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Abstract

Eucalyptus has become a major plantation crop in southern China, with a carbon seques-
tration capacity significantly higher than that of other species. However, its long-term
carbon sequestration capacity and regional-scale potential remain highly uncertain due to
commonly applied short-rotation management practices. The InTEC (Integrated Terrestrial
Ecosystem Carbon) model is a process-based biogeochemical model that simulates carbon
dynamics in terrestrial ecosystems by integrating physiological processes, environmental
drivers, and management practices. In this study, the InTEC model was enhanced with
an optimized eucalyptus module (InTECeuc) and a data assimilation module (InTECDA),
and driven by multiple remote sensing products (Net Primary Productivity (NPP) and
carbon density) to simulate the carbon budgets of eucalyptus plantations from 2003 to
2023. The results indicated notable improvements in the performance of the InTECeuc

model when driven by different datasets: carbon density simulation showed improve-
ments in R2 (0.07–0.56), reductions in MAE (5.99–28.51 Mg C ha−1), reductions in RMSE
(8.1–31.85 Mg C ha−1), and improvements in rRMSE (12.37–51.82%), excluding NPPLin.
The carbon density-driven InTECeuc model outperformed the NPP-driven model, with
improvements in R2 (0.28), MAE (−8.15 Mg C ha−1), RMSE (−9.43 Mg C ha−1), and
rRMSE (−15.34%). When the InTECDA model was employed, R2 values for carbon den-
sity improved by 0–0.03 (excluding ACDYan), with MAE reductions between 0.17 and
7.22 Mg C ha−1, RMSE reductions between 0.33 and 12.94 Mg C ha−1 and rRMSE improve-
ments ranging from 0.51 to 20.22%. The carbon density-driven InTECDA model enabled
the production of high-resolution and accurate carbon budget estimates for eucalyptus
plantations from 2003 to 2023, with average NPP, Net Ecosystem Productivity (NEP), and
Net Biome Productivity (NBP) values of 17.80, 10.09, and 9.32 Mg C ha−1 yr−1, respec-
tively, offering scientific insights and technical support for the management of eucalyptus
plantations in alignment with carbon neutrality targets.

Keywords: InTEC model; model optimization; driving data; eucalyptus plantation; car-
bon budgets

1. Introduction
Extensive plantations across China play a vital role in carbon sequestration and con-

tribute significantly to the nation’s climate change mitigation efforts [1]. Eucalyptus plan-
tations exhibit carbon fixation rates 2.95 times higher than those of Pinus massoniana and
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2.18 times higher than those of Cunninghamia lanceolata [2]. They represent 6.85% of China’s
total plantation area and contribute over 17.96% to the national timber harvest [2]. Eucalyp-
tus is typically managed under a short-rotation monoculture regime, with trees harvested
every 5 to 9 years and all biomass removed from the ecosystem following harvest. This
practice reduces residual carbon stock in the ecosystem, potentially lowering Net Biome
Productivity (NBP) and even turning plantations into carbon sources [3]. Although euca-
lyptus plantations currently function as carbon sinks, the long-term effects of repeated short
rotations on carbon storage remain poorly understood. The short-rotation management
model introduces significant uncertainty into carbon stock estimates, complicating accurate
assessments of their overall contribution to regional carbon sequestration.

Temporally, forest ecosystems may alternate between acting as carbon sinks and
sources from year to year; however, they must function as net carbon sinks over longer
timescales to contribute to long-term carbon sequestration [4]. Short-term or single-period
carbon stock assessments (e.g., plot inventory and remote sensing estimation) are insuffi-
cient to accurately capture the carbon cycling dynamics in eucalyptus plantations. Spatially,
the rapid growth of eucalyptus enables substantial CO2 fixation. However, harvesting
leads to the direct removal of biomass carbon from the forest carbon pool, with the carbon
either stored or released through forest products. According to the seventh and eighth
national forest resource inventories, eucalyptus plantations demonstrated a strong carbon
sequestration capacity, with an annual carbon increment of 9.96 Tg C—the largest increase
in carbon density among major species [5]. However, a study in Guangxi Province—where
eucalyptus occupies the largest plantation area in China—reported that eucalyptus con-
tributes only 6.67% to the provincial carbon stock, ranking eighth in carbon density among
ten major forest types [6]. Thus, whether eucalyptus plantations can enhance regional
forest carbon sinks remains uncertain. Time-series remote sensing offers a robust data
foundation for the continuous monitoring of the dynamic changes in eucalyptus planta-
tions [7], while process-based ecosystem models provide a methodological framework
for investigating their carbon sink/source characteristics over extended periods. Integrat-
ing time-series remote sensing with ecosystem model simulations provides a scientific
basis for the quantitative assessment of eucalyptus plantations’ contribution to regional
carbon sinks.

Process-based ecosystem models effectively characterize carbon transfer among pools
in response to disturbances and facilitate integrated assessments of climate change impacts
on biogeochemical cycles. The Integrated Terrestrial Ecosystem Carbon budget model
(InTEC) is among the few process-based models that incorporate the effects of climate,
stand age, and forest disturbances on carbon cycling, while being driven by remote sensing
data [8]. It has been widely applied to simulate carbon budgets at both regional and national
scales [9–11]. However, a key limitation of the InTEC model is that it can only account
for a single disturbance event within a time series [12,13]. It also assumes that each pixel
remains continuously forested throughout the simulation period, thereby ignoring temporal
changes in land cover. This static assumption hinders the model’s ability to capture the
dynamic changes in forest structure and composition under multiple disturbance regimes.
Therefore, to accurately represent the spatiotemporal dynamics of eucalyptus plantations
and their carbon budgets, it is essential to update the disturbance and land cover modules
of the InTEC model.

At the same time, the InTEC model also heavily relies on the Net Primary Productivity
(NPP) value from a designated reference year. This reference-year NPP is critical to ensuring
the accurate and realistic simulation of carbon dynamics. However, the limited availability
of high-resolution and reliable NPP data for eucalyptus plantations significantly constrains
the model’s applicability. Existing NPP datasets [14,15] tend to underestimate the actual



Remote Sens. 2025, 17, 2741 3 of 24

productivity of eucalyptus forests [16–18]. Recently, high-resolution biomass [19] and
carbon density [20] datasets have become more reliable, representing promising alternatives
for driving the InTEC model. Therefore, leveraging high-resolution and accurate biomass
and carbon density data to optimize the InTEC model—thereby reducing its dependency
on reference-year NPP—offers a direct and effective approach to enhancing its capacity
to simulate regional-scale carbon budgets in eucalyptus plantations. As more time-series
carbon and biomass products become available, developing strategies to integrate these
datasets will be key to further improving simulation quality.

To address uncertainties in input data, data assimilation techniques can inte-
grate multi-year remote sensing observations with the InTEC model to optimize pa-
rameterization and improve the agreement between model outputs and observational
datasets [21–24], thereby enhancing the accuracy of regional-scale carbon budget simula-
tions for eucalyptus plantations.

