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Abstract: This study presents a methodological framework for predicting soil organic
carbon (SOC) using laboratory spectral recordings from a handheld near-infrared (NIR,
1350–2550 nm) device combined with open geospatial data derived from remote sensing
sensors related to landform, climate, and vegetation. Initial experiments proved the superi-
ority of convolutional neural networks (CNNs) using only spectral data captured by the
low-cost spectral devices reaching an R2 of 0.62, RMSE of 0.31 log-SOC, and an RPIQ of
1.87. Furthermore, the incorporation of geo-covariates with Neo-Spectra data substantially
enhanced predictive capabilities, outperforming existing approaches. Although the CNN-
derived spectral features had the greatest contribution to the model, the geo-covariates that
were most informative to the model were primarily the rainfall data, the valley bottom flat-
ness, and the snow probability. The results demonstrate that hybrid modeling approaches,
particularly using CNNs to preprocess all features and fit prediction models with Extreme
Gradient Boosting trees, CNN-XGBoost, significantly outperformed traditional machine
learning methods, with a notable RMSE reduction, reaching an R2 of 0.72, and an RPIQ of
2.17. The findings of this study highlight the effectiveness of multimodal data integration
and hybrid models in enhancing predictive accuracy for SOC assessments. Finally, the
application of interpretable techniques elucidated the contributions of various climatic
and topographical factors to predictions, as well as spectral information, underscoring the
complex interactions affecting SOC variability.

Keywords: artificial intelligence; carbon; photonics; sensor fusion; soil health; spectroscopy

1. Introduction
Soil organic carbon (SOC) is an essential component of terrestrial ecosystems and an

important descriptor of soil health in agro-environmental systems [1]. Hence, monitoring
changes in SOC at national and global levels is critical. It helps to identify areas at risk,
prevent degradation, and evaluate the efficiency of regenerative agricultural practices
and relevant policies. In the era of soil information technology, recent advances in space-
borne sensing platforms and non-destructive sensing devices have emerged as key tools.
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Their integration with artificial intelligence (AI) algorithms should be further explored for
enhancing analysis towards an accurate and cost-effective approach.

In the last several decades, SOC mapping and monitoring at a large scale mainly
relied on digital soil mapping techniques based on the SCORPAN method [2]. For instance,
previous works proposed the use of multiple environmental variables to develop SOC
content models [3]. This digital approach usually results in spatial products with coarse
resolution impeding regular assessments of soil threats at a field-scale level [4]. The recent
shift towards utilizing AI regression techniques, such as convolution neural networks
(CNNs) to leverage spatial contextual information results in a notable improvement in
predicting various soil properties [5,6]. More recently, CNNs have also been used to
capture intricate patterns in the satellite imagery data of exposed soils frequently yielding
further improvement in the predictive performance when applied on a national or global
scale [7]. However, the performance is still moderate and this can be attributed to the
limited spectral range of current multispectral systems [8] and a set of ambient factors that
affect spaceborne spectral signatures [9,10]. Digital soil mapping aims to expand further,
driven by advancements in data cube technology [11], allowing analysis-ready data to
be generated and provided routinely to support large-scale applications. Hence, we are
transitioning from merely delivering gridded soil layers [4] to offering information that
can enhance decision-making through the utilization of new algorithms and refined spatial
prediction [12]. This shift underscores a need for open data initiatives, facilitating access to
valuable datasets for broader analysis and application [13].

Integrating remote sensing data with observations collected by laboratory spectroscopy
with advanced AI regression techniques also holds a promising future to improve mod-
els’ accuracy and reliability. For instance, Rosin et al. [14] made use of visible-near- and
short-wave infrared (VNIR–SWIR) data from a national soil spectral library to estimate
the abundance of minerals. Subsequently, these estimations were used in a second re-
search step with spatially explicit indicators of environmental covariates and bare soil
reflectance composites to upscale the predictions at a regional level. Similarly, other studies,
constrained to a field scale, have evaluated the combination of reflectance spectroscopy
and multiple environmental covariates or multispectral information [15,16]. Results from
small-scale studies combining laboratory spectroscopy and Earth-Observation data have
shown promising outcomes, especially when incorporating machine learning approaches,
resulting in significant accuracy gain [17].

Despite the extensive usage of analytical spectroradiometers, their widespread adop-
tion is limited due to the high cost of obtaining and analyzing the data. Cutting-edge
developments in photonics have resulted in more affordable and miniaturized hyperspec-
tral spectrometers [18], allowing for the application of spectroscopy technology from the
laboratory scientific conditions to production-level applications, where non-specialized
users will be able to utilize the new sensors. Envisioning a future where growers and land
managers could survey soil properties to track changes in a routine way, several research
groups have explored and compared the effectiveness of various low-cost photonic-based
devices [19,20]. They have demonstrated comparable accuracies between miniaturized
Fourier-transform VNIR and full VNIR spectrometers in predicting SOC across diverse
soil types. Priori et al. [21] utilized the Neo-Spectra scanner for predicting soil properties
using PLSR, resulting in a slightly lower accuracy compared to an analytical device. Given
the research community’s interest, Mitu et al. [22] evaluated its consistency and reliabil-
ity in spectral acquisition and model calibration before widespread adoption in research
and application.

Additional challenges arise from the predominant focus on making use of soil re-
flectance spectroscopy and environmental covariates from satellite data independently,
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with limited focus emphasis on exploiting the synergies between the two for estimating soil
properties. Previous investigations have addressed this by combining data from satellite re-
mote sensing and laboratory sensors with Random Forest hybridized with particle swarm
optimization algorithm [23]. Recently, a novel approach combining NIR spectroscopy,
remote sensing data, and CNNs through a concatenation layer to estimate the crucial
soil properties controlling soil health at the field level has been presented [24]. However,
merging spectral data and environmental covariates within deep learning architectures
requires careful design to ensure that the model appropriately combines and processes
both types of information, enabling their interpretability [25].

