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Highlights

What are the main findings?

• Damage assessment: This study introduces pixel-level NTL loss to enhance spatially
explicit earthquake damage assessment.

• Recovery assessment: This work proposes the Composite Nighttime Light Index
(CNLI) to capture recovery dynamics, and develops a Resilience Index (RI) weighted
by information gain derived from a Bayesian network to capture resilience levels.

What is the implication of the main finding?

• Damage assessment: Integrating pixel-level and total NTL loss enhances the precision
of identifying severely affected areas.

• Recovery assessment: The combined use of CNLI and RI provides a robust framework for
monitoring recovery, assessing resilience, and supporting resilience-oriented planning.

Abstract

In recent years, the increasing frequency of global seismic events has imposed severe im-
pacts on human society. Timely and accurate assessment of post-earthquake damage and
recovery is essential for developing effective emergency response strategies and enhancing
urban resilience. This study investigates 11 provinces in Turkey affected by the February
2023 Turkey–Syria earthquake, conducting a multidimensional evaluation of disaster loss
and recovery. For loss assessment, existing studies typically focus on changes in the total
value of nighttime lights at the regional level, overlooking variations at the pixel scale.
In this study, we introduce a pixel-level NTL loss metric, which provides finer-grained
insights and helps interpret outcomes driven by spatial heterogeneity. For recovery as-
sessment, we propose a Composite Nighttime Light Index (CNLI) that integrates multiple
recovery-phase indicators into a single quantitative measure, thus capturing more infor-
mation than a one-dimensional metric. To account for complex interrelationships among
indicators, a Bayesian network is employed, which moves beyond the conventional inde-
pendence assumption. Moreover, an information gain (IG) approach is applied to optimize
indicator weights, minimizing subjectivity and avoiding abnormal weight distributions
compared with traditional methods, thereby ensuring a more objective construction of
the Resilience Index (RI). Results show that Sanliurfa, Kilis, and Hatay suffered the most
severe damage; Kahramanmaras and Malatya exhibited the lowest CNLI values, while
Hatay, Kilis, and Gaziantep showed higher CNLI values. In contrast, Gaziantep and Adana
obtained the highest RI values. Since CNLI reflects actual recovery performance while RI
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characterizes inherent resilience, accordingly, effectively linking CNLI and RI establishes a
dual-perspective and novel framework, the 11 provinces are classified into four categories,
and differentiated recovery strategies are suggested. This study contributes a refined
quantitative framework for post-earthquake loss and recovery assessment and provides
scientific evidence to support emergency response and targeted reconstruction.

Keywords: nighttime light data; seismic hazard; damage assessment; recovery assessment

1. Introduction
In contemporary society, addressing natural disasters has emerged as a pressing global

challenge confronting humanity [1], ranking among the most complex and urgent issues of
our time. Among various types of natural disasters, earthquakes are particularly frequent and
destructive, posing recurrent threats that significantly impede urban development and societal
progress [2]. In the context of such critical challenges, the timely and accurate assessment of
earthquake-induced damage in the immediate aftermath is essential for effective emergency
response and recovery planning [3]. Moreover, subsequent rehabilitation and reconstruction
efforts aimed at enhancing urban resilience are essential not only to meet the fundamental
survival needs of affected populations but also to ensure the timely and effective delivery of
humanitarian assistance [4]. These efforts play a vital role in minimizing long-term disruptions
and facilitating the restoration of essential urban functions.

Traditional earthquake damage assessment methods, such as field surveys, are con-
strained by manpower, time, spatial coverage, and safety. Manual inspections require signifi-
cant personnel deployment, are time- and resource-intensive, and expose teams to unstable
environments and aftershock risks [5], often leading to delays and incomplete coverage,
particularly in densely populated or remote areas. UAV-based imaging improves efficiency
and safety by remotely acquiring high-resolution imagery, but faces challenges in automa-
tion, data consistency, and scalability, as well as constraints from battery life, regulations,
weather, and limited range [6,7]. Nighttime light (NTL) remote sensing has emerged as an
efficient tool for large-scale, consistent disaster assessment by detecting changes in human
activity intensity [8–10], enabling the identification of both abrupt disruptions and grad-
ual recovery patterns [11,12]. Current main NTL sources include DMSP/OLS [13–15] and
NPP/VIIRS [16–18], while newer platforms such as SDGSAT-1 [19] and YangWang-1 [20]
offer higher resolution but face challenges in data accessibility and continuity. Studies have
demonstrated that pre- and post-earthquake NTL variations can delineate affected areas
through methods like quadratic difference analysis and significance testing [20], and can
reveal socio-economic disruption patterns [21]. Integrating NTL with socio-economic indi-
cators enhances the accuracy of recovery monitoring [22], and strong correlations between
NTL changes and physical surface recovery have been observed, such as in the 2015 Nepal
earthquake [23]. VIIRS data also support rapid damage-zone identification in emergency
response [24]. Despite these advances, existing NTL-based post-earthquake studies have
predominantly concentrated on short-term impact detection due to the earthquake, with insuf-
ficient attention given to the dynamic, long-term recovery process. It is necessary to integrate
approaches that combine damage monitoring with comprehensive recovery evaluation to
better support disaster management and reconstruction planning.

