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Abstract: Under global climate change, the ecological vulnerability issue in Mongolia has
become increasingly severe. However, the change process of the ecological environment
and the dominant driving factors in different periods and sub-regions of Mongolia are not
clear. In this paper, we propose a new ecological vulnerability index for Mongolia using
MODIS data, combined with the Geographical Detector and the gravity center model, to
reveal the spatiotemporal changes and driving mechanisms of ecological vulnerability
in Mongolia from 2000 to 2022. The results show the following: (1) the newly proposed
remote sensing ecological vulnerability index has high applicability in ecosystems mainly
in Mongolia, with an accuracy rate of 89.39%; (2) Mongolia belongs to the category of
moderate vulnerability, with an average ecological vulnerability index of 1.57, and the
center of vulnerability is shifting toward the southwest direction; (3) Tmax is the leading
driving factor of ecological vulnerability in Mongolia, especially at high altitudes and in arid
regions, where it directly affects vegetation growth, desertification, and water availability.
The dominant interactive factors have shifted from Tmax ∩ Tmin to Tmin ∩ PRE, with PRE
being the leading factor in the eastern, central, and southern regions of Mongolia, Tmax
being the leading factor in the western region, and Tmin being the leading factor in the
northwestern region. This study provides an index system for constructing the ecological
vulnerability system in Mongolia and offers scientific references for the regional protection
of the ecological environment in Mongolia.

Keywords: ecological vulnerability; change patterns; climate change; dominant factors;
Mongolia

1. Introduction
Ecological environmental vulnerability has now become a major issue for the ecological

environment of many countries. Under the dual influence of global climate change and
human activities, a series of environmental problems have been triggered, such as extreme
climate events, frequent natural disasters, land degradation, a reduction in vegetation
productivity, the loss of biodiversity, the disruption of water resource patterns, and the
melting of glaciers [1]. Once the ecological environment is damaged, it is difficult for
it to self–repair. Therefore, ecological vulnerability is an important analytical factor for
environmental protection and planning, as well as sustainable development [2].
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Currently, ecologically fragile areas are mainly concentrated in arid regions [3], moun-
tainous areas [4], agricultural areas [5], and some riverside and coastal areas [6,7]. Recent
studies have focused on tourist areas [8], mining production [9], and areas near water
bodies [10] to protect local biodiversity. The current research methods for the vulnerability
of ecological areas are mainly two types: the characteristic index method and the indica-
tor evaluation method [11]. The index system method evaluates ecological vulnerability
by constructing a hierarchical index system. The existing ecological vulnerability index
evaluation models mainly include the Pressure–State–Response (PSR) model [12], the Vul-
nerability Scoping Diagram (VSD) model [13], the Sensitivity–Resilience–Pressure (SRP)
model [14], the Social–Environmental System (SES) model [15], and the Driver–Pressure–
State–Impact–Response (DPSIR) model [16]. In Mongolia, where desertification and land
degradation are prominent, ecological vulnerability assessments often incorporate climate,
topography, biological, and environmental factors [17]. The WAE Shah Vulnerability and
Risk Assessment Framework, using the Global Delta Risk Index (GDRI) and Vulnerability
and Risk Assessment Framework in the context of Nature–Based Solutions, along with
the SRP–coupled SES model by Huang B et al., are useful for assessing ecological vulnera-
bility [18,19]. Zhang et al. developed indicators based on ecological services and entropy
to analyze vulnerability in the Yellow River region [20]. These models are effective for
analyzing socio–ecological interactions and can provide insights for Mongolia. However,
they require large datasets and high computational complexity, which is challenging due to
limited data availability in Mongolia. The allocation of index weights is also a primary fac-
tor affecting the results of ecological vulnerability assessment [21]. Spirasteh et al. applied
machine learning and the fuzzy analytic hierarchy process to study mountain hazards [22],
DJ Abson used principal component analysis to calculate the vulnerability index of the
African region [23], and Q Tang et al. employed genetic projection tracking for urban
ecological vulnerability assessment [24]. These traditional methods exhibit significant
subjectivity. In contrast, PCA effectively accounts for the varying contributions of factors
over time and remains applicable in data–limited contexts, making it particularly suitable
for ecological vulnerability assessments in Mongolia.