Based on the existing experimental framework, we identified two constraints that
currently hinder the accurate estimation of SOC: (i) despite growing low-cost spectrora-
diometers usage, their synergistic integration with spaceborne-derived environmental data
remains unexplored as well as their applicability at a continental scale and (ii) simple
merging techniques may not fully exploit the complementary nature of the data, potentially
resulting in information loss or misinterpretation. In this context, the objective of this study
is to further contribute to the understanding of how environmental covariates derived from
remote sensing data (henceforth noted as covariates) and laboratory soil NIR reflectance
information (henceforth referred to as spectral data) can be synergistically exploited to pro-
vide enhanced SOC content estimations using an efficient data fusion approach. A hybrid
regression framework was proposed, where diverse data inputs are fed into two distinct
streams. One stream, a CNN, acts as a feature preprocessor and generator, by extracting
meaningful information from the Neo-Spectra spectral data, while the other, an ensemble
learning model (XGBoost or Random Forest), employs 214 raster spatial layers along with
the generated spectral features, towards the final estimation of the SOC values. The current
research employs a diverse soil database from independent locations sampled across the
US to evaluate the results in the state of Massachusetts and New York, while techniques for
interpretability have been applied, providing insights into the inner workings of the model
and uncovering the relationships between the various landscape forms, vegetation indices,
and bio-climatic variables, as well as a portable device’s spectral recordings and the SOC
content values. Thus, this research provides a framework to integrate remotely sensed
two-dimensional data with in situ one-dimensional spectral signatures, synergistically
combining these data sources to enhance predictive capabilities and ultimately inform
improved farm-level management strategies.

2. Material and Methods
The methodological approach of our study comprises three steps: (i) data collection;

(ii) regression analysis based on a hybrid regression model; and (iii) a post hoc analysis
where we evaluate the model’s interpretability and the spatial assessment of its predictions.
An overview of the proposed workflow is presented in Figure 1.

2.1. Soil Data

This study utilizes publicly available datasets derived from previous research initia-
tives. Specifically, the Neo-Spectra NIR database [26], which is readily accessible through
the Open Soil Spectral Library (explorer.soilspectroscopy.org), accessed on 13 March 2024,
was employed. The selected dataset in this study comprises a collection of 1706 soil samples
from across the United States of America (Figure 2) with analytical data on SOC content.
These samples were split into train (1202) and test (504) sets, with a ratio of 70%:30%.
In addition, our study incorporated a second distinct test set of 269 samples collected
from various farms across Massachusetts and New York states, in the years 2021 and 2022,
respectively, thus bringing the total number of test samples to 773. All soil samples are

explorer.soilspectroscopy.org
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given here with precise location coordinates, specified in the WGS84 format. The main
training set was chosen to represent the diversity of mineral soil properties found in the
United States [26] while the local farm test sets were provided as part of a Kaggle soil
spectroscopy competition to find novel ways of utilizing a national spectral library at the
local scale [27] (Figure 2). Therefore, the distribution of samples was not a design choice
made in this current study.

Figure 1. Overview of the proposed hybrid and interpretable framework to estimate SOC, utilizing
both spectral data and environmental covariates.

Figure 2. Spatial distribution of training and testing data. The bar plot depicts the number of samples
per state. Training data and test data are represented by blue and red colors.

The SOC content was determined as the difference between total carbon, measured
using dry combustion, and calcium carbonate, measured by a pressure calcimeter [28].
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Overall, it exhibits a highly skewed probability distribution as naturally expected. There-
fore, the representation of SOC content is adjusted to a logarithmic scale (taking the natural
logarithm with offset 1), as presented in Figure 3a for both the train and test sets. All
samples were accompanied by precisely measured spectra covering the wavelength range
of 1350 to 2550 nm. These measurements contained 258 records, which were interpolated
to 2 nm resolution, resulting in the final format of 601 spectral features. A white reference
material was used with the Neo-Spectra sensor for scanning calibration. A comparative
plot of the mean reflectance spectra for both train and test sets, including their standard
deviations, is presented in Figure 3b, allowing us to visually assess the variability and
consistency across the spectral signatures captured with the Neo-Spectra sensor (Si-Ware
Systems, Cairo, Egypt). Similar patterns can be observed between train and test datasets.

(a) (b)

Figure 3. (a) Density plots comparing SOC content distributions among training and test sets and
the combined dataset and (b) comparison of mean ± std reflectance spectra between train and
test datasets.

2.2. Environmental Covariates

A set of 214 spatial layers was available as open geo-environmental covariates for this
study, encompassing landform characteristics, climatic dynamics, and vegetation indices,
to capture the multifaceted environmental influences on SOC. Landform and landscape
information was also used since it provides crucial insights into terrain features that
influence SOC distribution. Climatic information derived from BioClim v1.2, with a mean
aggregated over 1981–2010 (CHELSA-climate) [29], offered comprehensive temperature
and precipitation patterns, supplemented by dynamic overlays of monthly aggregated
water vapor and land surface temperature dynamics, along with long-term daytime and
nighttime temperatures from 2000 to 2020. Lastly, the cropland spatial distribution from
the previous work by Cao et al. [30] was also used. Table A1 in Appendix A summarizes
the geo-covariates used in this work.

2.3. Addressing Multicollinearity

In order to eliminate the impact of multicollinearity amongst the environmental
covariates, we utilized the variance inflation factor (VIF) analysis [31]. The multicollinearity
is measured by performing a regression with each covariate against all other covariates in
order to derive multiple correlation coefficient values. These values are utilized to calculate
the VIF as expressed in Equation (1):

VIFi =
1

1 − R2
i

(1)

where R2
i is the coefficient of determination obtained by regressing the i-th predictor against

all other predictors.
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Subsequently, following a stepwise backward approach, the covariate with the highest
VIF value was removed based on a specific cutoff value. A VIF of value one indicates
no collinearity between the covariates; however, the threshold value is subjective and
depends on the research aim. Based on previous studies, threshold values range from 5
to 10 to ensure a moderate correlation [32]. A threshold of five has been selected in the
current work.

