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Abstract: Identified as early as 2000, the challenges involved in developing and assessing
remote sensing models with small datasets remain, with one key issue persisting: the
misuse of random sampling to generate training and testing data. This practice often
introduces a high degree of correlation between the sets, leading to an overestimation of
model generalizability. Despite the early recognition of this problem, few researchers have
investigated its nuances or developed effective sampling techniques to address it. Our
survey highlights that mitigation strategies to reduce this bias remain underutilized in
practice, distorting the interpretation and comparison of results across the field. In this
work, we introduce a set of desirable characteristics to evaluate sampling algorithms, with
a primary focus on their tendency to induce correlation between training and test data,
while also accounting for other relevant factors. Using these characteristics, we survey
146 articles, identify 16 unique sampling algorithms, and evaluate them. Our evaluation
reveals two broad archetypes of sampling techniques that effectively mitigate correlation
and are suitable for model development.

Keywords: sampling algorithm; generalization; model assessment; correlation; remote sensing

1. Introduction
In the field of remote sensing, image-based datasets typically contain a limited number

(tens to hundreds) of large images (thousands of pixels) that represent contiguous portions
of the Earth’s surface. These datasets are utilized to develop automated labeling techniques
for the vast amounts of unlabeled data generated by remote sensing imaging systems in
use for practical applications. A primary method for automated labeling is the supervised
training of machine learning models. These models require a significant number of observa-
tions to learn the mapping between data and labels. Furthermore, these models also make
the pragmatic choice of working with image sizes ranging in the tens to hundreds of pixels
to reduce computational burden and conform to model constraints. Sampling methods are
employed to generate these observations from the datasets, meeting the necessary criteria
for effective model training.

Outside the field of remote sensing, image-based datasets for classification and seg-
mentation typically contain many (thousands to millions) small images (ranging from
64 × 64 to 512 × 512 pixels) that are independent and non-contiguous. Because the images
are independent and non-contiguous, the sampling process can treat each image as an
independent observation, and partitioning of observations into test and training sets is
straightforward. Even the most basic methods (e.g., random sampling) produce training
and testing sets suitable for model development. In the field of remote sensing, similar sam-
pling methods have often been applied inappropriately. Simple methods are inappropriate
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because the observations are not independent; they are, in fact, sub-regions, which are part
of a contiguous larger image. As many previous studies have highlighted, using these
methods can introduce a high level of correlation between observations in the training
and testing samples. This correlation can result in biased estimates of generalization error
during the model development process.

In a seminal 2000 article, Friedl et al. [1] first recognized the issue of local spatial
autocorrelation in remote sensing imagery and its effects on estimated generalization
errors. This issue was revisited in 2013, when Zhen et al. [2] continued investigating
the effects of dependence between training and testing samples. The issue, induced by
the employed sampling methodology, was presented as well as the resulting effects on
generalization error estimates. Zhou et al. [3] were the first to recognize that two types of
correlation exist, namely, the local spatial autocorrelation identified by Friedl et al. [1] and
the overlap between the spatial extents of observations in the training and testing samples.
In 2017, Liang et al. [4] provided a strong theoretical argument rooted in computational
learning theory, describing how these correlations bias generalization error. Liang et al. [4]
further provided statistical measurements of the local spatial autocorrelation of pixel
spectra and empirical evidence of the correlation’s effects on empirical error. Similarly,
in 2017, Hansch et al. [5] joined Liang et al. to introduce some of the first methodological
improvements to mitigate these issues.

One of the most impactful results was provided by Lange et al. [6]; in 2018, they
generated empirical results showing that sampling methodologies resulting in high levels
of spatial correlation can enable even the simplest models to appear to achieve performance
comparable to state-of-the-art methods. In their work, a small convolutional neural network
(CNN) model with approximately 500k parameters was trained using a sampling method
that allowed correlation and one that mitigated it. When trained with the sampling method,
which mitigated correlation (using 30% of the dataset for training), the model achieved a
Cohen’s kappa (κ) value of 0.2. When training with the sampling method, which allowed
correlation the model achieved above κ = 0.9. The reported state-of-the-art method [7]
at the time achieved κ = 0.84 with the same percentage of training data, showing that
inappropriate sampling methods can have a phenomenal impact during the model assess-
ment. After the presentation of these findings, many researchers [8–11] have reiterated and
strengthened the evidence of the risks of using simple random sampling methodologies for
remote sensing model development, specifically from size-constrained datasets.

1.1. Model Development Theory

The application of sampling algorithms to remote sensing imagery is effective in
generating multiple observations of a desired size and in creating training and testing
samples, which are essential for the model development process. This process involves
training a model to represent a mapping from the input space X to the output space Y
in the form of a hypothesis, h : X → Y. Observations O = {(xi, yi)}n

i=1 are drawn from
a true distribution, D, to form a dataset with an empirical distribution, D̂. However, the
true distribution of remote sensing data is typically unknowable because a single data
collection event rarely captures all possible observations for the given set of intrinsic and
extrinsic conditions. In simpler terms, collecting enough data to fully represent every
possible scenario under the same conditions is often impractical, cost-inefficient, or even
impossible. As a result, the dataset reflects only a limited sample of the true distribution.

The objective of model training is to learn an h that minimizes the error when applied to
new samples drawn from D. However, due to the unknowable nature of D, it is impossible
to measure this generalization error directly. In practice, to estimate model performance
on new data from D, the dataset is sampled to create training T and testing S samples. A
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model is trained on T, and its performance is evaluated using S to obtain an empirical error.
If S is identically and independently distributed (i.i.d.) with respect to D̂, the empirical
error can provide an unbiased estimate of the model’s generalization error.

The assumption that S is i.i.d. with respect to D̂ ensures that the testing sample S
is representative of the empirical distribution, allowing for an unbiased estimate of the
generalization error. However, this assumption pertains primarily to the relationship
between S and D̂ and does not inherently restrict the relationship between T and S. If a
correlation exists among observations in the underlying distribution, the sampling process
can propagate this correlation between T and S. Thus, while a sampling process may
aim to create an i.i.d. S, it does not always guarantee independence between T and S. A
dependence between T and S can lead to a biased estimate of the generalization error,
as T may contain information present in S. This scenario can be viewed as a form of
data leakage.

1.2. Model Assessment with Correlated Samples

The interrelationships between D̂, T, and S significantly influence the process of
assessing a model’s generalizability. In an idealized scenario, T and S are both i.i.d. with
respect to D̂, and T and S are independent. When T is representative of D̂, a learned h
should generalize well to D̂. Furthermore, this can be empirically determined using S, as
it is also representative of D̂ and independent of T. This independence ensures that the
evaluation of h on S is not biased by the data used during training, thereby providing an
unbiased estimate of the model’s generalization performance.

However, when correlation exists among the observations in D̂, the interrelationships
between T, S, and D̂ become more complex, particularly if the sampling process does not
adequately account for this correlation. While the relationship between T and S with D̂ may
deviate from the i.i.d. assumption and introduce bias into the empirical error (note: this
concept is potentially related to exchangeability and de Finetti’s theorem [12,13]. If slices of
a contiguous image can be shown to be exchangeable, then breaking the i.i.d. assumption
may have a reduced impact on empirical error bias), we posit that the relationship between
T and S has the greatest impact on the assessment of generalizability.

When T and S are highly correlated, it becomes challenging, if not impossible, to
determine whether h has simply memorized the observations (xi, yi) from T by recalling yi

for a given xi from S during testing, or if h has learned the underlying patterns in T and can
generalize when predicting a y for a given x from S. The independence of T and S ensures
that h cannot rely on memorization of samples seen in T when tested on S. Therefore, the
empirical error calculated when T and S have low correlation is more indicative of the
model’s generalizability.

Even when either or both T and S are not i.i.d. with respect to D̂, it is still possible to
assess generalizability, albeit with limitations. If S is not representative of D̂, the assessment
will reflect generalization with respect to the distribution of S, rather than D̂. Similarly,
if T is not representative of D̂, h may not learn the underlying patterns of D̂, leading to
potentially low empirical error on S but limited generalization capability towards D̂.

In summary, when T and S are highly correlated, the empirical error cannot provide
a meaningful assessment of a model’s generalizability. However, even if T and S are not
i.i.d. with D̂, some information about a model’s generalizability can still be gleaned. This
analysis underscores the importance of prioritizing the independence of T and S over their
strict adherence to the i.i.d. assumption with D̂. This hypothesis is particularly relevant
when designing sampling methods for remote sensing imagery.
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1.3. Sampling in Remote Sensing

Within the context of remote sensing, the sampling process aims to create observations
and assign them to either the training or testing sample. These observations, commonly
referred to as “patches”, are created by “slicing” an image (and its corresponding labels) to
select a subcomponent of it. Patches typically range in size from 3 × 3 to 21 × 21 pixels and
are generally square with odd dimensions. This ensures no directional bias in the spatial
information and provides a well-defined center. This “center pixel location” (CPL) is used
to precisely locate patches within the image. The creation of patches involves selecting
these CPLs using a sampling algorithm and slicing a patch of the defined size around
each CPL.

As we show in our results, stratified random sampling (note: we later refer to this
as ’Random Stratified’) is one of the most commonly applied sampling methods. It starts
by grouping all pixels in the dataset based on their label, resulting in a stratum per label.
Typically, 10–25% of the pixels in each stratum are randomly selected for the training
sample, with the remainder going to the testing sample. Patches of the predetermined size
are then extracted from the imagery using the pixel locations in the training and testing
samples as the patches’ CPLs.

Stratified sampling is designed to produce a sample that is i.i.d. with D̂. However,
when applied to spatial data with inherent spatial autocorrelation [3,4], the resulting T
may not be i.i.d. with D̂. Furthermore, the testing set is not sampled from D̂, instead, it is
formed as the complement of T, comprising all labeled pixels not selected for T. As a result,
S may also not be i.i.d. with D̂. Furthermore, the manner of usage of stratified sampling
does not consider the relationship between T and S and a large amount of the correlation
present can be propagated between them.

The first form of correlation arises from directly overlapping patches that fall into
opposite T or S samples. For example, if a patch with size P = (Px, Py) is centered at
the CPL (x, y) and placed into sample T, then all CPLs within P distance will partially
overlap (to account for the entire patch area, including the corners, we use axis-specific
distance checks). For a rectangular patch, the minimum non-overlapping distance is Px

along the x-axis and Py along the y-axis. If these neighboring patches are all assigned to
T, there is no possibility of overlap. However, if any of these neighboring patches are
assigned to S then spatial correlation between T and S will be present. Zhou et al. [3]
and Liang et al. [4] showed that depending on the patch size, dataset imagery size, and
training-to-testing set ratio, this spatial overlap can reach 100%. In general, the larger the
patch size, the greater the likelihood that overlap correlation will exist, both because larger
patches cover more spatial area and because the total area of the dataset imagery does not
increase in proportion.

The second form of correlation is due to the local spatial autocorrelation present in
remote sensing imagery, where the spectra (and labels) of adjacent pixels tend to be highly
correlated. Both Friedl et al. [1] and Liang et al. [4] provided empirical evidence that pixels
near each other tend to have a high degree of correlation. Furthermore, it is theoretically
evident that neighboring pixels in remote sensing imagery are highly correlated due to
the spatial resolution of the imaging sensors, which captures objects larger than a single
pixel, and the point spread function of the sensors, which causes signal spillover into
adjacent pixels. As a result, if a patch is placed into T and its closest non-overlapping
neighbor(s) are placed into S, some amount of spatial correlation will exist between T and
S. Nalepa et al. [9] provided empirical evidence using both 1D and 3D CNNs, showing that
even without spatial information present in patches (e.g., P = (1, 1) in a 1D CNN), random
sampling methods can still induce spatial correlation between T and S, and result in biased
estimates of model generalizability.



Remote Sens. 2025, 17, 1373 5 of 53

1.4. Correlation Mitigation

Regardless of the size of the dataset, the contiguous and non-independent nature of
the imagery collected will always present some possibility of correlation in the underlying
data distribution. However, as the size of the dataset increases the effects of this correlation
on the creation of T and S lessen. Logically, the collection of more data under the same
intrinsic and extrinsic conditions present for initial data collection is the best form of
mitigation. However, collecting more data under the same conditions is often impractical,
cost-inefficient, or even impossible. Thus, researchers generally must accept the constraints
presented by the size of the dataset(s) and the inherent contiguous nature of it. To that end,
as noted, previous works have described sampling methodologies that aim to mitigate or
reduce the correlation propagated by the sampling process itself.

We refer to sampling methods that explicitly aim to mitigate correlation as controlled-
type sampling methods (credit to Liang et al. [4] for the use of the term “controlled”).
These methods systematically select the locations of training and testing CPLs to reduce
local spatial autocorrelation and overlap correlation. Generally, controlled-type sampling
methods use clustering approaches to select CPLs. By clustering the locations for either or
both the training and testing sets, the local spatial autocorrelation at the cluster boundaries
can be lower than what is achieved through random sampling approaches, as we will
demonstrate in later sections. Additionally, by enforcing a minimum distance of the patch
size P between CPLs in different sets (training or testing), overlap correlation can be
effectively reduced to zero.

Ironically, this systematic selection of CPLs inherently breaks the i.i.d. assumption of
model assessment. Whereas random-type sampling approaches, like stratified sampling,
attempt to generate an i.i.d. T, controlled-type methods do not. However, what they gain
is a markedly lower correlation between the resulting T and S samples. This allows them
to mitigate correlation in a holistic approach, trading i.i.d.-ness for lower correlation, and
redirection towards the status quo of model development and assessment.

