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Abstract: Central Asia, and in particular Tajikistan, is one of the most geologically haz-
ardous areas in the world, particularly in terms of seismicity, floods, and landslides. The
majority of landslides that occur in the region are seismically induced. A notable site is
the Baipaza landslide, which has been subject to deformation since the 1960s, with the
most recent collapse occurring in 2002. The potential collapse of the landslide represents
a significant risk to the nearby Baipaza hydroelectric dam, situated 5 km away, and has
the potential to create widespread challenges for the entire region. The objective of this
work is to provide a comprehensive characterization of the Baipaza landslide through
the utilization of satellite remote-sensing techniques, exploiting both Sentinel-1 Synthetic
Aperture Radar (SAR) and Sentinel-2 optical images freely available from the European
Space Agency’s (ESA) Copernicus project. The employment of these two techniques enables
the acquisition of insights into the distinctive characteristics and dynamics of the landslide,
including the displacement rates up to 246 mm/year in the horizontal component; the
precise mapping of landslide boundaries and the identification of distinct sectors with vary-
ing deformation patterns; and an estimation of the volume involved within the landslide,
which is approximately of 1 billion m3.

Keywords: landslide; SAR interferometry; Sentinel-1; COSI-Corr; Sentinel-2

1. Introduction
Central Asia ranks among the world’s most geologically hazardous regions, facing

significant threats from seismic activity, flooding, and landslides [1,2]. The region’s location
within the Eurasian–Indian continental collision zone is a key geological factor contributing
to the elevated hazard. The northward collision of the Indian Plate with the Eurasian Plate
generates a wide range of geological hazards [3,4]. This collision has led to the formation
of a highly mountainous terrain, a defining feature of the region, characterized by ongoing
deformation; active faulting; and frequent, strong earthquakes [5]. Consequently, the
complex geological structures, rugged landscape, and high seismicity of these areas make
large landslides a likely occurrence [6].

Studies on landslides [7,8], avalanches [9], and earthquakes [10] have shown that one
of the most affected areas of Central Asia is Tajikistan. This is due to a combination of its ge-
ographical and geomorphological features, including high mountains that are characterized
by continuous deformation and deep intermountain depressions that separate mountain
ridges [11]. The majority of landslides affecting Tajikistan are rotational/translational
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slides, rock avalanches, and mud/debris flows [12]. These are caused by intense rainfall,
earthquakes, or snowmelt [13]. They are identified as the third most dangerous natural
hazard in the country, after earthquakes and floods [2]. Furthermore, an analysis of the
landslides that have occurred in the area has identified certain sites that are particularly
susceptible to this type of hazard, with recurrent events occurring in locations such as
Baipaza, Maylusuu, and Naugarzan [14]. Landslides are the result of a complex interplay
of several factors, including geology, topography, seismic activity, and geomorphology [15],
and can have significant socio-economic and environmental consequences at the national
level [16].

This study investigates the Baipaza landslide in the Tajik Depression, a site of signifi-
cant concern due to the landslide’s size and potential to create a river dam upon failure. The
proximity of the Baipaza dam, a crucial infrastructure of Tajikistan, further heightens this
concern, as its stability could be compromised. Considering the area’s challenging topogra-
phy, remote-sensing techniques emerge as effective and valuable methods for analyzing
and studying this inaccessible region.

In order to provide a comprehensive overview of the Baipaza landslide, two remote-
sensing techniques were employed. The first is the Interferometric Synthetic Aperture Radar
(InSAR), a powerful tool for detecting and measuring Earth surface changes with millimetric
precision [17], including subsidence [18,19], landslides [20], earthquakes [21], and glacier
movement [22]. In particular, we used the SqueeSAR [23] algorithm, an evolved form of
traditional multitemporal InSAR techniques. It leverages radar backscattering information
from both the Permanent Scatterers (PSs), which include strong reflectors like buildings
and rock outcrops, and the Distributed Scatterers (DSs), which encompass areas exhibiting
low but consistent backscattering, such as low vegetation or bare soil. A fundamental
aspect of the SqueeSAR is the distinction between PS and DS, which relies on different
statistical methods. A key advantage of InSAR is its capability to generate displacement
time series over extended periods by combining data from multiple SAR acquisitions [24].
The application of statistical methodologies, including the Principal Component Analysis
(PCA) and the K-means algorithm, on the InSAR time series allows for the identification
of various displacement patterns. The PCA is a statistical technique that involves the
reduction of data dimensionality through the identification of combinations of features
that effectively characterize multivariate samples [25] by balancing between the loss of
information and the optimal number of dimensions to preserve [26]. The methodology was
initially introduced by [27], especially for physical, statistical, and biological investigation,
and it has since been applied also to landslides and geological analysis.

The second technique under consideration is the Co-Registration of Optically Sensed
Images and Correlation (COSI-Corr) method [28]. This module has been integrated into
ENVI 6.0, which is regarded as one of the most effective software tools for imagery process-
ing due to its wide range of functionality for preprocessing, processing, and postprocessing
of images. The range of services offered by ENVI includes land-use mapping, change
detection, spectral index computation, satellite-image classification, and the creation of
geographic and environmental maps. The COSI-Corr is a tool designed to identify ground
deformation in multitemporal acquisitions and to achieve precise geometrical processing of
optical satellite and aerial images through orthorectification, co-registration, and correlation
processes. COSI-Corr finds applications in landslides [29], glacier flows [30], and change
detections that demand accurate image registration [31].