2.4. Analysis Using Artificial Intelligence

It is important to highlight that spectral data and geo-covariates are distinct and
heterogeneous in nature; hence, it is necessary to tailor our modeling approaches to max-
imize their predictive performance as well as their interpretability. Spectral data, being
sequential and continuous, are ideal for feature extraction with CNNs, which excel at
identifying complex patterns and achieving high accuracy on structured datasets. On the
other hand, geo-covariates used in this study, such as climatic indices, and topographic
variables, have diverse natures and lack a sequential structure required for CNNs to effec-
tively process them. Applying a CNN to these heterogeneous data can hinder performance
and interpretability.

To address these challenges, a hybrid approach was adopted, where CNNs were
used to extract features from spectral data that were integrated with other environmental
covariates via machine learning models like Random Forests and XGBoost. To establish a
baseline for comparison, we tested the performance of machine learning models on spectral
data alone, geo-covariates alone, and the combined dataset. However, as previously
explained, CNNs are not suitable for modeling covariates or combined data. Therefore,
as an extra step, CNNs were applied exclusively to spectral data, allowing for a performance
comparison between deep learning and traditional machine learning approaches.

In this section, we describe the architecture of the CNN and the ensemble learning
methods (i.e., XGBoost and Random Forest) used for regression in the hybrid approach
and as a standalone regressor for comparison with the proposed approach.

2.4.1. Description of the CNN Architecture

CNN, as an automatic feature generator, is initiated with an input layer designed to
accept one-dimensional spectral recordings with a length of 601 (see Section 2.1). Through
an iterative refining probabilistic approach, namely the Tree-structured Parzen Estimator
(TPE) algorithm [33] and five-fold cross-validation, we evaluated the most promising
hyperparameter configurations. Following the input layer, three convolutional layers
with kernel sizes of 7 × 1, 5 × 1, and 3 × 1, respectively, each followed by Leaky ReLU
activation functions, were used. These convolutional layers utilize 64, 32, and 16 filters,
respectively. Subsequently, max-pooling layers with kernel sizes of 2 × 1 were applied
to downsample the features’ generated information from the first convolutional layer.
Following the pooling layers, two additional convolutional layers with kernel sizes of 3 × 1
and 8 filters, and 2 × 1 and 1 filter, respectively, continued the feature extraction process.
Finally, the feature maps were flattened and passed through a fully connected layer with
128 neurons, employing Leaky ReLU activation functions. The CNN’s architecture is given
in Table 1. The model was trained for a maximum number of 2000 epochs or if no further
improvement in the accuracy of the validation set was noticed for 50 epochs (plateau).
The model converged at 253 epochs. The best hyperparameters to ensure efficiency and
effectiveness in the proposed network are listed in Table A2.
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Table 1. CNN model architecture. The light gray line indicates that this part of the architecture is
used when the model is applied for regression.

Layer Type Kernel Size Filters Activation

Convolutional 7 × 1 64 Leaky ReLU
Convolutional 5 × 1 32 Leaky ReLU
Convolutional 3 × 1 16 Leaky ReLU
Max-Pooling 2 × 1 - -

Convolutional 3 × 1 8 Leaky ReLU
Max-Pooling 2 × 1 - -

Flatten - - -
Fully Connected - 128 Leaky ReLU
Fully Connected - 1 tanh

2.4.2. Ensemble Learning Models

We implemented both Random Forest (RF) and Extreme Gradient Boosting (XGBoost)
regression models to estimate SOC from spectral recordings and the selected geo-covariates
after the VIF approach (Section 2.3). They are considered nonparametric regression models
that are able to capture nonlinear relationships among the input features and minimize the
risk of over-fitting by combining many trees operating with different feature subsets that
are randomly selected. RF is an ensemble learning method that constructs a multitude of
decision trees during training and returns the mean prediction of the individual trees [34].
XGBoost is an efficient and scalable implementation of gradient boosting. Similarly to
Random Forest, it builds a series of decision trees sequentially; however, each subsequent
tree adjusts the errors made by the previous one at each step, resulting in a powerful
ensemble model [35].

Both Random Forest and XGBoost were optimized using a Bayesian approach in a
five-fold cross-validation of the calibration set (i.e., where each evaluation of the set of
hyperparameters is evaluated across the five folds) to systematically fine-tune their hyper-
parameters toward the maximization of the model’s predictive performance. We explored
a range of values for each hyperparameter. We also tested different strategies for selecting
the maximum features at each split, specifically using the square root (

√
M) and base-2

logarithm (log2(M)) of the total number of features, where M represents the total feature
count. Similarly, for XGBoost, we applied Bayesian search to optimize hyperparameters,
including maximum tree depth, learning rate, the number of estimators, column subsample
ratio, and L1 regularization strength, ensuring a thorough evaluation of parameter values
to maximize predictive accuracy. Briefly, in Random Forest, we evaluated the number of
estimators within the range of 50 to 1000, testing maximum depth values from 3 up to
20 with a step of 1, and applying feature selection strategies that use the square root or
base-2 logarithm of the total features. For XGBoost, we assessed tree depth values between
3 and 8, learning rates within {0.01, 0.05, 0.1, 0.2}, the number of estimators ranging from
10 to 1000, subsample ratios of [0.3–0.8, by step 0.1], and regularization strengths with L1
penalty values of 0, 5, and 10. We optimized hyperparameters for each dataset (spectral,
geo-covariates, and combined) to tailor the models to their specific characteristics. Hence,
the final models were trained using different configurations of optimized hyperparameters,
tailored to each dataset and model to ensure an alignment with the specific characteristics of
the spectral, the selected geo-covariates from the VIF approach, and combined datasets. All
results, including hyperparameters and performance metrics, are summarized in Table A3
for Random Forest models and Table A4 for XGBoost models, while the results for the
hybrid models are presented in Table A5.
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2.5. Interpretability

Shapley values were used to estimate how the input features, considering both the
generated features from the CNN and the geo-covariates, affect the SOC predictions.
Shapley values are one of the most used explainability techniques for ranking the input
features and estimating their contribution to the model’s predictions per instance [36].
The importance of each predictor is properly weighted by considering the interactions
between input features. Moreover, we derived the average contribution by summing
the absolute Shapley values across individual observations in the calibration dataset,
resulting in an overall variable contribution to the prediction. Lastly, we evaluated the
contribution of each point considering spatial patterns that can help us to determine the
average contribution for specific areas, such as bioclimatic regions or states across the USA.