1.5. Overview and Contributions

Certain kinds of sampling methods can cause issues with the propagation of correlation
across T and S, which should be otherwise mutually exclusive. In the field of remote
sensing, this issue has been pervasive for at least two decades. Many previous works
have identified this challenge and proposed mitigation strategies. However, an alarming
percentage of the works surveyed have not recognized or implemented any of these
mitigation techniques. A comprehensive survey and review of sampling algorithms will
help characterize the extent of the issue in current research. Such a review defines the
issues and helps identify alternative sampling algorithms and techniques with a broader
set of desirable characteristics to give future researchers more options than those provided
in previous work. To that end, our work makes the following contributions:

1. A survey of the sampling algorithms used in remote sensing model development.
2. A set of desirable characteristics to measure in prospective sampling algorithms.
3. An evaluation of the set of sampling methods using the desirable characteristics.
4. A method for visually representing the results of sampling through footprint plots.

Despite the contributions of our work, it does have limitations. The main limitations
lie in (1) the unavoidable bias of the process used to search for and select publications
for consideration in the survey as well as (2) the subjective nature of categorizing and
measuring articles and sampling methods. While these subjective evaluations are based on
the authors’ collective judgment, we have mitigated subjectivity by relying on objectively
measurable values for most comparisons and conclusions. Although we have aimed to
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minimize bias in our subjective assessments, some risks remain. Nonetheless, we include
these assessments as they offer valuable insights and support the study’s goals.

2. Materials and Methods
In this study, we aim to identify and evaluate sampling methodologies for remote

sensing imagery datasets, with a focus on mitigating the effects of correlation. This sec-
tion outlines the key aspects of our approach, including desirable characteristics of sam-
pling methods, the methods for measuring these characteristics, the datasets used for
empirical sampling algorithm testing, and the survey procedures implemented to identify
existing algorithms.

2.1. Desirable Sampling Characteristics

Due to spatial continuity in remote sensing imagery, sampling methods must carefully
select and assign observations (patches) to training and testing sets in a way that reduces
correlation effects. To achieve this, effective sampling methods should exhibit the following
desirable characteristics:

• Mutually exclusive subset assignment [3,14]: Guarantees the absence of identical
pixel-label pairs in both training and testing samples, a necessary condition for achiev-
ing a valid model assessment.

• Global spatial autocorrelation [1]: Ensures that it is more common to find training
CPLs near training CPLs and testing CPLs near testing CPLs.

• Commensurate class distributions [15]: Attempts to maintain class distributions from
the original image when generating the training and testing samples.

• Bernoulli distribution allocation (Colloquially referred to as the “training-to-testing
ratio” or “train-test split”): Uses (rtrain, rtest) to dictate training and testing assign-
ment probabilities, adhering to rtrain + rtest = 1. For example, 10 total samples with
(rtrain = 0.7, rtest = 0.3) would result in 7 training samples and 3 testing samples.

While this study focuses on this specific set of desirable characteristics, others such
as efficiency, adaptability, reproducibility, and ease of augmentation are also relevant in
broader contexts. These aspects, though important, are not emphasized here as they are
generally more manageable when designing new sampling algorithms and less directly
tied to the core challenges addressed in this work.

In contrast, the desirable characteristics listed above are more difficult to achieve due
to spatial heterogeneity, a common feature of Earth observation data. Spatial heterogeneity
refers to spatial non-stationarity, where statistical properties vary across space, and is
distinct from local spatial autocorrelation, which describes dependence between nearby
values [16]. For example, heterogeneity arises when different land cover types such as
urban, forest, and water areas exhibit distinct spectral characteristics. Autocorrelation, by
contrast, appears when neighboring pixels share similar values due to spatial proximity.

Spatial heterogeneity introduces trade-offs in the design of sampling methods to
achieve desired characteristics. Optimizing one characteristic often compromises another.
For instance, geographically partitioning a dataset ensures mutually exclusive subset assign-
ment but makes commensurate class distributions difficult to maintain due to imbalanced
and uneven label distributions. Ensuring a sufficient labeled area for Bernoulli distribution
allocation adds further constraints. Attempts to adjust one aspect often diminish others,
making simultaneous optimization challenging.

The spatial heterogeneity of remote sensing data makes it difficult to simultaneously
achieve desirable characteristics, as the variability and uneven distribution of features across
the landscape create circular problem-solving. In contrast, local spatial autocorrelation
complicates model assessment by introducing potential dependence between training and
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testing samples (Section 1.1). Thus, the desirable characteristics of mutually exclusive subset
assignment and global spatial autocorrelation are intended to address spatial dependence,
not spatial heterogeneity.

Mutually exclusive subset assignment refers to preventing direct overlap between
patches assigned to training and testing sets. Global spatial autocorrelation, on the other
hand, addresses spatial dependence between pixel spectra within local neighborhoods.
Since local spatial autocorrelation affects model assessment, the desirable characteristics
of global spatial autocorrelation promotes high global spatial autocorrelation ensuring
training patches are near other training patches and testing patches are near testing patches.
This reduces local spatial dependence between the training and testing sets.

We also refer to the insightful perspective provided by Liang et al. [4], which offers an
alternative explanation of the same phenomenon, potentially enriching the understanding
of the concept:

“First, [sampling methods] shall avoid selecting samples homogeneously over
the whole image, so that the overlap between the training and testing set can be
minimized. Second, those selected training samples should also be representative
in the spectral domain, meaning that they shall adequately cover the spectral data
variation in different classes. There is a paradox between these two properties,
as the spatial distribution and the spectral distribution are couplings with each
other. The first property tends to make the training samples clustered so that
it generates less overlap between the training and testing data. However, the
second property prefers training samples being spatially distributed as random
sampling does, and covering the spectral variation in different regions of the
image.” [4]

2.2. Measurement of Desirable Characteristics

While highlighting desirable characteristics for sampling methods is important, these
characteristics are not useful without a standardized way to compare the performance of
different sampling algorithms. This necessitates the establishment of specific, objective
measurement methods for each characteristic. We define how each characteristic is mea-
sured, ensuring that all evaluations are based on clear, quantifiable metrics. An overview of
each characteristic—along with its measurement type and source of the measurement—is
provided in Table 1.

Table 1. Overview of measurement approaches for desirable sampling characteristics.

Name Method Source

Mutually exclusive subset assign-
ment Overlap percentage Zhou et al. [3]

Global spatial autocorrelation Moran’s I Moran [17]
Commensurate class distributions KL divergence Kullback and Leibler [18]
Bernoulli distribution allocation Difference ratio This work

While the following metrics provide objective ways to evaluate and compare sam-
pling algorithms, it is important to note that they are primarily intended for relative
comparison rather than absolute judgment. Each metric has a specific desirable direction
(e.g., lower values for overlap percentage, KL divergence, and difference ratio; higher
values for Moran’s I). However, no universally accepted thresholds exist to define when
values are considered “acceptable” or “unacceptable”. These metrics are used in this
work as comparative indicators of sampling method performance within a consistent
experimental framework.



Remote Sens. 2025, 17, 1373 8 of 53

2.2.1. Overlap Percentage

Mutually exclusive subset assignment is evaluated using a measurement originally
introduced by Zhou et al. [3] and later by Liang et al. [4]; we retroactively name this
measurement the overlap percentage. While it is possible to use a simple nominal value
{Yes, No} to indicate whether any overlap exists between training and testing patches, this
approach fails to quantify the extent of the overlap. As mentioned in Section 1, factors such
as patch size, dataset imagery size, and the training-to-testing ratio (Bernoulli distribution
allocation) can result in up to a 100% overlap between training and testing patches [3,4]. In
particular, larger patch sizes substantially increase the chance of overlap due to the greater
spatial footprint of each patch, while the total area of the imagery remains fixed. Moreover,
Liang et al. [4] provided theoretical evidence that reducing overlap also reduces bias in
empirical error. Therefore, it is beneficial to use a continuous measurement that captures
the amount of overlap.

Although Zhou et al. [3] and Liang et al. [4] did not provide an explicit definition for
overlap percentage, its implementation can be inferred from their texts. After the sampling
process is completed, the testing set S is inspected, and the number of patches in S that
overlap with any patch in T is counted. This count is then divided by the total number of
patches in S to compute the overlap percentage, as expressed in the following equation:

Overlap percentage (OP) =
∑si∈S overlapT(si)

| S | (1)

where overlapT(·) is a function that returns 1 if the given patch overlaps with any patch in
T, and 0 otherwise.

It is important to note that this calculation treats all overlapping patches equally,
regardless of the extent of overlap. In other words, a testing patch that overlaps with a train-
ing patch by just one pixel is treated the same as one that overlaps substantially. However,
in practice, the degree of overlap can influence the bias in empirical error—a testing patch
with minimal overlap may contribute less to bias than one that is significantly overlapped.

While a more precise calculation accounting for the degree of overlap (e.g., treating
the training and testing sets as multiple sets of individual pixels) could offer a finer-
grained measurement, this would greatly increase complexity and may be impractical.
Additionally, the extra precision might not yield proportionally greater insight, especially
when the overlap percentage is already high due to the sampling method. For instance,
Liang et al. [4] showed that with sampling methods that allow uncontrolled overlap, the
overlap percentage can escalate quickly. Even with a small patch size of 7 × 7, the overlap
percentage can exceed 86% when only 5% of the available data are used for training. In
such cases, where the overlap is extensive, the added precision of a more exact calculation
offers diminishing returns.

Ultimately, the purpose of this measurement is to provide a general understanding
of the overlap and its potential impact on bias, rather than an exact quantification. The
simplified overlap percentage defined here is sufficient for characterizing the sampling
methods used in this study. As discussed later, it is straightforward to design sampling
methods that either eliminate overlap entirely or tightly control it between training and
testing sets, meaning that in practical applications, the overlap percentage will often either
be very high or close to zero.

2.2.2. Moran’s I

Global spatial autocorrelation is measured using Moran’s I [17]. This statistic was
developed in the related fields of geostatistics and spatial analysis and provides a means
to measure the global spatial autocorrelation of a variable. It ranges from −1 (indicating



Remote Sens. 2025, 17, 1373 9 of 53

perfect negative spatial autocorrelation) to +1 (indicating perfect positive spatial autocorre-
lation), with values near 0 suggesting random spatial patterns. It compares the weighted
sum of cross-products of deviations, which accounts for spatial relationships, to the overall
variability in the data, giving a measure that indicates the degree to which similar values
cluster spatially. Moran’s I is expressed as follows:

Moran’s I (MI) =
N
W

∑ij wij(ci − c̄)
(
cj − c̄

)
∑i(ci − c̄)2 (2)

where N is the number of spatial units, W is the sum of the weights, wij, ci, and cj are the
values at locations i and j, and c̄ is the mean of c.

As we are concerned with measuring the spatial dependence of binary categori-
cal values (“in training set” versus “in testing set”), we encode the c and w with the
following scheme:

c =

1 c ∈ T

0 c ∈ S
wij =

1 i rook neighbor of j

0 otherwise
(3)

where “rook neighbor” means direct vertically and horizontally adjacent pixels
({(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}). Furthermore, input c is the set of CPLs from
T and S and not all pixel locations in all patches (otherwise this value would not be mean-
ingful when OP > 0). With this encoding, we can detect how likely it is to find training
patches near training patches, and testing patches near other testing patches (i.e., I = +1),
which would minimize local spatial autocorrelation of pixel values, which in turn reduces
bias in the empirical error.

2.2.3. Kullback–Leibler Divergence

To evaluate commensurate class distributions, we use Kullback–Leibler divergence (KL
divergence) [18], a standard measure from information theory that quantifies the divergence
between two probability distributions. Specifically, we compute the KL divergence between
the class label distribution of the original dataset (P) and that of the training set (Q) to
determine how closely the training distribution reflects the original:

KL divergence (KL) = KL(P ∥ Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
(4)

2.2.4. Difference Ratio

Bernoulli distribution allocation is calculated using a measurement we introduce
called the difference ratio. As previously defined, the probabilities rtrain and rtest represent
the Bernoulli-distributed probabilities of assigning a sample to the training or testing set,
respectively, such that rtrain + rtest = 1. This calculation aims to provide a measurement of
the error from the desired and observed rtrain, rtest that is also comparable regardless of the
values of rtrain, rtest. Relying on the fact that rtrain + rtest = 1 we can do this by calculating
the difference between the observed r′train and the desired rtrain. This difference is then
normalized by the desired value of rtrain. It is calculated as follows:

Difference ratio (DR) =
|r′train − rtrain|

rtrain
(5)

Given a non-zero training set size and regardless of the value of rtrain, this value will always
range between 0.0 and 1.0. Given the relationship between rtrain and rtest, this metric reflects
the deviation of both allocation ratios. Lower values are preferred, as they indicate closer
adherence to the desired Bernoulli allocation.
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2.3. Datasets

To evaluate the desirable characteristics of sampling methods, we require a diverse
set of representative datasets. Through our survey, we identified several remote sensing
datasets that are frequently used in existing literature (Tables A7 and A8 in Appendix B). We
selected eight of the most commonly appearing datasets for comparison. As detailed later,
a substantial number of reviewed articles used sampling methods that failed to mitigate
spatial or overlap correlation. As such, these datasets are especially appropriate, as they
reflect the settings where such correlation issues commonly arise. Table 2 summarizes the
key properties of each dataset, and Figure 1 provides a visual reference using false-color
imagery and their corresponding semantic label maps.

The selected datasets span a broad range of relevant properties: they include both
relatively small and large imagery, datasets with few and many classes, and a wide range of
labeled pixel densities. These characteristics critically influence the feasibility of unbiased
sampling. Larger datasets provide more space to separate training and testing patches. A
higher proportion of labeled pixels increases the number of valid CPLs, which expands the
number of possible training and testing samples that satisfy separation constraints. Finally,
datasets with fewer classes reduce the likelihood that stratification or commensurate class
distribution requirements will constrain spatial assignment.

