variation (R2)
that the model explained. Not needing to collect data on some dates would save time by
not having to acquire and process images.

Table 7. Correlation coefficients (r) after conducting a principal component analysis (PCA) with
32 predictive variables associated with soybean physiological maturity (R8 stage). The predictive
variables corresponded to a time series of RGB (red, green, blue) images taken across eight drone
flights (22 August to 26 September 2018) and the excess green index (ExG). The correlation between
the response variable (R8 stage) and the first four principal components (PC), with their proportion
explaining the variance in parentheses, is shown in the last row.

Variable

Correlation Coefficients (r)

Variable

Correlation Coefficients (r)

PC1
(0.568)

PC2
(0.128)

PC3
(0.090)

PC4
(0.047)

PC1
(0.568)

PC2
(0.128)

PC3
(0.090)

PC4
(0.047)

22 August R −0.69 −0.56 −0.13 0.28 14 September R −0.83 0.43 −0.05 0.08
22 August G −0.73 −0.54 −0.12 0.11 14 September G −0.68 0.30 −0.53 0.02
22 August B −0.52 −0.48 −0.27 0.34 14 September B −0.97 0.03 0.00 −0.08

22 August ExG 0.07 0.32 0.23 −0.74 14 September ExG 0.79 −0.16 −0.53 −0.05
28 August R −0.81 −0.46 0.01 −0.09 18 September R −0.85 0.27 −0.22 0.07
28 August G −0.82 −0.34 0.06 −0.23 18 September G −0.82 0.01 −0.42 −0.09
28 August B −0.66 −0.38 −0.19 0.02 18 September B −0.97 0.04 0.01 −0.02

28 August ExG 0.61 0.56 0.13 −0.24 18 September ExG 0.68 −0.36 −0.53 −0.26
4 September R −0.88 −0.16 0.32 −0.22 23 September R −0.83 0.28 −0.24 0.06
4 September G −0.83 0.04 0.28 −0.21 23 September G −0.88 0.05 −0.30 −0.08
4 September B −0.88 −0.34 0.03 −0.11 23 September B −0.96 0.07 −0.01 0.00

4 September ExG 0.84 0.35 −0.25 0.13 23 September ExG 0.53 −0.43 −0.52 −0.39
10 September R −0.86 0.25 0.13 −0.15 26 September R −0.20 0.65 −0.40 0.08
10 September G −0.42 0.55 −0.38 −0.03 26 September G −0.48 0.47 −0.44 −0.05
10 September B −0.91 0.00 −0.13 −0.18 26 September B −0.82 0.36 −0.05 0.05

10 September ExG 0.86 0.14 −0.39 0.15 26 September ExG 0.49 −0.41 −0.49 −0.41
R8 stage 0.82 0.23 −0.33 −0.06
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Figure 7. Principal component analysis (PCA) of 32 variables belonging to a time series of RGB (red,
green, blue) images and a calculated excess green index (ExG). The images were taken across eight
drone flights carried out over a soybean breeding experiment (planted on 22 May 2018) containing
plant rows of F4:5 experimental lines grown at the University of Illinois Research and Education
Center near Savoy, IL. (a) Shows a regression analysis between PC1 scores and soybean physiological
maturity (R8 stage); and (b) a posteriori association between the response variable (R8 stage) and the
image features, where A and S indicate August and September 2018, respectively.