Moreover, we further explored techniques to gain insights into the reasoning process
of the CNN model. In this regard, the feature maps created at each convolution layer
capture complex features, with the final layer retaining a strong correlation between each
neuron’s position and the input wavelength. This allowed us to assess the spectral region
that mostly drives the model’s estimations, enabling us to confirm the model’s alignment
with areas corresponding to well-known chemical bonds impacting SOC. This comparison
reinforces the interpretability of our approach.

2.6. Evaluation

The coefficient of determination (R2, Equation (2)) assesses how well the independent
variables explain the variability of the dependent variable. Root Mean Square Error (RMSE,
Equation (3)) measures the average difference between predicted and observed values,
while the Ratio of Performance to Interquartile Range (RPIQ, Equation (4)) evaluates model
performance relative to data quartiles. The metrics above have been calculated using the
following equations:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3)

RPIQ =
IQ

RMSE
(4)

where yi denotes the observed values, ŷi stands for the predicted values, ȳ denotes the
mean of observed values, RMSE denotes Root Mean Square Error, n represents the number
of observations, and IQ = Q3 − Q1 indicates the interquartile range of the observed values.

2.7. Computational Framework

Data processing and regression analysis were performed on HiPerGator 3.0 (UFIT
Research Computing, Gainesville, FL, USA), a high-performance computing cluster at the
University of Florida, using an NVIDIA RTX 2080 Ti GPU (NVIDIA Corporation, Santa
Clara, CA, USA). The code for the AI modeling is based on the Python libraries scikit-learn,
TensorFlow, and Keras. All experiments and computations for the calculation of Shapley
values were conducted using the SHAP package in Python programming language [37].

3. Results
3.1. SOC Estimation

Figure 4 presents a comparison of the performance metrics in the independent test
set for the Random Forest and XGBoost models applied to the spectral data, selected geo-
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covariates by VIF, and the combined dataset. It should be noted that 37 features remained
after reducing the multicollinearity, representing a percentage of 17.29% of the total (214)
dataset. The selected covariates are presented in Figure A1.

For the combined dataset, XGBoost and Random Forest achieved similar predictive
metrics with an RMSE equal to 0.42% log-SOC and an RPIQ equal to 1.40. For the Spectral
dataset, XGBoost achieved better results across all metrics (R2 of 0.42, RMSE of 0.38 log-SOC,
and RPIQ of 1.52) compared to Random Forest (R2 of 0.35, RMSE of 0.41 log-SOC, and RPIQ
of 1.43). Lastly, using only the geo-covariates, this type of modeling yielded the lowest
predictive performance across the test sets while the models’ explained variance showed
that the difference between the two learning algorithms was minimal; both Random Forest
and XGBoost attained an (R2 of 0.10 and an RMSE equal to 0.48 log-SOC in both cases,
while the RPIQ metrics were slightly different, with 1.22 and 1.21. Overall, this evaluation
and the regression plots (Figure 4) confirm that XGBoost and Random Forest provided
similar predictive capabilities across the test set evaluated; however, high values of SOC
are always underestimated.

Figure 4. Regression plots for log-SOC content estimation in the independent test set as a result from
the RF and XGBoost models across different datasets: geo-covariates, spectral, and their combination.
The dashed line represents the 1:1 line, while the green line indicates the least squares fit and the
ribbon the confidence of interval.

Following the initial evaluations, we next examined the performance of the CNN
architecture (Table 1) synergistically with the Random Forest and XGBoost models. In brief,
the CNN alone using only the spectral values achieved an R2 of 0.62, with an RMSE of 0.31
log-SOC and an RPIQ of 1.87. When we integrated the geo-covariates along with Random
Forest, the hybrid model’s performance improved, resulting in an R2 of 0.70, an RMSE of
0.28 log-SOC, and an RPIQ of 2.12. Notably, hybrid CNN with XGBoost yielded the highest
performance metrics, achieving an R2 of 0.72, an RMSE of 0.27 log-SOC, and an RPIQ of
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2.17, a 2.36% decrease compared to the CNN-Random Forest model. The regression plots
are summarized in Figure 5.
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Figure 5. Regression plots for log-SOC content as a result from the CNN (based on spectral dataset),
as well as the hybrid models CNN-RF and CNN-XGBoost using the combined dataset. The dashed
line represents the 1:1 line, while the green line indicates the least squares fit and the ribbon the
confidence of interval.

3.2. Spatial Distribution of SOC Estimations

In this section, we focus on the results from the best model identified in the previous
section, specifically the CNN-XGBoost model. Subsequently, to evaluate the spatial distri-
bution of estimation errors, we visualized the differences between observed and predicted
values, and we presented a geographic distribution map of the prediction error (Figure 6).
This visualization highlights the spatial variation in model performance across different
regions. Overall, the models demonstrate a similar pattern of accuracy when comparing
the observed with the predicted values. However, differences in certain areas, such as
Alaska, suggest potential limitations in the model’s performance in those regions.

Figure 6. Geographic distribution of observed and predicted values based on the CNN-XGBoost.

3.3. Interpretability

In Figure 7, we visualize the mean activation map of the first convolutional layer of
the CNN feature generator. Furthermore, to enhance the interpretability of the results,
we overlay the mean activation values with the mean reflectance spectral signature of
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the training dataset, while important spectral regions corresponding to specific chemical
bonds, such as O–H, C–H, and C=O overtones [38], are highlighted with a horizontal
yellow rectangular shape. The positions of the most important absorption features of
soil organic matter in the reflectance spectrum have been extensively discussed in the
literature, particularly in relation to the main infrared absorption characteristics of organic
components [39,40].