This study aims to enhance the InTEC model by optimizing key modules and to assess
the impact of various remote sensing-derived carbon monitoring products on simulation
performance. The overarching objective is to evaluate the spatiotemporal patterns of carbon
sources and sinks in eucalyptus plantations at the regional scale. The specific objectives are
(1) to optimize the eucalyptus and data assimilation modules within the InTEC model by
considering short rotation and forest dynamics; (2) to compare model outputs driven by
NPP- and carbon density-based products; and (3) to evaluate the spatiotemporal dynamics
of carbon budgets in eucalyptus plantations at the regional scale.

2. Methods
2.1. Study Area and Data
2.1.1. Study Area

A subtropical region in Fujian Province, southeastern China, was selected as the study
area. Yunxiao County, situated in Zhangzhou City, experiences a subtropical monsoon
climate, with an average annual temperature of 21.2 ◦C, annual precipitation of 1730.6 mm,
approximately 2000 h of sunshine annually, and a frost-free period exceeding 347 days
(Figure 1). Eucalyptus in this area grows rapidly on a 5–7-year rotation, and most stands
have been harvested once or twice (Figure 1a). The forest coverage rate in the county is
67.81%, with eucalyptus plantations covering approximately 300,000 acres, accounting for
29% of the total forest area (Figure 1b).

 

Figure 1. Study area—Yunxiao County, Fujian Province. (a) Number of harvest cycles for eucalyptus
plantations before 2021. (b) Land cover types (2021) [7] and locations of eucalyptus plantation
sample plots.
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2.1.2. Data Collection and Preprocessing

The input data for the InTEC model include climate data, soil data, eucalyptus data
(e.g., spatial distribution, clear-cutting, and planting years), atmospheric data (CO2 concen-
tration and nitrogen deposition data), maximum leaf area index (LAI), reference-year NPP,
and biomass/carbon density datasets. Detailed descriptions of these datasets are provided
in Table 1. All datasets, except atmospheric data, were projected and resampled (bilinear
interpolation) to a 30 m spatial resolution using the UTM coordinate system, ensuring
consistency for input into InTEC model simulations.

Table 1. Input data for the InTEC model.

Data Name Description Time Resolution Source

Model
Input Data

Climate Data

Monthly average temperature, total
monthly precipitation, average

monthly radiation, average
monthly vapor pressure

1960–2023 30 m This Study

Soil Data
Soil depth, soil texture data - 1 km National Qinghai–Tibet

Plateau Science Data Center
Wetness index, Water table - 30 m This Study

Eucalyptus Data Eucalyptus distribution, harvest
frequency, and harvest timing data 1986–2021 30 m [7]

CO2
Concentration

Station observation data 2013–2022 - https://www.gml.noaa.gov
accessed on 12 February 2024

Satellite Data Inversion 1850–2013 1◦ [25]
Nitrogen

Deposition Simulated Data 1980–2013 0.5◦ [26]

LAI Calculated using Sentinel-2 data 2020 30 m This Study
Reference-year

NPP
MODIS NPP (NPPMODIS) 2020 500 m [14]

Lin GPP (NPPLin) 2020 30 m [15]

Reference-year
Biomass/Carbon

Density

Aboveground carbon density from
Yang et al. (ACDYang) 2019 30 m [19]

Aboveground carbon density from
Yan et al. (ACDYan) 2013–2021 30 m [27]

Carbon density from Jiang et al.
(CDJiang) 2020–2021 30 m [20]

Validation
Data

Plot survey data
(CDPlots) 15 plots, collected semi-annually 2021–2024 - -

(1) The relationship between Fnpp and age
In InTEC model simulations, the relationship between forest NPP and stand age plays

a critical role. The model incorporates a normalized NPP–age relationship (Fnpp-age curve)
as an input variable to adjust NPP calculations throughout the simulation process. In this
study, the Fnpp–age relationship specific to eucalyptus plantations was derived by ana-
lyzing observed NPP data and corresponding stand age information reported in previous
studies [17,28], following the empirical formulations described in Equations (1) and (2) [29].

Fnpp(age) =
NPP(age)
NPPmax

(1)

NPP(age) = a∗
(

1+
b∗
( age

c
)d− 1

e(
age

c )

)
(2)

where age denotes the stand age of eucalyptus; Fnpp(age) represents the normalized
NPP at that age; and NPP(age) indicates the actual NPP value corresponding to the same
stand age. NPPmax is the maximum NPP observed across all stand ages. The empirical
coefficients a, b, c, and d were obtained by fitting the Levenberg–Marquardt nonlinear

https://www.gml.noaa.gov
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least-squares algorithm to NPP measurements from [28] for 0–6-year-old eucalyptus stands
in Guangxi Province, China, and to NPP observations for the same species in stands older
than 7 years from [17]. The resulting coefficients were 16.14, 0.55, 3.66, and 2.80 for a, b, c,
and d, respectively.

(2) Carbon products for reference year
The InTEC model adjusts the initial NPP (NPP0) using reference-year NPP data to

accurately simulate long-term NPP dynamics. To this end, five types of reference-year
carbon datasets were compared for model calibration. Specifically, two NPP datasets are
employed: the MODIS NPP dataset [14] (NPPMODIS, Figure 2a) and the NPP derived from
the GPP product by Lin et al. (2022) [15] (NPPLin, Figure 2b). Additionally, three carbon
density datasets are included: carbon density data from Jiang et al. (2023) [20] (CDJiang,
Figure 2c), and aboveground carbon density data derived from Yang et al. (2023) [19] and
Yan et al. (2023) [27] (ACDYang and ACDYan, Figure 2d,e).

 

Figure 2. Spatial distribution map of NPP and carbon density for the reference year in the eucalyptus
plantation region of Yunxiao County. (a) The 2020 NPP data derived from the MODIS product
(NPPMODIS), (b) the 2020 NPP dataset generated based on Lin et al.’s data (NPPLin), (c) the 2020
carbon density data from Jiang et al. (CDJiang), (d) the 2019 aboveground carbon density data
provided by Yang et al. (ACDYang), and (e) the 2020 aboveground carbon density data provided by
Yan et al. (ACDYan).

The study applied the following preprocessing steps to the input datasets: Lin’s GPP
product was converted to NPP by applying a GPP-to-NPP conversion factor of 0.5 [30],
while the aboveground biomass data from Yang and Yan were converted to aboveground
carbon density using a biomass-to-carbon factor of 0.5 [31]. The NPPMODIS values were
slightly lower than those of NPPLin (Figure 3a). The CDJiang dataset, which includes both
aboveground and belowground carbon, ranges from 0 to 90 Mg C ha−1. ACDYang values are
primarily concentrated between 40 and 56 Mg C ha−1, indicating relatively lower carbon
densities. The ACDYan dataset spans a wider range, from 15 to 87 Mg C ha−1, and shows a
considerable proportion of higher values (Figure 3b).