Table 2. Overview of the datasets selected for sampling algorithm comparisons. These datasets cover
a wide range of sizes, percentages labeled, and number of classes.

Name Size H×W×B Total Pixels Percent
Labeled

Number of
Classes

GRSS18 [19] 601 × 2384 × 48 1,432,784 38.2 20
Pavia Center [20] 1096 × 715 × 102 783,520 18.9 9
GRSS13 [21] 349 × 1905 × 48 664,845 2.2 16
Botswana [20] 1476 × 256 × 145 377,856 0.8 14
Kennedy Center [20] 512 × 614 × 176 314,368 1.6 13
Pavia University [20] 610 × 340 × 102 207,400 20.6 9
Salinas [20] 512 × 217 × 224 111,104 48.7 16
Indian Pines [20] 145 × 145 × 220 21,025 48.7 17

Provided that these datasets are commonly utilized, they appear and are discussed
in detail in numerous other research articles. Given this and the fact that this work
is more concerned with appropriately sampling remotely sensed imagery to develop
machine learning models, and not necessarily developing a machine learning model, we
only discuss the datasets to provide the proper credit and context. Due to the age and
long-standing use of these datasets, it was challenging to trace their original sources.
The only exception is GRSS18, which was retrieved from its original source, the IEEE
2018 Data Fusion Contest website [19]. GRSS13 was retrieved from Figshare [21]. The
rest of the datasets were retrieved from the University of the Basque Country Computa-
tional Intelligence Group (GIC) Hyperspectral Remote Sensing Scenes website [20]. The
GIC website provided data with commonly used preprocessing steps applied (such as
dropping noisy spectral bands).
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Figure 1. False color composite images and corresponding label maps for each dataset used in our
empirical evaluation. For each dataset, the left panel shows a false color composite generated from
the hyperspectral data, and the right panel shows the ground truth labels, where each non-black color
represents a distinct class and black pixels indicate unlabeled regions. Note: Images were resized to
fit the layout; relative spatial dimensions across datasets are not preserved.

GRSS18 and GRSS13 were originally provided to the participants of the IEEE Geo-
science and Remote Sensing Society (GRSS) Data Fusion Contests in the years of 2018 [22]
and 2013 [23] respectively. Both datasets were acquired by the National Center for Airborne
Laser Mapping (NCALM) in February of 2017 and June of 2012. GRSS18 provides three
co-registered data modalities (hyperspectral, multispectral lidar, and high-resolution RGB).
GRSS13 provides two co-registered modalities (hyperspectral and lidar). Both provide
corresponding semantic pixel labels. Each depicts approximately 5 km2 of the University
of Houston campus and its surrounding areas.

Pavia Center and Pavia University were acquired under the HySens project managed
by the German Aerospace Center (DLR) and sponsored by the European Space Agency
(ESA) [24]. Both datasets were collected during a single flight over Pavia, Italy, in July
2002 using the ROSIS-03 sensor [25]. Each provides single modal hyperspectral data with
corresponding semantic pixel labels. The Pavia Center depicts the city center of Pavia and
the river Ticino that runs through it. Pavia University depicts the Engineering School at the
University of Pavia.

Botswana and Kennedy Space Center both provide single modal hyperspectral data
and corresponding semantic pixel labels. Botswana was acquired by the National Aeronau-
tics and Space Administration (NASA) Earth Observing-1 (EO-1) Hyperion sensor between
2001 and 2004 [26]. It depicts the Okavango Delta, Botswana. The Kennedy Space Center
was acquired by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor in 1996 [27]. It depicts the Kennedy Space Center in Florida, USA, its labels were
derived from the Landsat Thematic Mapper (TM).

Indian Pines and Salinas were captured using the AVIRIS sensor and both provide
single modal hyperspectral data and semantic pixel labels [28]. Indian Pines depicts
farmland in the Northwestern portion of Indiana, USA. Salinas also depicts farmland
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but from the Salinas Valley in California, USA. These two datasets represent two of the
overwhelming most studied small hyperspectral remote sensing datasets based on our
survey results.

2.4. Survey Procedures

The primary objective of this survey is to address gaps identified in the existing liter-
ature; no previous survey of the field’s literature covered more than 20 research studies.
The most comprehensive survey to date, conducted by Nalepa et al. [9], reviewed 17 works.
Consequently, our survey aimed to achieve the following secondary objectives: (1) identify-
ing the breadth of sampling methodologies implemented in remote sensing, (2) assessing
how correlation is recognized and mitigated in practice, (3) compiling representative small
or single-image datasets used in practice, and (4) evaluating the reproducibility of sampling
algorithm implementations within the field. The survey was conducted in the following
three main stages: (1) article search, (2) article review, and (3) article analysis. A flowchart
of this process is provided in the Appendix A, Figure A1.

1. Article search: The search for relevant articles was performed using Google
Scholar [29] and Dimensions.ai [30], which together have indexed over 200 million
articles [31]. The search began in December of 2023 and ended in March 2024. Various
search terms were employed, including combinations of the following:

• Contexts: remote sensing, single image, small dataset, etc.
• Datasets: Indian Pines, Salinas, Pavia, Trento, GRSS, Trento, etc.
• Modalities: Hyperspectral, Multispectral, SAR, LIDAR, etc.
• Keywords: sampling, algorithm, methodology, i.i.d., etc.

The search results were reviewed in descending order of relevance. Each search result
was assessed until it was determined to be irrelevant to the context of this study. A
secondary search was also conducted by examining the references cited within the
selected articles to identify additional key works.

2. Article review: The review process was designed to ensure that each article selected
for the survey was thoroughly evaluated for its relevance and contribution to the
study objectives. This multi-pass review process aimed to filter out irrelevant works
efficiently while retaining those that provided useful insights.

• First pass: Titles and abstracts were reviewed to ensure general relevance to the
study context. This initial screening aimed to quickly eliminate articles that were
clearly outside the scope of remote sensing and/or machine learning.

• Second pass: The article text was skimmed to verify the development of a ma-
chine learning model. During this stage, we focused on identifying whether the
articles involved empirical studies that implemented sampling methodologies,
as well as the specific characteristics and sizes of the datasets used.

• Third pass: A full read-through was conducted to confirm the article’s relevance
to this study’s objectives. This comprehensive review included a detailed exami-
nation of the methodologies, results, and discussions to ensure that the articles
provided substantive insights into the research questions.

Articles were included in the final analysis if they met all of the following criteria:
(1) The study involved supervised machine learning using remotely sensed imagery,
(2) training and testing data were created using a spatially defined sampling proce-
dure, and (3) at least one empirical experiment was conducted. Articles were excluded
if they failed to meet any of the inclusion criteria or if spatial sampling was not re-
quired due to the dataset design. For example, when datasets consisted of many
independent small images that could be directly ingested by the model without the
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need to spatially partition a larger image. These criteria were applied consistently
throughout all three passes of the review process.

3. Article analysis: Following the review process, selected articles underwent detailed
analysis to extract and categorize relevant attributes. The goal was to synthesize
this information to provide a comprehensive understanding of current practices and
highlight areas for improvement within the field. The attributes were:

• Year: The year that the article was published.
• Datasets: Identification of the dataset(s) used in each article. This compilation

serves as a resource for researchers seeking representative datasets for their own
experiments and to explore the characteristics of such datasets. The categories for
this attribute were identified based on each unique dataset encountered during
the survey.

• Sampling method: Identification of sampling methodology used. Each technique
was analyzed against the desirable characteristics outlined in Section 2.1, as well
as its application in different scenarios. The categories for this attribute were
identified based on each unique sampling methodology encountered during the
survey.

• Sampling documentation: Assessment of the reproducibility of sampling al-
gorithms based on provided implementation details. This involved evaluating
whether the articles provided sufficient information to replicate their sampling
methodologies, including algorithm descriptions, code availability, and parame-
ter settings. The categories for this attribute were {Full, Partial, None}. Articles
categorized as “Full” contained complete pseudo-code or algorithm implemen-
tation along with parameter settings to fully reproduce the sampling method.
“Partial” articles were lacking sufficient detail to completely reproduce the sam-
pling method or results, but enough that informed research could create similar
results. “None” articles did not contain enough detail, or any detail, on the
sampling method used.

• Overlap correlation issues: Evaluation of whether the chosen sampling method-
ologies had issues with overlap correlation; this attribute does not address
spatial autocorrelation (all sampling methodologies will technically have some
non-zero amount of spatial autocorrelation due to patches being drawn from
the same contiguous dataset image). The categories for this attribute were
{Yes, Unknown, No}. Articles categorized as “Yes” used a sampling method that
had verifiable issues with overlap correlation (such as random sampling). “No”
articles used a sampling method that has no issues with overlap correlation, that
is, they maintained a P minimum distance between training and testing samples.
“Unknown” articles were ambiguous in their documentation making it difficult
to fairly state if they did or did not allow overlap correlation.

• Correlation issue acknowledgment: Evaluation of studies to determine if they
recognized the potential issue of correlation, both overlap correlation and auto-
correlation, between training and testing dataset. This attribute does not assess
whether the issue was present nor mitigated, only if the authors recognized that
correlation was an issue. The categories for this attribute were {Yes, No}, articles
either directly stated that there was some issue with the correlation between
training and testing sets or not.

Some of the categories used in the article analysis are inherently subjective, including
Correlation Issue Acknowledgment and most notably Sampling Documentation. Although
the best effort was made to ensure fairness and equity when assigning these attributes to
articles, it is important to acknowledge that bias may still be present. The categorization
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was based on the authors’ interpretations and assessments, and while these were conducted
as objectively as possible, variations in judgment can occur. Nonetheless, these subjective
categories offer insight into current practices and highlight areas where further clarity and
standardization could be beneficial.

3. Results
This section presents the findings of the study. It begins with an overview of the

survey results, highlighting the number of unique sampling algorithms identified and their
methods of correlation mitigation, if any. Each unique sampling method is then described
in detail. A new sampling algorithm, clustered partitioning, is introduced, offering an
automated approach to partitioning-type sampling. The identification of a Python library
containing all the identified sampling methods is also discussed. Finally, the results of
the empirical testing are presented, assessing the desirable characteristics of the sampling
methods and evaluating their effectiveness.

3.1. Survey Results

This survey yielded 146 articles. These articles were published between 2015 and
2023 which reflects a natural concentration of research due to two key factors. First,
the GRSS13 and GRSS18 data fusion contests introduced multimodal hyperspectral and
lidar datasets that sparked significant interest in the field, providing larger, more diverse
datasets for research. Over half (55%) of the articles were directly motivated by these
datasets. Second, it was not until the 2010s that advancements [32] in general-purpose
GPU (GPGPU) computing made CNNs computationally feasible on a large scale, reigniting
interest in computer vision [33,34] and enabling more complex analyses of remote sensing
data. The distribution of articles by publication year is shown in Figure 2; Table A1 in the
Appendix B provides a detailed reference for each article by year.

Figure 2. Distribution of surveyed articles by publication year.

The survey encompassed 68 unique datasets, with the most frequently used being
Pavia University (66 uses), Indian Pines (57), GRSS13 (49), and both GRSS18 and Salinas
(32 each). Associated article counts are detailed in the Appendix B, Tables A7 and A8.
Many datasets are multimodal, containing diverse data types including hyperspectral
imagery and 3D lidar. While hyperspectral data are most common, the presence of co-
registered multimodal data suggests that correlation issues can arise across both image-
and non-image-based modalities.
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Several large datasets were identified in the survey, some exceeding the size of GRSS18
by orders of magnitude. For instance, Alhassan et al. [35] used the GeoManitoba dataset
(13,777 × 16,004 pixels), generating 17,000 patches from overlapping grid windows. How-
ever, they did not specify how patches were assigned to train and test sets, leaving open
the possibility of overlap correlation despite the dataset’s size. Similarly, Filho et al. [36]
worked with the Cerrado dataset comprising 55 large, overlapping images and noted that
overlapping areas were excluded from test images to prevent contamination—highlighting
the importance of spatial structure even in large datasets.

3.1.1. Issue Acknowledgments

Figure 3 displays the distribution of articles by acknowledgment of correlation issues,
with detailed article references per method provided in the Appendix B, Table A5. A
significant concern highlighted by this survey is that over 90% of the articles do not
acknowledge the potential for correlation issues. This oversight is particularly troubling
given the frequent application of random sampling and the subtle nature of correlations
in remote sensing data, which often remain undetected unless specifically investigated.
The lack of recognition of these correlation issues is not entirely surprising due to the
intricate dynamics involved. It can be likened to a “chicken or the egg” conundrum—until
a sufficient number of articles that handle practical applications acknowledge and address
correlation issues, the topic may not receive the emphasis needed to ensure it is routinely
considered. This situation results in a cycle where the importance of understanding and
mitigating correlation is under-discussed and, consequently, often overlooked in the initial
stages of model development.

Figure 3. Distribution of articles based on their acknowledgment of correlation, showcasing the large
percentage of articles not recognizing the pitfalls of correlation.

The trend of acknowledging correlation issues over time, as illustrated in Figure 4,
shows weak to moderate evidence of increasing recognition. Acknowledgment starts
with approximately 10% of articles in 2015–2016 up to 20% in 2023. However, despite
this gradual improvement, the data reveals that the issue is still not receiving sufficient
attention to position it at the forefront of considerations during the practical development of
machine learning models. The slow shift suggests a growing awareness, yet it emphasizes
the need for a more pronounced and systematic approach to integrating considerations of
correlation mitigation into the sampling methodologies employed across the field. This
change is essential to advance the fair assessment of machine learning models, ensuring
that comparisons of model generalizability across the domain are consistent.
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Figure 4. Annual trends in acknowledging correlation in surveyed articles, shown as counts and
percentages per year.