The activation plot is presented to highlight the spectral regions where the CNN model,
acting as a feature generator, concentrates during training. More specifically, the denser
regions in the plot indicate the wavelengths with higher activation frequencies, suggesting
that these areas are more influential in the model’s decision-making process. Based on this
analysis, we can gain insights into which parts of the spectrum are most relevant during the
feature extraction process. The final convolutional layer has been selected for the analysis.

Figure 7. CNN activations across the 1350–2450 spectral range are depicted, with darker regions
indicating higher activation density and white areas showing no activations. The blue vertical line
represents the activation values, while the red line corresponds to the mean reflectance spectral
signature of the training dataset. Yellow rectangles highlight critical chemical bonds related to SOC.
Detailed interpretations are provided in Table A6.

The SHAP analysis plot in Figure 8 provides a clear visualization of how the distinct
data sources, spectra denoted as CNN features, and geo-covariates contribute to the hybrid
model’s estimations. This visual comparison allows for an easy assessment of the direction
and strength of influence each feature has on the final estimation, helping to reveal which
data source plays a greater or less-significant role in guiding model outcomes.

The mean absolute Shapley values plot in Figure 8 illustrates the contribution level
of spectral information and geo-covariates to the estimation of SOC, averaged over the
calibration dataset. By assessing the Shapley values, we observe that the spectral features
generated by the CNN (e.g., features 3 and 78) contribute significantly, with average
absolute values above 30. Similarly, other spectral features (e.g., features 88 and 50) also
have a substantial impact, with average absolute values exceeding 20. Moreover, it is
evident that information referring to the rainfall during 2017 (CHELSA rainfall 2007) as well
as valley bottom flatness are, on average, the most significant geo-covariates influencing
the estimation of SOC, with their average absolute values exceeding 15 in both cases.

Furthermore, the right-hand plot in Figure 8 demonstrates that the four most signifi-
cant features exhibit a wide range of Shapley values. For example, the rainfall for 2007 has
values ranging from −0.07 to 0.07. Overall, we observe a positive mean Shapley value for
this feature that can justify that it adds to the prediction, pushing the outcome closer to the
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observed values. On the other hand, spectral feature information generated by CNN (and
in particular, CNN features 3, 78, and 19 that are noted as the three most important features)
has extreme values ranging from −0.10 to 0.16. For these features, we can conclude that
their Shapley values indicate that negative contributions mainly occur at lower values
since all of them resulted in a negative mean Shapley value. For the rest of the features,
the contributions are within a small range, with the majority of the features showing similar
trends, apart from CNN features 28 and 105. For example, the layer providing information
for the valley bottom flatness of a soil sample also has a significant average contribution to
the estimation, having positive contributions for lower values in estimating SOC.

Figure 8. The magnitude of the covariate’s contribution to estimate SOC is indicated by displaying
the mean absolute Shapley values, and showing the individual Shapley values for each data point.

Figure 9 illustrates the contribution of spectral and geo-environmental features of SOC
estimations at two different locations within farms in (a) New York (sample 22) and (b) Mas-
sachusetts (sample 179). The SOC values were estimated to be 1.01 and 0.71 for samples 22 and
179, respectively, with percentage errors of less than 2% in these locations. However, as we
can observe, they have significant differences in the Shapley value estimates between the two
locations. In the New York farm, spectral features 3 and 50 emerge among the primary positive
contributors to SOC estimations, followed by CHELSA rainfall 2008, as well as spectral feature
33. Conversely, CHELSA precipitation 2007 and spectral information from features 19 and
78 are the leading negative contributors. In Massachusetts, a completely different pattern
is noticed, with the first spectral features 3 and 50 being the primary negative contributors,
while the precipitation of 2007 stands out as the main positive contributor together with
spectral feature 67. In the precipitation of 2007, we observed differences in New York’s pattern.
Additionally, 2012 is also a significant positive contributor in this region.

In Figure 10, we illustrate that precipitation has the most significant influence on the
estimations, with notable contributions observed during the years 2007, 2008, and 2012. While
no specific spatial pattern is apparent for 2007, a strong influence is evident near points close
to Lake Erie in 2008. In 2012, a year marked by severe drought across much of North America,
the contributions were more pronounced in the eastern and western parts of the continent,
highlighting regional variability in precipitation’s impact over time. On the other hand,
considering the spectral features, while specific information may not be readily distinguished,
there are values showing notable contributions. For instance, samples close to Lake Erie or
Alaska reveal significant contributions, underscoring the relevance of localized environmental
factors in the predictive framework.
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Figure 9. The contribution of features to SOC estimation is illustrated at two spatial locations in farms
in (a) New York and (b) Massachusetts. Both locations have similar estimated SOC values. The y-axis
has the 20 most important feature values used for the estimations.

Figure 10. Spatial pattern of the Shapley values for six important features, considering spectral and
geo-covariates. The gray color indicates a negative contribution of the feature to the SOC estimation,
whereas a red color indicates a positive contribution.
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4. Discussion
4.1. Predictions

The results presented in Figure 5 indicate the superiority of deep learning techniques
over conventional ML methods, resulting in a decrease of approximately 29.27% in the
RMSE compared to Random Forest and XGBoost. These results indicate a significant
improvement in predictive accuracy as the multimodal data were combined, with CNN-
XGBoost demonstrating the strongest ability to capture the underlying patterns in the data.

In recent years, the use of CNNs in the domain of spectroscopy has been extensively
investigated with several works built upon existing architectures [41], having high pre-
dictive performance. Although the Neo-Spectra sensor did not capture the visible and
near-infrared (NIR) range, its predictive performance for SOC fractions remains satisfactory.
The absence of information in the 350–1350 nm range could slightly reduce estimation
accuracy compared to works using the full 350–2500 nm VNIR-SWIR spectrum [42], as this
range provides critical information on organic carbon-related color and important molecu-
lar bonds.