Mongolia is a hotspot area for global desertification [25]. As temperatures rise and
precipitation decreases [26], Mongolia’s natural grasslands are becoming more and more
dense due to the dual effects of natural and human activities [27]. Over the past few
decades, under the pressure of global changes in the ecosystem, the impact of human
activities, and the lack of long–term sequence data, the main driving factors of ecological
vulnerability in Mongolia are still unclear.

Due to challenges in obtaining high–resolution ecological data for Mongolia, this study
utilizes MODIS09A1 and MODIS11A2 satellite data to derive key ecological indicators.
Principal component analysis (PCA) is employed to develop a remote sensing ecological
vulnerability index (RSEVI), assessing ecological vulnerability in Mongolia from 2000 to
2022. The RSEVI provides valuable insights into the spatiotemporal evolution of ecological
vulnerability, serving as a foundation for ecological protection and sustainable development
strategies in the region.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Mongolia is located in East Asia, with a land area of about
156.65 × 104 km2. It is the second largest landlocked country in the world [28]. Mongolia
is located in East Asia, with a land area of about 156.65 × 104 km2. It is the second largest
landlocked country in the world [29]. Mongolia has a high terrain, with an average altitude
of about 1580 m. The soil layer is thick, and the main soil types are chestnut black soil



Remote Sens. 2025, 17, 1248 3 of 17

and saline–alkali soil [30]. About 71.8% of Mongolia faces degradation or desertification
due to climate change and human activities like overgrazing, deforestation, unsustainable
farming, and mining, leading to soil erosion, desertification, and dust storms [31,32]. This
degradation affects plant diversity, accelerates erosion, and lowers land productivity [17].
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Figure 1. Location of the study area.

2.2. Data Resources

MODIS data are from the U.S. National Aeronautics and Space Administration (NASA)
(https://ladsweb.modaps.eosdis.nasa.gov (accessed on 27 March 2025)) covering 1 June to
31 October between 2000 and 2022, including MOD09 A1, MOD11A2, and MOD12Q1. The
spatial resolutions of these three products are 500 m, 1000 m, and 1000 m, respectively, and
their temporal resolution is 8 days. The MODIS Reprojection Tool (MRT) [33] is utilized
to perform resampling, reprojection, and mosaicking on two of the MODIS products,
resulting in standardized images with a projection type of Krasovsky 1940–Albers and a
spatial resolution of 1000 m. Other meteorological data for Mongolia are provided in the
following Table 1.

2.3. Principal Component Analysis

Principal component analysis (PCA) is a common dimensionality reduction method
that compresses high–dimensional data into a lower–dimensional space while preserving
maximum variance [34]. In the article, seven indicators, including NDVI (Normalized
Difference Vegetation Index), SMI (Soil Moisture Index), LST (Land Surface Temperature),
Albedo, SI (Slope Index), and TGSI (Topsoil Grain Size Index), HDI (Human Disturbance
Index) were combined to analyze the ecological vulnerability of Mongolia.

https://ladsweb.modaps.eosdis.nasa.gov
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Table 1. Data sources and description.

Data Data Description Data Sources Data Use

Digital elevation model 500 m accuracy digital elevation
model in Mongolia

General Bathymetric Chart
of the Oceans Attributional analysis

Maximum temperature
(Tmax)

Global 2.5 min resolution
Maximum temperature grid data WorldClim Attributional analysis

Minimum temperature
(Tmin)

Global 2.5 min resolution
minimum temperature grid data WorldClim Attributional analysis.