Following the same procedure as with the 2018 images (Tables 5–7; Figure 7), similar
results were observed in 2019 and 2020 when drone flight information was selected and the
RF algorithm was rerun (Table 8). The first flight date selected for the three experiments,
25 August 2018, 10 September 2019, and 17 September 2020, was close to when the earliest
plant rows matured (Figure 3). Meanwhile, with the last flight date selected, 23, 24, and
30 September 2018, 2019, and 2020, respectively, the collected images covered different
percentages of physiological maturity in the plant rows: 93%, 42%, and 36%, respectively.
In 2019, based on loading scores and correlations, the first seven out of ten drone flight
dates were discarded (Table 8) because they occurred before the first plant rows reached
the physiological maturity stage (10 September). Similarly, in 2020, the most relevant
drone flights for predicting the R8 stage were also carried out in September, so the earlier
drone flights were also discarded. In 2018, a drone flight carried out on 26 September
was redundant and discarded because most of the plant rows had already matured at that
time, which was related to the fact that the 2018 experiment was planted several days
before (22 May) those planted in 2019 and 2020 (3 June). Even though a large proportion of
plant rows had not reached maturity on the last flight date in these two latter experiments,
predictions of the R8 date were made successfully (91–93%).
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Table 8. Soybean physiological maturity (R8 stage) predictions based on time series of RGB (red,
green, blue) and multispectral images taken from a drone (2018–2020). Predictions were made by
applying the Random Forest algorithm and principal component analysis (PCA) to identify what
flight dates are best related to the response variable. The percentage of variance explained by the first
two principal components (PC1 and PC2), coefficients of regression (R2), and root mean square errors
(RMSE) are shown when all drone flight dates or selected drone flight dates were used to conduct
both analyses.

Spectral
Bands 1

Flight
Dates

Analysis Indicator

Proportion of Variance (%) Explained by PC1 and PC2,
and Random Forest Prediction Accuracy

All Drone Flight Dates Selected Drone Flight
Dates

Red, green,
and blue

2018
PCA

PC1 56.8% 22 and 28 August,
4, 10, 14, 18, 23, and

26 September

60.4% 22 and 28
August, 4, 14,

and 23
September

PC2 12.8% 13.0%

Random forest
R2 0.9141 0.9097

RMSE (days) 1.767 1.812

2019
PCA

PC1 36.9% 1, 10, 25, and
30 July, 6, 15, and
28 August, 10, 17,
and 24 September

64.1%
10, 17, and

24 September
PC2 21.3% 13.1%

Random forest
R2 0.9380 0.9310

RMSE (days) 1.417 1.492

2020
PCA

PC1 43.8% 30 June, 15 July,
4, 18, and 31 August,

10, 14, 22, and
30 September

58.3% 10, 14, 22,
and

30 September

PC2 15.8% 12.8%

Random forest
R2 0.9080 0.9067

RMSE (days) 1.347 1.356

Red, green,
blue, red
edge, and

near-
infrared

2019
PCA

PC1 32.4% 1, 10, 25, and 30 July,
6, 15, and 28 August,

10, 17, and
24 September

55.5%
10, 17, and

24 September
PC2 19.3% 16.9%

Random forest
R2 0.9366 0.9313

RMSE (days) 1.435 1.491

2020
PCA

PC1 39.0% 30 June, 15 July,
4, 18, and 31 August,

10, 14, 22, and
30 September

48.4% 10, 14, 22,
and

30 September

PC2 17.8% 16.2%

Random forest
R2 0.9111 0.9091

RMSE (days) 1.325 1.339
1 In 2018, the images were taken only with a digital RGB (red, green, blue) camera, whereas in 2019 and 2020, they
were taken with two multispectral camera models of five bands: red, green, blue, red edge, and near-infrared. For
the latter two years, the analyses were divided into (1) using the five bands (normalized data) and (2) using only
the red, green, and blue bands (values from 0 to 255) to compare the results with those obtained in 2018 (only
RGB images). Also, with the red, green, and blue bands, the excess green index (ExG) was calculated.