4.2. Impact of Fusion

The spectra are combined with geo-covariates derived from satellites, and the results
presented in Figure 5 demonstrate a significant increase in the predictive performance of
our models. Overall, we observe a consistent pattern across the states with a few exam-
ples such as Alaska and Arizona, where the model tends to overestimate the real values
(Figure 6). This discrepancy could be attributed to the limited representation of data points
in these regions; hence, the model’s performance is hindered by the lack of sufficient and
representative calibration points. Another factor is the potential for bias in environmental
covariates that could limit the applicability in areas where extreme environmental condi-
tions may be found. The findings from the single use of geo-covariates and spectral-only
features (Figure 4) underscore the impact of data fusion on model performance both for the
ensemble learning techniques but also for the hybrid models (Figure 5), highlighting the
synergistic relationship between Neo-Spectra and geo-covariates in enhancing predictive
capabilities. Kok et al. [24], implemented a fusion of in situ and spaceborne datasets with
available soil archives, yielding a 4.69% increase in the RPIQ, compared to the approach
where only the spectral recording is utilized. Compared to their work, our model archi-
tecture is designed to incorporate multiple data sources, making it adaptable for broader
applications. Therefore, we take a step forward by implementing a multimodal framework
that allows for flexible data flow, enabling outputs from one stage of the model to be
reintroduced later and enhancing predictive performance by integrating heterogeneous
data. Similarly, valuable results for soil carbon stock assessment were observed in the
work of Van der Voort et al. [43], which employed a hybrid approach that fused satellite
data with direct proximal sensing-based soil measurements and utilized Random Forest
testing in two states in the USA to estimate soil carbon stocks. In contrast to these recent
studies, our approach demonstrates a higher predictive value through the fusion of satellite
geo-covariates (Figure 5). This improvement can be attributed to our use of a significant
amount of geo-covariates, as derived from the VIF, known to correlate with soil carbon
(Table A1). Previous studies mainly used data derived from Sentinel-1, Sentinel-2, digital
elevation maps, and ISRIC SoilGrids, while our methodology integrates a broader array of
topographical and environmental factors, enhancing the accuracy of soil carbon predictions.
This enhanced predictive performance underscores the value of incorporating diverse and
comprehensive geo-covariates in soil carbon stock assessment models.

Finally, it is worth noting that this study prioritized fusing remote sensing and
laboratory-derived data, excluding field-based information, like soil depth. This aligns with
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the discussion of Poggio et al. [44] regarding whether sampling depth should be considered
as a covariate. Similar work by Ma et al. [45] advised caution when using depth as a
covariate considering that the prediction methods and study requirements play a crucial
role in determining its effectiveness. Furthermore, depth data in public soil databases are
often inconsistent due to variations in sampling protocols and recording practices. Intro-
ducing the depth as a covariate could impact model performance and introduce spurious
correlations which are not the main focus of this present study.

4.3. Explainability of the Regression Models

Several studies highlight that explainability is crucial in digital soil mapping, since
it enables researchers and users to understand the underlying models and decisions,
fostering trust in the estimations and facilitating the effective application of results.
Tsakiridis et al. [46] and Wadoux et al. [47] proposed interpretation techniques for modeling
spectral and environmental data, respectively. Here, we expand on these studies, demon-
strating that a few specific spectral and geo-covariate features dominate the explainability
of these models.

Considering the utilization of Shapley values from coalitional game theory to analyze
and understand the contributions of spectral and geo-covariates to the estimation of SOC
made by the Hybrid CNN-XGBoost model, we concluded that spectral, climatic, and
topographical variations play a significant role in influencing the final estimations (Figure 8).
Similar patterns were revealed by Wadoux et al. [47], where they quantified the functional
relationships between SOC stocks and various environmental factors, revealing how their
importance varied both locally and across different carbon-landscape zones. Lastly, in our
work, there were no obvious patterns in the distribution of important spectral features;
however, certain values demonstrate notable contributions. This suggests that localized
environmental factors play an important role in the predictive framework, highlighting
the relevance of context in understanding the data. Overall, our findings highlight the
importance of the synergistic use of spectral and regional climatic factors in shaping the
estimations, which can be further supported by the findings (Figure 10).

4.4. Limitations and Future Steps

While our approach demonstrates promising results, it is not without limitations.
These mainly stem from the spatial resolution of the geo-covariates, the handling of hetero-
geneous data, and the constraints of the hybrid deep learning models used. Recognizing
these challenges indicates potential ways for future refinements to enhance the accuracy
and applicability of the proposed methodology.

In this study, several open geo-covariates were used, but their coarse spatial resolution
poses a significant limitation. Many covariates, such as climatic data, correspond to areas
spanning several kilometers and may not adequately capture localized variations. This is
most important in the case of vegetation indices derived from MODIS data that may reflect
mixed effects of multiple land uses within a single pixel. Incorporating higher-resolution
data, such as vegetation indices from Sentinel-2 [48], could improve the accuracy and
representativeness of the predictions. Additionally, spectral values derived from bare soil
reflectance composites, obtained through advanced data mining techniques [49], should be
considered, as these have been shown to yield better overall results. Another limitation lies
in the constraints of hybrid deep learning models, such as CNNs, in handling diverse data
types. While deep learning was utilized here primarily as a feature generator, emerging
architectures like vision transformers [50] and sequential transformers offer the potential
to combine diverse datasets [51], including time-series environmental covariates. Future
work could expand on this by integrating these architectures to handle spectral variables
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from sensors like Neo-Spectra, while leveraging both temporal climatic data and spatial
characteristics of spectral and topographic variables for improved predictions. Addressing
these limitations will pave the way for more robust and versatile modeling frameworks.