Land cover
(LC) Esri 10 m land cover data Esri Attributional analysis

Precipitation data
(PRE)

Annual average precipitation data
at global meteorological stations

National Centers foe
Environmental Attributional analysis

Night lights index (NLI) 1 km night light data
500 m night light data

Suomi NPP/VIIRS
DMSP/OLS Attributional analysis

2.4. Kappa Coefficient

The Kappa coefficient measures classification accuracy and consistency with observed
values [35]. To verify the accuracy of the retrieved ecological vulnerability index for
Mongolia, this study selected 245 sample points from Mongolia in 2022 to validate the
accuracy of the ecological vulnerability index. Based on the sample points and evaluation
results provided by Google Earth, the Kappa coefficient was calculated. In this study, the
Kappa coefficient was utilized to verify the accuracy of the ecological vulnerability index
classification results.

Po =
∑C

i=1 Ti
n

(1)

Pe =
∑C

i=1 ai × bi
n2 (2)

K =
Po − Pe
1 − Pe

(3)

In the formula, n is the total number of samples, C is the total number of categories, Ti

is the number of correctly classified samples for each category, ai is the sum of the number
of samples in row i, and bi is the sum of the number of samples in column i.

2.5. Gravity Center

The gravity center represents the balanced point of mass within an area, reflecting
spatial changes in various elements. As these elements shift, the gravity center’s movement
indicates the spatial trajectory of regional development. The calculation formula is

x =

n
∑

i=1
Zixi

n
∑

i=1
Zi

(4)

y =

n
∑

i=1
Ziyi

n
∑

i=1
Zi

(5)

In the formula, Zi is the attribute value of the ecological vulnerability in the i year,
(xi, yi) is the latitude and longitude coordinate value of the i point, and the points (x, j) are
the latitude and longitude coordinates of the gravity center of the ecological vulnerability
after the calculation of the n points.
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2.6. Geo–Detector Model

Desertification in Mongolia is driven by complex natural and human factors, making
it difficult to identify key drivers. The Geographical Detector tests the spatial heterogeneity
of single factors and assesses whether their combined effect strengthens or weakens the
explanatory power of the dependent variable [36]. In this study, the dependent variable
(Y) represents Mongolia’s ecological vulnerability, while the independent variables (X)
include precipitation, DEM, maximum and minimum temperature, land use, and nightlight
index The Factor Detector uses the q value to measure explanatory power and evaluates
the spatial distribution of ecological vulnerability in 2000, 2010, and 2020, The calculation
method is:

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 = 1 − WSS

TSS
(6)

WSS =
L

∑
h=1

Nhσ2
h (7)

Tss = Nσ2 (8)

In the formula, h is the layer or partition of the independent variable Y and the
dependent variable X; Nh is the number of units in layer h; N is the number of units in the
whole region; σ2

h is the variance of the Y value in the h layer; σ2 is the variance of the Y
value of the whole region. Wss is the sum of variance of each layer; Tss is the total variance
of the whole region. q ∈ [0, 1], the greater the q value, the stronger the explanatory power
of X to Y.

2.7. Ecological Vulnerability Indicators
2.7.1. Vegetation Index

Vegetation indices are indicators of the distribution and activity of surface vegetation.
In this article, the Normalized Difference Vegetation Index (NDVI) was used, which is a
popular index for vegetation assessment and is also an important parameter for reflecting
vegetation vigor and vegetation cover. NDVI has been proven to be correlated with the bio-
physical variables that control vegetation productivity and land/atmosphere fluxes [37,38].
Figure 2 shows the NDVI for 2020. The calculation formula was as follows:

NDVI =
B2 − B1
B2 + B1
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2.7.2. Soil Moisture Index

The moisture index reflects the water balance in an ecosystem and serves as a key
indicator of hydrological balance. This study uses the Soil Moisture Index (SMI) to describe
drought and heavy rainfall conditions [39]. Figure 2 shows the SMI for 2020. The calculation
formula was as follows:

SMI =
B6 − B7
B6 + B7

(10)

In the formula, B6 and B7 are the 6th and 7th bands of MOD09A1, respectively.

2.7.3. Heat Index

Temperature influences vegetation growth and distribution. This study uses Land
Surface Temperature (LST) as a heat index, leveraging its negative correlation with NDVI
to monitor vegetation in arid regions [39]. LST also impacts heat exchange. Figure 2 shows
the LST for 2020. The calculation formula is

LST = 0.02 × N − 273.15 (11)

In the formula, N refers to the value of the Land Surface Temperature from MOD11A2,
and subtracting 273.15 converts the temperature from Kelvin to Celsius.