In this study, we investigate the ground deformation at the Baipaza landslide, using
imagery from the ESA’s Sentinel-1 and Sentinel-2 satellite constellations. Sentinel-1 consists
of two identical satellites, Sentinel-1A (launched April 2014) and Sentinel-1B (launched
April 2016; decommissioned December 2021 due to a power issue), both carrying C-band
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SAR sensors [32,33]. They orbit in similar planes, with a 12-day revisit time, which is
reduced to 6 days when both satellites are operational. Sentinel-1 provides a ground res-
olution of roughly 5 × 15 m in the range and azimuth directions, respectively [33]. For
our InSAR analysis, we acquired and processed 147 ascending and 142 descending SAR
images from October 2014 to October 2020, covering an area of approximately 50 km2.
Sentinel-2 consists of a high-resolution multispectral imaging mission designed for land
monitoring, consisting of a pair of twin satellites. It provides detailed imagery for observing
vegetation, soil, water bodies, inland waterways, and coastal regions [34]. Sentinel-2A was
launched on 23 June 2015, followed by Sentinel-2B on 7 March 2017. The satellites carry
sensors capable of capturing data across 13 spectral bands, spanning from the visible to the
shortwave infrared (SWIR) range. The mission offers revisit times between 5 and 10 days.
Two Sentinel-2 images were collected on the dates of 26 July 2016 and 29 August 2022, cov-
ering the entire period of the InSAR data to guarantee a complete comparison of the results.
This period was selected to satisfy several requirements: firstly, acquisition during the
summer season, as the study area is located at high altitudes, and consequently, in winter,
the presence of snow cover could make the analysis impossible; secondly, the presence of
cloud cover in the summer season further reduced the available image dataset; and finally,
the intention was to select a pair of scenes with the widest possible temporal baseline.

The integration of SAR and optical data, covering a wide range of displacement
regimes, provides valuable supplementary insights. This approach bridges the gaps of
each individual technique and contributes to a more in-depth investigation of the area’s
displacement. Although the Baipaza landslide is a known phenomenon, comprehensive
mapping, velocity estimation, and characterization of its movements have been lacking.
Therefore, this study represents an initial effort toward such an analysis.

2. Study Area
The Baipaza landslide is situated within the Tajik depression, in the western region of

Tajikistan (Figure 1). From a geological perspective, the Tajik depression is characterized
by a diverse range of rock formations, including Jurassic evaporites; Lower Cretaceous
cross-bedded red sandstone; Upper Cretaceous and Paleogene interbedded limestone,
shale, and gypsum; and Neoproterozoic quartzose molasse [35]. This landslide presents
a significant case study due to its potential to threaten the Baipaza Hydropower Station
and the adjacent dam, located 5 km to the north. Covering an area of over five km2, it
lies along the right bank of the Vakhsh River, which originates in Southern Kyrgyzstan
and flows westward through Northern Tajikistan before turning south toward the Western
Pamir region [36,37]. The landslide has a long and complex history, marked by multiple
movements and reactivations. The first documented reactivation occurred in 1968, partially
obstructing the Vakhsh River. The volume of material involved in that event was estimated
to be between 20 and 25 million m3 [2]. A second significant displacement event took place
in May 1992, triggered by intense rainfall again damming the Vakhsh River. Following
a 7.4-magnitude earthquake in the Hindu Kush region on 3 March 2002, the landslide
began its third phase of movement, once more partially blocking the Vakhsh River [2]. The
estimated volume of this event was 5–10 million m3 [38]. This event led to the formation
of a lake, posing a threat to the hydropower station, with the water level rising by 7 m.
Subsequently, the debris accumulated in the riverbed was removed using explosives,
effectively mitigating the risk of flooding [39].
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Figure 1. Baipaza Landslide location near the Baipaza dam in the Vakhsh River. This figure highlights
the elevation model taken from the Terra Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 3 (ASTGTM) [40], and the
lithological map of Tajikistan is taken from the GLiM database [41]. The angular relationship between
the geometry of the landslide and the satellite acquisition LOS is illustrated in the upper right-hand
quadrant of the figure.

In light of the history of sudden reactivations and the high potential for abrupt future
movements due to the region’s seismicity and other characteristics, Tajik authorities have
implemented a mitigation program. The objective of this program is to prevent and reduce
the risk of complete blockage of the Vakhsh River. Such a blockage would pose a significant
challenge, as it could disrupt the power generation of the dam. The mitigation strategy
involves stabilizing the landslide by removing material from the landslide’s head and
creating a series of benches in the head scarp area. Additionally, open-trench drains are
being installed in the upper part of the landslide to improve stability. The plan also includes
removing landslide debris from the river channel to restore its capacity and ensure normal
flow. To further facilitate disaster mitigation, a proposal has been made to construct a
bypass tunnel through the steep left bank of the Vakhsh River [38].