2.2. InTEC Model and Improvement
2.2.1. Basic Principles and Key Parameters of InTEC Model

The InTEC model is a biogeochemical process-based model that simulates forest carbon
and nitrogen cycles by incorporating inputs such as climate, soil, vegetation, atmospheric
CO2 concentration, and nitrogen deposition [32]. It incorporates multiple sub-models,
including the Farquhar photosynthesis model, the CENTURY soil carbon and nitrogen
model, a net nitrogen mineralization module, and the NPP–age relationship, to investigate
the long-term impacts of climate change, atmospheric chemistry, forest disturbances, and
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regeneration on forest carbon and nitrogen dynamics [33]. Within this modeling framework,
climate change and atmospheric chemical changes (e.g., CO2 enrichment and nitrogen
deposition) are classified as non-disturbance factors, and their influences on the carbon
cycle are defined as non-disturbance effects. Conversely, disturbances such as logging, fire,
pest outbreaks, and forest regrowth are defined as disturbance factors, with their associated
impacts on the carbon cycle referred to as disturbance effects. The InTEC model evaluates
the effects of both disturbance and non-disturbance drivers on vegetation through a carbon
pool framework, which partitions the vegetation carbon pool into leaf, stem, fine root, and
coarse root components.

Figure 3. NPP and carbon density data for the reference year in the eucalyptus region of Yunxiao
County; Panel (a) shows NPPMODIS and NPPLin (2020); panel (b) shows CDJiang (2020), ACDYang

(2019), and ACDYan (2020) data, where CDJiang represents whole-plant carbon stock, and ACDYang

and ACDYan represent aboveground carbon density.

Prior to model parameterization, it is essential to clarify the hierarchy of carbon
fluxes: Gross Primary Productivity (GPP) represents the total carbon fixed by vegetation
via photosynthesis; NPP is the net carbon remaining after subtracting plant autotrophic
respiration from GPP; NEP further deducts soil microbial and other respiratory losses from
NPP; and NBP then subtracts carbon losses due to disturbances (e.g., fire, logging, pests,
and diseases), yielding the final net carbon accumulation. Based on this framework, model
parameterization follows the NPP allocation scheme proposed by D. Li et al. (2016) [7] to
determine the partitioning coefficients and turnover rates for different vegetation carbon
pools—leaves, stems, fine roots, and coarse roots (see Table 2 for details).

Table 2. Allocation coefficients of NPP to leaf, stem, fine root, and coarse root carbon pools, and the
turnover rates of the corresponding carbon pools [34].

Carbon Allocation Turnover Rate

Allocation coefficient to stem 0.4624 Wood turnover rate 0.0288
Allocation coefficient to coarse root 0.2226 Coarse root turnover rate 0.0448

Allocation coefficient to leaf 0.1190 Leaf turnover rate 0.2948
Allocation coefficient to fine root 0.1960 Fine root turnover rate 1.0000

2.2.2. Optimizing Key Modules of InTEC Model

As a static vegetation model primarily driven by NPP data, the InTEC model tradi-
tionally accounts for only a single forest harvest event. Eucalyptus plantations, however,
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are managed under a short-rotation, monoculture system, for which existing NPP prod-
ucts often underestimate actual productivity or its dynamics (because NDVI saturates in
high-LAI eucalyptus stands—typically above 0.8—preventing further increases in leaf area
and photosynthetic activity from being captured in the light-use-efficiency model). To
improve model fidelity, high-resolution and accurate carbon density datasets are therefore
essential. In response to this limitation, we developed and integrated two key modules—
a eucalyptus module and a data assimilation module—into the InTEC model, enabling
a more accurate representation of the spatiotemporal dynamics and carbon budgets of
eucalyptus plantations.

(1) The eucalyptus module (InTECeuc)
The InTEC model currently lacks the ability to adequately account for the impacts

of multi-rotation harvest cycles and forest type transitions on the carbon budgets of eu-
calyptus plantations. To overcome this limitation, we developed the eucalyptus module
that incorporates historical eucalyptus harvest records and classification data spanning
from 1986 to 2021, enabling accurate simulation of plantation carbon dynamics. In addition,
recent improvements in biomass and carbon density estimation were leveraged to integrate
high-resolution carbon density data, thereby enhancing the accuracy of carbon budget
simulations. Within this module, carbon pools (leaf, stem, fine root, and coarse root) are
reset to zero following each harvest event. NPP is computed using Equations (3)–(5), and
carbon pool dynamics are calculated with Equation (6), where NPP0 is determined via
an iterative optimization process. After each iteration, convergence is evaluated using
the criterion (|Ct(i) − Cref| < Cref∗0.01). If the condition is satisfied, the current NPP0 is
accepted; otherwise, the value is adjusted and the process is repeated until convergence
is achieved.

NPPt(i) =

NPP0 ∗ φNPPnt(i) ∗ φNPPaget
(i) ∗ φNPPcutt

(i), t ∈ forest

0, t /∈ forest
(3)

where i denotes the simulation year and t represents the tree species type. NPPt(i) refers
to the NPP for tree species t in the i-th year; and NPP0 is the NPP in the initial year.
φNPPnt(i) represents the non-disturbance impact factor on NPP for tree species t in the i-th
year, quantifying relative changes in NPP compared to the previous year due to variations
in climatic conditions, atmospheric CO2 concentration, and nitrogen deposition, among
other environmental drivers. This factor is calculated following the methodology described
in Chen et al. (2000) [35]. φNPPaget

(i) denotes the effect of stand age on NPP for tree species
t in the i-th year. φNPPcutt

(i) reflects the impact of harvesting events on NPP for tree species
t in the i-th year. It is set to 0 in years when harvesting occurs—indicating a reset of
productivity—and to 1 otherwise.

NPP0 =

NPP0, |Ct(i) − Cref| < Cref ∗ 0.01

NPP0 ∗ Cref
Cref+|Ct(i) − Cref|

, |Ct(i) − Cref| ≥ Cref ∗ 0.01
(4)

where NPP0 denotes the initialized NPP. i refers to the simulation year, which is specifically
designated as the reference year in this context; and t represents the tree species type.
Ct(i) indicates the simulated vegetation carbon density for tree species t in the i-th year;
and Cref is the input vegetation carbon density corresponding to the reference year.

φNPPaget
(i) =

Fnpp(aget(i))
Fnpp

(
agemaxt

) (5)
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where i denotes the simulation year; and t represents the tree species type. Aget(i) refers
to the stand age for tree species t in the i-th year and and agemaxt indicates the maximum
stand age for tree species t. Fnpp(aget(i)) is the normalized NPP value (Fnpp) for tree
species t at that stand age; and Fnpp

(
agemaxt

)
is the corresponding Fnpp value at the

maximum stand age.

Cjt(i) =

Cjt(i − 1) +
fjt (i)NPPt(i) − kjt (i)Cjt (i −1)

1+kjt (i)
− Cutjt(i), t = forest

0, t ̸= forest
(6)

where i denotes the simulation year; j indicates the specific vegetation carbon pool (e.g.,
leaf, stem, fine root, coarse root); and t represents the tree species type. Cjt(i) and Cjt(i − 1)
denote the carbon stocks in vegetation pool j for tree species t in the i-th and (i − 1)-th
years, respectively. NPPt(i) is the NPP of tree species t in the i-th year. fjt(i) is the allocation
coefficient of NPP allocated to vegetation carbon pool j for tree species t in the i-th year;
and kjt(i) is the turnover rate of vegetation carbon pool j for tree species t in the i-th year.
Cutjt(i) represents the carbon released from vegetation pool j by tree species t as a result
of harvesting events occurring in the i-th year. This release is defined as the total carbon
accumulated in pool j since the previous harvest.

