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Highlights

What are the main findings?

* A spatio-temporal detection framework is proposed for infrared small target detection in
satellite video, which combines inter-frame residuals with spatial and temporal feature
learning.

* The proposed method achieves superior detection accuracy and robustness compared with
state-of-the-art approaches, particularly for tiny and dim targets in complex backgrounds.

What is the implication of the main finding?

* The framework provides an effective solution for detecting small moving aerial targets
from satellite infrared video, supporting reliable long-range monitoring.

¢ This study demonstrates the potential of integrating temporal consistency and multi-
scale spatial features to advance real-world remote sensing applications.

Abstract

With the development of infrared remote sensing technology and the deployment of
satellite constellations, infrared video from orbital platforms is playing an increasingly
important role in airborne target surveillance. However, due to the limitations of remote
sensing imaging, the aerial targets in such videos are often small in scale, low in contrast,
and slow in movement, making them difficult to detect in complex backgrounds. In
this paper, we propose a novel detection network that integrates inter-frame residual
guidance with spatio-temporal feature enhancement to address the challenge of small
object detection in infrared satellite video. This method first extracts residual features to
highlight motion-sensitive regions, then uses a dual-branch structure to encode spatial
semantics and temporal evolution, and then fuses them deeply through a multi-scale
feature enhancement module. Extensive experiments show that this method outperforms
mainstream methods in terms on various infrared small target video datasets, and has good
robustness under low-signal-to-noise-ratio conditions.

Keywords: infrared video; satellite remote sensing; small object detection; inter-frame
residual; spatio-temporal feature fusion

1. Introduction

With the increasing demand for global situation awareness and continuous wide-
area surveillance, space-based infrared imaging systems have become a key technology
for detecting and tracking airborne objects [1-3]. Compared with ground-based sensors,
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infrared cameras mounted on satellites provide a wider field of view and offer long-term
continuous monitoring. In particular, infrared satellite video can capture a large area of
dynamic scenes, making it a promising solution for detecting maneuvering air targets
(such as aircraft and other fast-moving platforms) [4]. However, due to the long viewing
distance, these moving objects usually occupy only a few pixels in the image sequence,
and often show low contrast compared with the clutter background, such as cloud, terrain,
or atmospheric noise. These challenges have brought great difficulties to the traditional
target detection algorithm, which requires a powerful solution tailored to the characteristics
of infrared video data collected from space [5,6].

In recent years, there has been a growing interest in infrared small target detection [7,8].
The preliminary research named RLCM [9] is a multi-scale detection algorithm that uses
the relative local contrast measure. ISNet [10] devises a Taylor finite difference (TFD)-
inspired edge block and a two-orientation attention aggregation block to detect the precise
shape information of infrared targets. Liu et al. [11] focused on boosting detection per-
formance with a more effective loss but a simpler model structure by proposing a novel
scale and location-sensitive loss to handle the limitations of existing losses. IAANet [12]
introduces a coarse-to-fine interior attention-aware network for infrared small target detec-
tion. IRSAM [13] improves the encoder-decoder architecture to represent infrared small
objects better.

Despite significant progress in infrared small target detection, existing methods still
face serious limitations when applied to satellite-based video data. Many traditional meth-
ods rely heavily on single-frame spatial features, which are often not enough to distinguish
very small or low contrast objects from complex backgrounds and noise [14]. In addition,
the methods using time information tend to process consecutive frames independently or
simply apply optical flow estimation, which may not be able to capture the subtle motion
patterns of slow-moving or maneuvering targets. In addition, the multi-frame fusion
technology usually has the problems of information redundancy or insufficient alignment,
which leads to a decline in detection accuracy. Due to remote observation, severe atmo-
spheric distortion, and low signal-to-noise ratio, these challenges are exacerbated in satellite
infrared images, highlighting the need for more effective spatio-temporal feature extraction
and fusion strategies customized for this unique application scenario [15].

To address the aforementioned challenges, this paper proposes a framework for
infrared small target detection in satellite video sequences, as illustrated in Figure 1.
The method integrates the inter-frame residual extraction with the dual-branch spatio-
temporal feature fusion network, which effectively enhances the subtle motion cues of
airborne small targets and captures the rich spatial background. A multi-scale feature
enhancement module is designed to fuse the spatial and temporal information at different
resolutions, and then a customized detection head is introduced for precise localization and
classification. Extensive experiments conducted on public infrared video datasets show
that the proposed method significantly improves detection accuracy and robustness in
complex environments. The main contributions of this work are summarized as follows:

*  We introduce an inter-frame residual module to explicitly highlight motion-related
features and enhance the sensitivity of the network to subtle target motion in remote
infrared satellite images.

*  We design a dual-branch structure to encode spatial semantics and temporal evolution
separately, which achieves more effective spatio-temporal feature fusion and reduces
information redundancy.