3. Materials and Methods
In order to enhance the comprehension of Baipaza landslide behavior between 2014

and 2020, a remote-sensing analysis was performed, utilizing two distinct image sets
acquired by Sentinel-1 SAR and Sentinel-2 optical satellites. The Sentinel-1 SAR images
were processed using advanced radar interferometry (InSAR) techniques in conjunction
with Principal Component Analysis (PCA). The results obtained from the remote-sensing
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techniques were subsequently used for the image interpretation of the landslide employing
a high-resolution elevation model taken from the Terra Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)
Version 3 (ASTGTM) [40]. A flowchart detailing the utilized techniques is shown in Figure 2.

 

Figure 2. Simplified flowchart of the three techniques applied in the work: SqueeSAR (A), Principal
Component Analysis (B), COSI-Corr (C), and Vector Inclination Method (D). The outcomes of these
analyses are used for the landslide characterization.

3.1. Multi-Interferometric Analysis of Radar Images

The InSAR has become a high-performance technique for measuring ground deforma-
tion induced by various geophysical phenomena. It analyzes radar signals from satellites
to detect and measure changes on the Earth’s surface. Over the years, numerous InSAR
techniques have been developed to process satellite radar data. Multitemporal InSAR
(MT-InSAR) approaches, such as Permanent Scatterer Interferometry (PSI) [42] and Small
BAseline Subset (SBAS) [24], are used to analyze long series of SAR imagery and produce
time series of displacement. Building from these two main algorithms, many different tech-
niques have emerged, including CT-InSAR [43], StamPS [44], and SqueeSAR [23]. Despite
the variety and individual differences of these approaches, they share a common principle:
by comparing phase shifts between a series of radar images acquired over time, MT-InSAR
can accurately measure the displacement of targets ranging from a few millimeters to tens
of centimeters per year. Since the 1990s, the application of InSAR techniques has evolved
from a specialized research area [45,46] to a practical tool extensively used in landslide
studies [47–50]. The use of interferometric applications in the past two decades has been
significantly advanced by the increased availability of satellite platforms equipped with
microwave radar sensors operating at C-band (5–6 GHz, 5.6 cm wavelength), X-band
(8–12 GHz, 3.1 cm wavelength), and L-band (1–2 GHz, 23.6 cm wavelength) level. All
SAR satellites share the characteristic of acquiring images at a specific angle called the
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line of sight (LOS). The LOS angle is subject to variation depending on the satellite and
the acquisition mode, typically ranging from 15 to 50 degrees from the vertical direction.
MT-InSAR has proven highly valuable for the remote detection of landslides, offering in-
sights into different stages of landslide events [51]. It serves as a supporting tool for various
applications, including mapping deforming slopes [52], modeling slope instabilities [53],
characterizing landslide mechanisms, monitoring individual events [54], and zoning land-
slide sectors with distinct velocities and behaviors [55]. This technique allows for the
mapping of landslides without requiring precise prior knowledge of their locations and is
particularly advantageous for locating and studying landslides in remote or mountainous
regions, where ground-based instruments may be impractical or inaccessible [56].

The InSAR data are subject to geometric distortions resulting from the side-looking
acquisition geometry of the SAR sensor [57]. In the literature, the most critical distortions
discussed are layover [58] and shadow [57], which occur predominantly in mountainous or
steeply sloped areas. The layover distortion occurs when the radar signal reflected from the
uppermost point of a terrain feature returns to the sensor ahead of the signal from the base,
thereby resulting in a reversal of the anticipated spatial sequence and a compression of fea-
tures along the radar line of sight [58]. Conversely, shadowing occurs when a steep terrain
slope faces away from the sensor, thereby preventing radar illumination and resulting in
areas devoid of backscatter information [57]. Consequently, these distortions can potentially
compromise the accuracy of InSAR deformation measurements. The identification of such
areas is achieved by generating layover and shadow masks through the analysis of local
terrain geometry derived from a DEM (see Appendix A, Figure A1E–H) combined with
sensor acquisition parameters, the incidence angle, and the azimuth direction. Table 1
presents the information and parameters of the SAR dataset exploited in this study for
the implementation of the SqueeSAR approach. The InSAR measurements acquired from
ascending and descending satellite geometries have been found to yield the LOS displace-
ment velocities, which represent the component of ground displacement along the radar
sensor’s look direction. The measurements can be decomposed to retrieve the vertical and
horizontal components of ground displacement velocities through the inversion of a linear
system relating the LOS versors and angles (see Table 1) to the vertical and horizontal
components [57]. Subsequent to the acquisition of the vertical and horizontal components,
the displacement velocity along the steepest slope direction of the terrain (Vslope) can be
calculated by projecting the 2D displacement versors along the slope versors, derived from
a DEM. The Vslope provides a meaningful parameter for assessing slope stability, especially
in landslide-prone regions [59].

Table 1. The Sentinel-1 dataset is employed in the SqueeSAR process.