NTL remote sensing is not only effective for emergency monitoring but also valuable
for tracking urban reconstruction. DMSP/OLS data have been used to reveal macro-level
recovery trends after the Wenchuan earthquake (2003–2013) [25], and subsequent studies
have linked NTL intensity with economic indicators such as GDP to estimate losses and
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infer recovery trajectories [26]. Model-based approaches, such as the post-earthquake
NTL segmentation model (PNLP), have further distinguished different recovery stages
from emergency response to long-term reconstruction [27]. These findings demonstrate
the potential of NTL as an accessible and quantifiable indicator for large-scale recovery
monitoring. However, NTL-based outcomes are inherently one-dimensional: lighting
recovery does not necessarily represent full recovery across regions or sectors, and similar
patterns can arise from non-seismic factors like policy interventions or population relo-
cation [28]. Most existing research remains limited to the visible phenomenon of “lights
on,” lacking a multidimensional perspective and a comprehensive assessment model that
contains multiple dimensions [29]. It is difficult to capture the dynamic complexity of the
recovery process, and post-earthquake performance is closely tied to the inherent resilience
of cities—something that cannot be fully reflected by nighttime light data alone.

Building on the discussion of NTL remote sensing for disaster monitoring, it is
equally important to evaluate the broader resilience of urban systems to fully capture post-
earthquake recovery dynamics. In recent years, the concept of resilience, which originates
from the Latin “resilio,” meaning “to return to the original state” [30–32], has been widely
applied to disaster risk reduction since its introduction into ecology by Holling [33]. Schol-
ars emphasize that resilience assessment should address the ability not only to withstand
disasters but also to recover and adapt rapidly after events such as earthquakes [34–36].
Common approaches involve constructing index systems or computational models, with
weighting methods evolving from Analytic Hierarchy Process (AHP), expert scoring, and
entropy weighting to integrated techniques such as TOPSIS [37] and ISM-ANP-TOPSIS [38]
for evaluating vulnerability in terms of exposure, sensitivity, and response capacity [39].
Recent advances combine fuzzy set theory with Geographic Information Systems (GIS) for
spatial visualization [40–42], and emerging studies have introduced machine learning and
cluster analysis to enhance evaluation accuracy [43]. Despite these developments, existing
methods still face issues such as expert opinion in subjective weighting, limited relational
modeling in objective weighting, and sensitivity to data variability. Moreover, they struggle
to capture complex, non-linear relationships among indicators [44–46]. In contrast, machine
learning, though still emerging in this field, offers advantages in data-driven analysis and
pattern recognition [47]. This study leverages machine learning to objectively determine
indicator weights, thereby mitigating the impact of data variance for enhanced accuracy in
seismic resilience assessment.

Against this backdrop, this study utilizes NTL data for post-disaster loss and recovery
assessment. For damage assessment, earthquake impacts are quantified using a set of
indicators derived from NTL. For recovery assessment, a Composite Nighttime Light Index
(CNLI) is developed, and a Bayesian network is employed to model the interrelationships
among resilience indicators and recalculate their weights using the machine learning
method. Based on this framework, the relationship between CNLI and the resilience
index (RI) is analyzed, and affected areas are classified into four levels. This integrated
approach supports timely disaster assessment and provides a reference for post-disaster
decision-making.

2. Study Area and Datasets
2.1. Study Area

This study focuses on the 2023 Turkey–Syria earthquake, one of the largest recorded
continental strike-slip earthquakes in the modern instrumental era [48]. On 6 February 2023,
a devastating earthquake with a moment magnitude (Mw) of 7.8 struck near Kahraman-
maraş, severely impacting southeastern Turkey and northern Syria. The event occurred
at 04:17:34 local time, lasted for approximately 90 s, and produced a surface rupture ex-
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tending about 380 km. Roughly nine hours later, another major earthquake with Mw 7.5
occurred along an independent fault located about 100 km north of the first epicenter,
generating a surface rupture of about 200 km. Together, these twin events represent the
largest recorded continental doublet earthquakes since the advent of modern seismic instru-
mentation. Within a single day, several earthquakes exceeding Mw 7.0 struck the region,
resulting in over 50,000 fatalities, more than 100,000 injuries, and rendering more than half
a million buildings uninhabitable.

The earthquakes were driven by westward motion along the East Anatolian Fault
Zone (EAFZ), one of the most seismically active regions in Turkey, which extends for about
580 km and has historically generated multiple large events [49]. It serves as a boundary
fault between the Anatolian Plate and the Arabian Plate, connecting to the Dead Sea Fault
(DSF) at its southwestern end [50].

The study area covers southeastern Turkey, encompassing eleven provincial admin-
istrations and more than twenty county-level areas (Figure 1). The selected area in the
figure corresponds to the surface rupture zone generated by the earthquake. These areas
have been affected to varying degrees, with the most severe impacts observed in Hatay,
Kahramanmaraş, and Gaziantep.

Figure 1. Location of the study area.

2.2. Datasets

(1) Daily NTL Data

Due to variability in available data, this study adopted the NPP/VIIRS Black Marble
VNP46A2 product, which is well-suited for rapid response and large-scale hazard assessment.
Compared with DMSP/OLS, VIIRS offers higher spatial resolution and improved radiometric
calibration, enabling more accurate monitoring of artificial nocturnal lighting [51,52]. The data
have a spatial resolution of 15 arcseconds with daily temporal coverage, comprising seven
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data layers [53]. We used the Gap Filled DNB BRDF Corrected NTL layer, which fills missing
values with the most recent high-quality data and applies corrections for clouds, atmosphere,
topography, vegetation, snow, moonlight, and stray light.