¢ A multi-scale fusion strategy combined with a custom detection head is proposed to im-
prove the detection performance of small low-contrast targets in complex backgrounds.
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The remainder of this article is organized as follows: Section 2 briefly presents the
related background on infrared small target detection and video-based target tracking.
In Section 3, we formalize the research problem of infrared target detection, and then the
details of our framework are described. Section 4 shows extensive experiments that validate
the effectiveness of the proposed method. Finally, we conclude with a discussion of our
framework and summarize future work in Section 5.

Airborne Target Surveiliance

AR

Spatial-Temporal
Feature Enhancement|

Temporal
Evaluation

J Target Detection

Figure 1. An illustration of the infrared small target detection problem with spatio-temporal information.

Infrared Satellite Video

Inter-Frame Residual Guidance

2. Related Work
2.1. Infrared Small Target Detection

Infrared small target detection has important applications in military reconnaissance,
search and rescue, environmental monitoring, and other fields. Different from traditional
target detection tasks, infrared small targets have the characteristics of limited pixel occu-
pation, low contrast in complex background, and weak signal-to-noise ratio [16,17]. These
unique characteristics make the detection of small infrared targets particularly challenging.
Over the years, many algorithms have been developed to solve these problems, from the
traditional image processing technology, which focuses on contrast enhancement and clut-
ter suppression, to the method based on deep learning, which aims to directly learn the
discriminant features from the data. Although some progress has been made, the effective
detection of small targets in infrared images is still an active and difficult research field.

Infrared small target detection has been applied to many scenes and has provided
excellent performance. Hou et al. [18] calculated the likelihood map at first, where the
pixel value represents the probability that the pixel belongs to a small target or background,
and then applied a threshold to the likelihood map to extract real targets. Tong et al. [19]
attempted to integrate the edge details and global contextual information of the target to
improve IRSTD tasks. This method consists of a spatial pyramid pooling module and a
dual-attention module, which focus on the global contextual information and the regions
of interest, respectively. It increases the information exchange between feature maps using
multi-scale feature fusion as well. Dai et al. [20] proposed a new label assignment scheme
called all-scale pseudobox, which decouples the ground truth target size from the spatial
assignment by using scale-adaptive pseudoboxes and also relaxes the scale constraints
by treating all target boxes at all scales as positive samples. Li et al. [21] proposed a
specialized network for hyperspectral point object detection, which uses a self-excited
subpixel-scale attention module and achieves subpixel-scale deformable sampling while
enabling self-excited amplification of object features.

Although existing infrared small target detection methods have made some progress,
there are still some challenges to be solved. Existing methods mainly focus on single-frame
spatial information, and cannot effectively use time dynamics. When the target shows subtle
motion or is embedded in a chaotic background, it will lead to missed detection or false
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alarm. The difficulty of distinguishing small targets from background clutter and sensitivity
to noise further affect the detection accuracy. The assumption of target characteristics also
limits their adaptability to various complex scenes. Therefore, there is an urgent need for a
robust framework that can integrate spatio-temporal cues to enhance the detection of small
and low-contrast objects in challenging infrared environments.

2.2. Video-Based Object Tracking

Object tracking in consecutive frames is a key task in computer vision and remote sens-
ing, which aims to locate a moving object between consecutive frames continuously [22-24].
In infrared surveillance, video sequences provide valuable temporal information that can be
used to improve detection and tracking performance, especially for small and low-contrast
targets. Unlike single-image detection, video-based tracking uses motion cues, temporal
consistency, and dynamic context to distinguish objects from clutter and noise. This time
dimension is important for detecting slow-moving or maneuvering objects that may not be
important in a single frame. Therefore, effective video-based tracking methods are essential
for applications such as airborne target monitoring.

Video-based object tracking can now be modeled as a supervised machine-learning
problem due to the availability of publicly accessible datasets, such as [25-27]. Wan et al. [28]
approached the MOT problem from a different perspective by directly obtaining the em-
bedded spatio-temporal information of trajectories from raw video data. Chen et al. [29]
proposed a historical-model-based tracker intended for satellite videos to improve the
performance of the object tracking algorithm. Othmani et al. [30] presented a vehicle
detection and tracking method for traffic video analysis based on deep learning technol-
ogy. Ibrahim et al. [31] introduced deep online real-time tracking on thermal video-based
online multi-object tracking in occlusion and thermal crossover scenes. Zhao et al. [32]
proposed an adaptive diffusion timestep selection mechanism guided by visual complexity.
Liu et al. [33] proposed an event camera calibration method utilizing a collimator with flick-
ering star-based patterns, which first linearly solves camera parameters using the sphere
motion model of the collimator, followed by nonlinear optimization to refine these parame-
ters with high precision. Huang et al. [34] proposed a fusion localization method based
on ridge estimation, combining the advantages of rich scene information from sequential
imagery with the high precision of laser ranging to enhance localization accuracy.