3.1.2. Overlap Correlation Issues

Figure 5 displays the distribution of articles by the presence of overlap correlation
issues, with detailed article references per correlation existence or not provided in the
Appendix B, Table A4. This figure shows that 48% of the surveyed articles used a sampling
method, which induced an overlap correlation between training and testing data. Moreover,
18% of the articles were categorized as not having an issue with overlap correlation, and
the final 34% were marked as possibly having an issue with overlap correlation. The usage
of the Unknown category was necessary due to the considerable amount of missing or
partial documentation of sampling methods used in the collected articles.

Figure 5. Distribution of articles based on their sampling method’s potential to induce correlation.
We argue that the majority of ‘Unknown’ articles are realistically ‘Yes’ articles. Following this, this
highlights that the majority of surveyed articles have issues with overlap correlation.

Similar to the trend of acknowledging correlation issues over time, there is also a
slight improvement in the percentage of articles without overlap correlation issues, as
shown in Figure 6. Over the years, the percentage of articles identified as having no overlap
correlation issues has slightly increased, which could imply a growing awareness and
mitigation of such issues. However, despite this modest improvement, the prevalence
of correlation problems remains significant, underscoring the need for more consistent
attention and deliberate strategies for addressing these issues.
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Figure 6. Annual trends of overlap correlation presence in surveyed articles, shown as counts and
percentages per year.

3.1.3. Issue Acknowledgment and Overlap Correlation Issues

When inspecting the intersection of the attributes acknowledgment of correlation (AC)
and overlap correlation (OC), an interesting subset of articles appears. Figure 7 and Table A6
in the Appendix B provide a comprehensive breakdown of all possible combinations of
these combined attributes with the above-mentioned table in the Appendix B providing
further details on each article reference in relation to the specific attribute intersection.

The intersection of these attributes reveals that 80% of articles do not acknowledge
correlation issues, and either possibly (33%) or definitely (47%) employ sampling methods
that induce overlap correlation. This finding aligns with the concerns expressed in the pre-
vious sections—that correlation issues are frequently neither acknowledged nor addressed
in the field of remote sensing. Among the articles, there are notable exceptions to this trend.
Twelve articles acknowledge correlation issues and have no overlap correlation issues
(AC-Yes, OC-No). Fifteen articles neither acknowledge correlation issues nor have overlap
correlation issues (AC-No, OC-No). Additionally, one article [37] acknowledges correlation
and might have overlap correlation issues (AC-Yes, OC-Unknown), while another [38] both
acknowledges correlation issues and has overlap correlation (AC-Yes, OC-Yes).

Among the 12 articles that acknowledge correlation issues without overlap correlation
issues, five utilized partitioning-type sampling methods—Bigdeli et al. [39], Filho et al. [36],
Guiotte et al. [40,41], and Zhang et al. [42]. Gbodjo et al. [43] employed simple random
sampling but enforced a minimum distance of P between training and testing samples
to avoid overlap. Hong et al. [44] classified only single spectra, which avoids overlap
correlation but not necessarily spatial autocorrelation. Zhu et al. [45] used grid-type
sampling and confirmed the absence of overlap between training and testing sets. The
remaining articles by Acquarelli et al. [46], Liu et al. [27], Zhang et al. [47], and Zou et al. [48]
introduced four distinct sampling algorithms identified in this survey.

Of the 15 articles that neither acknowledged correlation issues nor exhibited over-
lap correlation, 12 employed partitioning-type sampling methods [49–60]. Additionally,
Li et al. [61] and Sun et al. [62] utilized grid-type sampling with strategically spaced grids
(i.e., the CPL grid is spaced at the patch size P) to avoid overlap. Hong et al [63] classified
single spectra, avoiding overlap correlation. We specifically do not penalize these arti-
cles for not acknowledging correlation issues directly, as it is acceptable not to raise such
concerns when none is verifiably present.
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Figure 7. Heatmap showing the intersection of two attributes: acknowledgment of correlation issues
(AC) and overlap correlation presence (OC) in the reviewed articles. The heatmap categorizes the
results into six possible combinations of these attributes. Green cells indicate desirable or permissible
outcomes where correlation issues are either acknowledged or avoided (AC-Yes OC-No, AC-Yes OC-
Unknown, and AC-No OC-No). Yellow cells represent articles with unknown or concerning overlap
correlation statuses (AC-Yes, OC-Yes, and AC-No, OC-Unknown). Red cells highlight undesirable
outcomes, where correlation is unacknowledged, and overlap correlation is present (AC-No, OC-Yes).

Collectively, the 27 articles mentioned encompass all 17 surveyed articles that uti-
lized partitioning-type sampling methods, as well as more than half of the 8 articles that
employed grid-type sampling (Refs. [35,64,65] are the remaining articles that used Grid
Sampling, although they lacked adequate documentation to confirm the absence of overlap
correlation issues). The upcoming section will provide further details, but these 27 arti-
cles represent all identified instances where sampling methodologies were successfully
employed that fully mitigated overlap correlation.

Fang et al. [37] acknowledged potential correlation issues and cited a cluster sampling
strategy [10] to reduce overlap, although it is unclear whether overlap was fully eliminated.
The original method [5] asserts non-overlapping regions, but no work in the citation chain
provides implementation details, highlighting the need for more rigorous documentation
of sampling procedures in remote sensing.

3.1.4. Sampling Documentation

Figure 8 displays the distribution of articles by the amount of sampling method
documentation provided, with detailed article references per category provided in the
Appendix B; see Table A3. Moreover, 87% of the articles surveyed provided only partial doc-
umentation regarding the sampling method used to generate training and testing data for
model development. The partial category is defined as containing enough information for
informed research to recreate similar results. While this level of documentation might have
minimal impact outside of this field (using datasets that contain multiple non-contiguous
images), it is imperative within the context of remote sensing that a complete understanding
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of the sampling methodology is important for accurate model assessment and comparabil-
ity. This finding amplifies the issues of correlation and suggests an additional problem of
scientific non-repeatability.

Figure 8. Distribution of articles based on their level of sampling documentation.

While the 12 articles that provide no documentation are unremarkable, the 7 articles
that offer full documentation form an interesting subset. Four of these articles [27,47,48,66]
introduce unique sampling algorithms identified in this survey. The remaining three articles,
while not introducing unique methods, are notable for different reasons. Paoletti et al. [67]
and Zhu et al. [68] both employed simple random sampling methodologies, but what sets
them apart is the depth of their documentation. Paoletti et al. used stratification to address
class imbalance and provide detailed descriptions of the steps taken to create training and
testing sets. They justified their thorough documentation by stating, “we could not identify
a common pattern about sampling selection strategies in literature” [67]. To our knowledge,
these two articles are the only ones in the survey that use simple random sampling and
provide comprehensive documentation of its usage.

The third article, by Hong et al. [52], implemented a form of grid-type sampling that
progressively shifts grid coordinates during training. The model’s task involved cross-
modality learning, where—given both modalities during training—it predicts labels for the
opposite modality using only one during testing. Hong et al. compared their grid approach
against simple random sampling and found that their method resulted in approximately
20% higher overall accuracy. They attributed this improvement to the fact that “randomly
selecting patches would los[e] the useful information to a great extent” [52]. Given the
overlapping patches generated by their grid technique, this explanation seems valid. Grid-
type sampling with overlap ensures coverage of the entire image, providing the model
with more unique training observations, whereas random sampling does not guarantee
such comprehensive coverage.

3.1.5. Unique Sampling Algorithms

Figure 9 shows the distribution of articles by sampler type, with detailed references
for each category provided in the Appendix B; see Table A2. The sampler types identified
in the figure are those discovered during the article survey. Our background literature
review also identified many articles that were not application-based but, like this work,
investigated and studied correlation issues of sampling methods. Furthermore, this work
proposed a new sampling method. Table 3 lists all sampling methods identified during the
survey and literature review.
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The criteria for the uniqueness of a sampling algorithm are difficult to define and
somewhat subjective. It is also notably challenging to compare sampling methods when
most surveyed works provide only partial documentation. While there are obvious and
meaningful differences, irrelevant differences also exist. For example, Zhu et al. [68]
introduced a method called “hierarchically balanced sampling”, which involves providing
the entire dataset image (from a single image dataset) as input to the model during training.
In each training iteration, a different subset of CPLs is used as the training set, determined
in a stratified manner. This method is essentially what we call Random Stratified sampling,
with the only difference being that in one case, the training CPLs used during each model
iteration are pre-selected, while in the other, they are not.

Additionally, there are instances where data processing steps before or after sampling
might be mistakenly considered part of the sampling methodology, thus falsely attributing
uniqueness. For example, Liu et al. [69,70] used a method we call Random Equal sampling.
After sampling, all labels for pixels not in the training set are changed to the unlabeled
class’ value. Regardless of this action’s implications, we consider it a form of sample
post-processing, not a unique sampling method. The effects of data processing steps before
or after sampling can undoubtedly impact the correlation between training and testing
sets (see the empirical study on mean filter pre-processing by Liang et al. [4]). However,
this work only focuses on sampling methods and their effects on correlation, with further
discussion on this topic provided in Section 4.

Lastly, we identified instances of methodological error in model development that we
did not consider unique sampling methods. For instance, Yang et al. [71] used a form of
random sampling to generate training data. However, regarding testing data, they noted,
“we test the performance on the whole image” [71], which suggests that their performance
reporting is conducted on both the training and testing portions of the image—a practice
that can yield an overestimate of the true performance of the model. Another example,
albeit unclear due to lack of documentation, is from Cuypers et al. [72]. They used the
GRSS22 dataset, which contains 333 images; as noted, “we used 333 tiles out of which we
extracted 500 training points per class” [72], suggesting a similar approach to Yang’s, where
performance was reported on training data.

Figure 9. Distribution of articles based on their sampling algorithm. In 10 of the surveyed articles,
we could not identify the sampling method utilized (10 of 12 of the “No” sampling documentation
articles). The 6 articles listed as “Other” were single-instance unique sampling methods that were
compressed to make a more visually appealing figure. These are listed explicitly in Table 3.
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Table 3 categorizes each identified sampler into one of four types, namely, random,
controlled, grid, and partitioning. All sampling methods identified naturally fall into
these categories:

• Random: This category includes what has been previously described as random
sampling, where CPLs are randomly selected and assigned based on some underlying
distribution. Random sampling is commonly used outside the field of remote sensing
with success, but as noted in the introduction, it is often inappropriate in this context.

• Controlled: Samplers in this category systematically select CPLs to address issues
with spatial autocorrelation, attempting to ensure unbiased results. However, the
issue of overlap correlation is sometimes not addressed directly.

• Grid: These samplers select CPLs based on a predefined grid of points overlaid on the
image. Grid sampling is used to provide coverage of the entire spatial expanse and is
sometimes closely related to the motivation for partitioning-based samplers.

• Partitioning: This category encompasses samplers that spatially partition the image
into disjoint training and testing regions. Partitioning samplers are applied specifically
to overcome overlap correlation.

The table also provides the original reference for each method, if available, along with
the original name of each method. In this work, we assign distinct names to each sampling
method identified to address conflicting naming conventions from the original sources.
What follows in a succinct description of each method; Section 3.3 discusses more concrete
software implementations in the Python 3 programming language of a majority of the
identified methods.

Table 3. All unique sampling methodologies identified during the article survey, literature review, and
those developed in this work. Note, 10 articles with unknown sampling methods are not accounted
for in the counts.

Type Name Original Reference Original Name Year In Survey (Count)

Random Clark Stratified Clark et al. [66] - 2023 Yes (1)
Liu Random Liu et al. [27] Region Extension 2022 Yes (1)
Random GRSS13 Debes et al. [23] - 2014 Yes (19)
Random Equal - - - Yes (44)
Random Stratified - - - Yes (44)
Random Uniform - - - No

Controlled Acquarelli Controlled Acquarelli et al. [46] Controlled Random Sam-
pling 2018 Yes (1)

Hansch Controlled Hansch et al. [5] Cluster Sampling 2017 Yes (1)
Lange Controlled Lange et al. [6] Cluster Sampling 2018 No

Liang Controlled Liang et al. [4] Controlled Random Sam-
pling 2017 No

Zhou Controlled Zhou et al. [3] Continuous Sampling 2015 No

Grid Zhang Grid Zhang et al. [47] Controlled Multiclass
Stratified Sampling 2023 Yes (1)

Zou Grid Zou et al. [48] - 2020 Yes (1)
Grid Simple - - - Yes (6)

Partitioning Clustered Partitioning This Work - 2024 No
Spatial Partitioning Friedl et al. [1] Site Based Splits 2000 Yes (17)

3.1.6. Sampling Methods Preface

Before describing each sampling method, it is important to introduce a shared concept
applicable to most sampling methods: determining the initial set of valid CPLs from the
dataset. This set represents all pixel locations within the image at which patches may be
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localized, all other pixel locations are invalid. When discussing CPLs without reference
to a specific set (e.g., “training CPLs”), this is what is being referenced. We propose two
general approaches for identifying these CPLs. The first approach involves using every
labeled pixel as a potential CPL. This method is straightforward, but it presents challenges
for CPLs that are less than P

2 of the edge of the image. In such cases, the resulting patch
may be smaller than the desired size or require padding to meet the required dimensions.
This approach demands additional consideration to understand the implications of such
padding or incomplete patches.