SqueeSAR

SAR imagery Sentinel-1A
Band C

Acquisition geometry Ascending Descending
Satellite track 71 78
Sensor mode IW IW

Number of scenes 147 142
Time range 10 October 2014–2 October 2020 23 October 2014–3 October 2020

Line-of-sight angle (θ) 40.55◦ 44.88◦

Line-of-sight angle (δ) 9.98◦ 9.24◦

Line-of-sight versors (V) 0.76 0.709
Line-of-sight versors (N) −0.113 −0.113
Line-of-sight versors (E) −0.64 0.696
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Principal Component Analysis of Time Series

The majority of studies that have been conducted with the aim of mapping and
characterizing ground motion have mainly relied on the average displacement rate obtained
by fitting a linear regression model to the entire time-series InSAR (TS-InSAR) dataset [60].
However, only a limited number of methods have been evaluated for the purpose of
detecting and classifying displacement signals from individual time series of ground
deformation [61].

The procedure comprises three primary steps that have been developed within a
Python 3.12.7 environment (Figure 2B) [62]: (i) The first step is the standardization of
the TS-InSAR data to a comparative scale by eliminating the mean and scaling to unit
variance. This step ensures that each feature contributes equally to the analysis, preventing
bias in the PCA. (ii) The second step, the extraction of Principal Components (PCs), is
a process that aims to maximize the variance in the dataset. The PCA is employed to
identify the dominant spatial and temporal deformation patterns within each TS-InSAR
dataset without imposing any prior assumptions. (iii) The third step is the clustering
applying the K-means algorithm. The K-means implemented in its standard Euclidean
form is an unsupervised and scalable clustering method used to group unlabeled and
sparse TS-InSAR time series into clusters with similar characteristics. The only required
parameter is the number of clusters, which is automatically determined on the basis of the
optimal number of retained PCs.

It is important to note that each measurement point (MP) is grouped into a cluster
made of displacement time series sharing similar patterns, e.g., stable linear trend, linear
displacement with positive velocity, displacement with positive acceleration, etc. The
approach under consideration is capable of detecting and characterizing different motion
patterns in local unstable areas.

3.2. Correlation of Optical Images Using COSI-Corr

The COSI-Corr methodology (Figure 2C) involves the comparison of two input images,
acquired prior to and following the deformation event. Following the identification of
stable areas through the use of Ground Control Points (GCPs), the software generates
two displacement components for each image pair: the north–south (N/S) and east–west
(E/W) displacement layers. These layers represent the horizontal components of surface
movement and are used to analyze and quantify the deformation patterns across the scene.
A quality parameter known as the signal/noise ratio (SNR) is also generated. Positive
values for N/S displacement denote the north direction, while positive values for E/W
displacement indicate the east direction.

The COSI-Corr approach employs two distinct types of correlators: the frequency
correlator and the statistical correlator. The frequency one, based on the Fourier technique,
is more precise and sensitive to noise, making it suitable for generating high-quality images.
Conversely, the statistical correlator is a less sophisticated approach that is employed in
the context of noisy images that have already undergone frequency correlator analysis but
have not yielded satisfactory results [63].

In this study, the frequency correlation was employed as a methodological framework.
The utilization of the aforementioned correlator results in the attainment of findings that are
distinct in nature, corresponding to a variety of initial–final window size combinations. The
frequency correlation procedure is carried out in two main steps. The first step involves a
coarse estimation of the pixelwise displacement between two corresponding image patches.
The window size should be at least twice the expected displacement, but, in practice, a
larger ratio [31] is recommended, because the increase in the window size reduces noise
and uncertainty. Subsequent to the estimation of the initial displacement, a secondary,
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concluding correlation is performed for the purpose of retrieving the subpixel displacement.
The processing of the images involved various combinations of initial–final window size
values in pixels, ranging from 8-8-pixel to 128-128-pixel configurations. The choice of
window size influenced the quality of image measurements. A smaller window size,
such as the 8-8-pixel configuration, resulted in lower measurement qualities, introducing
uncertainty in the analysis of landslide displacement due to random occurrence of low
measurement qualities, but providing more detailed information. It is more appropriate
in small areas or applied to small landslides because the background noise could less
influence the measurement. Conversely, increasing the window sizes, up to the 128-128-
pixel initial–final window, led to clearer spatial patterns by minimizing background noise.
The combination of elevated windows and expansive areas is more frequently documented
in the literature, as it is particularly well-suited for large displacements. This enhancement
allowed for a more accurate depiction of the landslide’s profile and shape. Moreover, it is
possible to determine the pixel size, which contributes to enhanced spatial resolution of
the results.

In the COSI-Corr investigation in the analysis, the images were processed using the
128-64-pixel combination, as it was determined to be the optimal combination for this
case to characterize and study the movement of the landslide in terms of details and
measurement quality of the results. It is evident that lower pixel combinations introduce
uncertainty into the analysis due to the high dimensionality of the landslide. Conversely,
higher combinations exhibit a paucity of detailed information, which does not highlight or
display the specific landslide displacement. Table 2 presents the information of the Sentinel-
2 images and parameters exploited in this study for the implementation of the COSI-Corr
method. In Appendix A (Figure A1I,J) are illustrated the two Sentinel-2 scenes used.

Table 2. The Sentinel-2 dataset and the parameters employed in the COSI-Corr process.