Although considerable progress has been made in video-based target tracking meth-
ods, there are still some challenges in practical applications, especially for small infrared
targets in satellite images [35-37]. Many methods rely on accurate motion estimation
techniques, such as optical flow, which are unreliable in low-resolution, noisy, or cluttered
infrared videos. Existing spatio-temporal feature fusion strategies may have redundancy
or misalignment, resulting in decreased tracking accuracy and increased false alarm rate.
Addressing these limitations requires the development of robust spatio-temporal repre-
sentations and adaptive fusion mechanisms for the unique characteristics of IR satellite
video sequences.

3. Proposed Algorithm
3.1. Problem Definition

The objective of this work is to detect and localize small airborne targets in a se-
quence of satellite-based infrared video frames. Formally, given an input video sequence
I = {I;},, where I; € RE*W represents the infrared image frame captured at time ¢,
the goal is to identify a set of target bounding boxes B; = {b! f\il in each frame. Here, N;
denotes the number of targets present at time #, and each bounding box b} = (x,y,w, h) is
defined by its center coordinates (x, y), width w, and height h.
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The main challenge lies in the fact that these targets are tiny and usually occupy only
a few pixels within a frame. They have a low contrast with the typically complex and noisy
background of satellite infrared images. In addition, due to atmospheric interference and
sensor noise, the appearance of the target may change in illumination or viewing angles
over time. Long-distance observation can also lead to low spatial resolution and a weak
signal-to-noise ratio, making precise detection more complex.

To address these challenges, our method utilizes the inherent temporal continuity of
video sequences to model spatial and temporal features, thereby enhancing the representa-
tion of small moving targets. It requires the effective extraction of clues related to motion
and the robust fusion of multi-frame information, which will be elaborated in detail in
subsequent sections.

3.2. Overall Framework

The proposed framework robustly detects small airborne targets from satellite-based
infrared videos by integrating spatial and temporal cues in a unified architecture, as shown
in Figure 2. Given a video sequence I = {I;}L , the system processes the data in four
stages: inter-frame motion enhancement, spatial feature extraction, temporal modeling,
and detection based on multi-scale fusion.

Target Frame I, Target Frame I,
Predicted Position

Spatial Features

Shared

Backbone _6
Network

—
1
! 1
1 1
1 1 | Detection
Temporal : | Head
Encoding] == — -~ !
Module l 1 :
Inter-Frame Guidance 1 1
! 1
! 1
! 1
Shared L — o = ===
Backbone || Downsample Upsample
Network
Temporal Features Multi-scale
Feature
Motion Spatial Encoding Fusion
Enhancement Module

Figure 2. An overview of the spatio-temporal infrared small target detection framework.

The inter-frame motion information between adjacent frames is calculated to highlight
the moving area while suppressing the static background. These motion cues, which serve
as supplementary signals to the original frame, contribute to distinguishing targets that
might not be distinguishable in a single-frame context. This residual motion cue provides
dynamic information critical for distinguishing targets that may not be prominent in static
spatial features.

The original frames and residual mappings are processed through the shared backbone
network to extract spatial features. Furthermore, to simulate the consistency of the target
and its cross-temporal movement, the time coding module aggregates multiple frame
features, learns the movement trend and temporal correlation, enhances the signal of the
real target, and simultaneously filters out noise and false alarms.

spatio-temporal features are then fused in a multi-scale manner to preserve details
and coarse information. The fused features are passed to a customized detection head that
performs precise localization and classification of targets. The detection outputs are then
refined to produce the final detection results. The pseudo code of the entire procedure
is given in Algorithm 1. This overall architecture effectively addresses the limitations of
single-frame detection in complex infrared satellite video environments.



Remote Sens. 2025, 17, 3457 6 of 20

Algorithm 1 Spatio-Temporal Infrared Small Target Detection Framework

Input: Infrared video sequence I = {I;} ,

Output: Detected target bounding boxes B = {B;}]_,

1: Initialize empty detection results: B < &

2: fort =2toTdodo

3. Compute inter-frame motion enhancement: Ry <— H,|I; — I;_1|
Extract spatial features from I; and R;:

Fs,Iputial < Backbone(I})

4
5
6: FsI;mtial < Backbone(Ry)
7
8
9

Fuse spatial features:

) I R
Fsputlﬂl A Fuse(Fspatial’ Fspatiﬂl)

Aggregate temporal features over window [t — k, t]:

: t—k t
10: Fremporar < Temporal Encoder(Fspatial,..., Fspatial)

11:  Perform multi-scale feature fusion:

12: Frusea <= MultiScaleFusion(Fspatiat, Fremporal)
13:  Detect targets from fused features:

14: B DetectionHead(Ffyseq)

15 Append B; to results: B = BN B;

16: end for

3.3. Inter-Frame Motion Enhancement

In satellite-based infrared imaging, small aerial targets typically exhibit weak contrast
against complex and cluttered backgrounds. These targets may only have a few pixels and
thus be indistinguishable in single-frame observations. To highlight potential target regions
and suppress static background noise, we introduce an inter-frame motion enhancement
mechanism. Given the video sequence I = {I;}!_, calculate the absolute residuals between
consecutive frames to emphasize motion dynamics, as follows:

Re=|li—L4|, t=2,...,T. (1)

This residual image R; captures the change of pixel level over time, which can help
to separate small moving objects from a stationary background. However, due to sensor
fluctuations or atmospheric interference, the original residual may still have noise. There-
fore, we adopt further enhancement techniques, including residual refinement and fusion
strategy. In order to reduce the false alarm of residual noise while preserving the target
signal, a lightweight convolutional filter H, is used for each residual frame, as follows:

Ry = Hs(Ry). 2)

The thinning module is composed of two convolution layers, with ReLU activation and
batch normalization. It helps to smooth the residual response and emphasizes local motion
regions with uniform spatio-temporal gradients. In addition, instead of treating residuals
as a separate stream, we refine each refinement residual Ry along the channel dimension
connected to the original frame I;, as follows:

I; = Concat (I, R;). (3)

Then enter the combination I; sent to the spatial feature extraction trunk for joint
feature learning. The residual maps generated by this process help the network focus
on dynamic objects and suppress static background noise. Both the original features
and residual maps are processed through shared convolutional layers for spatial feature
extraction. This fusion enables the network to integrate static and dynamic clues in the
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early stage of the pipeline so as to improve the resolution of small targets that are almost
invisible in the original infrared spectrum. This inter-frame motion enhancement strategy
introduces the minimum computational overhead and provides a strong sensing bias for
motion sensitive detection, especially in low SNR environments.

3.4. Spatial and Temporal Feature Encoding

In small target detection from satellite infrared video, the visual cues available in any
single frame are often too weak for accurate recognition. Therefore, we design a dual-
branch architecture that encodes spatial and temporal features separately to enhance the
robustness and continuity of target representation.

In particular, each input frame I; and its corresponding residual enhanced version I;
through a shared convolution backbone F; to extract spatial features, as follows:

E = F(L). 4)

Backbone F; uses a ResNet-18 backbone to extract features from the input infrared images.
When working with a resolution of 512 x 512, the feature maps from different layers, such
as C3, C4, and C5, have sizes of 64 x 64, 32 x 32, and 16 x 16, respectively, with increasing
depth. If the input resolution is reduced to 256 x 256, these feature maps correspondingly
become smaller, for example, 32 x 32, 16 x 16, and 8 x 8. Each feature F; € RExH*W
captures textures, edges, and local patterns that may indicate the presence of small tar-
gets. In order to further enhance the discrimination ability, we also extract the multi-scale
representation (see Section 3.5 for details) to ensure fine-grained and context-aware spa-
tial awareness.

Although spatial features provide static appearance clues, temporal consistency is
crucial to verify the existence of real moving targets. We use the time encoder F; to process
the spatial feature sequence spanning the time window {F, y,...,F;}. Some temporal
modeling techniques, such as temporal transformers, attention modules, and 3D CNNs,
have indeed demonstrated significant success in capturing complex temporal dependen-
cies and enhancing feature representations. In our work, we selected ConvLSTM for the
temporal branch because it offers a balance of efficiency, effectiveness, and interpretability,
especially suited for infrared small target detection scenarios. ConvLSTM integrates convo-
lutional operations within the recurrent framework, which preserves spatial information
while modeling temporal dependencies. This trait is particularly beneficial given the small
scale and subtle motion characteristics of the targets we aim to detect, where maintaining
spatial resolution and local details is crucial. Moreover, ConvLSTM is computationally
less demanding compared with 3D CNNs and transformer-based models, making it more
suitable for real-time or resource-constrained applications—an important consideration in
satellite-based infrared systems. The ConvLSTM module that implements F; captures the
motion consistency and time dependence through the gated storage unit, as follows:

Ht, Ct = COI’IVLSTM(Ft, Htfl,ctfl), (5)

where H; is the hidden state and C; is the unit state. This formula can realize remote
memory tracking while maintaining the spatial structure. This method generates time-
enhanced feature Fttemp and encodes motion mode and inter-frame correlation, which is
essential for suppressing false positive (e.g., flickering noise) and confirming the real target
trajectory. By jointly modeling spatial appearance and temporal dynamics, our system
establishes a robust multidimensional representation of the target, which is ready for the
fusion and detection of subsequent modules.
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In this process, the attention functionality emerges through the integration of inter-
frame motion enhancement and the spatio-temporal feature fusion modules. The inter-
frame motion enhancement acts as a form of motion attention by highlighting regions
with subtle movement between consecutive frames, effectively directing the network’s
focus towards dynamic regions that are more likely to contain targets. This residual
computation suppresses static background clutter, thereby increasing the signal-to-noise
ratio for moving small objects. Additionally, the spatio-temporal fusion modules serve as
attention mechanisms by adaptively weighting the importance of local spatial features and
global contextual cues across multiple scales. For example, our multi-scale fusion strategy
effectively combines coarse semantic information with fine-grained details, enabling the
network to dynamically attend to relevant features at different resolutions. This is achieved
through learned fusion weights and feature concatenation, which implicitly guide the
network to focus more on target-related cues and less on background noise or clutter.
Thus, although we do not employ explicit attention modules such as attention gates or
self-attention layers, the combination of inter-frame motion enhancement and multi-scale
feature fusion functions as an implicit attention mechanism. It guides the network to
prioritize salient regions pertinent to small moving infrared targets, especially under
challenging conditions like low visibility and background clutter.