(2) The data assimilation module (InTECDA)
The incorporation of single-year carbon density data in the InTECeuc model introduces

notable uncertainty to simulation results. To mitigate this uncertainty, we developed
a data assimilation module that integrates multi-year carbon density data and applies
the four-dimensional variational assimilation (4DVar) [36] algorithm to optimize the key
parameter, NPP0. This approach improves the accuracy of simulating carbon budgets
in eucalyptus plantations. NPP0 is calculated based on Equations (7) and (8), where the
optimization of NPP0 is achieved through iterative computation. After each iteration,
the convergence criterion (J(x) = J(x)min) is evaluated. If this criterion is satisfied, the
prevailing NPP0 value is accepted as the final result. Otherwise, NPP0 undergoes further
adjustment, and the iterative procedure continues until convergence is achieved. Loss
minimization (Equations (9) and (10)) proceeds in three simple stages: first, a global search
using SCE-UA with 50 complexes over 50 iterations [37,38] to locate promising ranges; next,
50 “jumping” iterations of Simulated Annealing to prevent trapping in local minima; and
finally, a single Nelder–Mead iteration [39] for efficient, gradient-free fine-tuning.

NPP0 =

NPPDA, J(x) = J(x)min

NPP0 + random(−2.0, 2.0), J(x) ̸= J(x)min

(7)

where NPP0 represents the initial NPP; and NPPDA is the final optimized initial NPP
obtained through simulations incorporating the 4DVar algorithm. J(x) denotes the cost
function used in the 4DVar algorithm; and J(x)min indicates the minimum value of the cost
function achieved during the optimization process. Random() is the stochastic function
used to generate random values, which is used to apply random perturbations to NPP0

during the iterative optimization to explore a wider parameter space.

J(x) = 0.1∗
(

NPP0 − NPPBG

NPPSIGMA

)2
+

N

∑
i

Wi ∗
(

Simi − Obsi ∗ αi

ObsSIGMAi

)2
(8)

where J(x) denotes the cost function used in the 4DVar algorithm. NPP0 is the initial NPP
to be optimized; NPPBG represents the background (a priori) value of initial NPP; and
NPPSIGMA signifies the standard deviation of the background error for the initial NPP. i is
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the simulation year; N represents the total number of simulated years; Wi represents the
weighting factor in the i-th year, determining the relative importance of observations in that
year; while αi is the correction coefficient used to adjust the observations in the i − th year.
Simi refers to the carbon density value simulated by the InTECeuc model in the i-th year;
Obsi denotes the observed carbon density value in the i-th year; and ObsSIGMAi indicates
the observation error (standard deviation) of the carbon density in the i-th year.

αi =


EHcoef , Obsi/Obsmed > EHIGHRATIO

Hcoef, HIGHRATIO < Obsi/Obsmed ≤ EHIGHRATIO

Ncoef − Obsi/Obsmed− NHIGHRATIO
HIGHRATIO − NHIGHRATIO

∗ (M coef − Ncoef

)
, NHIGHRATIO < Obsi/Obsmed ≤ HIGHRATIO

Ncoef, Obsi/Obsmed ≤ NHIGHRATIO

(9)

where i is the simulation year; αi is the correction coefficient applied in the i-th year;
Obsi denotes the observed carbon density in year i; Obsmed represents the median of all
observed carbon density values across the entire period; EHcoef , Hcoef, Mcoef, and Ncoef are
the correction coefficients corresponding to extreme overestimation, overestimation, normal
values, and no correction, respectively; and EHIGHRATIO , HIGHRATIO, and NHIGHRATIO are
the threshold coefficients used to classify extreme overestimation, overestimation, and
normal fluctuation.

Wi =

{
1.0, Obsi/Obsmed ≥ HIGHRATIO

2.0, Obsi/Obsmed < HIGHRATIO
(10)

where i is the simulation year; Wi is the correction weight for the i-th year; Obsi de-
notes the observed carbon density in the i-th year; Obsmed represents the median of
all observed carbon density values; and HIGHRATIO is the threshold coefficient for
identifying overestimation.

In employing an optimization algorithm to minimize the loss function, the param-
eters of the data assimilation module are adjusted based on the model’s input carbon
density observations to identify an optimal initial state that both closely fits the mea-
surements and avoids excessive deviation from the background field. The module’s key
parameters include the background NPP bounds for the eucalyptus plantation (NPPBG)
as specified in Refs. [17,28]; the initial NPP bounds (NPP0), the background NPP error
standard deviations (NPPSIGMA), and the background carbon density observation error
standard deviations (ObsSIGMA) all drawn from existing experiments (Model-input vs.
field-measured carbon densities) and studies; and the experimentally calibrated correction
coefficients (EHcoef , Hcoef, Mcoef, Ncoef) along with their corresponding threshold values
(EHIGHRATIO , HIGHRATIO, NHIGHRATIO ). Specific parameter values are detailed in Table 3.

Table 3. Parameter settings in the data assimilation module [17,28].

Parameter CDPlots CDJiang ACDYan Parameter CDPlots CDJiang ACDYan

NPPSIGMA
(Mg C ha−1 yr−1) [10, 500] [10, 500] [10, 500] EHcoef 1.0 1.0 0.2

ObsSIGMA
(Mg C ha−1) [0, 1] [1, 10] [1, 10] Hcoef 1.0 1.0 0.3

NPPBG
(Mg C ha−1 yr−1) [1000, 3000] [1000, 3000] [1000, 3000] Mcoef 1.0 1.0 0.8

NPP0
(Mg C ha−1 yr−1) [100, 2500] [100, 2500] [100, 2500] Ncoef 1.0 1.0 1.0

EHIGHRATIO 3.0 3.0 3.0 HIGHRATIO 2.0 2.0 2.0
NHIGHRATIO 1.0 1.0 1.0
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The loss-minimization procedure is carried out in three consecutive stages to ensure
robust convergence without the need for gradient information. First, the SCE-UA algorithm
is used to generate 50 candidate solutions (“complexes”) in parameter space, with random
initialization of NPP0, NPPBG, NPPSIGMA, and ObsSIGMA. In each of 50 generations, the
cost function is computed by comparing the carbon density simulated by the ecosystem
model with the bias-corrected observed carbon density; candidates are then ranked in
ascending order of cost, the top two elites are retained, and the remaining individuals
are recombined via a strategy that couples simulated annealing with Nelder–Mead lo-
cal search, thereby expanding global exploration while accelerating local convergence.
Second, to avoid entrapment in local minima, the best solution from SCE-UA undergoes
50 “jump” simulated-annealing steps: at each step, small perturbations are added to
NPP0, NPPBG, NPPSIGMA, and ObsSIGMA, the cost is re-evaluated, and the new solution
is accepted based on improvement in fit or with Metropolis probability exp[(∆cost)/T]
(initial temperature T = 100, decay factor α = 0.99 per step). Finally, a Nelder–Mead simplex
reflection is performed: taking the centroid of the two lowest-cost points as a reference, the
third point is reflected to a new position; if the reflected point yields a lower cost, it replaces
the worst vertex. After completion of these iterations, the individual with the lowest cost
in the entire complex is selected as the final calibration output.