2.7.4. Land Degradation Index

Due to the impact of climate and human activities, soil desertification, salinization, and
other land degradation issues in the Mongolian region are becoming increasingly severe.
Based on the severity of the ecological impact of various land degradation problems, this
article selects three indicators—surface soil particle size, salinity, and surface Albedo—to
analyze the degree of land degradation Figure 2 shows the Albedo, SI, TGSI for 2020. The
calculation formula is

Albedo = 0.001 × R (12)

SI =
√

B1 × B3 (13)

TGSI =
B1 − B3

B1 + B3 + B4
(14)

In the formula, R refers to the value of MCD43A3 product data; B1, B3, and B4 are the
1st, 3rd, and 4th bands of MOD09A1, respectively.

2.7.5. Human Disturbance Index

Nighttime light data primarily reflects the positive correlation between popula-
tion density and GDP, thus serving as a proxy for the intensity of human activities on
ecosystems. In this study, the human disturbance index (HDI) is utilized as an indicator
derived from nighttime light data. Figure 2 shows the HDI for 2020. The formula for the
HDI is as follows:

HDI = NLDN (15)

In the formula, HDI is the human disturbance index, and NLDN refers to the DN value
of night light data.

2.8. Construction of Remote Sensing Ecological Vulnerability Index
2.8.1. Remote Sensing Ecological Vulnerability Index

Based on four indicators—vegetation index, moisture index, heat index, and degree
of land degradation, we apply principal component analysis to process these indicators
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and obtain the remote sensing ecological vulnerability index for Mongolia. The specific
calculation formula is as follows:

RSEVI = α1 × P1 + α2 × P2 + ... + αn × Pn (16)

In the formula, RSEVI refers to the remote sensing ecological vulnerability index; αn is
the contribution rate of the nth principal component; Pn is the nth principal component.

2.8.2. Classification of Ecological Vulnerability Index Using Remote Sensing

To intuitively display and analyze the spatial distribution characteristics of ecological
vulnerability at different levels, the remote sensing ecological vulnerability index (RSEVI)
is divided into five grades using the Natural Breaks (Jenks) method in ArcGIS 10.7 (Esri,
Redlands, CA, USA): an RSEVI of less than 1.4 is classified as slight vulnerability, an RSEVI
of less than 2.0 as mild vulnerability, an RSEVI of less than 2.6 as moderate vulnerability,
an RSEVI of less than 3.2 as severe vulnerability, and an RSEVI greater than 3.2 as very
severe vulnerability.

2.9. Eco–Geographical Division of Mongolia

As shown in Figure 3, the country is divided into five sub–regions based on natural
and anthropogenic factors like topography, climate, and precipitation. The 200 mm isohyet
separates the southern and northern parts. In the south, the Altai Mountain provinces are
Region 1, while the remaining provinces form Region 3. The northern part is divided into
Region 2 (northwest), Region 4 (central), and Region 5 (eastern, the Mongolian Plateau).
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3. Results
3.1. Verifying the Accuracy of Remote Sensing Ecological Vulnerability Index

As shown in the error matrix, the overall accuracy of the Mongolian remote sensing
ecological vulnerability index is 88.98%. The accuracy for mild vulnerability is the high-
est, at 93.10%, followed by slight vulnerability at 90.91%. The remaining accuracies, in
descending order, are severe vulnerability at 88.64%, moderate vulnerability at 85.37%, and
intensive vulnerability at 85.11%. Overall, all levels of vulnerability are above 85%, indicat-
ing that the ecological vulnerability index for Mongolia has a high degree of applicability
(as shown in Table 2).

Table 2. Error matrix of remote sensing ecological vulnerability index in Mongolia in 2022.