3.5. Multi-Scale Feature Fusion

Both extracted spatial features F; and temporally enhanced features Fttemp need to be
fused to perform accurate small target detection. Due to the tiny size and low contrast of
aerial targets in infrared satellite videos, multi-scale fusion is essential to capture both fine
local details and broad contextual information.

We design a cross-scale feature fusion module Fjs to combine spatial and tempo-
ral cues at multiple levels. This involves downsampling higher-resolution features to a
common size and concatenating them along the channel dimension, then usinga 1 x 1
convolution to fuse these features into a single rich feature map. Specifically, a spatial
pyramid of feature maps from F; is employed using a simple multi-scale encoder, which
consists of downsampling through strided convolutions, as follows:

F" = Downsample)(R), 1=1,...,L. ©)
Similarly, a temporal pyramid is generated from F,*™, as follows:
Fttemp’(l) = Downsample(l ) (Fttemp). 7)

At each scale level I, the corresponding spatial and temporal features are fused via channel-
wise concatenation and processed with a fusion block (Conv + BN + ReLU), as follows:

thuSEd'(l ) — FusionBlock (Concat (Ft(l), F emp’(l)) ) . 8)
These fused features are then upsampled to a common resolution, as follows:

agg L fused, (1)
F%8 =Y Upsample(F, ). )

I=1

The aggregation allows the network to combine local, mid-range, and global infor-
mation, enhancing its ability to detect small targets appearing at any scale. It directly
combines multi-scale features at a common high resolution to facilitate the integration of
both local and global information efficiently. This approach is grounded in the observation
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that high-resolution feature fusion can effectively preserve fine details essential for small
target detection without the need for iterative, hierarchical decoding stages. Compared
with U-Net architecture, our method achieves performance levels close to those of the
hierarchical approach, with the added benefit of reduced computational overhead and
inference complexity. The direct upsampling allows the network to leverage multi-scale
information simultaneously, thus maintaining spatial accuracy and feature richness, which
are critical factors in infrared small target detection where target details are subtle and
easily lost. This strategy simplifies the decoding pipeline while ensuring that rich semantic
and spatial cues are adequately fused, resulting in detection performance comparable to
that of more complex hierarchical decoders.

As for the detection head, it comprises two components: a heatmap prediction branch
and a size regression branch. The head consists of two 3 x 3 convolutional layers with
256 filters, followed by separate output layers. The heatmap branch uses a 1 x 1 convo-
lution with a sigmoid activation to produce the probability heatmap P; € [0,1]#*" and
generate per-pixel probabilities of target centers. The size regression branch employs a
1 x 1 convolution with linear outputs to predict the target width and height, as follows:

b = U(fdet(Ftagg)) . (10)

The heatmap P; indicates the likelihood of target presence at each pixel. During training,
we supervise the output using binary cross-entropy loss or focal loss, depending on the
level of class imbalance between target and background pixels.

A hybrid loss function that balances localization accuracy, class imbalance, and spatial
sharpness is designed to train the network effectively. Let P; € [0,1]"*" denote the
predicted probability map from the detection head at time ¢, and let P ' e {0,1}W be
the binary ground truth map where target pixels are labeled as 1. The overall loss function
is composed of the following three terms:

Etotal =M Ebce + )‘2£dice + AS£tV~ (11)

The binary cross-entropy (BCE) loss penalizes pixel-wise classification errors and ensures
correct probability estimation, as follows:

1
HW

M=
M=

Coce = — [P (i, j) log Pr(i, ) + (1= P (i, 1) log(1 = Pi(i, )| (12)

[
I
L

1j

The dice loss helps alleviate the class imbalance problem caused by the extreme sparsity of
target pixels in most frames, as follows:

2%y B PG
Y B2+ 5 PG )2 + e

Lice = (13)

The total variation regularization suppresses noise in the output heatmap and encourages
spatial consistency, which is especially useful in cluttered backgrounds, as follows:

Lo = L ((Bli+1,7) = Pl j)* + (Pili j+1) = Pi(i, )?). (14)
]

During the derivation, we perform a simple connected component analysis or non-
maximum suppression (NMS) on the binarized heatmap to extract the exact target coor-
dinates. This step eliminates isolated noise peaks and ensures spatial consistency of the
detection output.
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4. Experiments
4.1. Experimental Setup

To validate the effectiveness of our proposed method for detecting small infrared
targets in satellite video, we conduct experiments on two spaceborne infrared datasets.