COSI-Corr

Optical imagery Sentinel-2A
Band Multispectral 13 bands

Number of scenes 2
Primary imagery 26 July 2016

Secondary imagery 29 August 2022
Initial window size 128 pixels
Final window size 64 pixels

Step 2 pixels

3.3. Vector Inclination Method

The Vector Inclination Method (VIM) was employed to conduct a comprehensive
analysis of the Baipaza landslide, with the objective of gaining insights into the charac-
teristics of the sliding surface. This approach was undertaken in accordance with the
methodology outlined in [64], and subsequently validated through the utilization of InSAR
data by [65]. The VIM utilizes the horizontal and vertical ground movement components
along a longitudinal section, operating under the assumption that the surface movement
reflects the sliding surface’s geometry. The application of VIM is contingent upon two
fundamental conditions: the presence of a single sliding surface and the assumption that
the landslide body behaves as a rigid body. Although not obligatory, the density of MPs
has been demonstrated to enhance the outcomes, particularly in the context of shallow
landslides [65]. The procedure involves creating a landslide section that is the intersection
of the MPs. The determination of normal lines to consecutive movement vectors is initi-
ated from the back scarp. The intersection of these lines demarcates the rotation center
of the sliding surface between the given vectors. This process is repeated for all vectors.
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A detailed description of the practical procedure is given by [66], who firstly proposed
a geometrical solution to the original method by [64]. While the method yields a series
of circular sections, the results can also represent planar shapes, as they may be circular
sectors with large curvature radii.

In the present study, the vertical and horizontal components of the Sentinel-1 dataset
were utilized, under the supposition that the movement direction on the horizontal plane
is parallel to the slope. Although the VIM generally benefits from calibration with inde-
pendent landslide-thickness data (e.g., inclinometric measurements), in this case, the VIM
offers a practical method of acquiring preliminary information regarding the geometry and
depth of the sliding surface.

4. Results
4.1. InSAR Results

The results obtained from the SqueeSAR processing of the available Sentinel-1 images
are presented as average displacement rates along the ascending and descending LOS,
respectively, in Figure 3A,B. The decomposed displacement in the horizontal and vertical
components is presented as average rates, respectively, in Figure 3C,D. Finally, in Figure 3E,
the mean rates are presented along the steepest slope, which is designated as the Vslope.

The mean LOS velocity rates, measured in millimeters per year (mm/year), are repre-
sented by positive values (shown in blue), which indicate movement toward the satellite,
while negative values (shown in red) indicate movement away from the satellite. The
context of the components velocity rates: Positive values correspond to eastward motion,
while negative values correspond to westward motion. The total number of MPs obtained
across the entire study area is 83,499 for the ascending geometry, 78,759 for the descending
geometry, and 11,402 for the horizontal and vertical components. In the landslide area
specifically, 5950 MPs are available for the ascending geometry, 5111 for the descending
geometry, and 714 for the horizontal and vertical components, with a maximum density
of 1045 MPs/km2 observed in the ascending geometry data. The accuracy of InSAR de-
formation measurements is evaluated by the illustration of the layover and shadowing
mask for the entire area of the Baipaza landslide, as demonstrated in Appendix A. The
landslide’s eastward aspect results in significant shadowing distortion in the ascending
geometry, as evidenced by the reduced density of MPs over the landslide in comparison to
the descending geometry. The landslide area exhibits notably high deformation rates, with
peak values of −141.1 ± 0.4 mm/year in the ascending geometry and 240.2 ± 0.6 mm/year
in the descending geometry. The maximum deformation rate in the horizontal component
is 246.9 ± 0.6 mm/year (eastward), while the vertical component’s deformation rate ranges
from −65.4 ± 0.6, in the area close to the scarp, to 114.7 ± 0.7 mm/year. The maximum
deformation rate in the Vslope component is 114.7 ± 0.7 mm/year. The lower portion of the
landslide exhibits a gradual shift from negative (downward) to positive (upward) vertical
displacements. The distribution of deformation components is indicative of a downhill
movement and a substantial horizontal velocity. This suggests the presence of a sliding
surface with a rotational geometry.
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Figure 3. Representation of the ground deformation for both geometries, (A) ascending and (B) de-
scending, and for all components, (C) horizontal, (D) vertical, and (E) along the slope.

The landslide displays a range of velocity patterns, as evidenced by the PCA and
TS-clustering was performed using a K-means algorithm, applied to the ascending and
descending geometries (Figure 4A,B) and to the horizontal and vertical components
(Figure 4C,D), respectively. The analysis of displacement time series provides further
confirmation of the variability in landslide kinematics, as indicated by distinct spatial
deformation patterns. The investigation’s findings indicate the presence of MPs classified
into various clusters. As illustrated in Figure 4, the subsequent segment of each component
is designated to exhibit the plots of the time-series displacement for each cluster. The red
curve serves as a visual representation of the 50th percentile (median) of displacement val-
ues within the cluster over time. This indicates the central tendency or typical behavior of
the points in that cluster. The grey-shaded area, delineated by the 10th and 90th percentiles,
illustrates the variability of displacement values, capturing the range encompassing 80% of
the data.
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Figure 4. Map of the distribution of the features classified according to the PCA and TS-clustering
analysis: (A) ascending, (B) descending, (C) horizontal, and (D) vertical. In the lower section of each
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component, the displacement time-series graphs are displayed for each cluster. The red curve
provides a visual representation of the 50th percentile (median) of displacement values within the
cluster over time. The grey-shaded area, delineated by the 10th and 90th percentiles, illustrates the
variability of displacement values, capturing the range encompassing 80% of the data.