Evaluation Results
Vulnerability

Levels Slight Mild Moderate Intensive Severe Sum

Filed observed
samples

Slight 50 0 2 1 1 54
Mild 3 54 2 3 2 64

Moderate 1 1 35 2 1 40
Intensive 0 2 1 40 1 44

Severe 1 1 1 1 39 43
Sum 55 58 41 47 44 245

3.2. Spatial Distribution of Remote Sensing Ecological Vulnerability

From 2000 to 2022, the average ecological vulnerability index of Mongolia, known as
the RSEVI, was 1.57, which falls into the category of mild vulnerability. As shown in Figure 4
there are spatial differences in the distribution of ecological vulnerability at different levels.
In the figure, the area of slight vulnerability is approximately 3.68 × 105 km2, accounting
for 23.68% of the total area of the study region, mainly concentrated in the eastern and
northern parts, and the northwestern part of the Zavkhan Province. The mild vulnerability
area is primarily distributed in the central and eastern parts, with a total area of about
5.09 × 105 km2, accounting for 32.73% of the total area of the study region, and has the
largest area of concentrated vulnerability. The moderate vulnerability area is 3.75 × 105 km2,
distributed throughout Mongolia, with more pronounced areas in the central, western, and
southern parts, accounting for 24.13%. The severe vulnerability area accounts for 14.64%,
with an area of about 2.26 × 105 km2, mainly distributed south of the Altai Mountains and
the Khangai Range and north of the Hangay Range. The very severe vulnerability area is
about 0.75 × 105 km2, accounting for 4.82% of the total area of the study region, mainly
located in the Altai Mountains, north of the Hangay Mountains, and in the northern part
of Mongolia.

3.3. Gravity Center Model

The gravity center model effectively reveals the spatial imbalance and deviation in the
distribution of ecological vulnerability. As illustrated in Figure 5, the calculated gravity
center of ecological vulnerability is predominantly situated at the intersection of Aekhangai
Province and Ovorhangay Province, highlighting that the ecological vulnerability in central
Mongolia is more pronounced than in other regions of the country. The trajectories of the
gravity center over different temporal scales exhibit distinct patterns. Therefore, this study
employed both a 5-year and a 3-year time scale to examine the directional and distance
shifts in the vulnerability center.
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On a 5-year scale, the gravity center of vulnerability was located at the intersection of
Aekhangai Province and Ovorhangay Province during 2000–2004. It subsequently shifted
southeastward in 2005–2009, positioning itself in the northern part of Ovorhangay Province.
During the subsequent period of 2010–2014, the vulnerability center migrated from the
southeast to the northwest. In 2015–2019, the gravity center shifted northeastward, locating
itself in the southern part of Aekhangai Province. Over the last three years (2020–2022), the
gravity center moved southwestward relative to its position in 2015–2019.

A comparative analysis reveals that, except for the period of 2005–2009, the vulner-
ability center exhibited a consistent northwestward shift during 2000–2004, 2010–2014,
2015–2019, and 2020–2022. This pattern indicates that the increase and growth rate of
ecological vulnerability in northwest Mongolia during 2000–2004 and 2010–2019 signifi-
cantly exceeded that of other regions, with the most substantial increase observed between
2010 and 2014. In summary, the gravity center of vulnerability has shown a predominant
northwestward shift over the past 23 years, suggesting that the increase and growth rate
of ecological vulnerability in the northwest region from 2000 to 2022 have been markedly
higher than in other regions of Mongolia.