(2) Monthly NTL Data

This study also employs the monthly NPP-VIIRS NTL product, available since April
2012 and updated regularly. Two formats are provided: “vcm” (VIIRS Cloud Mask) and
“vcmsl” (VIIRS Cloud Mask with Stray Light correction), covering 65◦S–75◦N at a resolution
of 86,401 × 33,601 pixels [52,54]. As “vcm” data for January–December 2023 are incomplete
in the study area, the “vcmslfg” version was selected for its higher quality and spatial
completeness. With moderate spatial resolution and high temporal frequency, this dataset
is well-suited for diverse Earth observation applications.

(3) Statistics of Turkey

Urban statistical data were obtained from the Turkish Statistical Institute (TURKSTAT).
The dataset includes eight indicators: Total number of hospitals (f1), Total number of
physicians (f2), Road length (f3), Electricity consumption (f4), Population (f5), Per capita
GDP (f6), Total built-up area (f7), and Proportion of population served by wastewater
treatment (f8). The analysis uses 2022 data at the provincial level.

(4) Auxiliary Data

Land cover data for 2022 were obtained from the Land Cover Explorer on the ArcGIS
platform. From the ten land cover categories, Vegetation and Rangeland were extracted
to represent the Proportion of green space (f9), later used in calculating indicator weights
for the seismic resilience model. Provincial boundary data were sourced from the Global
Administrative Areas database (GADM).

3. Method
The experimental workflow of this study is illustrated in Figure 2. First, NPP/VIIRS

NTL data, statistical data of Turkey, and auxiliary datasets are collected. Preprocessing
steps are applied to the NTL data, including outlier removal and projection transforma-
tion. In parallel, statistical and auxiliary data are calculated and normalized. In terms
of damage assessment, four NTL indicators are selected using daily products to evaluate
post-earthquake losses. In terms of recovery assessment, monthly data are used to con-
struct CNLI indicators, and a multi-indicator resilience assessment model composed of
statistical data and land cover data is established. The index relationship is characterized
by the Bayesian network, and the RI is calculated separately for each city by relying on
the IG method. Further, the regional categories are reclassified by combining the two. A
comprehensive assessment of post-earthquake losses and recovery is achieved through the
above content.

3.1. Data Pre-Processing

Due to data availability and temporal continuity constraints, the NPP/VIIRS VNP46A2
product was selected, with 30 January 2023, as the pre-disaster date and 8 February 2023,
as the post-disaster date. These datasets were cropped, masked, cleaned of outliers, and
processed with Kriging interpolation for damage evaluation (in Table 1). Monthly NTL data
from January to December 2023 were also used, with preprocessing steps including removal
of negative values, cropping, projection transformation, and resampling to improve NTL
index accuracy.
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Figure 2. Flowchart of post-earthquake damage and recovery assessment using NTL data.

Table 1. Data Instructions.

Assessment Phase Data Instructions

Damage Assessment Pre-earthquake Date: 31 January 2023;
Post-earthquake Date: 8 February 2023

Recovery Assessment Monthly NTL Data: January 2023–December 2023

Land cover data were reclassified into nine categories, from which vegetation and
flooded vegetation were extracted to calculate the green land coverage ratio (f9) as an
ecological indicator in Equation (1):

f 9 =
Areagreenland

Areaall
(1)

where Areagreenland is the calculated greenland area, and Areaall is the area of all categories
of land in each area.

3.2. NTL Metrics for Quantitative Earthquake Damage Assessment

In this study, the Total nighttime light index (TNTL) and the number of nighttime light
pixels (NNTL) are selected as indicators for assessing earthquake-related losses. The TNLI
calculation formula is provided in Equation (2).
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TNTL = ∑b
i=1D Ni (2)

where b is the number of rasters and D Ni is the radiant value of the image element
corresponding to each raster.

Meanwhile, the Number of Nighttime Light pixels (NNTL) represents the number
of NTL image pixels [18], where only pixels with brightness values greater than zero are
included. The calculation is shown in Equation (3).

NNTL = ∑N
i=1 Li · I I(Li > 0) (3)

where NNTL is the total number of non-zero NTL pixels, and N is the total number of raster
pixels. Li denotes the NTL value of the ith pixel. The indicator function I I (Li > 0) is an
indicator function that ensures that only pixels with luminance greater than 0 are accrued.

To further quantify the seismic impact, Nighttime light loss (NLL) is introduced to
reveal the overall extent of the current earthquake’s impact on human activity areas and
power supply. The NLL is calculated by using Equation (4).

NLL =
∑ Lpre − ∑ Lpost

∑ Lpre
(4)

where ∑ Lpre and ∑ Lpost denote the sum of TNL before and after the earthquake, respec-
tively. NLL value denotes the proportion of NTL loss in the range [0, 1].

In addition, the proportion of change in NTL imagery is calculated to obtain the Area
affected by the earthquake (AAR), as defined in Equation (5). The AAR is employed to assess
the extent of earthquake damage to human settlements and power supply infrastructure.

AAR =
Npre − Npost

Npre
(5)

where Npre and Npost denote NNTL before the earthquake and NNTL after the earthquake.

3.3. Recovery Assessment Methods
3.3.1. Development of the Composite Night Light Index (CNLI) for Recovery Assessment

This study employs monthly NTL data from January to December 2023 to quantify
post-earthquake human activity recovery. In February (earthquake month), TNTL increases
due to intensive rescue efforts, while March records the lowest values as infrastructure
remains unrepaired. April–December marks the recovery phase, assessed using the light
loss rate (DS), recovery speed (RS), post-seismic stability (PSS), and earthquake impact
coefficient (EIC).