The IRAir dataset [38] is a thermal infrared 256 x 256 SDG satellite image dataset for
weak target detection, using civil aviation aircraft as the simulation object. The dataset
contains 2000 sequence images, and each sequence contains 50 single band simulation
images with the same background. This dataset analyzes the pixel characteristics of
real air targets in different environments, including daytime imaging, night imaging, sea
background, land background, cloud interference, etc. The values of different sequences
range from 1 to 10 frames per second. The spatial resolution of the image is 30 m, and the
corresponding target speed range is 7.4-8.3 pixel/s.

The IRSatVideo-LEO dataset [39] is a semi-simulated Landsat satellite image dataset
with synthesized satellite motion, target appearance, trajectory, and intensity, which in-
cludes 200 sequences and 91,366 1024 x 1024 frames with mask annotations. It aims at
localizing a scarcity of candidate target pixels from image sequences captured by low
earth-orbiting (LEO) satellites of 400-2000 km. To ensure the generalization of the dataset,
they randomly sample locations across each continent and ocean on earth, and the cloud
cover ratios range from 0 to 61.25%. Illustrations of these two datasets are provided in
Figure 3.

(a) IRAiIr dataset

(b) IRSatVideo-LEO dataset

Figure 3. Illustrations of different Infrared dim-small target datasets.

We randomly divide the dataset into training and test sets with a ratio of 80% and 20%.
Data enhancement techniques, including random clipping, horizontal flipping, Gaussian
noise injection, and intensity normalization, are applied in the training process to improve
generalization. We use sliding window sampling with a fixed length of 5 frames per
segment to maintain the time structure.

All experiments were conducted on NVIDIA Tesla V100 GPU (NVIDIA Corporation,
Santa Clara, CA, USA). The Adam optimizer is used to train the model with 100 epochs.
The initial learning rate is 1 x 1074, and the attenuation is 0.5 times for every 20 epoch.
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We use a batch size of 8 and stop early based on validation loss to prevent overfitting.
Weight initialization follows the Xavier unified scheme. The hyper-parameters A1, A5, A3
are set according to the validation performances, which are A; = 1.0, A, = 0.5, A3 = 0.1in
the experiments.

4.2. Evaluation Metrics

Several state-of-the-art methods are introduced and serve as comparison algorithms.
SpecDETR [21] uses a multi-layer transformer encoder with self-excited subpixel-scale
attention modules to directly extract deep spatial-spectral joint features from hyperspec-
tral cubes, which eliminates dependence on pre-trained backbone networks commonly
required by vision-based object detectors. RISTDnet [18] constructs a feature extraction
framework combining handcrafted feature methods and convolutional neural networks,
and establishes a mapping network between feature maps and the likelihood of small
targets in the image. MSAFFNet [19] performs infrared small target detection based on
an encoder—decoder framework, which also constructs multi-scale labels to focus on the
details of the target contour and internal features based on edge information and an internal
feature aggregation module. OSCAR [20] (the one-stage cascade refinement network) uses
the high-level head as a soft proposal for the low-level refinement head, which is able to
process the same target in a cascade coarse-to-fine manner.

All baseline models used for comparison were retrained and evaluated under the
same experimental conditions to ensure a fair and objective comparison. Specifically, we
reimplemented each baseline model using identical datasets, preprocessing protocols, data
augmentation strategies, and training schedules. All results reported in our experiments are
obtained from these reimplementations, trained from scratch or fine-tuned as appropriate,
rather than directly borrowed from the original literature. Any results that we compare
against from previous studies are explicitly reobtained under our standardized setting.
Furthermore, to comprehensively evaluate the performance of various methods, we adopt
a set of widely used quantitative metrics, focusing on both pixel-level and object-level
accuracy. Given the extreme sparsity and small size of targets, it is crucial to use metrics
that are sensitive to class imbalance and capable of reflecting true detection capability.

At the object level, we define a detection as correct (true positive) if the predicted
target region overlaps with a ground truth region with an Intersection over Union (IoU)
greater than a predefined threshold (commonly set to 0.5). These metrics are computed per
frame and then averaged over the entire test set.

Precision represents the proportion of correctly detected targets among all pre-

dicted targets, as follows:
TP

TP + FP’
Recall indicates the proportion of correctly detected targets among all ground truth targets,
as follows:

Precision = (15)

TP

Recall - m (16)
F1-score means the harmonic mean of precision and recall, as follows:
Bl — Precision - Recall (17)

" Precision + Recall’

For multi-object detection tasks, we evaluate the precision—recall curve by varying the
confidence threshold of predictions. The average precision (AP) is calculated as the area
under the PR curve.