In this work, we adopt the second approach. This approach uses only labeled positions
that are at least P

2 distance from the edge of the dataset’s image(s). This ensures that only
patches of the desired size are created, eliminating the need for padding and providing a
consistent basis. Interestingly, none of the identified works explicitly mention this concept.
However, given the lack of discussion in survey articles about padding samples, it seems
likely that the second approach is more commonly used. If the first approach is more
prevalent, this represents another example of inadequate documentation in the field.

Another concept that is important to introduce and, moreover, reinforce, prior to
discussing the sampling methods, is the relationship between CPLs and patches. As
previously discussed, a CPL defines the pixel location that localizes a patch. As a result,
there is a near equivalence of CPLs and patches. In the following sections, we sometimes
use this interchangeably, notably in the Grid Sampling Methods section. It is sometimes
useful to refer to CPLs and other times the patches that are a result of slicing a P = (Px, Py)

sized region around a CPL. Most algorithms deal solely with CPLs and the instantiation of
patches via slicing is post facto. Some algorithms assign patches to the training or testing
set based on the content of patches, thus, these algorithms perform slicing in situ to attain
this ability.

Given the generally partially documented nature of most sampling methods identified
in the literature, the descriptions of unique sampling methods we offer here contain several
assumptions about the authors’ intentions. Some of these assumptions are based on logical
approaches that a competent researcher might use to achieve the stated mechanisms, while
others are inferred from the context provided in the original articles. To ensure transparency,
we include original quotes from the source articles alongside our descriptions when appli-
cable. This not only highlights the level of documentation provided in the original works
but also clarifies how we have interpreted and expanded upon these descriptions to form
our assumptions. By doing so, we aim to bridge the gaps in documentation and provide a
more comprehensive understanding of each sampling method.

3.1.7. Sampler Footprint Plot

In this section, we introduce the concept of a “footprint plot”, which we will utilize
extensively in the following sections to quickly visualize and understand the outcomes
of sampling methods. Specifically, the footprint plot helps to visualize the status of each
pixel location (which we will refer to simply as “pixel” in this section for brevity) after
the sampling process is complete. The status of a pixel refers to whether it is part of the
training or testing set, whether it is within a patch or selected as a CPL, and whether it is
valid (non-overlapping) or invalid (overlapping). The following enumeration provides all
possible statuses and their corresponding colors, with a pictorial example of their meanings
shown in Figure 10.

1. Unused pixel: A pixel that is unused during model development. It may be
labeled or unlabeled.

2. Overlapping patch: A pixel that is not a CPL. It is a member of both a training
and testing patch (i.e., overlap correlation).
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3. Training patch valid: A pixel that is not a CPL. It is a member of a training patch
and not a member of any testing patch (the patch it belongs to may or may not overlap
in other location(s)).

4. Testing patch valid: A pixel that is not a CPL. It is a member of a testing patch
and not a member of any training patch (the patch it belongs to may or may not
overlap in other location(s)).

5. Training CPL valid: A pixel that is a training CPL. All pixels in its resulting
patch do not overlap any other pixels that fall within the testing set.

6. Training CPL invalid: A pixel that is a training CPL. At least one pixel in its
resulting patch falls within the testing set (i.e., causes overlap correlation).

7. Testing CPL valid: A pixel that is a testing CPL. All pixels in its resulting patch
do not overlap any other pixels that fall within the training set.

8. Testing CPL invalid: A pixel that is a testing CPL. At least one pixel in its
resulting patch falls within the training set (i.e., causes overlap correlation).

Figure 10. Two examples of four P = (3, 3) patch “footprints” with pixel coloring referring to pixel
status. In both examples, two training patches and two testing patches are shown. The training and
testing patches on the horizontal outer edges of the image have no inter-set overlap (i.e., training–
testing) but both have intra-set overlap (i.e., training–training). As a result, both of these CPLs ( ,

) and all pixels ( , ) in the resulting patches are deemed valid. The training and testing patches
on the inside of the images overlap each other. As a result, both of these CPLs ( , ) are deemed
invalid because a subset of pixels in their resulting patches overlap ( ), while the other subset is
deemed valid ( , ).

An important aspect to understand about these statuses is that any given pixel can
possess multiple statuses simultaneously. For example, in the right-hand example of
Figure 10, a training and testing CPL are Rook neighbors. The invalid training CPL
(indicated in ) is directly adjacent to an invalid testing CPL (indicated in ). This
proximity means that both the invalid training and testing CPLs also share the overlapping
patch status. To manage this status overlap, we prioritize the statuses in the order stated in
the enumeration above when generating (coloring) footprint plots.

A limitation of this prioritization scheme, and footprint plots in general, is that they
cannot detect or visually represent scenarios where a single CPL produces multiple patches,
nor can they show the assignment of those patches. In other words, if a sampling method
were to select the exact same CPL twice, resulting in a duplicated patch (regardless of
whether the duplicated patches are assigned to the training or testing sets) this would not
be reflected in the footprint plot. However, our review of the sampling methods revealed
that none of the methods we examined exhibited this behavior.

Figure 11 provides an example footprint plot of a small 32 × 32 section from the top
center region of the Indian Pines dataset, using the output of the Liang Controlled sampling
method with P = (5, 5) and rtrain = 0.15. This figure is useful not only for understanding
the pixel statuses and the associated coloring scheme but also for illustrating how footprint
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plots can visually assess the output of a sampling method, particularly in terms of spatial
autocorrelation and overlap correlation.

Figure 11. Example of a footprint plot using a small 32 × 32 section from the top center region of
the Indian Pines dataset produced by the Liang Controlled sampling method with P = (5, 5) and
rtrain = 0.15. The first panel shows the dataset pixel labels, where each non-black color represents
a distinct class and black pixels indicate unlabeled regions. The second and third panels show the
subset of labels selected as training and testing CPLs, respectively. The final panel displays the same
spatial region colored using the enumeration of pixel status, illustrating the footprint resulting from
the selected training and testing CPLs.

In the figure, one can quickly gauge the extent of overlap correlation by comparing
the relative amount of green-colored pixels ( , , , ) to the red-colored pixels ( , ,

). Additionally, it is possible to make a general assessment of the potential for spatial
autocorrelation by observing the clustering and distribution of dark green-colored training
set pixels ( , ) in relation to light green-colored testing set pixels ( , ), regardless of
their specific shades. Furthermore, footprint plots provide insight into the overall total
dataset coverage of all patches, as well as the relative coverage between training and
testing patches, which are related to the desirable sampling characteristic of Bernoulli
distribution allocation.

We present the footprint plot as a contribution of this work, offering a concise and
efficient way to convey qualitative information about how datasets were sampled. Given
our survey results, which highlight the low number of articles that fully document their
sampling methods, along with the challenges of publishing exact sampling outputs, the
footprint plot offers a potentially easier and more accessible way to share this information.
Currently, there is no standard method across the field for presenting sampling details.
We suggest that footprint plots could become part of a potential standard for reporting
this information.

3.1.8. Random Sampling Methods

All random sampling algorithms operate by identifying and randomly sampling from
a probability distribution to form the training CPL set. Once the training set is created, all
unselected CPLs are assigned to the testing set. Each type of algorithm utilizes a distinct
probability distribution for selecting CPLs, motivated by different desirable characteristics.

Random Equal sampling uses a truncated uniform probability distribution across all
class labels in the original dataset, with the truncation threshold set by the minimum count
per class. This ensures balanced class representation. The Random Stratified sampling
method selects CPLs according to the empirical distribution of class labels in the original
dataset, thereby preserving the natural class proportions (Figure 12). Random Uniform
employs a uniform probability distribution across all pixel locations, treating each pixel
equally without regard to class membership. Random GRSS13 is a static variant of Random
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Stratified. Its training and testing sets were pre-determined by the organizers of the IEEE
GRSS 2013 Data Fusion Contest and are provided as the recommended sets for model
development.

Figure 12. Example execution of the Random Stratified sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. In the footprint plot, it is apparent from the large number of
red-colored pixel locations that even with a small patch size and low amount of training data a large
amount of overlap correlation is present. However, Random Stratified and most other random-type
samplers can achieve nearly perfect commensurate class distribution and the desired rtrain.

Clark Stratified [66] (Figure 13) starts with the same distribution used in Random
Stratified but modifies it by logarithmically weighting classes to enhance the representation
of under-represented classes. This method calculates the number of training CPLs per class
by taking the logarithm of the “class area” [66] (assumed to be the count of pixels in the
original dataset with a given class label) and dividing it by the sum of the logarithms of all
class areas. This fraction is then multiplied by the total number of desired training CPLs
(i.e., rtrain times the total number of pixels in the dataset), rounding up to ensure non-zero
class representation for small area classes.

Figure 13. Example execution of the Clark Stratified [66] sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. When compared to the Random Stratified execution example
in Figure 12 it is apparent that larger spatial area classes were sampled less frequently (olive-colored
class) as expected. Regardless, a large amount of overlap correlation still exists.

The Liu Random [27] (Figure 14) sampling method, although fully documented,
appears to misinterpret the approach introduced by Liang et al. [4] (Liang Controlled). Liu
describes their sampling method as follows (quoted reference updated to match this work’s
bibliography):
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“we randomly chose one pixel belonging to one class as the central pixel and
obtained training samples by region extension [4]. We chose 8 × 8 images by
a region extended from one pixel to 8 × 8 images for unbiased datasets and
obtained 8x8 images by a region extended for the training set. The 8 × 8 image-
by-region extension involves finding one pixel as the central point and selecting
the surrounding pixels to form the training sample” [27].

We interpret this as simply defining the desired patch size of their sampling method
as P = (8, 8) and describing the process of extracting an (8, 8) patch from the dataset.
This seems to be a misunderstanding based on Liang’s description: “the training samples
are generated by extending a region from the seed pixel” [4]. A closer examination of
Algorithm 1 and the corresponding text in Liang’s work reveals that “region extension”
refers to growing a contiguous region of CPLs from a starting pixel location, not expanding
a region of pixels into a single patch from a CPL. Liu Random is considered a unique
sampling method because it explicitly states that overlapping patches are not created.
Given this information and the fact that they use 200 patches for training, we understand
Liu Random to be equivalent to Random Uniform with a P minimum distance between
CPLs in the training and testing sets.

Figure 14. Example execution of the Liu Random [27] sampling algorithm on the Indian Pines dataset
with P = (5, 5) and rtrain = 0.15. Compared to Random Stratified and Clark Stratified, and all
other random-type sampling algorithms, the enforcement of a minimum P distance between CPLs
results in no overlap correlation. However, this comes at the cost of considerably fewer patches being
generated overall.

3.1.9. Controlled Sampling Methods

All controlled sampling algorithms operate by systematically selecting CPLs to address
the issue of spatial autocorrelation, with various methods used to mitigate overlap correla-
tion. Spatial autocorrelation is typically reduced by clustering CPLs into spatial groupings
from which training or testing CPLs are selected, or by selecting CPLs in a way that natu-
rally forms clusters. By creating global clusters, these methods induce high global spatial
autocorrelation of the resulting patches, thereby reducing local spatial autocorrelation of
pixel values, which can bias empirical error (as discussed in Section 2.1).

Zhou Controlled [3] (Figure 15) provides limited details on the implementation of
their approach, stating only that they

“[. . . ] sample continuously from a local area for each class. The randomness can
be guaranteed by choosing different local areas across the data. Although this
approach cannot completely eliminate overlap, the influence of testing data on
the training step can be greatly reduced” [3].
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We interpret this to mean that, for each class, a single CPL is randomly selected as
a cluster center from the initial valid set. CPLs in the vicinity (we use Rook neighbors
to define vicinity) are then sampled until a threshold (we use rtrain times total count per
class to match the empirical distribution) is met. The selected CPLs are then assigned to
the training set, and all other unselected CPLs for the class are assigned to the testing set.
Notably, this method does not enforce a minimum P distance to prevent overlap correlation
during sampling.

Figure 15. Example execution of the Zhou Controlled [3] sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. Unlike random-type samplers, which do not enforce
a minimum distance, the systematic selection of CPLs by controlled-type samplers results in low
overlap correlation even without minimum P distance enforcement. A drawback of the Zhou
Controlled method is that a single seed pixel, per class, is selected as the cluster center. If a small
class partition is selected, when using rook neighbors to define “local area” [3], training CPL selection
could end before the defined threshold is met. For example, the olive-colored class (soybean min-till
in Indian Pines) unfortunately has the cluster center selected from its smallest partition, which is
located almost exactly at the center of the image). As a result, only 33 training CPLs are selected
instead of the 361 required to form the empirical distribution (with rtrain = 0.15).

Liang Controlled [4] (Figure 16) provides a detailed pseudo-code of their sampling
methodology in Algorithm 1 of their original work. This method begins by calculating
all partitions (contiguous regions defined by Rook neighbors) of labels in the original
dataset. Within each partition, a CPL is randomly selected as the seed location. From this
seed, a region is grown by selecting neighboring CPLs until a specified count is reached,
presumably in a breadth-first manner. The count is determined by multiplying rtrain by
the total number of pixel locations in the partition. The selected CPLs across all partitions
form the training set, while all remaining valid CPLs are placed into the testing set. This
approach is extremely similar to Zhou Controlled, only differing in the number and location
of cluster centers (seed pixels) selected per class. Furthermore, like Zhou’s method, this
approach does not enforce a minimum P distance to prevent overlap correlation.

Hansch Controlled [5] (Figure 17) provides minimal implementation details, describ-
ing their approach as follows:

“[f]or each class the spatial coordinates of all samples are clustered into two
clusters. Training samples of a class are randomly drawn from one of the clusters,
the other cluster is used as test data. If two adjacent clusters (of any classes)
contribute to train and test data, a spatial border around the corresponding
training samples ensures non-overlapping train and test areas.” [5].