In the context of the ascending geometry (Figure 4A), four distinct clusters were iden-
tified, each characterized by negative displacement (movement away from the satellite).
The “Asc-1” cluster represents areas with negligible deformation, showing a cumulative
displacement between 10 mm and −30 mm over six years (from October 2014 to October
2020). The other three clusters indicate areas with ongoing deformation: “Asc-2”, with a
maximum cumulative displacement of −200 mm; “Asc-3”, with −400 mm; and “Asc-4”,
with −600 mm. Similarly, the PCA of the descending geometry (Figure 4B) revealed the
presence of four distinct clusters, with positive displacement values (movement towards
the satellite). The “Desc-1” cluster represents areas with minimal deformation, with a
maximum cumulative displacement between −25 mm and 15 mm. The “Desc-2” cluster
shows a maximum cumulative displacement of 200 mm, “Desc-3” of 600 mm, and “Desc-4”
of 1200 mm. Despite this variability, the time series for both ascending and descending
datasets within the Baipaza landslide exhibit linear trends without seasonal fluctuations.
The PCA of the horizontal dataset (Figure 4C) also demonstrates the presence of four
distinct clusters, all exhibiting positive displacement, characterized by an eastward move-
ment. The “East-1” cluster denotes areas with negligible horizontal deformation, having a
maximum cumulative displacement between −15 mm and 20 mm. The other three clusters
indicate areas with deformation: “East-2”, with a maximum cumulative displacement
of 175 mm; “East-3”, with 400 mm; and “East-4”, with 1000 mm. In contrast, the four
clusters for the vertical dataset (Figure 4D) are significantly divergent. The “Vert-1” cluster
has a maximum cumulative displacement of −25 mm, generally representing areas with
negligible vertical displacement. The “Vert-2” cluster indicates vertical displacements up to
−140 mm, and “Vert-3” up to −250 mm. Conversely, the “Vert-4” cluster exhibits positive
vertical displacements, reaching values up to 600 mm. As with the other components,
the deformation trends for the horizontal and vertical components are linear and free of
seasonality. Meanwhile, the PCA and TS-clustering results might seem inconclusive due to
only linear movements being observed, potentially overlooking more complex deformation
patterns. Nonetheless, the PCA and TS-clustering allow for the statistical and unsuper-
vised identification of distinct sectors within the Baipaza landslide, each characterized by
different deformation patterns and velocities. Following a thorough examination of the
time-series analysis results, it was determined that optical images should be utilized to
gather data on landslide deformation in areas where InSAR data were unavailable due to
geometric-distortion issues.

4.2. COSI-Corr Results

The result of the analysis of the optical images acquired by Sentinel-2 and processed
using the COSI-Corr algorithm with the 128-64-pixel combination is presented in Figure 5.
The result was subjected to a non-local mean filter, which exploited the signal-to-noise
ratio, one of the outputs of the processing. This methodological approach permitted the
elimination of the excessively noisy displacement component, which was primarily caused
by disparities in shadowing between the two selected scenes. In Figure 5 presents the
results of both the COSI-Corr and InSAR TS-clustering for the east–west component, which
is the primary component of landslide displacement. In consideration of the approximate
six-year time baseline between the two Sentinel-2 scenes (26 July 2016–29 August 2022), it
is reasonable to consider that the COSI-Corr displacement measurements are less precise
than the more accurate InSAR measurements. The COSI-Corr measurement is subjected to
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decorrelation due to a phenomenon that is primarily attributable to seasonal variations or
the proliferation of vegetation. The hypothesis is substantiated by the standard deviation
of the COSI-Corr displacement measurements of 0.81 m, which indicates the margin of
error in the displacement measurements. The signal-to-noise ratio (SNR), a measure of
correlation quality, is also computed using the COSI-Corr function. It is evident that out-
comes exhibiting enhanced dependability are associated with SNR values that approximate
unity [67]. The mean value of the signal-to-noise ratio (SNR) over the Baipaza landslide, as
determined by the COSI-Corr outcome, is approximately 0.98, indicating a high degree of
reliability and consistency (see the SNR map in Appendix A, Figure A1K). However, the
most notable aspect is the increased spatial coverage of the deformation, which provides
additional information about the displacement of the landslide.

 

Figure 5. COSI-Corr result of the Sentinel-2 images for the E-W component. Positive (blue) values
indicate eastward movements, and negative (yellow) represent westward movements.