The false alarm rate helps quantify how many spurious detections the algorithm
produces per frame, which is critical for real-world deployment, as follows:
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PP
~ TP +FP’

Localization error (LE) measures the localization error between the center of a detected

FAR (18)

target and the corresponding ground truth center, as follows:

1 N
LE = fZHCAl'fcin, (19)
Ni:l

where ¢; and ¢; denote the predicted and ground truth centers, respectively, and N is
the number of matched targets. In summary, these metrics provide a robust evaluation
framework that captures both detection accuracy and robustness under challenging infrared
satellite conditions.

4.3. Results
4.3.1. Comprehensive Comparison

Under the same experimental protocol, the proposed method was comprehensively
evaluated against several state-of-the-art infrared small target detection algorithms on two
datasets, as shown in Table 1. Our approach consistently achieves superior performance
across all metrics. On IRAir, the method obtains the highest precision, recall, and F1-score,
representing respective improvements over the best-performing baseline OSCAR. The AP
reaches 80.45%, which is approximately a 12% relative gain over OSCAR, indicating that the
proposed design maintains high discriminability even across varying confidence thresholds.
Meanwhile, FAR is reduced to 14.23, a 10.96% relative reduction, and LE is lowered to
4.12 px, both of which are critical in practical operational contexts where excessive false
positives and localization errors can significantly impact downstream decision making.
These improvements reflect the method’s enhanced capacity for suppressing background
interference while preserving sensitivity to small low-contrast moving targets.

Table 1. Comparison of detection performance with state-of-the-art methods.

Method Precisiont Recallt F1-Score? APT FAR| LE(px){

SpecDETR 72.53 67.99 78.06 68.48 17.22 6.60

o RISTDnet 65.78 61.89 67.78 63.56 28.56 10.90
5 MSAFFNet 69.25 66.43 75.93 67.17 2231 8.86
= OSCAR 75.86 77.02 78.55 71.86 15.98 5.53
Ours 82.12 78.34 80.23 80.45 14.23 4.12

o SpecDETR 78.15 71.47 75.12 72.71 18.24 15.94

< RISTDnet 69.25 66.43 75.93 67.17 22.31 26.86

= MSAFFNetx  72.79 68.66 73.14 66.76 26.75 23.30

= OSCAR 83.14 77.56 76.28 73.60 13.98 13.36

&
- Ours 84.12 79.34 83.23 79.45 13.34 12.12

The performance advantage persists on IRSatVideo, where the detector achieves the
highest precision, recall, and AP, and still maintains the lowest FAR and LE among all SOTA
methods. In addition, the recall improvement is more significant than that of IRAir, which
indicates that the ability to capture time dependence is becoming increasingly important for
longer sequences with more complex background dynamics. In this case, static spatial cues
are often insufficient, and the fusion of inter-frame motion enhancement characteristics
and time coding plays a decisive role in distinguishing the real target from the fluctuating
background mode.

Table 2 shows the evaluation results under different input resolutions to further
understand the robustness of the method. At 512 x 512 resolution, the model achieved
the best effect, with an Fl-score of 80.53% and an AP score of 77.25%. When reduced to
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256 x 256, the F1-score decreased to 76.06% and the AP decreased to 73.21%, indicating that
the multi-scale fusion strategy can effectively retain fine-grained target information even
when the spatial details are reduced. The trade-off between accuracy and computational
efficiency is obvious in reasoning speed: 21.4 FPS on 512 x 512 and 11.4 FPS on 256 x 256,
providing flexibility for deployment in resource-constrained environments. It is worth
noting that the competing methods show more obvious accuracy degradation in the case
of low resolution, which means that our inter-frame motion enhancement representation
is less dependent on the original pixel density. For computational complexity, our model
requires approximately 14.1 GFLOPs per inference at an input resolution of 512 x 512. When
downscaled to 256 x 256, the FLOPs decrease to around 4.9 GFLOPs due to the quadratic
scaling with input size. These indicate that the network is computationally intensive but
still within a feasible range for high-performance GPU platforms. In resource-constrained
onboard systems, achieving real-time processing would necessitate optimization strategies
such as model compression, quantization, or the adoption of lower-precision computations.

Qualitative analyses support these quantitative trends as well, as illustrated in Figure 4.
In low-noise conditions, most methods could identify salient targets, but our approach
generates more precise bounding boxes and minimizes background detections. Under se-
vere noise, however, competitors, including OSCAR, tend to misclassify high-intensity
clutter and moving background textures as targets. By contrast, the proposed framework
maintains stability, which can be attributed to two core design choices. On the one hand,
the inter-frame motion enhancement computation suppressed background components
consistent over time, leaving motion-specific signal patterns. On the other hand, the multi-
scale spatio-temporal fusion retained fine local details while integrating global semantic
cues, enabling discrimination between genuine moving objects and noise.