The light loss rate (DS) quantifies the degree of decline in human activity caused by
the earthquake, and its calculation method is shown in Equation (6).

DS =
MarchNTL − FebNTL

FebNTL
(6)

where MarchNTL and FebNTL are the regional TNTL values in March and
February, respectively.

Recovery Speed (RS) denotes the period from the darkest point of the post-earthquake
(March) to the initial recovery stage (June), and the statistical method is as in Equation (7).

RS =
JuneNTL − MarchNTL
JanNTL − MarchNTL

(7)

where JuneNTL and MarchNTL are the regional TNTL in June and March, respectively.
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Post-Seismic Stability (PSS) measures whether the region stabilizes after the earthquake
by the light fluctuation coefficient from April to December, and the statistical method is
shown in Equation (8).

PSS =

√
1
n∑12

t=4

(
PSSt − PSS

)2 (8)

where PSSt and PSS are the TNTL value and average NTL value of the month, respectively.
Earthquake Impact Coefficient (EIC) is used to regulate the variability of different

regions in the degree of damage [55]. It is expressed in normalized form. The calculation
follows Equations (9) and (10).

d = 2R × arcsin

(√
sin2

(
∆ϕ

2

)
+ cosϕ1cosϕ2sin2

(
∆λ

2

) )
(9)

where R is the radius of the Earth, ϕ is the latitude, and λ is the longitude.

EIC =
1

di
(10)

where di denotes the actual distance of each region to the epicenter.
The Composite NTL Scoring Model is fitted to calculate the Composite Night Light

Index (CNLI) of each region and sorted as in Equation (11).

CNLI = A1 × RS + A2 × (1 − DS × EIC) + A3 ×
(

1 − PSS
max(PSS)

)
(11)

where DS denotes the rate of light loss, RS denotes the rate of recovery, PSS denotes the post-
earthquake stability, EIC denotes the coefficient of seismic influence, and the three constant
coefficients of A1, A2, and A3 are jointly determined by the least squares fitting method
of the regression model and the expert scoring method. It measures the contribution of
the rate of recovery of the initial loss and the long-term stability to the comprehensive
post-earthquake NTL performance, respectively.

3.3.2. Development of a Bayesian Network–Based Information Gain Method for
Recovery Assessment

This study introduces an information gain (IG) method based on Bayesian networks to
learn both structure and weights in a data-driven manner, enabling interpretable modeling
and accurate identification of key post-disaster recovery factors. First, taking statistical
data and land cover data as input, Bayesian networks represent conditional dependencies
among variables as a Directed Acyclic Graph (DAG). Structure learning is performed using
the Hill-Climbing algorithm with the K2 scoring function [56]. The K2 scoring function
takes the form of Equation (12). The network structure may change with the initial order of
the nodes.

K2(G|D) = ∏n
i=1 ∏qi

j=1
(ri − 1)!(

Nij + ri − 1
)
!∏

r
k=1 Nijk! (12)

where G denotes the network structure, D denotes the observed dataset, n is the number of
variables, qi is the number of parent node combinations of the ith node, ri is the number of
its possible values, and Nijk is the number of samples when the node i takes the kth value
and the combination of its parent nodes is the jth one.

On this basis, Information gain [57] quantifies each indicator’s ability to reduce the
uncertainty of the resilience index (RI), as in Equation (13).

IG(Y, Xi) = H(Y)− H(Y|Xi) (13)
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where H(Y) represents the entropy of the RI, and H(Y|Xi) denotes the conditional entropy
in the case of the given variable Xi. The greater the information gain, the more the variable
can reduce the uncertainty of the results, and the higher its weight, the more significant
its influence on the toughness results, according to which the new weight values of the
indicators in the seismic toughness assessment model are set.

By normalizing the IG values of all indicators, the weight of each indicator is obtained.
By calculating the IG for all indicators and normalizing them to obtain the weight wi, the
calculation is shown in Equation (14).

wi =
IG(Y, Xi)

∑n
j=1 IG

(
Y, Xj

) (14)

where wi denotes the weight of indicator i, IG(Y, Xi) represents the information gain
between Y and Xi, and the denominator is the total information gain from all indicators.

Finally, the normalized value of each indicator Xi and the corresponding weight wi

are weighted and summed to calculate the urban seismic RI, which is calculated as shown
in Equation (15).

RI = ∑9
i=1 wi · xi,norm (15)

where xi,norm: the normalized value of the i th indicator, wi: the information gain weight
of the ith indicator. The comprehensive RI can reflect the overall seismic resilience of
the region under the multidimensional system and provide scientific reference for urban
planning and post-disaster reconstruction.

In the modeling of the RI, a total of nine indicators (f1–f9) were selected based on
historical earthquake cases and influencing factors reported in related studies [33], as well
as the types of data publicly released by the Turkish Statistical Institute.

4. Result
4.1. Damage Quantitative Assessment Result

The TNTL values, the NNTL, the NLL, and the losses in AAR within the study area
were calculated at the provincial scale to visualize changes in the TNTL before and after the
earthquake, as shown in Figure 3. Moreover, in Syria, five regions are severely affected [17],
with Aleppo in particular suffering major losses, highlighting the destructive impact of the
earthquake beyond Turkey’s borders.