3.5. Reliability of Models When Tested in an Independent Environment

The reliability of the fitted models for predicting soybean physiological maturity in
new environments depended mainly on the similarity between the environment used to
train the model and the environment in which the model was tested (i.e., the training test
data relationship). Two main differences between the years were that the 2018 experiment
was planted earlier (22 May) than the other two (3 June 2019–2020) and that the plant
rows were taller and had a greater canopy area due to higher water availability during
the growing cycle. Using only the calculated ExG index, this is shown comparing the
scenarios Training 2019:Test 2020 vs. Training 2018–2019:Test 2020 (Figure 8a,c), and
also when the check cultivars of the test year (2020) were added into the training data
(Figure 8b,d). Similarly, the same happened when the RGB bands were included in the
models in addition to ExG. Compared to these last models, the four fitted models using
only ExG (Figure 8) explained, on average, 7.2% more of the R8 stage variation in 2020,
while the prediction error decreased by 13.2%. Noticeably, adding the check cultivars into
the training data (Figure 8b,d) caused a remarkable change in both indicators, with an
increase in the R2 (12.4% and 12.7%, respectively) and a decrease in the RMSE (−14.1% and
−15.6%, respectively). A prediction improvement that was slightly better when, instead of
2019 (Figure 8b), the last two years (2018–2019) were used to train the model (Figure 8d).
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Figure 8. Soybean physiological maturity (R8 stage) predictions for 2020 using four models trained
with data from field recorded values collected from two previous experiments (2018–2019). The
three experiments corresponded to breeding experiments containing plant rows of F4:5 experimental
lines grown at the University of Illinois Research and Education Center near Savoy, IL. The four
models were adjusted by applying the Random Forest algorithm to associate the field recorded values
with a time series of the excess green index (ExG) and three classification variables (breeding block,
the individual who took the field notes, and the check cultivar). Calculated from the red, green, and
blue spectral bands, ExG was obtained from digital images taken with a drone. The four models were
adjusted using the following training: test data relationship: (a) Training 2019:Test 2020 (n = 51:49);
(b) Training 2019plus 2020 checks:Test 2020wihout checks (n = 53:47); (c) Training 2018–2019: Test 2020
(n = 65:35); and (d) Training 2018–2019plus 2020 checks:Test 2020wihout checks (n = 67:33). The deviation
of the regression line (blue) from the 1:1 line (gray) indicates the model’s prediction bias. The table
below the figures gives the data used to train the models in each figure (a–d).

Prediction deviations of more than five days were infrequent in the current study;
still, they were more frequent and extreme on the distribution’s right tail (Figure 9a).
This histogram and the residuals’ analysis (Figure 9b) were produced using the best-fitted
model from 2019 and were tested in 2020 (Figure 8b). The residuals’ analysis (field observed
dates − predicted dates) shows three large outliers that were predicted to mature several
days before they actually matured; however, these outliers were plant rows that only had a
few plants that reached maturity late in the season (Figure 9b,c).
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Figure 9. (a) Frequencies, (b) residuals, and (c) images showing prediction deviations for soybean
physiological maturity (R8 stage) collected in a breeding experiment with plant rows of F4:5 exper-
imental lines in 2020. The mean residual (red line) indicates in (b) the prediction bias across time
compared to predictions with zero bias from the observed R8 dates (gray dashed line). The images on
the right show the excess green index (ExG), which is calculated with the red, green, and blue bands
(images on the left). On the top of (c), the images show the three worst maturity predictions identified
on (b); the bottom shows three examples considering predictions with an error of 2, 1, and 0 days
from 30 September. The maturity predictions were carried out using a model (Figure 8b) trained with
data collected in a breeding experiment planted in 2019 (n = 11,197) and in the eight check cultivars
replicated in the 2020 experiment. The 2020 experiment minus the checks (n = 11,197–493) was used
to test the model, which was adjusted with the Random Forest algorithm using time series of ExG
and three classification variables (breeding block, the individual who took the field notes, and the
check cultivar).
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On the other hand, the three images from 2020 at the bottom of Figure 9c show
examples where the deviations were 2.0, 1.0, and 0.0 days from 30 September; this is the
predicted maturity date for each plant row and the same date these images were taken.
The images for plots 692 and 9526 show mature plant rows, suggesting that the deviations
between observed and predicted dates (2.0 and 1.0 days, respectively) were because the
person rating the plot scored them incorrectly. Inaccurate scoring of maturity can occur
because the field raters often score plots several days ahead, given that they cannot return
to each plot daily, and may only return to the field every five to seven days, considering
that they must rate thousands of plant rows.