We infer that this involves clustering valid CPLs using a method such as K-Means
with a parameterized number of clusters set to 2. For each class, the two clusters are then
assigned as potential CPL sets for either training or testing. After selecting a specified count
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of training CPLs—likely in a stratified manner by multiplying rtrain by the number of pixels
per class—a P boundary is placed around each training CPL to invalidate any CPLs in the
testing clusters within this boundary. The remaining valid CPLs in the testing clusters are
then added to the testing set.

Figure 16. Example execution of the Liang Controlled [4] sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. Liang Controlled is nearly identical in its approach to Zhou
Controlled, the only difference being that it selects cluster centers from all partitions for each class. As
a result, it does not fall prey to the issue discussed in Figure 15. However, this alteration has resulted
in a large amount of overlap correlation compared to Zhou Controlled.

Figure 17. Example execution of the Hansch Controlled [5] sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. The 2-clustering approach of Hansch Controlled results in
training and testing patches that are maximally spatially separated “ensuring maximal independence
between testing and training” [5] to greatly reduce possible spatial autocorrelation. Furthermore,
the P boundary results in no overlap correlation. However, to achieve the desired rtrain Hansch
Controlled could only select a subset of the CPLs from each class cluster assigned for training
CPL selection. As a result, a large number of unselected training CPLs are unused during model
development.

Lange Controlled [6] (Figure 18) provides limited details on the implementation of
their approach, describing it as follows:

“extracting larger contiguous regions using the class labels [. . . ] and then dis-
tributing these disjointly between the training and test set [. . . ] extraction of the
contiguous regions is achieved with the DBSCAN clustering algorithm [. . . ] This
requires to establish a metric that evaluates said variety. The first two, [. . . ] are
the region area size and statistical variance. Based on this, sorting the regions in
ascending, respectively descending order, and assigning them to the training set,
up until the selected split percentage” [6].



Remote Sens. 2025, 17, 1373 29 of 53

We interpret this to mean that the valid CPLs for each class are clustered using
DBSCAN to identify all label partitions. Each partition is then evaluated by calculating
either its area or variance. Since there is no standard way to measure the variance of a
multi-band image, we suggest using the average variance across bands. Once these values
are calculated, the regions are sorted, regardless of class, and assigned to the training set.
The assignment continues until the training set contains rtrain times the total number of
initial valid CPLs. Notably, this method does not enforce a minimum P distance, which
allows overlap correlation to occur during sampling.

Figure 18. Example execution of the Lange Controlled [6] sampling algorithm on the Indian Pines
dataset with P = (5, 5), rtrain = 0.15, and cluster ordering by average variance across bands. By
selecting entire partitions to add to the training set, large contiguous regions of CPLs can be created
which reduces overlap correlation when a P boundary is not used. However, this assignment of CPLs
to the training set results in non-commensurate class distributions and difficulty in achieving the
desired rtrain.

Acquarelli Controlled [46] (Figure 19) provides the least information on their method,
stating that they “propose to randomly select a single patch of pixels for each class to use as
training data. We use a patch of 7 × 7 labeled pixels for each class as a training set, which
ensures that we have enough training pixels (at most 49) per class” [46]. Although they
suggest a patch size of P = (7, 7), we allow flexibility for any desired patch size. While not
explicitly stated, other parts of their work imply an understanding of overlap correlation
issues. Therefore, to define the testing set, all CPLs within a P distance from the selected
training CPLs are invalidated, and the remaining valid CPLs are used for the testing set.

Figure 19. Example execution of the Acquarelli Controlled [46] sampling algorithm on the Indian
Pines dataset with P = (5, 5) and rtrain = 0.15. The selection of a single training CPL per class and a
P boundary results in extremely low spatial autocorrelation and no overlap correlation. However,
this also results in a dearth of training observations for model development.
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3.1.10. Grid Sampling Methods

All grid sampling algorithms operate by defining a regular grid that spans the extent
of the original dataset image(s). Unlike other sampling types, the initial valid set of CPLs is
defined by the pixel locations at the center of each grid cell (or, depending on convention, at
the intersection points of grid lines). The grid can be either unstrided or strided. Unstrided
approaches set the grid spacing equal to the desired patch size, resulting in no overlap
between patches. Strided approaches, on the other hand, set the grid spacing to be less
than the desired patch size, typically allowing for a P

2 overlap between patches. In strided
approaches the same concerns described in Sections 1.3 and 2.2.1 apply; as the patch size
increases and the stride decreases, the likelihood of overlap correlation between training
and testing patches grows significantly.

The Grid Simple (Figure 20) method uses CPLs as defined by the specified grid size,
whether unstrided or strided. CPLs are then randomly assigned to the training or testing
set with a probability of (rtrain, rtest). A particular consideration for the Grid Simple method
is dealing with patches that contain no labeled pixels. In remote sensing datasets, it is
common for a large percentage of the image to be unlabeled. Consequently, grid sampling
methods can generate a significant number of patches without any labeled pixels, which
can pose challenges during model development. In our review of the literature, we did not
encounter any work that effectively mitigated this issue for the Grid Simple method. The
only solution we can propose is to remove these entirely unlabeled patches from the initial
valid set before the assignment of the training or testing sets.

Figure 20. Example execution of the Grid Simple sampling algorithm on the Indian Pines dataset
with P = (5, 5), rtrain = 0.15, and an unstrided grid. Grid Simple sampling results in medium to
low spatial autocorrelation due to the low count of total samples produced. Similarly, due to the
unstrided nature of this example, no overlap correlation is present. However, this results in very few
observations for model development. It also results in very few observations for model assessment, if
only the CPL label is predicted during assessment as opposed to the entire testing patch. We discuss
this tidbit further in Section 4.

Zhang Grid [47] (Figure 21) utilized an unstrided grid; the grid size is further required
to ensure that each class is represented in at least two of the resulting patches. If the final
grid size does not evenly divide the original dataset’s dimensions, padding is added to
patches that do not meet the desired size. All CPLs that would result in entirely unlabeled
patches are removed (Zhang et al. actually placed these into a “waiting for prediction” [47]
set, which was unused during model development). Once the initial valid set of CPLs (and,
thus, patches) is identified, the patches are assigned to the training and testing sets. The
first step in this assignment is to place all patches containing only a single label type into
the testing set (it is unclear whether these patches are allowed to contain unlabeled pixels).
The remaining patches are then sorted by “category or by the number of samples within
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each category” [47]. The specific sorting algorithms are not well described, but an example
of sorting by category is provided. To our understanding, the process involves iterating
over each class, identifying all patches containing that class, and sorting them by the total
number of matching labels in the patch. These patches are then split into the training
and testing sets with a probability of (rtrain, rtest). After the assignment, the patches are
removed from the pool of unassigned patches, and the process continues until all patches
are assigned to either the training or testing set.

Figure 21. Example execution of the Zhang Grid [47] sampling algorithm on the Indian Pines dataset
with P = (5, 5) and rtrain = 0.15. This presents a similar result to Grid Simple but with more label
variation in the selected training patches. Due to the manner in which training and testing patches
are assigned, it is difficult to achieve a desired rtrain or commensurate class distribution.

Zou Grid [48] (Figure 22) also employed an unstrided grid. Initially, all entirely
unlabeled patches are discarded. Similar to Zhang Grid, all patches containing only a single
label are placed into the test set (again, it is unclear if these patches may include unlabeled
pixels). The remaining patches are then sorted in the order they appear when iterating
through the grid by rows from top to bottom and columns from left to right, with the origin
at the upper left-hand corner. After ordering, this set is divided into K subsets of equal
size (with the final subset potentially being of unequal size). It is unclear how the value of
K is determined; Zou et al. only noted the following: “The parameter K is limited by the
percentage of pixels taken as training samples” [48]. In their work, they used K = 9. Finally,
one of these K subsets is selected as the training set, one is set aside for validation, and the
remaining subsets are added to the testing set. Notably, this is the only identified sampling
method that explicitly provides a mechanism for generating a validation set, which we
discuss further in Section 4.

Figure 22. Example of the execution of the Zou Grid [48] sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. This presents a similar result to the Zhang Grid. Furthermore,
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the same drawbacks may be present, including difficulty in achieving a desired rtrain or commensurate
class distribution. In the two specific examples presented for Zhang Grid and this Zou Grid result,
the Zou Grid selected even fewer training CPLs.

3.1.11. Partitioning Sampling Methods

All partitioning sampling methods operated by defining at least two spatial partitions
of the original dataset, from which CPLs were selected exclusively for either the training
or testing set. The motivation behind this approach is its ability to readily ensure that no
overlap correlation exists between the training and testing sets. Although often unstated in
the literature, this method can also significantly reduce spatial autocorrelation when the
number of spatial partitions is low, as only patches near the partition boundaries are likely
to exhibit local spatial autocorrelation (we believe it to be a reasonable hypothesis that
partitioning-based samplers could achieve the lowest possible spatial autocorrelation for a
given dataset by identifying a partition boundary that maximizes the separation between
labeled pixel locations, thereby minimizing the potential for local spatial autocorrelation
near the boundary). However, a major drawback of this approach is the computational
burden involved in identifying partitions that create commensurate class distributions.
While we did not find any existing algorithmic solutions to this challenge in the literature,
we propose one in our clustered partitioning sampling method, which will be discussed in
the following section.

The Spatial Partitioning sampling method itself lacks a standardized algorithmic
implementation. Four manual methods of identifying partitions appear in the literature.
The first is the creation of two partitions from a single-image dataset [40–42,51,55,56,58,59]
where one is selected for training and the other for testing. The second relies on the inherent
partitioning of multi-image datasets [36,49,50,52–54] to create disjoint sets (this approach
is essentially “random sampling”, as viewed from outside the field of remote sensing,
on typical image-based datasets for classification). The third is the creation of multiple
partitions from a single-image dataset [39], where some subset of partitions is used for
training and the rest for testing (this technique approaches a form of random sampling with
a P minimum distance between patches, as the number of partitions reaches a maximum).
The final is the creation of two or more partitions per image in a multi-image dataset [57,60].

All of these identified methods accomplish the task of identifying spatially disjoint
areas across the spatial extents of the entire dataset. Apart from the identified methods,
many alterations can be made that still fit this precept. For example, in our previous
work, Decker et al. [73,74], we utilized an alteration of the first method where instead
of two partitions we created three. In this case, the third partition was used to create
validation data for model development purposes.

3.2. New Sampling Method Implementation

In response to the lack of a standardized algorithmic implementation for spatial
partitioning sampling methods identified during our literature survey, we introduce a
new sampling method called clustered partitioning. Existing methods rely on manual or
ad-hoc partitioning approaches that are often inconsistent and fail to fully address the
challenges of creating commensurate class distributions while minimizing overlap and
spatial autocorrelation. Clustered partitioning provides an automated solution by defining
spatially disjoint partitions that ensure no overlap correlation, while also attempting to
achieve the desired class balance and training-to-testing ratio. This method aims to fill
the gap in current partitioning-based sampling techniques, offering a more structured
approach to partitioning the spatial extents of remote sensing datasets.
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Clustered Partitioning

Clustered partitioning is inspired by the Hansch Controlled [5] sampling method.
The Hansch Controlled method creates two clusters for each class in the dataset, assigns
one for training CPL selection and the other for testing CPL selection, and ensures a P
boundary around the selected training samples. During the review of the Hansch sampling
method, we realized that all labeled pixel coordinates could simply be spatially clustered
to create two “global clusters” of CPLs; as opposed to the Hansch Controlled per-class
method. These global clusters function similarly to the disjoint spatial partitions used by
partitioning-type samplers.

Once these two global clusters are established, their centroids are calculated, and a
perpendicular bisector is drawn, extending to the edges of the image. This bisection line
then serves as the boundary between the two partitions. To prevent overlap correlation near
this boundary, all CPLs within a P

2 tangential distance from the boundary are removed from
the initial valid set. Finally, in an attempt to maintain the desired Bernoulli distribution
allocation values (rtrain, rtest), the partition with the fewest valid CPLs is assigned to the set
type corresponding to min(rtrain, rtest).

Figure 23 illustrates an example output of the clustered partitioning sampling method
on the Indian Pines dataset using P = (5, 5) and rtrain = 0.15. This figure demonstrates
that the automated approach of clustered partitioning generates a partition boundary that
bisects the spatial extents of labeled pixels in the image. Notably, as a result of labeled
pixels having static locations for a given dataset, the partition boundary that clustered
partitioning creates is deterministic. The only change to the training and testing partitions
will be how many CPLs near the boundary become invalid with larger patch sizes.

Figure 23. Example execution of the clustered partitioning sampling algorithm on the Indian Pines
dataset with P = (5, 5) and rtrain = 0.15. Partitioning-based sampling methods, like clustered
partitioning, result in extremely low spatial autocorrelation and no overlap correlation. However, this
comes at the cost of great difficulty in achieving the desired rtrain or a commensurate class distribution
similar to those found in grid-type sampling methods.

The primary limitation of clustered partitioning stems from the deterministic nature
of its partition boundary. Once the boundary is established, the number and spatial
distribution of valid CPLs on each side are fixed by the layout of labeled pixels in the
dataset. As a result, both the achievable Bernoulli distribution allocation values (rtrain, rtest)

and the resulting class distributions are not freely tunable, but are instead constrained by
the geometry of the data. In the figure, it is apparent that much more than a rtrain = 0.15
amount of pixels were placed in the training set. One potential solution is to not include
all CPLs from the training partition in the training set, similar to the method proposed by
Hansch Controlled to address a related issue.
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The second drawback is that—due to the static partition boundary—achieving com-
mensurate class distribution is rare. For instance, in the example shown in Figure 23, the
training partition lacks representation of 5 of 16 classes (class indices 4, 8, 12, 15, 16), while
the testing set has no representation of 4 of 16 classes (class indices 1, 7, 9, 13). While
a solution for including non-represented classes remains elusive, a potential approach
to generating more commensurate class distributions is similar to achieving the desired
(rtrain, rtest) values, that is, employing Random Stratified sampling of the subsets of CPLs
within the training and testing partitions to enforce more balanced class distributions.