3.4. Dominant Factors in Different Sub–Regions of Mongolia

In Figure 6 and Table 3, in the year 2000, the maximum temperature (Tmax) emerged
as the principal driver of ecological vulnerability across Mongolia, exhibiting a q value of
0.635. The most influential interactive factor was the combination of Tmax and minimum
temperature (Tmin), with a q value of 0.834. Region–specific results indicated that in Region
I, Tmax remained the dominant factor (q = 0.688), with the interaction between Tmax and
Tmin (q = 0.821) also playing a significant role. In Region II, Tmin became the primary
factor (q = 0.531), with Tmin and precipitation (PRE) interacting as the most influential
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factors (q = 0.822). In Region III, the digital elevation model (DEM) was identified as the
leading factor (q = 0.523), with the DEM–PRE interaction as the dominant factor (q = 0.685).
For Region IV, PRE was the dominant factor (q = 0.663), with the DEM–PRE interaction
displaying the strongest influence (q = 0.872). In Region V, DEM was again the primary
factor (q = 0.472), with the DEM–PRE interaction showing the most considerable impact
(q = 0.552).
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By 2010, in Figure 7 and Table 3, Tmax continued to be the dominant single factor for
Mongolia (q = 0.497), while the interaction between Tmax and land cover (LC) (q = 0.674)
became the most significant interactive factor. Region–specific results indicated that Tmax
remained the primary factor in Region I (q = 0.462), with the Tmax–LC interaction showing
a significant influence (q = 0.661). In Region II, Tmax (q = 0.515) continued to be the
dominant factor, with the interaction between Tmax and Tmin (q = 0.844) being most
pronounced. For Region III, PRE became the leading factor (q = 0.547), with the interaction
between PRE and DEM showing a significant influence (q = 0.636). Region IV showed a
strong dominance of PRE (q = 0.815), with the interaction between PRE and DEM exhibiting
the highest influence (q = 0.900). In Region V, DEM remained the primary factor (q = 0.627),
with the DEM–PRE interaction playing a significant role (q = 0.497).

In Figure 8 and Table 3, in 2020, Tmax continued to dominate as the key driver
of ecological vulnerability in Mongolia (q = 0.652), while the interaction between Tmin
and PRE emerged as the leading interactive factor (q = 0.549). Region–specific results
showed that in Region I, land cover (LC) was the dominant single factor (q = 0.681),
while the interaction of Tmax and Tmin (q = 0.662) was most significant. In Region II,
DEM (q = 0.671) became the primary factor, with the interaction between DEM and PRE
(q = 0.673) having the most considerable impact. For Region III, PRE (q = 0.525) remained
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the dominant factor, with the PRE–DEM interaction showing a notable influence (q = 0.567).
Region IV demonstrated the dominance of PRE (q = 0.871), with the PRE–DEM interaction
displaying the strongest association (q = 0.977). Lastly, in Region V, PRE continued to be the
primary factor (q = 0.54), with the DEM–PRE interaction showing a considerable influence
(q = 0.566).
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Table 3. The dominant single factor and interaction factor q values in different regions of Mongolia.

Year Area Single
Factor q Value Interaction

Factor q Value

2000

Mongolia Tmax 0.635 Tmax ∩ Tmin 0.834
Region I Tmax 0.688 Tmax ∩ Tmin 0.821
Region II Tmin 0.531 Tmin ∩ PRE 0.822
Region III DEM 0.523 DEM ∩ PRE 0.689
Region IV PRE 0.663 PRE ∩ DEM 0.872
Region V DEM 0.472 DEM ∩ PRE 0.557

2010

Mongolia Tmax 0.497 Tmax ∩ LC 0.674
Region I Tmax 0.462 Tmax ∩ LC 0.661
Region II Tmax 0.515 Tmax ∩ Tmin 0.844
Region III PRE 0.547 PRE ∩ DEM 0.636
Region IV PRE 0.815 PRE ∩ DEM 0.9
Region V DEM 0.627 Tmax ∩ PRE 0.514

2022

Mongolia Tmax 0.652 Tmin ∩ PRE 0.549
Region I LC 0.681 DEM ∩ Tmin 0.646
Region II DEM 0.671 DEM ∩ PRE 0.673
Region III PRE 0.525 PRE ∩ DEM 0.567
Region IV PRE 0.871 PRE ∩ DEM 0.977
Region V PRE 0.540 PRE ∩ DEM 0.569
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These findings highlight the evolving dominance of temperature and precipitation, as
well as their interactions with other factors, in shaping the spatial distribution of ecological
vulnerability across Mongolia over the 20-year period.
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4. Discussion
4.1. The Advantages of the Remote Sensing Ecological Vulnerability Index