The results obtained from the analysis indicate that the area exhibiting the greatest
deformation is located in the central portion of the landslide, as indicated by the blue-
to-violet tones. However, notable discrepancies are observed between the two results.
Firstly, in the southernmost portion of the landslide, COSI-Corr identifies a significant
eastward displacement, whereas InSAR indicates negligible deformation. The second
area of discrepancy is observed in the northern portion of the landslide, where COSI-Corr
identifies multiple regions exhibiting intense deformation (represented by blue tones)
interspersed with areas displaying significantly lower deformation. In contrast, InSAR
detects widespread intense deformation, exhibiting a single deformation trend across
the majority of the area. Finally, it should be noted that the areas within the COSI-Corr
result display negative displacement values (represented by yellow tones), predominantly
concentrated along the scarps adjacent to the Vakhsh River.
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4.3. Vector Inclination Method Results

To further analyze the landslide and gain insights into the sliding surface, the Vector
Inclination Method (VIM) was applied. To satisfy the assumption of a single sliding surface
assumption, the cross-section was drawn near the northern boundary (Figure 6). The VIM
results suggest a compound sliding surface with a linear, homogeneous sliding direction
abruptly transitioning to a shallower surface near the landslide’s foot, reaching a maximum
depth of 400 m and a dip angle of approximately 26◦ (Figure 6). Assuming a similar depth
and geometry across the landslide’s width, it is possible to estimate a total volume of the
order of magnitude of approximately 1 billion m3.

Figure 6. Reconstruction of the sliding surface (red dotted line) of the right-bank slide using the VIM
along the A-A′ cross-section. The red arrows indicate the displacement vectors of the MPs projected
along the cross-section. In the inlay, the location of the cross-section is shown (black line).

5. Discussions
The objective of this study is to comprehensively utilize the capabilities of Sentinel-1

radar imagery and Sentinel-2 optical imagery to detect and quantify active movements
within the Baipaza region of Tajikistan. The SqueeSAR algorithm, applied to Sentinel-1
radar images, and the COSI-Corr algorithm, applied to Sentinel-2 optical images, suc-
cessfully identified a range of active movements. This integrated approach facilitated
the precise mapping of landslide boundaries and the identification of distinct sectors
with varying deformation patterns (Figure 7). This delineation was achieved through a
multifaceted methodology incorporating radar interpretation, remote-sensing data, and
geomorphological analysis. Specifically, the landslide’s boundaries and internal structure
were determined by combining InSAR-derived velocity fields, optical image correlation,
and high-resolution topographic data from digital elevation models. This integration al-
lowed for the differentiation of zones exhibiting differing kinematic behaviors, providing
a more refined understanding of the landslide’s evolution. In order to achieve a compre-
hensive understanding of the landslide, it was crucial to accurately delineate both the scarp
and the landslide body for each sector. The first identified sector, designated “Baipaza A”
(illustrated in yellow tone in Figure 7), covers the entire landslide body and exhibits charac-
teristics of an ancient landslide that is still active. However, due to the effects of long-term
erosion, the mapping of the original scarps presented significant challenges. The integration of
displacement data from both InSAR and COSI-Corr provided key information on the spatial
distribution of ground deformation, which resulted in being around 5.69 km2.

The classification of additional sectors was made possible by identifying subsequent
reactivation events. Data for these sectors will be discussed according to their stratigraphic
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and temporal sequence of activation (Figure 7). “Baipaza B” (in green) and “Baipaza C”
(in tan) are daughter landslides of “Baipaza A”. Delineation of their scarps and landslide
bodies involved the integration of high-resolution topographic analyses and remote-sensing
data. InSAR analysis revealed average east–west velocities of 57 mm/year for “Baipaza B”
and 88 mm/year for “Baipaza C”.

 

Figure 7. Mapping of the four different landslides affecting the study area, carried out through the
exploitation of radar and optical satellite data.

“Baipaza D” (in light blue) and “Baipaza E” (in brown), the most recently reactivated
sectors, display different kinematic behaviors. InSAR analysis indicates that “Baipaza D”
has the highest average displacement velocity of 126 mm/year. The “Baipaza E” landslide
body is situated at the base of a steep, north-oriented scarp, which creates considerable
shadowing, thus limiting the effectiveness of InSAR measurements. Although the COSI-
Corr technique proved to be effective in detecting ground deformation in this sector,
the obtained rates may be overestimated due to shadow interference with the optical
correlation process.

A series of minor and superficial phenomena are apparent in Figure 7. The north-
ernmost sector shows numerous smaller scarps directly on the landslide “Baipaza A”.
Consequently, these scarps are unrelated to the later reactivations in the southernmost
area. Furthermore, three debris cones are identified above the “Baipaza C” landslide. The
presence of ridge doubling indicates multiple reactivations of the landslide. Notably, karst
forms, shown in orange on the map, are also present in the northern part, which is consis-
tent with the carbonate rock composition of the area (Figure 1). These karst features can
be categorized into linear forms, including karst rivers with both surface and subsurface
courses, and punctual forms, such as dolines.

The Vector Inclination Method (VIM) was used to characterize the landslide sliding
surface. The results of this study suggest the presence of a compound sliding surface
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characterized by a linear, homogeneous sliding direction. The maximum depth recorded
was 400 m, with an approximate dip angle of 26◦, and the total estimated volume was of
the order of magnitude of approximately 1 billion m3. In the area surrounding the Baipaza
landslide (Appendix A, Figure A1L), the presence of lithostratigraphic structures, such as
flat irons and exposed geological strata, is observable. It was determined that the inclination
of these layers exceeds that of the slope. The estimated inclination ranges from 30 to 35◦.
In consideration of the aforementioned information, it is reasonable to conclude that the
landslide volume assessment is likely to be an underestimation of the actual volume.