In this study, eleven provincial administrations in Turkey affected by the earthquake
were selected to calculate pre-earthquake and post-earthquake changes in TNTL and the
NTL pixels to assess the extent of the damage. The specific calculation results are presented
in Figure 4. The largest TNTL losses occurred in Sanliurfa, Kilis, Hatay, and Gaziantep,
with losses of 28.80%, 19.63%, 16.78%, and 16.80%, respectively, findings that are consistent
with those reported [17]. Additionally, analysis of NTL pixel losses revealed that Sanliurfa,
Hatay, Adiyaman, and Mardin experienced the greatest percentage losses, reaching 41.73%,
19.76%, 19.66%, and 19.28%, respectively. The NLL and AAR show a relatively similar
changing trend, indicating not only a decrease in value but also the disappearance of pixel
brightness, such as in Sanliurfa. Although the overall NLL in Hatay is not the highest,
the AAR is relatively prominent. Combined with the analysis in Figure 3c,e. Perhaps the
Iskenderun port remained relatively stable, but the vast other areas suffered extremely
thorough damage. Pixel-level indicators better reflect this internal imbalance, highlighting
the heterogeneity destruction pattern of disasters.
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Figure 3. Comparison of NTL in the study area before (a) and after the earthquake (b). (c,e) are the
NTL conditions before and after the Hatay earthquake, respectively, and (d,f) are the NTL conditions
before and after the Aleppo earthquake, respectively.

Figure 4. The maps of TNTL (a), NNTL (b), NLL and AAR (c) in the study area. The blue legends repre-
sent the data before the earthquake, and the light blue legends represent the data after the earthquake.

There is the same trend of the loss of the two metrics, where the degree of loss of both
metrics is higher in Sanliurfa, followed by Mardin and Hatay (Figure 4).

4.2. CNLI for Recovery Quantitative Assessment

The DS results indicate that most regions experienced post-earthquake NTL attenuation,
except Hatay, where values slightly increased. According to the World Bank Group’s Loss
Assessment Report [58], Hatay suffered severe damage (36% total loss, ~40% capital stock loss),
leading to a sharp TNLI drop followed by gradual recovery. Malatya and Kahramanmaras
recorded the highest light loss rates (32.9% and 22.2%), consistent with their proximity to
the epicenters. RS values were highest in Hatay, Kahramanmaras, and Sanliurfa (>1.28),
indicating strong recovery momentum despite severe damage. PSS values revealed higher
volatility in Malatya, Sanliurfa, and Diyarbakir, reflecting unstable recovery. CNLI rankings
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show Hatay (0.88) and Gaziantep (0.82) with the best long-term performance, while Malatya
had the lowest RS (0.048) and PSS, signifying weak recovery (Table 2).

Table 2. The values of various indicators, the comprehensive NTL index and their rankings in each
region after the earthquake.

Region Name DS RS PSS EIC CNLI CNLI Sort

Hatay +0.028 1.357 9800 0.40 0.88 1
Gaziantep −0.044 0.007 6200 0.72 0.82 2

Kilis −0.161 0.902 1200 0.75 0.85 3
Osmaniye −0.163 0.969 3000 0.38 0.78 4

Adana −0.109 0.208 7500 0.45 0.75 5
Sanliurfa −0.120 1.380 16,000 0.65 0.72 6

Adiyaman −0.133 0.843 4000 0.80 0.70 7
Diyarbakir −0.142 0.892 12,000 0.55 0.68 8

Kahramanmaras −0.222 1.280 6500 0.95 0.65 9
Mardin −0.160 0.683 9800 0.35 0.60 10
Malatya −0.329 0.048 15,000 0.90 0.35 11

Cities were categorized into three groups according to EIC values: High (>0.7),
Medium (0.5–0.7), and Low (<0.5). There were clear differences across groups (Figure 5),
as DS tends to decrease as EIC increases, with the High-EIC group showing more nega-
tive values and wider variability; RS exhibits relatively stable values in the Medium-EIC
group, while the High-EIC group displays a broader range, reflecting divergent recovery
dynamics; and the PSS value was at the leading level in the Medium-EIC group, indicating
stronger spatial heterogeneity of damage, which is consistent with the “transition zone
effect” [59] often discussed in earthquake engineering. In contrast, the high-EIC group
exhibits relatively lower PSS values, but with a more scattered distribution.

Figure 5. Box plots of urban DS, RS and PSS grouped by seismic impact factor (EIC). The DS
distribution (a), RS distribution (b) and PSS distribution (c) of the low, medium and high EIC groups.

4.3. Recovery Quantitative Assessment Result
4.3.1. The Relationship Between Indicators

Based on the results obtained from NTL performance, the urban earthquake resilience
is further examined. In this study, the stability of the network structure was verified by
repeatedly altering the initial ordering of nodes. Across multiple experimental repetitions,
the resulting network structure remained entirely consistent rather than being dependent
on specific initial conditions, thereby enhancing the generalizability of the proposed frame-
work. The complex dependency relationships among the indicators are first determined
using a Bayesian network, as illustrated in Figure 6. In the network, an arrow points from
a parent node to a child node, indicating that the parent node influences the child node
and that a dependency relationship exists between them. From Figure 6, it is evident that
population occupies a central position in the network, directly affecting key variables such
as Total Built-up Area, Total Number of Hospitals and Per Capita GDP, thereby reflecting
its role as a core carrier. Per Capita GDP is influenced not only by infrastructure variables,
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including hospitals and building area, but also by the number of physicians, indicating
a bidirectional linkage between the level of economic development and basic service ca-
pacity. The relationship between road length and the proportion of the population served
by wastewater systems demonstrates the coupling between infrastructure components.
Meanwhile, the correlations between green space area and multiple variables indicate that
the utilization of ecological space is a key factor shaping the region’s functional structure.