Despite the progress recorded with the use of CNNs, this family of deep learning
algorithms should not be considered the pinnacle of AI-driven soil spectral analytics,
and therefore, alternative techniques could also be investigated. One path of improvement
could be using self-supervised contrastive learning models [52]. These algorithms can be
used to learn spectral representations from recordings without having explicit laboratory
measurements and generate pseudo labels by creating positive and negative pairs of
unlabeled data. Then, the findings can transit into a supervised component where ground
reference samples could be used for fine-tuning. Such unlabeled data could include field
measurements captured directly by relevant stakeholders, such as growers, agricultural
consultants, and scientists. We have to take into account that with the increasing use of
portable devices, the volume of these data is expected to grow significantly in the coming
years. Lastly, we have to consider that in our study, we utilized an extensive dataset that
includes a variety of relevant open geo-covariates. We proved that our approach offers
a more robust and precise estimation of soil carbon stocks, demonstrating the potential
for improved environmental monitoring and management practices. However, the data
volume and their diverse nature bring to attention the concept of a digital twin for soil
monitoring, emphasizing the importance of data assimilation techniques combined with
AI, as discussed by Bauer et al. [53]. Consequently, not only are methods like the proposed
hybrid regression algorithm necessary, but also efficient pipelines for high-volume and
high-speed observational data acquisition and preprocessing. These components are crucial
for the effective integration of data from various sources into a coherent framework, often
by combining observational data with model predictions to enhance accuracy. Recent
studies are advancing in this direction, providing examples of digital twins for terrestrial
water cycles; AI modeling offering high-resolution products as a result of remote sensing;
and in situ integration [54]. For instance, Tsakiridis et al. [55] conceptualized a Cognitive
Soil Digital Twin for monitoring the soil ecosystem. Its potential extends beyond data
analysis, prediction, and representation, serving as a versatile tool for scenario analysis. It
enables the visualization of diverse environmental impacts, including the effects of climate
change and changes in land use or management practices.

Further future areas of application may involve using a similar fusion process, where
instead of laboratory spectra, field (in situ) spectral data are used. This would necessitate
applying methods to eliminate confounding factors such as soil moisture and structure [56].
This integration could enable real-time monitoring and analysis within agricultural or
ecological settings. By utilizing advancements in mobile and cloud-based systems, the
in situ spectra could be collected with smartphones and transmitted to the cloud, where they
could be fused with other up-to-date geo-covariates to provide accurate point estimates of
soil properties.

5. Conclusions
This study exemplifies the synergistic integration of deep learning methodologies and

diverse data sources to address the unprecedented challenges in rapid and accurate soil
predictions by leveraging and building upon dual-input frameworks. More specifically,
we introduced a comprehensive methodological framework for predicting organic carbon
in soils using spectral data acquired from a handheld NIR device, combined with open
geospatial covariates related to landform, climate, and vegetation. Initial experiments
demonstrated that CNNs, utilizing low-cost spectral devices, achieved accurate results
with an R2 of 0.62, an RMSE of 0.31, and an RPIQ of 1.87. In this context, the study’s



Remote Sens. 2025, 17, 771 17 of 22

findings emphasize the effectiveness of a hybrid model, using a CNN as an automatic
feature generator and an XGBoost as a regression method to handle the multimodal data
leading to a remarkable RMSE reduction of >30% and an improved R2 of 0.72, along with
an RPIQ of 2.17 compared to a simple XGBoost model. The integration of geo-covariates
alongside Neo-Spectra data significantly further enhanced predictive accuracy, surpassing
traditional approaches. Lastly, the use of techniques enabling the explainability of the
model’s reasoning allowed for a clearer understanding of the contributions of various
climatic and topographical factors, as well as spectral data, illuminating the complex inter-
actions that influence SOC variability. In conclusion, this research highlights the promise of
advanced analytical frameworks in enhancing our understanding of various soil properties,
paving the way for more effective soil management practices at continental extents.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolution Neural Network
XGBoost Extreme Gradient Boosting tree
RF Random Forest
SOC Soil Organic Carbon
NIR Near infrared
SWIR Short-wave infrared
TPE Tree-structured Parzen Estimator
VNIR Visible-Near-infrared
VIF Variance Inflation Factors
RMSE Root Mean Square Error
RPIQ Ratio of Performance to the Interquartile Range
R2 Explained Variance

Appendix A
Table A1 presents geo-covariate spatial layers representing specific spatial layers,

with column names formed by multiple metadata fields separated by underscores in order
to provide information related to the variables based on their names.

Table A1. Geo-covariates considered in the present study.

Description Code Name Source

Landforms present based on terrain classification (%) lf.alluvial.pediplain_terrain [57]
Very gentle landforms based on terrain classification (%) lf.alluvial.or.coasttal.plain.gentlest.lake.plain.playa_terrain [57]
Landforms in alluvial or coastal plains/pediplains (%) lf.alluvial.or.coast.pediplain_terrain [57]
Landforms specifically in alluvial plains/pediplains (%) lf.alluvial.plain.pediplain_terrain [57]
Dissected terraces and moderate plateaus present (%) lf.dissected.terrace.moderate.plateau_terrain [57]

zenodo.org/records/7586622
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Table A1. Cont.