4. Discussion

The prediction error ranged between 1.31 and 1.78 days (R2 = 0.91) for any combination
of explanatory and classification variables used in the three analyzed years (Tables 2–4). A
few other studies predicted soybean physiological maturity with a lower error, including
Lindsey et al. [21] (R2 = 0.92; RMSE = 1.29 days), but this was with fewer plots (96), and
instead of drone flights and RF, a handheld crop sensor (660- and 780-nm wavelengths)
and an inverse logistic model were used. Other studies also reported higher prediction
accuracies than the current study [14–16]. However, instead of making predictions based
on a regression model carrying out a longitudinal analysis of a time series of images, as in
the current study, they used a binary (immature and mature) or a multi-class classification
model that included one or two additional labels (harvested and near-mature plots). These
labeling methods can lead to some true positive classifications being equally valid if the
plant rows reach the R8 stage on the same day or some days before the images are taken.
Meanwhile, associating maturity dates recorded in the field with time series of images, as
was performed in our study (Tables 2–4), may result in lower prediction accuracy than
those obtained with classification models with a few labels but can achieve greater certainty
about what date the plant rows matured.

Some authors have mentioned that one advantage of RF is that it runs faster than CNN
and other deep learning methods [16,18]. The above may not be trivial when researchers
must test several models before choosing the one that best represents the variation of the
response variable. An example is that running RF using the germplasm information (i.e.,
check cultivar, F4:5 population, and female and male lines) required around one hour per
annual analysis (e.g., Intel® Xeon® Platinum 8370C CPU, 2.8 GHz, RAM 32 GB –Intel
Corporation, Santa Clara, CA, USA). This processing time was reduced by two-thirds
when the germplasm information is disregarded, which requires computing time when
interacting with the image features.

The prediction error (RMSE) difference between using all data compared to discarding
the late plant rows (Figure 5a–c vs. Figure 5d–f) was similar to the variation observed
among members of a team of individuals when they took notes in the field (Figure 4).
Therefore, when predicting the R8 stage, conserving a high R2 value by using all plant
rows is preferable so that the predictive power of the models can be maximized, especially
when the models are used in different environments (year or location). Concerning this,
an advantage of RF over the LOESS model is that the latter cannot make predictions for
plant rows that have yet to mature [18,24]. Concerning this, Volpato et al. [24] adjusted a
LOESS model for predicting maturity but required several drone flights carried out weekly
before and after the R8 stage. Meanwhile, the pipeline we implemented can associate color
changes that occur in the plant rows prior to maturity. Thus, predicting physiological
maturity several days before harvest would provide breeders with relevant information for
plant row selection.

In agreement with Woebbecke et al. [25] and Larrinaga et al. [26], who observed that
the ExG index enhances the contrast between vegetation and soil pixels, these results
suggest that the contrast helps the RF algorithm to identify which plant rows have not
reached maturity. On the other hand, for germplasm showing green-stem syndrome, using
ExG could magnify the error of predicting maturity. Based on the variable importance
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measure and PCA, for the three years of experiments, ExG was the most important image
feature associated with the R8 stage (Figures 6 and 7b). However, these results differ from
the observed by Teodoro et al. [29], who did not identify significant differences between
three groups of features: multispectral data (five bands), the same plus several VIs (all
different from ExG), and only VIs. Still, by using deep learning instead of RF, they obtained
significantly larger prediction errors (RMSE) with the second and third groups of features
mentioned above.

After applying PCA to the three experiments (2018–2020) to discard flight date infor-
mation that was redundant or less associated with the R8 stage, the results after rerunning
RF show that the prediction errors (RMSE) increased but only within the range of 0.7–5.3%
(Table 8). While applying a deep learning method (CNN-LSTM), Moeinizade et al. [18] ana-
lyzed RGB images taken from five drone flights carried out every 7.4 days on average. As a
result, the authors could explain the variation of the R8 stage in soybean as well or better
than the present work in two out of six environments (R2 = 0.51–0.95; RMSE = 2.5–0.9 days).
Our study, applying the RF algorithm after discarding several flight dates based on PCA,
shows that a few weekly drone flights (3–5) can explain 91–93% of the total variation with
an error of 1.8–1.3 days. This would be performed by starting around the date the earliest
germplasm reached maturity and finishing before all the plant rows had reached it (Table 8).

Except for one study, as far as we know [17], others [14–16,18,24,29] tested their
models in data subsets of the same trial or environment where they were trained, but not
reciprocally or independently across the environments (i.e., different years or locations).
In the mentioned exception [17], the authors applied CNN to train models that were
reciprocally tested in five environments. One experiment was planted in 2018 (Savoy, IL,
USA) and the other four in 2019; one was planted in Rolândia, PR (Brazil), and the other in
three locations in Illinois (USA). It is noteworthy that the field notes and the time series of
RGB images used for Savoy, IL, are the same we collected in 2018 for our study.