Figure 6. Bayesian networks describe the complex relationships among indicators across dimensions,
where the arrows indicate parent–child influence, and the arrows from a to b indicate that a has a
direct influence on b.

4.3.2. Obtain More Objective Weights Through the IG Method

The indicator system, comprising statistical and land cover data from eleven provincial
regions identified as disaster-affected areas in Turkey, was re-weighted using the IG method.
Nine indicators were selected and visualized in the plotting diagram. Figure 7 presents
the normalized interaction values of the weights for each indicator across the regions.
Based on the distribution of the original data, Gaziantep and Adana perform well across all
indicators, while Kilis and Adiyaman perform slightly worse.

Figure 7. Interactive heatmap of regions and indicators. This figure illustrates the distribution of
standardized indicator values for eleven earthquake-affected regions in southeastern Turkey.
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The weight values of the nine indicators used in assessing seismic urban resilience,
calculated using the IG method based on the Bayesian network, are presented in Table 3.
Population (0.1378), Total Number of Hospitals (0.1339), Total Built-up Area (0.1330), and
Per Capita GDP (0.1281) have the highest weights, indicating their significant influence
on the comprehensive resilience assessment and forming a foundation for the subsequent
calculation of the RI.

Table 3. Distribution table of weight values of various indicators.

Indicator Weight Value

Total Number of Hospitals 0.1339
Total Number of Physicians 0.1223

Road Length 0.0610
Electricity Consumption 0.1117

Population 0.1378
Per Capita GDP 0.1281

Total Built-up Area 0.1330
Proportion of People Served by

Wastewater Treatment 0.0869

Proportion of Green Space 0.0854

4.3.3. RI and Spatial Distribution in Each Region

To visualize the degree and spatial distribution of urban earthquake resilience, the
RI for each region was calculated and ranked, as shown in Table 4. Gaziantep and Adana
rank at the top, while Kilis and Adiyaman are positioned toward the lower end. The
distribution presented in Figure 8 corroborates these findings. Notably, Mardin ranks the
lowest, reflecting the compounded effects of multiple dimensions of vulnerability.

Table 4. Urban earthquake RI, ranking and grade of each region.

Region Name RI RI Sort Type

Gaziantep 0.8201 1 Resilient
Adana 0.7256 2 Resilient
Hatay 0.4626 3 Vulnerable

Diyarbakir 0.4574 4 Vulnerable
Kahramanmaras 0.4438 5 Vulnerable

Sanliurfa 0.4185 6 Vulnerable
Osmaniye 0.3784 7 Vulnerable
Malatya 0.3497 8 Sluggish

Adiyaman 0.2776 9 Sluggish
Kilis 0.2680 10 Sluggish

Mardin 0.2649 11 Sluggish

Among all the indicators, the weight of healthcare resources is particularly significant.
In Adana, Gaziantep, and Diyarbakir, the indicator curves for Total Number of Hospitals
and Total Number of Physicians peak prominently, indicating that the robustness of the
healthcare system is a key factor supporting higher resilience levels. This finding is con-
sistent with previous research highlighting the pivotal role of healthcare infrastructure in
effectively responding to sudden-onset disasters [60]. The influence of transportation and
infrastructure varies by region. Osmaniye and Kilis exhibit high values for Road Length
and Electricity Consumption, reflecting a greater reliance on transport and infrastructure
systems for resilience. In contrast, Malatya and Mardin display relatively flat indicator
curves, suggesting underdeveloped infrastructure, which negatively impacts their overall
resilience levels. Population and economic capacity are major contributors to resilience.
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Adana, Gaziantep, and Sanliurfa exhibit higher weights for the Population and Per Capita
GDP dimensions, proving that economic vitality and demographic scale enhance the ability
to recover and mobilize resources. This observation is consistent with existing research
on urban economic resilience [61]. Ecological and environmental indicators have a rela-
tively limited but non-negligible influence. While the Green Space Ratio and Wastewater
Coverage are generally performed worse across most regions, Hatay and Sanliurfa show
slightly better performance, suggesting that ecological systems may play a supportive role
in long-term recovery phases (Figure 8).

Figure 8. Contribution of each urban indicator to the urban earthquake RI. This figure presents the
normalized contributions of nine indicators—including healthcare, infrastructure, socio-economic,
and environmental variables—to the overall resilience of each region.

Urban earthquake resilience levels were further classified using the natural breakpoint
method, and the regional distribution is visualized in Figure 9. Resilient regions are primar-
ily located in the west and southwest, such as Adana, Osmaniye, and Gaziantep. Adana
and Osmaniye, situated near the Mediterranean coast, exhibit stronger infrastructure and
urban functionality, which contribute to higher resilience and recovery capacity. Vulnerable
resilient regions are mainly found in central regions, including Kahramanmaras, Malatya,
Adiyaman, and Sanliurfa, forming a transitional zone extending from west to east. Sluggish
resilient regions, such as Hatay, Kilis, and Mardin, are primarily located in the southern-
most and southeastern regions, exhibiting characteristics of spatial marginalization. These
areas are often geographically remote, under-resourced, or constrained by various eco-
nomic challenges, making them more vulnerable to seismic shocks. Specifically, Gaziantep,
although located near the earthquake’s epicenter, was classified as resilient, potentially due
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to the region’s strong economic base, urban scale, and post-disaster response capacity. This
highlights the pivotal role of regional central regions in promoting post-disaster recovery.