2.3. Accuracy Evaluation

To evaluate the plot-scale accuracy of the modified InTECeuc and InTECDA models,
we established 15 eucalyptus plots (20 m × 20 m) in Yunxiao County, Fujian Province,
and conducted seven semi-annual DBH surveys from 2021 to 2024 to derive observed
carbon densities (Mg C ha−1). Individual DBH measurements were converted to dry
biomass using a regional allometric equation [40], summed per plot, normalized by plot
area, and multiplied by a biomass-to-carbon factor of 0.5. Observed carbon densities from
2020 to 2023 were then matched one to one in space and time with the corresponding
model outputs to ensure consistency. Finally, we calculated the coefficient of determination
(R2; Equation (11)), mean absolute error (MAE; Equation (12)), root mean square error
(RMSE; Equation (13)), and relative RMSE (rRMSE; Equation (14)), where RMSE quantifies
the average prediction error in original units and rRMSE expresses the error as a percentage
of the observed mean. All metrics were then used to evaluate the simulation results with
the InTEC model to highlight the performance improvements from our improvements.
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∑n
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where p indicates the plot; n denotes the total number of field plots; yp represents the

observed carbon density at plot p;
-
yp is the mean observed carbon density across all plots;

and
^
yp is the model’s simulated carbon density at plot p.



Remote Sens. 2025, 17, 2741 11 of 24

2.4. Spatiotemporal Variation Characteristics Analysis

This study investigates temporal trends in carbon budgets by calculating annual
average values across eucalyptus plantations. NPP, Net Ecosystem Productivity (NEP), and
NBP were selected as key indicators to represent carbon dynamics. The Kruskal–Wallis
(KW) significance test [41] was subsequently employed to assess statistical differences in
the temporal means of the carbon budgets and to evaluate the influence of different carbon-
driving data sources. Spatially, carbon budget distributions were analyzed by calculating
their mean values over the period 2003–2023.

3. Results
3.1. Evaluation of Simulation Result
3.1.1. Accuracy Evaluation of InTECeuc Model

The InTECeuc model, when driven by NPP and carbon density data, demonstrated a
significant improvement in simulating both carbon density and changes in it compared to
the original InTEC model. Overall, the simulation accuracy for carbon density improved,
with R2 increasing by 0.07–0.56, MAE being reduced by 5.99–28.51 Mg C ha−1, RMSE
decreasing by 8.1–31.85 Mg C ha−1, and rRMSE being improved by 12.37–51.82% (excluding
NPPLin). The simulation error for carbon density change also decreased significantly, with
R2 increasing by 0.26–0.46, MAE being reduced by 2.17–3.3 Mg C ha−1, RMSE decreasing
by 2.0–4.3 Mg C ha−1, and rRMSE being improved by 27.54–48.2%. Compared to the NPP-
driven InTECeuc model, the carbon density-driven model exhibited a superior performance.

Simulation results from the original InTEC model generally overestimated the car-
bon density values observed in plot surveys, with notable differences arising from the
influence of various drive data sources on these outcomes. Simulations driven by CDJiang

demonstrated a significantly higher accuracy compared to those driven by both ACDYang

and ACDYan, and also outperformed NPP-driven simulations. Furthermore, models using
ACDYang and ACDYan exhibited lower accuracy relative to the NPP-driven simulations
(Figure 4a–e). The InTECeuc model, in contrast, exhibited a distinct behavior: the NPP-
driven simulations tended to slightly underestimate plot measurements, while carbon
density-driven versions generally produced a mild overestimation. Nevertheless, the
InTECeuc model substantially outperformed the original InTEC model. Notable im-
provements included NPPMODIS-driven results (R2 increased by 0.44, MAE reduced by
7.65 Mg C ha−1, RMSE decreased by 13.38 Mg C ha−1, and rRMSE improved by 21.94%)
and ACDYang-driven outcomes (R2 increased by 0.56, MAE reduced by 28.51 Mg C ha−1,
RMSE decreased by 31.85 Mg C ha−1, rRMSE improved by 51.82%) (Figure 4f–j).

In simulating carbon density change, the results of the InTEC model were significantly
lower than the plot survey data (Figure 5a,b). However, the InTECeuc model demonstrated
improvements in simulating carbon density change. Although some deviations remained,
it represented a substantial advancement compared to the original InTEC model. In the
NPP-driven InTECeuc model, the simulation accuracy improved significantly, particularly
for simulations driven by NPPMODIS, where R2 increased by 0.36, MAE was reduced by
2.91 Mg C ha−1, RMSE decreased by 3.22 Mg C ha−1, and rRMSE was improved by 33.99%
(Figure 5f,g). The carbon density-driven InTECeuc model also demonstrated significant
improvement, especially for simulations driven by ACDYang and ACDYan. Specifically, R2

increased by an average of 0.45, MAE was reduced by 3.04 Mg C ha−1, RMSE decreased by
4.02 Mg C ha−1, rRMSE was improved by 44.79%, and the simulation performance clearly
surpassed that of the NPP-driven InTECeuc model (Figure 5h–j).
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Figure 4. Validation of model-simulated carbon density in the eucalyptus plots compared to
field survey results. Panels (a–e) show results driven by NPPMODIS, NPPLin, CDJiang, ACDYang,
and ACDYan for the InTEC model; panels (f–j) show results driven by the same data for the
InTECeuc model.

Figure 5. Validation of model-simulated change in carbon density in eucalyptus plots compared
to field survey results. Panels (a–e) show results driven by NPPMODIS, NPPLin, CDJiang, ACDYang,
and ACDYan data for the InTEC model; panels (f–j) show results driven by the same data for the
InTECeuc model.

The simulation results for carbon density, obtained from the NPP- and carbon density-
driven InTEC and InTECeuc models, revealed distinct temporal trends. Specifically, the
NPP- and carbon density-driven InTEC model exhibited continuous growth, whereas the
InTECeuc model displayed fluctuating dynamics. For the NPP-driven InTEC model, the
simulated carbon density ranged from 7 to 107 Mg C ha−1 (Figure 6a,b). The carbon density-
driven InTEC model showed greater dispersion, particularly when driven by the ACDYang

and ACDYan (resulting in a range of 8 to 153 Mg C ha−1). These higher values and greater
dispersion were primarily attributed to differences in the carbon density range of the respec-
tive input data (Figure 6c–e). In comparison, the InTECeuc model demonstrated superior
capabilities in capturing the dynamic changes in eucalyptus plantations. When driven by
carbon density data, its simulated carbon density ranged from 0 to 138 Mg C ha−1, a range
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that was slightly broader and had a higher maximum than the 0 to 107 Mg C ha−1 range
for the NPP-driven model (Figure 6f–j).