The model trained by Trevisan et al. [17] with data collected in Brazil had a higher
prediction error (RMSE ~3 days) than the models trained in Illinois (RMSE ~2 days).
This prediction error was almost as small as our study (Table 8). Nonetheless, when the
authors reciprocally tested the five trained models independently in the remaining four
environments, the prediction errors in some combinations increased noticeably (RMSE
~3 to 4.5 days). This increase was lower when check cultivars (some in common along the
environments) were used to correct the raw predictions, which agrees with the findings of
the current work (Figure 8). Unlike Trevisan et al. [17], who adjusted the R8 predictions
by applying a simple regression analysis after running CNN, we included the checks as a
classification variable a priori of running the RF algorithm in the current work.

On the other hand, using redundant information as multispectral data in the case of
predicting physiological maturity, which did not improve the predictions compared to RGB
data when the models were tested in the same environment (Tables 3 and 4), or using too
many drone flight dates (Table 8) may cause overfitting and a decrease in the predictive
power of the model when it is tested in a new and different environment. In this sense,
the models tested in independent environments (Figure 8) that were trained with a single
image feature (ExG) had a lower prediction error than when they were also trained with
the spectral bands (i.e., a RMSE decrease of 13.2%, on average).

When tested in independent environments, the reliability of models is sensitive to
overfitting because even when planting similar germplasm in the same location, the grow-
ing conditions between experiments differ annually (i.e., planting date associated with
day length, sunshine hours, accumulation of growing degree-days, and water availability).
As happened with our study (Table 8 vs. Figure 8) and the study by Trevisan et al. [17],
predictions made using a model developed in an independent environment should be
less accurate than predictions made in a data subset of the same environment. Thus, to
avoid training the models with redundant information, including shared check cultivars
when planting the experiments would decrease a portion of the prediction error. Despite
this, and even though we tested the models in an independent environment, a limitation
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could be whether these models were tested in other breeding programs or locations dif-
ferent from where they were trained (Savoy, IL, USA), which could lead to overfitting.
Thus, a future challenge will be studying the inclusion of other variables modeling the
growing conditions.

5. Conclusions

The RF machine learning algorithm was used in this study to inquire how the date
of soybean physiological maturity can be predicted using a time series of aerial images.
Principal component analysis helped identify redundant or informative information to
train the models. In this sense, including or not including redundant information may not
make a difference when the models are tested in a data subset of the same environment.
However, by discarding redundant information, more general models were fitted in this
study, making the predictions more accurate when tested in an independent environment.
In this sense, a finding was that for predicting physiological maturity, synthesizing the
color information into a single value—the excess green index (ExG) calculated only with
the RGB bands—resulted in less model overfitting when the models were tested in an
independent environment. Another finding was that carrying out more than five weekly
drone flights had little impact on decreasing the prediction error by ~0.1 days compared to
flying the drone 8–10 times. Images from drone flights only need to be collected starting
when the earliest germplasm reaches maturity. Continuing weekly drone flights until all
the germplasm is mature would not be necessary. Finally, we also found that when using
prediction models from previous experiments, adding field records of the check cultivars
from the new environment that maturity will be predicted, the prediction error decreased
by ~15% from 2.5 to 2.1 days. Including check cultivars in common as a classification
variable would alleviate the bias due to the environmental differences between training
and test experiments (i.e., planting date, weather conditions during the growing season,
and location).

Studies applying high-throughput phenotyping to predict soybean physiological
maturity have been conducted before; nonetheless, few studies have evaluated thousands
of plant rows in breeding trials and included studies in more than a single growing season.
By applying a pipeline like the one used in this study, soybean breeding programs could fit
their models adapted by location to predict soybean physiological maturity for thousands
of plant rows before harvest. In addition to saving time in the process, the breeder could
easily classify the germplasm by maturity groups, discard the plant rows of long-cycle
length before harvest, and, in turn, avoid taking unnecessary field notes.
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