Description Code Name Source

Rough hills on both small and large scales (%) lf.hills.rough.in.small.and.large.scale._terrain [57]
Middle to large slopes present (%) lf.middle.large.slope_terrain [57]
Moderately elevated, rough mountains present (%) lf.moderate.mountain.rough_terrain [57]
Smooth, moderate mountains present (%) lf.moderate.mountain.smooth_terrain [57]
Slopes in and around terraces or plateaus present (%) lf.slope.in.and.around.ter_terrain [57]
Steep and rough mountains present (%) lf.steep.mountain.rough_terrain [57]
Smooth, steep mountains present (%) lf.steep.mountain.smooth_terrain [57]
Smooth terraces and plateaus present (%) lf.terrace.smooth.plateau_terrain [57]
Upper parts of large slopes present (%) lf.upper.large.slope_terrain [57]
Categorical classification of various landforms lf_terrain [57]
Mean frequency of bare surfaces detected by Landsat bare.surface_landsat.frequency [57]
Mean downslope curvature derived from MERIT DEM downslope.curvature_merit.dem [57]
Upstream area from MERIT hydrological data (Log1p) log1p.upstream.area_merit.hydro [57]
Mean positive openness value derived from MERIT DEM pos.openess_merit.dem [57]
Mean slope value derived from MERIT DEM slope_merit.dem [57]
Mean upslope curvature derived from MERIT DEM upslope.curvature_merit.dem [57]
Valley bottom flatness derived from MERIT DEM vbf_merit.dem [57]
Categorical, wetlands associated with UPMC dataset (%) wetlands.cw_upmc.wtd [57]
Groundwater-driven wetlands from UPMC dataset (%) wetlands.groundwater-driven_upmc.wtd [57]
Aggregation of monthly snow probability snow.prob_esacci.m [57]
Water vapor monthly wv_mcd19a2v061.seasconv [57]
MODIS LST monthly in daytime or nighttime clm_lst_mod11a2.{day or night}time [57]
Permanent wetlands from UPMC dataset (%) wetlands.permanent_upmc.wtd [57]
Long-term aggregation of monthly MODIS EVI monthly.evi_mod13q1.v061.m [57]
Flooded wetlands from UPMC dataset (%) wetlands.regularly-flooded_upmc.wtd [57]
Mean diurnal range of temperatures averaged (1981-2010) bioclim.var_chelsa.bio2 [29]
Ratio of diurnal to annual variation in temperatures bioclim.var_chelsa.bio3 [29]
Mean monthly precipitation of the wettest quarter bioclim.var_chelsa.bio16 [29]
Accumulated precipitation amount bioclim.var_chelsa.bio12 [29]
Precipitation of the wettest month bioclim.var_chelsa.bio13 [29]
CHELSA rainfall V2.1 monthly CHELSA_pr_month_year_V.2.1 [29]
Cropland percent at 1km resolution lcv_globalcropland_bowen.et.al_p [30]
HILDA+ forest percent at 1km resolution lcv.forest_hilda_dv1 [58]

Figure A1. Selected geo-covariates with their corresponding VIFs.
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Appendix B
The search ranges for the hyperparameters used to find the optimal CNN model

configuration are presented in Table A2.

Table A2. Hyperparameters of the CNN architecture.

Hyperparameter Explored Values

Learning Rate (lr) [0.0001, 0.001]
Batch Size (batch_size) [16, 32, 64, 128]
Filters for Conv1D Layer 1 (filters_1) [48, 64, 128]
Kernel Size for Conv1D Layer 1 (kernel_size_1) [7, 9]
Filters for Conv1D Layer 2 (filters_2) [16, 32]
Kernel Size for Conv1D Layer 2 (kernel_size_2) [5, 7]
Filters for Conv1D Layer 3 (filters_3) [8, 16]
Kernel Size for Conv1D Layer 3 (kernel_size_3) [3, 5]
MaxPooling1D after Conv1D Layer 1 (pooling_1) [True, False]
MaxPooling1D after Conv1D Layer 2 (pooling_2) [True, False]

Appendix C
The search ranges for the hyperparameters used to find the optimal Random Forest and

XGBoost model configurations, across the geo-covariate, spectral, and combined datasets,
are presented in Tables A3 and A4, respectively. Further, the best hyperparameters for the
hybrid Random Forest and the XGBoost are presented in Table A5.

Table A3. Random Forest hyperparameters.

Description Hyperparameters

Geo-covariates Max Depth: 30, Max Features: sqrt, Estimators: 150
Spectral Max Depth: 20, Max Features: sqrt, Estimators: 100
Combined Max Depth: 70, Max Features: log2, Estimators: 250

Table A4. XGBoost hyperparameters.

Description Hyperparameters

Geo-covariates Learning Rate: 0.05, Max Depth: 8, Estimators: 50, Subsample: 0.4, Gamma:
0

Spectral Learning Rate: 0.05, Max Depth: 6, Estimators: 500, Reg_Alpha: 1,
Subsample: 0.5, Gamma: 0

Combined Learning Rate: 0.01, Max Depth: 3, Estimators: 1000, Subsample: 0.6,
Gamma: 0.5

Table A5. CNN-Random Forest and CNN-XGBoost hyperparameters.

Model Hyperparameters of Hybrid Models

Random Forest Max Depth: 30, Max Features: sqrt, Estimators: 200

XGBoost Learning Rate: 0.12, Max Depth: 5, Estimators: 120, Subsample: 0.8
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Table A6. Spectral bands associated with soil organic carbon. Provided are the fundamental ab-
sorption bands in the mid-infrared and the overtones or combination bands that are present in the
NIR–SWIR. v(s) and v(as) are the symmetrical and asymmetrical stretching vibration modes, while δ

is the scissoring (bending) mode [39,40].

Bond Mid-Infrared NIR–SWIR

Vibration Fundamental (cm−1) Position (nm) Interpretation

Water

H – O – H v(s) 3280 1920 v(s) + δ

H – O – H v(as) 3490 1450 v(s) + v(as)
H – O – H δ 1640

Hydroxyl
O – H v 3600 1400 2 · v

Alkenes (Aliphatic Hydrocarbons)
CH3 v(s) 2872 1741 2 · v(s)
CH3 v(as) 2962 1688 2 · v(as)
CH3 δ 1455 2314 v(s) + δ

2267 v(as) + δ

CH2 v(s) 2853 1752 2 · v(s)
CH2 v(as) 2926 1709 2 · v(as)
CH2 δ 1460 2319 v(s) + δ

2280 v(as) + δ

Aromatic Hydrocarbons
–– C – H v 3030 1650 2 · v

Carboxylic acids
C –– O v 1725 1930 3 · v(as)

H – N – H v(s) 3330 2060 v(s) + δ
H – N – H v(as) 3390 1980 v(as) + δ

H – N – H δ 1610 1500 2 · v(s), 2 ·
v(as), 2 · va

C –– O vb 1610 2033 3 · vb

Methyls
C – H v 1445–1350 2307–2469 3 · v

1730–1852 4 · v

Polysaccharides
C – O v 1170 2137 4 · v

Carbohydrates
C – O v 1050 2381 4 · v
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