Figure 6. Model-simulated carbon density in eucalyptus plots from 2003 to 2023. Panels (a–e) show
results driven by NPPMODIS, NPPLin, CDJiang, ACDYang, and ACDYan data for the InTEC model;
panels (f–j) show results driven by the same data for the InTECeuc model.

3.1.2. Accuracy Evaluation of InTECDA Model

The InTECDA model, driven by carbon density data, demonstrated improvement in
simulating both carbon density and its change compared to the InTECeuc model (Figure 7).
The simulation accuracy of carbon density improved overall, with R2 increasing by 0–0.03
(excluding ACDYan), MAE being reduced by 0.17–7.22 Mg C ha−1, RMSE decreasing by
0.33–12.94 Mg C ha−1, and rRMSE being improved by 0.51–20.22% (Figure 7a–d). The
simulation error for carbon density change also decreased significantly, with R2 increas-
ing by 0.01–0.05, MAE being reduced by 0.02–0.07 Mg C ha−1, RMSE decreasing by
0.12–0.18 Mg C ha−1, and rRMSE being improved by 1.19–1.91% (excluding ACDYan)
(Figure 7e–h).

Compared to the InTECeuc model, the InTECDA model exhibited a significantly higher
accuracy in simulating carbon density, with the results being more closely aligned with the
plot survey data. The influence of different driving data on simulation performance was
also evident. With the InTECDA model, simulations driven by CDPlots and CDJiang produced
notably higher accuracy than those driven by ACDYan. Nonetheless, the performance of
the ACDYan-driven simulation also improved relative to the InTECeuc model, with MAE
being reduced by 7.22 Mg C ha−1, RMSE decreasing by 12.94 Mg C ha−1 and rRMSE being
improved by 20.22% (Figure 4j or Figure 7d). In terms of simulating carbon density change,
both the InTECeuc and InTECDA models underestimated the plot survey data. However,
the InTECDA model showed clear improvements, particularly when driven by CDJiang,
with R2 increasing by 0.05, MAE being reduced by 0.07 Mg C ha−1, RMSE decreasing by
0.18 Mg C ha−1, and rRMSE being improved by 1.91% (Figure 5h or Figure 7g). In contrast,
simulations driven by ACDYan exhibited a slight decline in performance, with R2 decreasing
by 0.04, MAE increasing by 0.51 Mg C ha−1, RMSE increasing by 0.88 Mg C ha−1, and
rRMSE increasing by 10.29% (Figure 5j or Figure 7h).
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Figure 7. Validation of model-simulated carbon density (a–d) and its change (e–h) in eucalyptus
plots compared to field survey results. Panels a and e show results driven by CDPlots for the
InTECeuc model; panels (b–d) and (f–h) show results driven by CDPlots, CDJiang and ACDYang for the
InTECDA model.

Simulations using the carbon density-driven model (InTECeuc and InTECDA mod-
els) displayed fluctuating results, with CDPlots producing the most accurate outputs
(Figure 8a–d). Simulations driven by CDPlots in both the InTECeuc and InTECDA mod-
els showed nearly identical ranges (0–102 Mg C ha−1), and those driven by CDJiang also
showed nearly identical ranges (0–87 Mg C ha−1), but the plot-level simulated values
varied, as seen in Plot05. The ACDYan-driven simulations showed marked changes in
output range, including a 32 Mg C ha−1 decrease in the output range maximum values and
pronounced plot-level variations, with InTECeuc producing 0–138 Mg C ha−1 and InTECDA

0–106 Mg C ha−1. The simulations driven by CDJiang produced slightly elevated outputs
compared to those using CDPlots; ACDYan-driven InTECeuc model simulations substantially
exceeded the CDPlots results, while the InTECDA simulations using the ACDYan data were
modestly higher than the CDPlots results (Figure 8a–d).

 

Figure 8. Model-simulated carbon density in eucalyptus plots from 2003 to 2023. Panel (a) shows
results driven by CDPlots for the InTECeuc model; panels (b–d) show results driven by CDPlots,
CDJiang, and ACDYang for the InTECDA model.
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3.2. Spatiotemporal Variation Characteristics of Eucalyptus Carbon Budgets with InTECeuc Model
3.2.1. Temporal Variation Characteristics of Carbon Budgets

Over the past two decades, the eucalyptus plantations in our study area have exhibited
a strong carbon sequestration capacity and have consistently functioned as carbon sinks.
The simulation outcomes from the carbon density-driven InTECeuc model indicated upward
trends in NPP, NEP, and NBP, whereas the NPP-driven InTECeuc model displayed decreased
trends in NPP, with increases in both NEP and NBP (Figure 9). Specifically, under NPP
data driving, the multi-year averages of NPP, NEP, and NBP were 12.71 Mg C ha−1 yr−1,
6.93 Mg C ha−1 yr−1, and 6.41 Mg C ha−1 yr−1, respectively. In contrast, when driven by
carbon density data, these averages for NPP, NEP, and NBP increased to 19.56 Mg C ha−1

yr−1, 10.52 Mg C ha−1 yr−1, and 9.68 Mg C ha−1 yr−1, respectively. The results from
the carbon density-driven InTECeuc model were generally higher and exhibited greater
fluctuation, highlighting the significant impact of the driving data on the model output.

Figure 9. Mean and standard deviation of carbon budgets in the eucalyptus region of Yunxiao County
from 2003 to 2023 simulated by the InTECeuc model driven by different data. Panels (a–c) show
results for NPP, NEP, and NBP.

When using different data (NPP and carbon density) to drive the InTECeuc model for
simulating carbon budgets on an annual scale, notable differences were observed in the
results, particularly between the NPP- and carbon density-driven simulations (Figure 10).
However, within the same data, the simulation results exhibited certain regularities. Specif-
ically, the NPP, NEP, and NBP in the results driven by NPP showed strong intercorrelations,
reflecting the intrinsic relationships within the same data driving set (NPP-driven data).
Similarly, the NEP and NBP results driven by carbon density also demonstrated corre-
lations. Furthermore, significant differences were observed between the simulated NPP
results driven by CDJiang and ACDYang and those driven by ACDYan. Nonetheless, the NPP
results from the CDJiang and ACDYang data still showed some correlation, attributable to
the inherent relationships between these datasets (carbon density-driven data).

Figure 10. Statistical test of significant differences in the mean carbon budgets for the eucalyptus
region of Yunxiao County from 2003 to 2023 simulated by the InTECeuc model driven by different
data. Panels (a–c) show results for NPP, NEP, and NBP.
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3.2.2. Spatial Variation Characteristics

On the spatial scale, the eucalyptus plantations in our study area also exhibited a
strong carbon sequestration capacity, although areas exhibiting carbon source phenomena
were also observed. The carbon budget results (NPP, NEP, NBP) from the InTECeuc model
driven by carbon density were generally higher than those from simulations driven by
NPP, particularly in the simulation of NPP (Figure 11). Specifically, the results from
the NPP-driven InTECeuc model indicated that spatially distributed NPP values were
primarily concentrated in the range of 6 to 27 Mg C ha−1 yr−1, NEP values in the range
of 0 to 18 Mg C ha−1 yr−1, and NBP values between −10 and 18 Mg C ha−1 yr−1. In
contrast, the results from the carbon density-driven InTECeuc model showed that NPP
values primarily concentrated in the range of 12 to 30 Mg C ha−1 yr−1, NEP values in the
range of 0 to 24 Mg C ha−1 yr−1, and NBP values between −10 to 24 Mg C ha−1 yr−1.