3.3. Sampling Algorithm Software Library

In addressing the common issue of partially and poorly documented sampling meth-
ods in the field, we have identified an existing software library that provides comprehensive
implementations of various sampling methods. This library is particularly noteworthy
because it fortuitously includes well-documented and concrete implementations in the
Python programming language, making it a valuable resource for the research commu-
nity. The software library can be accessed at https://github.com/kevindckr/samplify
(accessed on 2 December 2024).

Given the incomplete documentation of most identified samplers in the literature, this
software library necessarily assumes certain interpretations of the original intentions and
implementations of these methods. These assumptions, along with any modifications made
to align with contemporary practices, are thoroughly documented within the source code.
This transparency ensures that users can fully understand the basis for the implemented
methods and adjust them as needed for their specific applications. Additionally, the
codebase includes tools to characterize each sampling method as described in this article,
providing implementations for measuring the objective desirable characteristics of each
sampler. The complete set of implemented sampling methods is listed in Table 4.

Table 4. All sampling methodologies implemented in the provided software library.

Supertype Name Original Reference

Random Clark Stratified Clark et al. [66]
Liu Random Liu et al. [27]
Random Equal -
Random Stratified -
Random Uniform -

Controlled Acquarelli Controlled Acquarelli et al. [46]
Hansch Controlled Hansch et al. [5]
Lange Controlled Lange et al. [6]
Liang Controlled Liang et al. [4]
Zhou Controlled Zhou et al. [3]

Grid Zhang Grid Zhang et al. [47]
Zou Grid Zou et al. [48]
Grid Simple -

Partitioning Clustered Partitioning This Work

3.4. Sampling Algorithm Empirical Testing

We used the identified software library to conduct 3024 sampling algorithm experi-
ments. Each experiment varied four parameters: sampling algorithm, dataset, patch size,
and rtrain. The values for these parameters are provided in Table 5. We recorded four
measurements that represent the desirable characteristics, namely, overlap percentage
(OP), Moran’s I (MI), KL divergence (KL), and difference ratio (DR). Each experiment was

https://github.com/kevindckr/samplify
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repeated three times with different random seeds, resulting in a total of 1008 averaged
experiment results.

Table 5. Parameters used in the sampling experiments. A total of 3024 executions were performed
and results were averaged over 3 trials per combination, resulting in 1008 averaged results with 72
per sampling algorithm.

Independent Variable Number of Values Values

Sampling Algorithm 14 All Available (See Table 2)
Dataset 8 All Available (See Table 4)
Patch Size 3 {(5 × 5), (9 × 9), (15 × 15)}
rtrain 3 {0.05, 0.15, 0.25}

Figure 24 provides an overview of the experiment results for a representative subset of
the sampling algorithms (see the Appendix C, Figure A2 shows the results for all sampling
algorithms). The selected subset includes clustered partitioning, Hansch Controlled, Grid
Simple, and Random Stratified, corresponding to the sampling algorithm types described
in Section 3.1.5. Appendix C.1 offers further details, but here is a summary:

• Clustered partitioning was selected because it is the only available partitioning-type
method for automated testing.

• Hansch Controlled was chosen because it is the only controlled-type method that fully
mitigates overlap correlation.

• Grid Simple was selected because all grid-type methods produced nearly identical
results, and it is the least complex.

• Random Stratified was chosen because all random-type methods yield nearly identical
results, and it is the most commonly observed algorithm from the literature survey.

Figure 24 presents a parallel coordinates plot for each of the representative sampling
algorithms. Each line in the subplots corresponds to one of the 72 averaged experiment
trials for each algorithm. The y-axes represent the four desirable characteristic measure-
ments, with shared ranges across all subplots, scaled globally across all experiment results.
Additionally, the y-axes were normalized and oriented so that more desirable values are
higher and less desirable values are lower. As a result, subplots with lines trending toward
the top of the plot area indicate more desirable outcomes, while those lower indicate less
desirable outcomes.

In Figure 24, we observe varying performance across the four representative sampling
algorithms. Each plot highlights different trends in the desirable characteristics, helping
us evaluate how well each algorithm avoids inducing bias in empirical error calculations
during model development. Moreover, the empirical results for each algorithm align with
the theoretical descriptions provided in Section 3.1.5.

The results for Random Stratified show undesirable and tightly bounded OP and MI
values, indicating a high amount of overlap correlation and local spatial autocorrelation.
OP values tend toward 100%, which occurs because the algorithm does not control for
the proximity of training and testing CPLs, often placing them as direct rook neighbors.
The MI values are all approximately 0, reflecting the low global spatial autocorrelation
caused by the random placement of CPLs. However, due to the stratified selection of
CPLs, the algorithm achieves near-perfect KL values across all experiments. Additionally,
because the algorithm uses rtrain to calculate the number of CPLs per class in each stratum,
it also achieves near-perfect DR values. Overall, Random Stratified, like most random-type
sampling methods, is not suitable for model development due to the high overlap and local
spatial autocorrelation it allows.
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Figure 24. Parallel coordinates plots showing the results for a subset of sampling algorithms: clustered
partitioning, Hansch Controlled, Grid Simple, and Random Stratified. Each line represents one of
the 72 averaged experiment trials for each algorithm. The y-axes correspond to the four measured
characteristics: overlap percentage (OP), Moran’s I (MI), KL divergence (KL), and difference ratio
(DR), with values normalized and scaled globally across all experiments. Algorithms with lines
trending toward the top of the plots indicate more desirable outcomes.

Grid Simple also shows tightly bounded OP and MI values. Unlike Random Stratified,
its OP values are desirable, but its MI values are not. Since we did not enable strided grid
positions, no patch overlap occurred, resulting in OP values of 0% for all experiments.
However, similar to Random Stratified, the random selection of CPLs (specified by the
grid coordinates) results in MI values near 0, indicating low global spatial autocorrelation.
Furthermore, the grid-based CPL selection leads to widely varying KL values, as the
algorithm cannot consistently match class distributions in the training and testing sets.
Despite this, Grid Simple achieves near-perfect DR scores due to its use of rtrain for the
training patch assignment. Like most grid-type algorithms, Grid Simple is not well-suited
for model development due to the substantial local spatial autocorrelation it permits.

The results for Hansch Controlled (Figure 24) show consistently desirable OP values,
all at 0%, because it completely prevents overlap between the training and testing sets,
effectively eliminating overlap correlation. Along with Acquarelli Controlled, it is the
only controlled-type method that fully mitigates overlap. The MI values are also desirable,
with many close to 1.0, indicating strong global spatial autocorrelation. This is because
the Hansch Controlled method clusters each class into two groups, using one for training
CPL selection and the other for testing, thereby spatially separating the training and
testing patches.

However, the variation in MI values stems from intrinsic spatial relationships within
the datasets. Specifically, training clusters from different classes may be located near each
other, reducing spatial separation. This issue becomes more pronounced in datasets with a
low percentage of labeled pixel locations. As the number of labeled pixels decreases, the
likelihood of neighboring clusters from the same set increases. This pattern is evident in our
experiments, particularly in datasets with fewer labeled pixels, as shown in the right-hand
subplot of Figure 25. Here, datasets with fewer labeled pixels exhibit lower MI values
(closer to 0), while those with more labeled pixels show higher MI values (closer to 1).

The KL and DR values of Hansch Controlled are also desirable, as the algorithm selects
CPLs from the training clusters in a manner similar to Random Stratified, based on rtrain.
Overall, Hansch Controlled is well-suited for model development because it minimizes
local spatial autocorrelation and eliminates overlap correlation. Other controlled-type
algorithms can also be suitable but may lead to low to moderate levels of both types
of correlation.
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Figure 25. Parallel coordinates plots showing the averaged results for clustered partitioning and
Hansch Controlled sampling algorithms, broken down by dataset. Each line represents one of the
72 averaged experiment trials per dataset, with color coding indicating the percentage of labeled
pixels in each dataset. Applying Hansch Controlled to datasets with fewer labeled pixels results in
undesirable MI values. Applying clustered partitioning to datasets with fewer labeled pixels results
in undesirable KL values.

Clustered partitioning (Figure 24) shows desirable and tightly clustered OP and MI
values, indicating no overlap correlation and minimal local spatial autocorrelation. The
OP values are consistently 0% because the algorithm invalidates all CPLs within a distance
of P

2 from the partition boundary, effectively preventing patch overlap. The MI values are
nearly 1.0 across all experiments, reflecting the selection of patches from spatially disjoint
partitions, which ensures strong global spatial autocorrelation.

However, like Hansch Controlled, clustered partitioning is influenced by the intrinsic
spatial relationships within datasets. Since the partition boundaries are deterministically
computed for each dataset, the resulting partitions have fixed class distributions. If these
distributions do not match the empirical distribution of the dataset, non-zero KL values will
result. This effect becomes more pronounced in datasets with a low percentage of labeled
pixels, where the smaller number of samples within each partition’s class distribution leads
to larger KL values. This pattern can be seen in the left-hand subplot of Figure 25, where
datasets with fewer labeled pixels show higher KL values.

Similarly, the deterministic class distributions and fixed CPL counts within partitions
result in static realizable rtrain values. Any requested rtrain value that deviates from the
fixed distribution will produce non-zero DR values. This is evident in Figure 25, where
the three groupings of DR values display an even distribution of dataset representation.
The DR value varies with rtrain, creating three distinct groupings based on how closely the
requested rtrain aligns with the partition’s class distribution.

Overall, clustered partitioning, like most partitioning-type sampling methods, is well-
suited for model development because it minimizes both local spatial autocorrelation and
overlap correlation.

4. Discussion
In this study, we focused specifically on the desirable characteristics of sampling

algorithms that address issues related to correlation, particularly the bias introduced by the
overlap between training and testing patches and the influence of spatial autocorrelation.
While these characteristics are important for assessing the impact of correlation on model
performance, it is necessary to recognize that other generally desirable characteristics of
sampling methods were not discussed or measured here. However, based on the results,
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partitioning-type and controlled-type sampling algorithms, such as clustered partitioning
and Hansch Controlled, are well suited for model development when the goal is to reduce
correlation-induced bias in empirical error. In contrast, random-type and grid-type algo-
rithms tend to allow higher levels of overlap correlation and local spatial autocorrelation,
making them less suitable for these purposes. However, we emphasize that this suitability
is highly context-dependent, and no single algorithm or type universally provides optimal
performance due to the inherent complexity and variability in remote sensing data. It is
important to note that each model development task requires careful consideration of both
the issues addressed here and other factors when selecting a sampling algorithm.

These results do not suggest that random-type and grid-type sampling methods are
inherently unsuitable. With appropriate modifications, both types—along with partitioning
and controlled methods—can be adapted to fit specific scenarios. Instead, our findings
underscore the necessity of tailoring and adapting sampling approaches specifically to each
unique scenario. For example, if overlap correlation is properly managed in a random-type
sampling algorithm, larger patch sizes are used, and patches are sampled more sparingly,
both forms of correlation could be significantly reduced. Grid-type methods could be
improved by avoiding random CPL selection and opting for a more controlled approach,
which would help reduce local spatial autocorrelation. Thus, the critical takeaway is that
effective sampling strategy selection is a nuanced process requiring detailed consideration
of multiple context-specific factors rather than adherence to generalizable guidelines. In
general, by addressing the issues of correlation and applying existing mitigation strategies,
any of the described sampling methods could potentially be modified to suit different
model development instances.

While we believe the findings of this work provide considerable contributions to the
field, there are many unaddressed complications and challenges that we did not address.
The reasons these were not addressed are due to their complicated effect on the issues and
topics negotiated in this work, which is quite lengthy as is. In the following section, we
discuss many of the unaddressed challenges we identified. We further note that this is
not an exhaustive list, we believe there are many other complications that we have not
yet identified that can have a bearing on sampling algorithm and model development
design decisions.

Unaddressed Complications and Challenges

We used qualitative terms like small, medium, and large to describe dataset sizes
because correlation issues are complex and not solely determined by size. While spatial
autocorrelation decreases with distance and thus with larger datasets, overlap correlation
does not diminish similarly. Large datasets can still exhibit significant overlap correlation,
particularly when images are larger than the patch size and contain multiple patches.
Therefore, correlation issues are tied more to image and patch characteristics than to dataset
size alone.

The thresholds at which spatial autocorrelation effects become negligible are unclear.
Likewise, we do not know how large a dataset must be, or how much overlap correla-
tion it can have before the impact on model assessment is minimal. Identifying specific
benchmarks in terms of pixels, images, or classes is challenging.

Most of the machine learning tasks we addressed focus on semantic segmentation,
with a few exceptions like height prediction [75,76]. Semantic segmentation naturally
involves patch creation, making related articles easier to identify. However, tasks other
than semantic segmentation that use patches are harder to pinpoint. Any task requiring
patches smaller than the image size can introduce a correlation between training and testing
sets, but we did not address this due to the difficulty in identifying such articles.
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We did not discuss the distinction between classification and semantic segmentation
in data processing and error estimation. Traditionally, remote sensing models performed
single-pixel classification by predicting labels from individual pixels or small patches. With
the rise of CNNs and GPGPU computing, semantic segmentation became standard, where
models ingest larger patches and predict labels for every pixel in the input.