Figure 9. Graph of the spatial distribution of RI across the study area. Based on the RI, the eleven
affected provinces are categorized into three levels: resilient, vulnerable, and sluggish types.

5. Discussion
5.1. The Selection of the Method for Determining Weights

Rational weight assignment is essential for constructing a scientific urban resilience
evaluation system. This study adopts the IG method, which demonstrates both practical
effectiveness and theoretical soundness. For comparative analysis, the Entropy Weight
Method and TOPSIS method are also applied, with results presented in Table 5.

Table 5. Advantages of the IG method over the other two approaches.

Method IG Method TOPSIS Method Entropy Weight Method

Total Number of Hospitals 0.1339 0.1218 0.0667
Total Number of Physicians 0.1223 0.1130 0.1020

Road Length 0.0610 0.0829 0.2408
Electricity Consumption 0.1117 0.1070 0.1247

Population 0.1378 0.1176 0.0842
Per Capita GDP 0.1281 0.1183 0.0854

Total Built-up Area 0.1330 0.1080 0.1183
Proportion of People Served by Wastewater Treatment 0.0869 0.1244 0.0620

Proportion of Green Space 0.0854 0.1070 0.1158

From a practical perspective, the IG weights align well with the functional significance
of each indicator. First, Population (0.1378) reflects the carrying capacity and organiza-
tional capacity of the urban social system. Although a larger population increases system
complexity, it is often accompanied by stronger capabilities for resource allocation and
mobilization, which form the foundation for long-term disaster resilience [62]. Second,
medical resources, such as Total Number of Hospitals (0.1339) and Total Number of Physi-
cians (0.1223), which are central to the public health emergencies, and their adequacy
significantly influence urban resilience. Total Built-up Area (0.1330), as a representation of
the region’s physical infrastructure, reflects urban density and spatial structure, and also
involves considerations of seismic design and structural safety [63]. Finally, Per Capita
GDP (0.1281) reflects financial capacity for preparedness and recovery. It directly influences
the efficiency of resource allocation and the speed of recovery.
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From a theoretical standpoint, the IG method has clear advantages over conventional
techniques. The entropy method emphasizes data variability, which may overvalue indica-
tors with high fluctuation but low practical relevance, as seen in the excessive weight of
f3 and the underestimation of key indicators like f1 and f8. Similarly, the TOPSIS method,
which relies on Euclidean distance ranking, is significantly influenced by data distribution.
For instance, the f8 indicator receives a disproportionately high weight that does not align
with its actual significance. Both methods tend to exaggerate the importance of indicators
with high variance but low practical relevance. In contrast, the IG method uses a hill-
climbing algorithm to reveal causal relationships and quantify how much each indicator
reduces decision uncertainty, representing a significant improvement over conventional
techniques like the entropy method or TOPSIS that are often distorted by data variance [64]
(in Figure 10).

Figure 10. Comparison of three weight determination methods. This Figure compares the results of
Information Gain (red line), TOPSIS (orange line), and the Entropy Weight Method (green line).

5.2. Analysis of the Differences Between CNLI and RI in Post-Earthquake Recovery Assessment

Urban resilience can be evaluated from multiple perspectives, and this study demon-
strates that CNLI and RI capture distinct but complementary aspects of post-earthquake
recovery. The RI is designed to reflect the intrinsic resilience level of a region. Urban
resilience is considered an inherent and relatively stable attribute of a city, representing its
systemic capacity to resist, absorb, and adapt to disturbances over time. It is not expected
to fluctuate drastically in the short term [65]. As such, it remains relatively stable in the
short term and indicates the potential for recovery prior to a disaster. In contrast, the CNLI,
derived from NTL data, measures the real-time functional status of urban areas within a
specific time window. It captures short-term fluctuations in activity levels and provides a
dynamic, time-sensitive indicator of post-disaster operational performance.

The comparison of CNLI and RI reveals notable differences in regional recovery
patterns. Taking Hatay, one of the most severely affected provinces, as an example, the
earthquake triggered a fire at the port due to container collisions. International aid and
reconstruction efforts have been continuously carried out after the earthquake. As a result,
despite an initial drop in port activity, the overall NTL intensity of the port remained
comparable to pre-earthquake levels. This can be attributed to sustained rescue operations,
which required well-lit conditions throughout the week-long rescue and recovery period.
According to high-resolution nighttime light imagery captured by Wuhan University’s
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“QMX-1” satellite on 18 February 2023 (in Figure 11), rescue activities were still intensively
underway even after the fire was extinguished, and normal port functions were only
partially restored several days later. These observations corroborate our analysis that
emergency operations maintained elevated NTL levels, offsetting the post-disaster decline
in regular economic activity. The NTL in this area recovered relatively quickly, with the
CNLI value reaching the highest among the eleven study areas (0.88). However, the RI
ranked only third, reflecting that Hatay possessed a moderate level of pre-disaster systemic
recovery capacity. Conversely, Gaziantep, with the highest RI, also demonstrated strong
CNLI performance, indicating both robust structural resilience and sustained functionality
after the seismic shocks. Regions such as Mardin, with low RI and CNLI rankings, exemplify
areas where weak inherent resilience aligns with poor post-disaster recovery, underscoring
low potential for rapid restoration.