Figure 11. Mean carbon budgets for the eucalyptus region of Yunxiao County from 2003 to 2023
simulated by the InTECeuc model driven by different data. Panels (a–c) show results for NPP, NEP,
and NBP.

The spatial distributions of carbon budgets from the InTECeuc model, when driven
by carbon density data versus NPP data, showed a fundamental consistency. Regions
of strong carbon sequestration (acting as high carbon sinks) and regions acting as high
carbon sources were largely co-located and covered approximately 95% of the eucalyptus
plantation area (Figure 12). The overall carbon sequestration capacity and the extent
of carbon sink areas simulated by the NPP-driven InTECeuc model were significantly
lower than those derived from carbon density. The NPP-driven results exhibited a more
widespread spatial distribution, which can be attributed to the resolution (resampled from
250 m to 30 m) of the input NPP data and associated differences in forest classification.

3.3. Spatiotemporal Variation Characteristics of Eucalyptus Carbon Budgets with InTECDA Model
3.3.1. Temporal Variation Characteristics

Simulations using the InTECDA model, driven by carbon density data, revealed up-
ward trends in NPP, NEP, and NBP, with multi-year averages of 17.80 Mg C ha−1 yr−1,
10.09 Mg C ha−1 yr−1, and 9.32 Mg C ha−1 yr−1, respectively (Figure 13). Prior to 2012,
carbon budget results (mean values and standard deviations) from the InTECDA model
when driven by the CDJiang data versus the ACDYan data exhibited significant discrepan-
cies; however, after 2012, the metrics derived from these two data-driven datasets became
nearly identical.
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Figure 12. Mean carbon budgets for the eucalyptus region of Yunxiao County from 2003 to
2023 simulated by the InTECeuc model driven by different data. Panels (a-1–a-5), (b-1–b-5), and
(c-1–c-5) show mean values for NPP, NEP, and NBP simulated using NPPMODIS, NPPLin, CDJiang,
ACDYang, and ACDYan.

Figure 13. Mean and standard deviation of carbon budgets in the eucalyptus region of Yunx-
iao County from 2003 to 2023 simulated by the InTECDA model driven by different data. Panels
(a–c) show results for NPP, NEP, and NBP.

Annual-scale carbon budget simulations using carbon density data-driven models
exhibited progressively enhanced correlations, with NPP results showing significant differ-
ences, while NEP and NBP outputs were significantly correlated (Figure 14). The CDJiang-
driven models showed correlation in NPP simulations, contrasting with the significant
discrepancies observed in ACDYan-based outputs.
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Figure 14. Statistical test of significant differences in the mean carbon budgets for the eucalyptus
region of Yunxiao County from 2003 to 2023 simulated by the InTECeuc and InTECDA models driven
by different data. Panels (a–c) show results for NPP, NEP, and NBP.

3.3.2. Spatial Variation Characteristics of InTECDA Model

When the InTECDA model was driven by different carbon density data, the resulting
distribution patterns of carbon budgets were similar to each other, yet retained variations
in their amplitude extremes (Figure 15). The relatively smaller differences in overall carbon
budget outcomes (NPP, NEP, NBP) observed when the InTECDA model was driven by
these various carbon density data were attributed to the model’s methodology, where NEP
and NBP were primarily determined by the simulated NPP (which was more consistently
estimated by InTECDA across these different carbon density inputs due to data assimilation)
and partitioning coefficients.

Figure 15. Mean carbon budgets for the eucalyptus region of Yunxiao County from 2003 to 2023
simulated by the InTECDA model driven by different data. Panels (a–c) show results for NPP, NEP,
and NBP, respectively.

The spatial patterns from the carbon density-driven InTECDA model showed con-
sistency with those from the InTECeuc model. The results also indicated that eucalyp-
tus plantations with a high carbon sequestration capacity predominantly occurred in
management-intensive areas (Figures 12 and 16). Conversely, regions exhibiting lower
carbon sequestration capacities were situated in areas receiving limited management in-
terventions. While the spatial distribution of carbon sources showed no clear regularity,
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carbon sources were primarily concentrated where logging occurred after 2015, with these
regions typically experiencing more than two deforestation events during the study period.

 

Figure 16. Mean carbon budgets for the eucalyptus region of Yunxiao County from 2003 to 2023
simulated by the InTECDA model driven by different data. Panels (a-1–a-3) and (b-1–b-3) show mean
values for NPP, NEP, and NBP simulated using CDJiang and ACDYan, respectively.

4. Discussion
4.1. The Performance of Improved InTEC Model

The NPP- and carbon density-driven InTEC models exhibited systematic overes-
timation and persistent growth trends in the simulated carbon density, coupled with
underestimations of carbon density change, primarily due to unaccounted multi-rotation
eucalyptus management cycles and discrepancies in input data accuracy. In contrast,
the InTECeuc model driven by NPP and carbon density data demonstrated closer align-
ment with plot-surveyed eucalyptus carbon stocks. The NPP-driven simulations slightly
underestimated actual carbon stocks due to NPP product underestimation biases in eu-
calyptus plantations [15–17]. The carbon density-driven simulations achieved a superior
accuracy, particularly when utilizing CDJiang data that incorporates age and carbon den-
sity relationships through established allometric equations. Conversely, ACDYang and
ACDYan data—employing random forest algorithms for aboveground biomass prediction
without age considerations—produced substantial carbon density overestimations. The
carbon density–driven InTECDA model demonstrated superior accuracy (e.g., when us-
ing CDJiang data), because during parameter optimization InTECDA not only accounts
for input data uncertainty but also introduces a calibration function to attenuate hetero-
geneity among different data sources, thereby further improving model performance;
however, due to substantial errors in the ACDYan dataset, the simulation accuracy remains
somewhat constrained.

Baseline discrepancies in carbon density data directly influence the calibration of
the NPP0 parameter, thereby altering the model’s carbon accumulation rate and overall
budget trajectory. Although the InTECeuc model achieved significant gains in simulating
harvested pixels, it continued to overestimate carbon density and underestimate its change
in non-harvested pixels; these biases were effectively corrected in the InTECDA model by
applying functions to adjust the input carbon density, establish a more accurate baseline,
and recalibrate NPP0, markedly improving the precision and reliability of carbon budget
simulations. Although the carbon density calculation carried out by the InTECDA model is
relatively accurate, there are discrepancies in the growth rate of eucalyptus carbon density.
For instance, Z. Yu et al. (2020) [42] reported eucalyptus carbon density growth ranging
from 4.77 to 9.19 Mg C ha−1 yr−1 under different management intensities, while Wen et al.
(2014) [43] found a range of 3.1 to 12.58 Mg C ha−1 yr−1, and Tao et al. (2011) [44] observed



Remote Sens. 2025, 17, 2741 20 of 24

fluctuations between 2.68 and 31.62 Mg C ha−1 yr−1. The InTECDA model generally
underestimates eucalyptus carbon density growth, particularly when the growth exceeds
15 Mg C ha−1 yr−1. This discrepancy may be attributed to site conditions, management
practices, and measurement errors in eucalyptus plantations.