In single-pixel classification, predicting one label does not affect others, and model
assessment is straightforward. In semantic segmentation, overlapping testing patches and
post-processing methods like voting can complicate assessment. If a testing patch overlaps
with training data, its predictions can influence those of a testing-only patch, introducing
correlation. Careful post-processing is needed to avoid this issue.

There are several ways in which pre-processing and post-processing steps can influ-
ence correlation. For example, removing labels of overlapping pixels (and setting them as
unlabeled [69,70]) is inadequate because models still utilize their spectral values during
training, thereby maintaining correlation. Secondly, zeroing out or replacing spectral values
of overlapping pixels might seem helpful, but its effects are unclear and require careful
study. Thirdly, global filtering during pre-processing can inadvertently introduce or worsen
correlation, as explored by Liang et al. [77].

Remote sensing datasets are often only partially labeled; in our work, datasets ranged
from 0.8% to 48% labeled. This leads to many patches with unlabeled pixels. It is unclear
whether overlap at unlabeled pixel locations contributes to correlation. Some CNN loss
functions ignore unlabeled pixels in the loss calculation [73,74], but convolution still uses
all pixels to learn filters. Other methods may handle this differently, suggesting that specific
combinations of methods and allowable unlabeled pixel overlap could lead to optimal,
case-specific sampling strategies.

We focused on creating and evaluating training and testing data, not on validation data
for model selection. This is because most surveyed works did not mention validation data,
and modifying sampling methods to produce a validation set without adding correlation
issues is challenging. A validation set would need a low correlation with both the training
and testing sets to avoid biased model selection and to provide meaningful estimates
of generalizability.

Additionally, while this work focused on structural characteristics of sampling meth-
ods and their impact on correlation, we acknowledge that some methods may exhibit
sensitivity to user-defined parameters such as patch size, grid stride, or clustering behavior.
These effects are not deeply explored here but are worth investigating in future studies, par-
ticularly in terms of their influence on overlap and spatial autocorrelation under different
dataset configurations.

5. Conclusions
Waldo Tobler described the First Law of Geography as “everything is related to

everything else, but near things are more related than distant things” [78]. The assertion
underscores the fundamental principle of spatial dependency in geography, geostatistics,
and spatial statistics, emphasizing that the degree of relatedness between entities increases
with proximity, thereby constraining the analysis and interpretation of spatial data. This
study provides strong evidence that this idea requires more consideration when developing
machine learning models within this highly related field.

We encourage interested readers to begin with the comprehensive theoretical survey
by Nikparvar et al. [79], which provides a broad overview of the relevant concepts. Addi-
tionally, Zhang et al. [16] offer a valuable practical perspective by examining six regression
models in a real-world setting, making it an excellent resource for those looking to see
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the application of these ideas in practice and their parallels to the challenges discussed in
this study.

In addition to our general recommendation for increased consideration of spatial
dependency in remote sensing research, the results of our survey point to specific, actionable
steps that can be implemented immediately. First and foremost, it is essential to provide
a clear and detailed description of how training and testing data are generated and used
during practical applications. The high number of survey articles that offered only partial
documentation of their sampling methods underscores the need for this recommendation.
Clear documentation is vital for scientific repeatability; without it, replicating previous
work to build upon existing knowledge becomes challenging, if not impossible.

Following this, we strongly recommend that researchers explicitly state any biases
resulting from the sampling process that may affect the reported empirical results. While
acknowledging the potential for correlation is an important first step, it is not sufficient on
its own. Future researchers need this information to accurately compare their results with
previous works. Without such transparency, it becomes difficult to steer the field toward
continual improvement. The lack of a level playing field in comparing model development
methodologies could even discourage further research, as consistently positive results
(stemming from highly correlated training and testing data) may create the false impression
that the field has stagnated at a local optimum.

Finally, we recommend that researchers re-engage with the statistical foundations
of machine learning to ensure greater rigor in its application. By doing so, the field can
advance more confidently, grounded in a thorough understanding of both the challenges
and the potential of machine learning in the context of spatial data.
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Appendix A. Survey Procedures Flowchart

Figure A1. Flowchart summarizing the systematic review procedure. This diagram illustrates the
sequential steps taken during the article search, review, and analysis, explicitly highlighting the
inclusion criteria applied during the multi-pass article screening. The final selection of 146 relevant
articles resulted from this structured workflow.
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Appendix B. Tables of Survey Article References by Attribute Type

Table A1. Articles per year.

Year Count References

2015 12 [39,80–90]
2016 10 [7,38,91–98]
2017 18 [71,77,99–114]
2018 24 [11,46,49,58,59,62,67,115–131]
2019 19 [40,54,56,132–147]
2020 13 [35,41,48,51,53,55,60,61,75,148–151]
2021 16 [43,45,50,52,63,64,76,152–160]
2022 20 [26–28,37,44,65,68–70,161–171]
2023 14 [36,42,47,57,66,72,172–179]

Table A2. Articles per sampler type.

Sampler Count References

Acquarelli Controlled 1 [46]
Clark Stratified 1 [66]

Grid 6 [35,45,61,62,64,65]
Hansch Controlled 1 [37]

Liu Random 1 [27]

Random Equal 44 [26,28,38,63,71,76,77,84,92,97–100,102,104–107,110,115,116,122–124,126–
129,131,134,138,140–142,148,151,154,155,159,160,162,163,173,177]

Random GRSS13 19 [44,80,83,86,101,109,117,132,135,145,146,153,157,158,165,166,170,172,175]

Random Stratified 44 [7,11,43,67–70,72,81,82,87–89,91,93–96,103,108,111–114,118–121,125,130,133,136,137,
139,143,144,147,149,150,161,167–169,176]

Spatial Partitioning 17 [36,39–42,49–60]
Unknown 10 [75,85,90,152,156,164,171,174,178,179]

Zhang Grid 1 [47]
Zou Grid 1 [48]

Table A3. Articles per sampler documentation.

Documentation Amount Count References

Full 7 [27,47,48,52,66–68]
No 12 [64,65,75,89,90,117,152,156,164,174,178,179]

Partial 127 [7,11,26,28,35–46,49–51,53–63,69–72,76,77,80–88,91–116,118–151,153–155,157–
163,165–173,175–177]

Table A4. Articles per correlation issue present.

Issue Present Count References

No 27 [27,36,39–63]

Unknown 49 [7,35,37,64,69,70,75,81,83–87,89,95,96,98,102–104,107,109,112–115,119,123,126,127,137–
140,146,148,152,156,159,162,164,167–169,171,174,177–179]

Yes 70
[11,26,28,38,65–68,71,72,76,77,80,82,88,90–94,97,99–101,105,106,108,110,111,116–118,120–
122,124,125,128–136,141–145,147,149–151,153–155,157,158,160,161,163,165,166,170,172,173,
175,176]
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Table A5. Articles per correlation issue acknowledgment.

Acknowledged Count References

No 132 [7,11,26,28,35,49–72,75–77,80–179]
Yes 14 [27,36–48]

Table A6. Articles per issue acknowledgment and overlap correlation.

Acknowledged Issue Present Count References

No No 15 [49–63]

No Unknown 48 [7,35,64,69,70,75,81,83–87,89,95,96,98,102–104,107,109,112–115,119,123,
126,127,137–140,146,148,152,156,159,162,164,167–169,171,174,177–179]

No Yes 69
[11,26,28,65–68,71,72,76,77,80,82,88,90–94,97,99–101,105,106,108,
110,111,116–118,120–122,124,125,128–136,141–145,147,149–151,153–
155,157,158,160,161,163,165,166,170,172,173,175,176]

Yes No 12 [27,36,39–48]
Yes Unknown 1 [37]
Yes Yes 1 [38]

Table A7. Articles per dataset (A–K).

Dataset Count References

AIRS 1 [152]
AlexandraCanal 1 [65]

Alto Tajo 1 [81]
Ausburg 2 [176,177]

Bayview Park 2 [82,100]
Berlin 2 [173,176]

Big Pines 1 [144]
Botswana 3 [26,77,96]
Brookings 1 [54]
Cerrado 1 [36]
Chendu 1 [61]

Dordogne 1 [43]
Finland 1 [164]

Flevoland 1 [37]
GRSS07 1 [166]

GRSS13 49 [26,28,39,44,48,54,60,63,68,80,83,86,92,97,100,101,107,109,117,120,126–128,131–133,135,141,145–
147,151,153,155,157–159,164–166,168,170–173,175–178]

GRSS14 4 [123,136,163,169]
GRSS17 1 [70]
GRSS18 32 [26,40–42,47,49–51,54–56,58–60,70,75,76,118,140,148,152,154,157,158,162,167,171,173–175,178,179]
GRSS22 1 [72]

Galveston 1 [126]
GeoManitoba 1 [35]
Guangzhou 1 [62]

Hanover 1 [178]
Harbin 2 [123,136]

HoustonCity 1 [64]
Huelva 1 [81]
INRIA 1 [152]

ISPRS Potsdam 2 [62,152]
ISPRS Vaihingen 3 [75,76,152]

ISPRS Vaihingen3D 1 [53]

Indian Pines 57 [7,11,26–28,42,46–48,67,68,71,77,84,88,93–96,98,99,102–108,110–114,116,119–121,124,125,129,130,
133,136,138,139,143,144,147,149,150,155,160,161,167–169,172]

KSC Florida 11 [27,46,93,99,108,112,115,130,143,144,160]
KermanCity 1 [137]
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Table A8. Articles per dataset (L–Y).

Dataset Count References

LCZ 1 [175]
LCZHongKong 1 [177]

LocalClimateZones 1 [52]
MUUFL 3 [151,159,165]
Matiwan 1 [162]

MiniFrance 1 [72]
NISAR 1 [156]
Nashua 1 [178]

Oberpfaffenhofen 1 [37]
Osaka 1 [56]

Pavia Center 16 [38,46,52,60,71,84,88,89,91,96,106,115,122,142,149,154]

Pavia University 66
[11,26–28,38,42,46,48,52,60,67,68,71,77,85,88–91,93–95,98,102–108,110,112–
116,119–122,124–126,128–131,134,136,138,139,142–144,147,149,150,154,155,160–
163,168,169,172]

Queensland 1 [66]
Recology 2 [82,100]

ReunionIsland 1 [43]
Rio Tinto 1 [164]
Rochester 1 [141]

Salinas 32 [27,28,46–48,71,84,88,99,102–106,110,114,116,120,125,128,129,134,139,143,144,147,150,
154,157,163,168,169]

ShenzhenDongguan 1 [45]
ShirazCity 1 [137]

Tabada 1 [81]
Toronto 1 [87]
Trento 9 [44,101,109,128,146,151,164–166]
VEDAI 1 [152]

Vancouver 1 [69]
Vancouver Harbor 1 [69]

WUSU 1 [57]
Washington 2 [133,161]
Wertheim 1 [153]

XJTU 1 [69]
Xian South 1 [69]
Yancheng 1 [60]

YellowRiver 1 [162]
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Appendix C. Extended Empirical Results Figure

Figure A2. Parallel coordinates plots showing the results for all sampling algorithms. Each line
represents 1 of the 72 averaged experiment trials for each algorithm. The y-axes correspond to the
four measured characteristics: overlap percentage (OP), Moran’s I (MI), KL divergence (KL), and
difference ratio (DR), with values normalized and scaled globally across all experiments. Algorithms
with lines trending toward the top of the plots indicate more desirable outcomes.

Appendix C.1. Representative Sampling Algorithm Selection

The appendix in Figure A2 presents the empirical results for all the sampling methods
discussed in Section 3.4. As noted, a subset of the available and tested sampling algo-
rithms was selected for presentation in Section 3.4, with further discussion on the subset
provided here.

All random-type sampling algorithms (shades of red in Figure A2) produce nearly
identical results, except for Liu Random. Liu Random differs because it prevents overlap
correlation by enforcing a P boundary around training patches, resulting in a 0% overlap.
Additionally, Liu Random selects only one patch per class for the training set, leading to a
highly imbalanced number of samples between the training and testing sets. As a result,
the global spatial autocorrelation, measured by Moran’s I, is very high. Furthermore, Liu
Random is poorly documented, as discussed in Section 3.1.8, and our interpretation of
its description finds it poorly motivated. Therefore, Random Stratified was chosen as the
representative random-type sampling method, as it produces nearly identical results to the
other random-type methods and was the most frequently cited during the literature survey.

Similarly, all grid-type sampling algorithms (shades of blue in Figure A2) yield nearly
identical results. Zhang Grid and Zhou Grid achieved slightly more balanced KL diver-
gence between the training class distribution and the dataset’s empirical class distribution
due to their patch selection strategies. However, in terms of the other three measured
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characteristics, all grid-type samplers performed identically. Grid Simple was selected as
the representative grid-type method because it is the simplest and easiest to understand.

The controlled-type sampling algorithms (shades of green in Figure A2) do not produce
identical results. To select a representative sampler, we first excluded methods that did
not fully mitigate the overlap correlation (Lange Controlled, Zhou Controlled, and Liang
Controlled). This was done for two reasons: first, the overlap correlation introduces a
stronger bias toward the empirical error; second, it is relatively straightforward to fully
eliminate overlap correlation. Acquarelli Controlled was also excluded because, like Liu
Random, it was poorly documented and poorly motivated. This left Hasnch Controlled as
the representative controlled-type sampling method.

Finally, as discussed in Section 3.1.11, we did not identify any other automated
partitioning-type sampling methods for testing. The only partitioning-type sampling
algorithm provided is described in this work. Consequently, clustered partitioning was
selected as the representative partitioning-type sampling method.
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