Currently, many scholars primarily use MODIS data to derive multi–indicator–based
ecological remote sensing indices [40]. In this study, we chose to use a method that inte-
grates remote sensing platforms such as MODIS and GEE to assess Mongolia’s ecological
vulnerability at a larger spatial scale and longer time series. Compared with machine learn-
ing models, which require a large amount of data labeling and are not suitable for long–term
trend analysis, ground monitoring has higher local accuracy but lacks consistency in assess-
ing large–scale spatial coverage. MODIS data have higher adaptability and higher spatial
resolution and can fully reflect the dynamic changes in Mongolia’s ecosystem at different
temporal and spatial scales. Among them, NDVI (Normalized Difference Vegetation Index)
is an important indicator of vegetation coverage and health, which can effectively reflect the
resilience of the ecosystem [41]. LST (Land Surface Temperature) is an important indicator
of climate change and drought. By utilizing the strong correlation between NDVI and LST,
the response mechanism of Mongolia’s ecosystem to climate change can be more accurately
assessed [42,43]. Land degradation, including desertification and salinization, has become
a serious ecological challenge in Mongolia. This study introduces a Land Degradation
Index (LDI) composed of the Temperature–Greenness–Soil Moisture Index (TGSI), Albedo,
and Slope Index (SI). TGSI captures climate, vegetation, and soil moisture conditions, while
Albedo reflects surface reflectivity and drought intensity. SI highlights the influence of
terrain on soil erosion potential, adding the night light index (NLI) as a measure of social
activity, as an indirect indicator of human stress. By integrating both natural and anthro-
pogenic factors, the ecological vulnerability index provides a comprehensive assessment of
Mongolia’s ecosystem response to climate change and human interference across spatial
and temporal scales. The ecological vulnerability index is applicable to areas where field
data are missing, such as desert steppes and high mountains.

While MODIS data are valuable for large–scale monitoring, their coarse spatial resolu-
tion may limit the detection of small–scale ecological changes. Cloud cover, sensor errors,
and data gaps could also introduce uncertainty. This study applied data smoothing and
time averaging to reduce noise and improve consistency. Future research could explore
integrating higher–resolution remote sensing data to enhance accuracy.

4.2. Spatial Distribution Analysis of Remote Sensing Ecological Vulnerability

The spatial distribution of different ecological vulnerability levels varies greatly. Mildly
and slightly vulnerable areas are mainly distributed in the eastern and northern parts of
Region III, the eastern part of Region II, and Regions IV and V. This is mainly because
the eastern part of Mongolia has good climatic conditions, sufficient precipitation, and
good vegetation growth [44]. The spatial distribution of different ecological vulnerability
levels varies greatly. Mildly and slightly vulnerable areas are mainly distributed in the
eastern and northern parts of Region III, the eastern part of Region II, and Regions IV
and V. This is mainly because the eastern part of Mongolia has good climatic conditions,
sufficient precipitation, and good vegetation growth [45]. At the same time, the center
of ecological vulnerability in Mongolia has shifted toward the northwest from 2000 to
2022, indicating that the ecology of this region has become severely fragile. These areas
experience significant fluctuations in temperature and precipitation, with desert grassland
landscapes that are highly sensitive to climate change. Intensive human activities, such
as overgrazing and deforestation, have led to a substantial reduction in natural grassland
areas [46]. The Khangai Mountain region, with its extensive forest cover [47], has seen
an increase in human activities that exacerbate climate–related vulnerability, leading to
a decline in forest vegetation and a shift toward grasslands, thus intensifying ecological
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fragility [48]. Degraded ecosystems are more susceptible to extreme climate events, creating
a feedback loop. This is especially true for the severely vulnerable southern regions, where
the decline in vegetation cover and desertification further trigger soil erosion, loss of
biodiversity, and a decrease in agricultural productivity. These changes, in turn, amplify
the impact of human activities, affecting both the local ecology and economic development.