Compared to alternative models, the InTECDA model demonstrated superior perfor-
mance in simulating carbon budgets for eucalyptus plantations at the plot scale, while
maintaining robust spatial-scale predictive capabilities. Several process-based models have
been used to simulate the carbon budgets of eucalyptus plantations, including the 3-PG
model [45], the Forest-DNDC model [46], and the ECOSMOS model [47] (Table 4). Although
validation datasets preclude direct model comparisons, the 3-PG model achieved the high-
est accuracy through region-specific parameterization of eucalyptus growth dynamics and
the incorporation of thinning practices. Forest-DNDC and InTECDA simulations showed
marginally lower accuracy than 3-PG, primarily due to the exclusion of thinning operations
and the absence of calibrated species-specific growth parameters for InTECDA. Although
the ECOSMOS model has developed a dedicated module and adjusted its parameters, its
results still require further optimization. Despite lacking specialized parameter calibra-
tion or thinning regime integration, the InTECDA model effectively simulates eucalyptus
plantation carbon budgets using essential spatial inputs, maintaining sufficient predictive
accuracy for Chinese plantations.

Table 4. Comparison of the ability of four process-based models to predict carbon stock in eucalyptus
plantations (rRMSE).

Model Validated Variable rRMSE (%)

3-PG Aboveground carbon stocks 15.70
Forest-DNDC Total aboveground C 17.88

InTECDA Carbon density 18.25
ECOSMOS Total stem biomass 29.57

4.2. Carbon Budgets of Eucalyptus

The carbon density-driven InTECeuc simulations (19.56 Mg C ha−1 yr−1) aligned
closely with the measured NPP in Mozambican Manica eucalyptus plots
(19.71 ± 1.30 Mg C ha−1 yr−1) [48], and were slightly lower than that in New South
Wales, Australia (22.44 Mg C ha−1 yr−1) [17] while exceeding Guangxi plantation obser-
vations (16.89 Mg C ha−1 yr−1) [28]. The InTECDA simulations (17.80 Mg C ha−1 yr−1)
moderately surpassed Guangxi’s field NPP values yet remained below both Mozam-
bican Manica and New South Wales benchmarks. NPP-driven InTECeuc simulations
systematically underestimated multi-year NPP due to inherent input data biases (NPP
values < 17 Mg C ha−1 yr−1) compared to empirical measurements.

Carbon budgets are influenced not only by vegetation cover and LAI but also by
the combined effects of forest management practices, soil properties, and climatic fac-
tors. Cleverly et al. (2020) [49] likewise demonstrated that variation in NEP is influenced
by multiple factors, including species, climate, under-story composition, and manage-
ment. In Brazilian eucalyptus plantations with a 6-year rotation period, NEP increased
from 9.93 Mg C ha−1 yr−1 to 14 Mg C ha−1 yr−1 between the second and third years [50].
Australian eucalyptus plantations in Victoria transitioned from carbon sources to sinks
approximately two years post-establishment [51]. Although the carbon density-driven
InTECeuc and InTECDA simulations replicated NEP levels comparable to Brazilian obser-
vations and mirrored source–sink transition timelines similar to those in Victoria, under
short-rotation harvest regimes NEP increases within individual rotations but declines
markedly over successive rotations. In the short term, rapid return of residues—branches,
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leaves, and roots—temporarily enhances soil carbon inputs; however, frequent soil distur-
bances accelerate residue decomposition and carbon mineralization and amplify carbon
losses via erosion and leaching, progressively undermining the soil’s carbon sequestra-
tion capacity and increasing soil carbon release [3,52]. This mechanism not only limits
the sustained enhancement of long-term NEP but also constrains the growth of NBP.
Simulated NBP consistently lagged behind NEP (by 0.84 Mg C ha−1 yr−1 for InTECeuc

and 0.77 Mg C ha−1 yr−1 for InTECDA, respectively), primarily due to harvesting. Both
InTECeuc and InTECDA identified multi-rotation eucalyptus plantations as persistent car-
bon sinks, aligning with findings by Tong et al. (2020) [53], who reported that forests
with short rotation periods are carbon sinks. Eucalyptus plantations typically function as
annual carbon sinks, though harvesting can reduce their carbon sink capacity, potentially
transforming them into carbon sources, as noted by A. Rodrigues et al. (2011) [54].

4.3. Limitations and Potential Improvements

While the carbon density-driven InTECDA model’s outputs moderately aligned with
field-measured eucalyptus carbon density, temporal changes in carbon stocks were con-
sistently underpredicted. The observed biases originated from systemic inaccuracies in
carbon density input data and potential flaws in data assimilation parameter configurations,
collectively limiting the model’s ability to correct errors effectively. Previous studies have
demonstrated that incorporating the Kalman filter algorithm can significantly improve
soil respiration rate data accuracy, thereby enhancing the InTEC model’s performance in
NEP estimation [55]. Future research should prioritize (1) establishing additional euca-
lyptus plots and eddy-covariance towers within the study area, integrating LiDAR point
clouds and high-resolution UAV imagery to build a multi-scale, multi-source dataset, and
performing systematic plot-to-regional scale validation to comprehensively improve the
model’s applicability and generalizability and (2) integrating advanced data assimilation
to refine biomass inputs and recalibrate InTECDA parameters based on data characteris-
tics, thereby improving the accuracy of eucalyptus plantation carbon budget simulations
(carbon density, NPP, NEP, NBP). (3) Although InTEC can simulate soil carbon dynamics,
this study validated only aboveground carbon density, and future work should incorporate
soil carbon monitoring data [56] and optimized the corresponding parameters [57] to fully
evaluate the model’s performance in simulating the complete forest carbon budget.

5. Conclusions
We simulated the carbon budgets of eucalyptus plantations from 2003 to 2023 using

distinct datasets (NPP and carbon density) to drive two models (InTECeuc and InTECDA).
The results revealed significant discrepancies in simulated NPP, NEP, and NBP between the
NPP- and carbon density-driven models, with the fluctuation range strongly dependent on
the driving data. NPP-driven InTEC model systematically underestimated carbon budgets,
whereas carbon density-driven implementations exhibited pronounced overestimation.
The InTECeuc model partially mitigated these biases, with carbon density-driven model
outperforming NPP-driven. InTECDA alleviated overestimation biases, achieving optimal
carbon density simulations (R2 = 0.72, MAE = 9.93 Mg C ha−1, RMSE = 11.94 Mg C ha−1,
rRMSE = 18.25%), and yielding derived NPP, NEP, and NBP values of 18.36, 10.50, and
9.68 Mg C ha−1 yr−1 respectively. The InTECDA model enables high-resolution carbon
budget simulations of eucalyptus plantations (2003–2023), providing a scientific basis and
technical support for sustainable management that is aligned with carbon neutrality targets.
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