The combination of these observations, particularly the presence of double crest lines
and scarp [68,69], and the high-relief slope of the area [70], allows for the formulation of a
hypothesis regarding the classification of the Baipaza landslide as an extensive, deep-seated
gravity slope deformation (DSGSD).

Our analysis revealed notable discrepancies between the InSAR and the COSI-Corr
techniques. InSAR, with its well-established processing methodologies and higher temporal
resolution, reliably captured the deformation rates across different sectors of the landslide.
Conversely, the interpretation of the COSI-Corr results proved more challenging due to the
utilization of only two optical images acquired approximately six years apart. This extended
interval introduces considerable uncertainty into absolute displacement measurements,
contingent on factors such as image quality and ground conditions. However, COSI-Corr
identified phenomena not seen in the InSAR data. The initial hypothesis posited that
the negative (westward) displacements detected in the COSI-Corr analysis (see yellow
tones in Figure 5) were artifacts caused by shadowing, seasonal changes in illumination,
or color shifts due to atmospheric or surface conditions. These artifacts are particularly
prevalent in areas with steep topography, where geometric distortions can degrade the
optical correlation. Furthermore, the presence of snow covers in high-altitude regions has
the potential to obscure surface textures and compromise the accuracy of the correlation,
particularly when one image is captured during a snow-covered season and the other
during a snow-free period. Consequently, the Sentinel-2 images selected for the analysis
were captured during the summer season. Despite these challenges, some of the westward
displacements observed in COSI-Corr results align spatially with geomorphic features
such as scarps of the landslide, particularly near the base of deposits where river erosion
is active. The observed COSI-Corr displacement is potentially overestimated; it may be
attributed to factors such as image decorrelation or projection effects.

The integration of both datasets provides complementary insights into the dynamics
of the Baipaza landslide; however, a careful assessment of data limitations and potential
sources of error remains essential for accurate interpretation. One of the primary limi-
tations of this study is the lack of ground-based measurements, such as terrestrial laser
scanning [71], GPS, or unmanned aerial vehicle (UAV) photogrammetry [72], which could
provide an independent validation of satellite-derived displacement data. This limitation
is primarily due to the remoteness and inaccessibility of the study area. Future research
should aim to incorporate ground-based techniques to enhance the reliability and spa-
tial resolution of the deformation analysis. Despite these constraints, the findings of this
study offer valuable support to local authorities by providing a detailed understanding
of landslide behavior and demonstrating the potential of remote-sensing techniques to
continuously monitor the landslide.

6. Conclusions
The topographical complexity and seismic activity experienced by Tajikistan render

the country particularly vulnerable to natural hazards, including earthquakes and floods.
The geomorphological features of the region have been identified as a contributing factor
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to the triggering of substantial and deep-seated landslides, such as the Baipaza landslide.
The extant literature on this area is scant, with the majority of studies concentrating on the
seismic-induced collapse that occurred in March 2002 following a 7.4 magnitude earthquake
(see [2]). This event involved an estimated 5–10 million m3 of material, resulting in a partial
blockage of the river and a notable increase in the dam’s water level. The utilization of
InSAR data, processed using the SqueeSAR technique and analyzed through the PCA,
provided crucial information on the temporal evolution of deformation and facilitated the
initial identification of different landslide sectors. The InSAR time series, covering the
period from October 2014 to October 2020, exhibited a linear trend with a maximum rate of
246 ± 0.6 mm/year across the various Baipaza landslide sectors. Conversely, the COSI-Corr
module, applied to Sentinel-2 optical images, yielded valuable spatial data related to the
boundaries of the landslide sectors. Radar interpretation revealed the presence of five
distinct landslide bodies and scarps, each corresponding to a different reactivation event
(Figure 7). The geometry and depth of the sliding surface were estimated using the Vector
Inclination Method (VIM) technique, which was applied to InSAR data. This analysis
suggests a sliding surface depth of 400 m, with an approximate dip angle of 26◦. The
total estimated volume was of the order of magnitude of approximately 1 billion m3. The
combination of these observations allows for the formulation of a hypothesis regarding the
classification of the Baipaza landslide as an extensive deep-seated gravity slope deformation
(DSGSD). This hypothesis is supported by the presence of double crest lines and scarp,
as well as the high-relief slope of the area. The findings of this analysis are likely to be
of significant value to local administrations, as they provide an exhaustive examination
of volume estimation and the feasibility of leveraging comprehensive remote-sensing
techniques to establish a continuous monitoring framework for landslide evolution.
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Figure A1. The representation of different spatial data used in this study. (A) High-quality RGB image
(Red: B2—660 µm, Green: B1—560 µm, Blue: B0—485 µm); (B) the digital elevation model from the
ASTER DEM; (C) slope; (D) aspect; (E) shadow mask of the ascending InSAR dataset; (F) shadow
mask of the descending InSAR dataset; (G) layover mask of the ascending InSAR dataset; (H) layover
mask of the descending InSAR dataset; (I) the Sentinel-2 acquisition in 26 July 2016; (J) the Sentinel-2
acquisition in 29 August 2022; (K) the SNR result from the COSI-Corr algorithm; (L) evidence of
the lithostratigraphic structures in the area surrounding the Baipaza landslide, optical image from
Google Earth Pro.
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