4.3. Dominant Factors of Ecological Vulnerability

Between 2000 and 2022, the maximum temperature (Tmax), digital elevation model
(DEM), and minimum temperature (Tmin) emerged as the principal drivers of ecological
vulnerability in Mongolia. Tmax, with a notably high and consistent q value of approx-
imately 0.64, was identified as the dominant factor. In contrast, DEM and Tmin were
secondary factors, while land cover (LC) and precipitation (PRE), with q values below 0.2,
had minimal impact. The potential rise in temperature could amplify the occurrence of
droughts and heatwaves, accelerating desertification in Mongolia. Divergent from Shux-
ing Xu’s studies [49], Tmax’s role as the key driver of ecological vulnerability signifies
an ecological shift from water–limited to temperature–limited systems with increasing
altitude, highlighting the pronounced effect of temperature on vegetation. The dominant
interactive factors have evolved from Tmax intersecting Tmin to Tmin intersecting PRE
between 2000 and 2022, underscoring the persistent influence of temperature throughout
the period. Concurrently, the influence of precipitation on Mongolia’s ecological envi-
ronment has become more pronounced amidst the warming climate. In recent years, the
warming climate in Mongolia, increased river evaporation, and reduced precipitation have
led to water scarcity [50], intensifying desertification and severely impacting the ecological
environment. Under the predominant influence of temperature, precipitation has become
the most influential interactive driver of ecological vulnerability.

Upon individual analysis of each region, Tmax is identified as the dominant factor in
Region 1, whereas Tmin is the primary influence in Region 2. Considering the elevated
altitude of Region 1, temperature emerges as a critical factor impacting plant growth; rising
temperatures enhance vegetation development, with Tmax exhibiting a more significant
positive correlation with plant life [51]. Region 2, characterized mainly by grasslands,
experiences an advancement in the greening season due to the increase in Tmin, which
further stimulates plant growth [52]. For Regions 3, 4, and 5, PRE assumes the role of the
dominant influencing factor. Within the Mongolian landscape, rainfall is identified as a
pivotal element affecting the activity of vegetation. The arid southern Mongolia endures
severe desertification due to scarce rainfall. In contrast, the surface vegetation in the north-
eastern and northern Mongolia is markedly influenced by precipitation levels. Reduced
rainfall elevates the risk of drought, resulting in soil moisture depletion and hindered plant
growth. Conversely, increased rainfall can exacerbate hydrological erosion [53], leading
to soil loss and a decrease in soil fertility, thereby slowing down plant growth [54,55].
Consequently, Mongolia must devise strategic measures for the equitable distribution of
water and soil resources [56], implement integrated agricultural and pastoral practices,
augment grassland management initiatives, bolster the capacity to withstand disasters, and
adapt to and counteract the ecological repercussions of climate change [57].

5. Conclusions
This research, after thoroughly considering the climate change and ecological dy-

namics in Mongolia, identified four key indicators—vegetation, humidity, heat, and land
degradation—to establish a novel remote sensing ecological index. We conducted an
analysis of the spatiotemporal variations in ecological vulnerability across Mongolia and
employed the Geographical Detector to investigate the driving forces behind these changes
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at both the national and sub–regional levels in Mongolia. The principal findings are
summarized below:

The newly proposed remote sensing ecological vulnerability index has a high applica-
bility rate in the Mongolian region, with an accuracy value of 88.98%.

1. From 2000 to 2022, the average remote sensing ecological vulnerability index of
Mongolia was 1.57, classified as mild vulnerability. The area of mild vulnerability
constitutes the largest proportion.

2. Between 2000 and 2022, the gravity center of Mongolia’s ecological vulnerability
shifted toward the southwest, indicating that the degree of ecological vulnerability
intensification in the southwest region was greater than that in the northeast region.

3. From 2000 to 2022, Tmax was the dominant driving factor of ecological vulnerability
in Mongolia, with the dominant interactive factor transitioning from Tmax ∩ Tmin to
Tmin ∩ PRE. For the eastern, central, and southern regions of Mongolia, PRE was the
dominant factor, and PRE ∩ DEM was the dominant interactive factor. In the western
and northwestern regions, the dominant factor shifted from Tmax and Tmin to DEM
and LC, and the dominant interactive factor evolved from Tmax ∩ Tmin, Tmin ∩ PRE
to PRE ∩ DEM, LC ∩ DEM.
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