Figure 11. QMX-1 imagery acquired by Wuhan University on 18 February 2023, over the port area of
Iskenderun, Turkey, showing post-earthquake conditions.

We also observed notable inconsistencies between CNLI and RI values in some regions.
This discrepancy arises because CNLI and RI characterize two different aspects of urban
systems: actual post-disaster recovery dynamics versus inherent resilience capacity. This
dual-perspective framework analysis can take into account both the nighttime lighting
performance of the region during the recovery period and the region’s established basic
capabilities. It is more comprehensive and interpretive than a single indicator, which
is conducive to proposing differentiated regional recovery suggestions and improving
recovery efficiency. To provide a more nuanced understanding, we proposed a dual-
perspective framework that combines CNLI and RI to obtain integrated results (Figure 12).

Type I (high RI-high CNLI): Gaziantep, Adana, and Hatay. These regions demonstrate
strong structural resilience and rapid NTL recovery, suggesting robust disaster response
systems. They should be positioned as regional emergency hubs and further strengthen
inter-regional coordination capacities [66].

Type II (high RI-low CNLI): Diyarbakir and Kaharamanmaras. Despite solid resilience
foundations, their recovery lagged. Enhancing emergency management efficiency and promot-
ing grassroots disaster preparedness are essential for improving response effectiveness [67].
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Type III (low RI-high CNLI): Sanliurfa, Osmaniye, and Kilis. Although structurally less
resilient, these regions showed strong post-disaster recovery momentum. Strengthening
infrastructure and updating seismic design standards will help sustain recovery and build
long-term resilience [68].

Type IV (low RI-low CNLI): Malatya and Adiyaman. Mardin, which is characterized
by high vulnerability, requires prioritized support, including funding for reconstruction
and service enhancement. Improving basic infrastructure and disaster preparedness will
be key to advancing overall resilience capacity.

These findings indicate that RI and CNLI individually provide useful but incomplete
pictures of post-disaster urban recovery. Integrating both indicators enables a more holistic
assessment, supports refined regional classification, and informs targeted strategies to
enhance earthquake resilience and recovery effectiveness.

Figure 12. The comprehensive long-term post-earthquake evaluation results of CNLI and RI. Among
them, CNLI reflects the recovery situation of the area after the earthquake, and RI reflects the inherent
seismic resistance level within the area. The comprehensive analysis of the two leads to a new
regional classification.

5.3. Limitation

Although the 2023 Turkey-Syria earthquake was used for demonstration, if similar
data is available, the proposed framework is generally applicable to assessing post-disaster
damage and recovery in other regions. Due to limitations in the hierarchical distribution of
statistical data, more comprehensive and fine-grained provincial-level data for assessment
modeling are currently unavailable, which may simplify the complexity and nuances of
urban resilience. Urban resilience is inherently multidimensional, encompassing aspects
such as governance, community participation, and cultural factors. Future studies will
incorporate additional indicators into resilience model calculations to provide a deeper
understanding of what urban resilience entails, thereby enhancing both practicality and
accuracy. Furthermore, although the use of NPP/VIIRS NTL data facilitates quantitative



Remote Sens. 2025, 17, 3431 19 of 22

assessment of damage and recovery post-earthquake impacts, higher-resolution NTL data
(such as those from SDGSAT-1) would better capture intra-urban NTL details, particularly
in smaller regions. Due to resolution limitations, the analysis primarily focuses on urban
and densely populated areas, making it difficult to accurately assess small, scattered rural
settlements along fault zones. Finally, expand the analysis to other types of disasters
to verify the universality of the framework. Additionally, introducing more influential
indicators can deepen our understanding of urban resilience.

6. Conclusions
This study explores the use of NTL data for post-earthquake damage and recovery

assessment at a regional scale. For damage assessment, pixel-level indicators are introduced
for auxiliary analysis, which are four quantitative indicators (TNTL, NNTL, NLL, ARR)
employed to identify the most severely affected areas. Hatay exhibited the highest values of
NLL and ARR (28.8% and 41.73%, respectively), indicating both severe intensity and spatial
extent of damage. Compared with traditional TNTL-based assessments, the addition of
auxiliary indicators enabled a more comprehensive evaluation of seismic impacts.

For recovery assessment, we integrated four key indicators, DS, RS, PSS, and EIC,
to construct CNLI. This index provides a large-scale, rapid measure of human activity
during the recovery period. Results suggest that Hatay, Gaziantep, and Kilis demonstrated
stronger recovery performance, whereas Kahramanmaras, Mardin, and Malatya lagged
behind. To further investigate the underlying drivers of these patterns, we developed a
regional RI based on statistical indicators and land-use data. By modeling the complex in-
terdependencies among variables with a Bayesian Network, we captured cross-dimensional
relationships often overlooked by conventional methods. Moreover, an IG-based approach
was applied to quantify the contribution of each indicator to the reduction in recovery
uncertainty. The results indicate that Gaziantep and Adana display high resilience capacity,
while Malatya, Adiyaman, Kilis, and Mardin exhibit weaker resilience. We also observed
notable inconsistencies between CNLI and RI values in some regions. Combining both
indices allows for a more holistic assessment of regional performance, which we further
classified into four types to provide targeted and explainable recovery recommendations.

The proposed framework contributes to more informed post-disaster decision-making
and encourages a strategic shift from passive recovery to proactive risk reduction. It
provides scientific support for earthquake emergency response and efficient reconstruction.
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