4.3.2. Ablation Study

In Table 3, ablation experiments further highlight the contribution of each architec-
tural component. Using only the inter-frame motion enhancement yields an Fl-score
of 65.12%, while a spatial-branch-only configuration achieves 62.89%, underscoring that
motion or appearance cues alone are inadequate for challenging infrared backgrounds.
Combining residual and spatial streams increases the F1-score to 74.90%, illustrating their
complementarity in emphasizing moving targets while modeling structural details. The in-
clusion of temporal encoding into a residual-only model led to a substantial recall boost
(62.15% to 79.56%), validating that temporal context helps maintain target trajectories and
reject transient noise. The full configuration, integrating residual, spatial, and temporal
branches, produces the best results on all metrics, especially AP (80.45%) and FAR (14.23%),
confirming the necessity of all three elements.

Table 2. Effect of resolutions on accuracy and inference time.

Method Precisiont Recallt F1-Score? APt FAR| FPS?

SpecDETR 73.11 67.73 73.30 66.87 20.58 58.3

I% RISTDnet 67.32 64.26 63.91 61.76 34.06 81.0

% MSAFFNet 70.37 64.92 65.64 64.12 30.59 729

N OSCAR 76.47 71.01 77.86 72.75 16.30 43.4
n

Ours 83.02 77.58 80.53 77.25 15.57 314

SpecDETR 67.85 72.23 65.54 64.15 28.92 34.7

ﬁ RISTDnet 65.80 61.94 59.25 57.54 39.49 45.2

x MSAFFNet 66.34 62.53 64.35 61.31 28.55 41.6

NS OSCAR 72.51 74.57 72.32 72.47 31.18 27.4
~

Ours 80.17 75.60 76.06 73.21 21.36 21.4
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Figure 4. Results of different networks in scenes under different noise intensity conditions.
Table 3. Performance contribution of each module on the IRAir dataset.
Residual Spatial Temporal Precisiont Recallt F1-Score? APT FAR| LE(px){
v 68.23 62.15 65.12 63.45 28.34 12.45
v 65.67 60.34 62.89 60.12 30.12 13.67
v v 76.34 72.67 74.90 74.23 17.78 4.23
v v 81.12 79.56 78.84 79.32 15.65 5.01
v v v 82.12 78.34 80.23 80.45 14.23 412

4.3.3. Cross-Dataset Comparison

To further assess the robustness and design rationality of the proposed framework,
complementary studies that go beyond the standard single-dataset evaluation are con-
ducted. The first focuses on cross-dataset transferability, an important property for satellite-
borne infrared small target detection where operational data often differ markedly from the
training set in terms of background texture, sensor noise characteristics, and point-spread
function. In this setting, the detector was trained on IRAir and evaluated directly on
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IRSatVideo, and vice versa, without any domain-specific adaptation to measure zero-shot
generalization. In addition, few-shot adaptation scenarios were considered by fine-tuning
the model on a small fraction (1%, 5%, and 10%) of the target-domain training set, allow-
ing us to plot performance-data size curves. Across both zero-shot and few-shot cases,
the proposed method achieved higher AP and recall and maintained lower FAR than state-
of-the-art baselines such as OSCAR and MSAFFNet, indicating a reduced sensitivity to
domain shift and a strong ability to leverage even minimal adaptation data. Feature-space
visualizations via t-SNE revealed consistent clustering of target embeddings across datasets
for our method, while competing methods exhibited domain-specific separation, further
corroborating the robustness of the motion-enhanced temporal representation.

Figure 5 illustrates the detection performance of different combinations of training test
datasets, which are measured according to accuracy, recall rate, F1-score, average accuracy
(AP), false-positive rate (FAR), and positioning error (LE). This method is always superior
to the most advanced methods on IRAir and IRSatVideo datasets. It is worth noting that,
compared with the best competitor, it achieves a higher Fl-score (+1.68% on IRAir and
+4.91% on IRSatVideo), while reducing FAR and LE, indicating that the accuracy and
robustness have been improved. When the distribution of training and testing is different,
the performance improvement is particularly obvious in cross-domain scenarios, which
shows that the method has strong generalization ability.

0l
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Figure 5. Impact of cross-dataset training and testing ratios on Fl-score.

Figure 6 presents the results of few-shot adaptation experiments, where a limited
portion of target-domain samples is incorporated into training. The bar chart reveals that,
even with a small fraction (e.g., 10%) of target-domain samples, the proposed method
achieves substantial performance improvements over zero-shot cross-domain detection.
The gains are more significant compared with baseline methods, suggesting that the
proposed spatio-temporal fusion and inter-frame motion enhancement modules effectively
leverage scarce domain-specific information. As the proportion of target-domain samples
increases, the performance gap narrows, but our method maintains a consistent advantage
across all few-shot settings.
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Figure 6. Cross-dataset few-shot adaptation performance comparison.

4.3.4. Sensitivity Analysis

The other study explores the sensitivity of detection performance to the length of the
time input window, aiming to determine the best balance between time context utilization
and computational efficiency. We change the number of consecutive frames L provided
to the network from 1 (single-frame baseline) to 9, keeping all other training protocols
unchanged. The results show that the transfer from L = 1 to L = 5 had a significant
improvement in memory and AP, while FAR was reduced and the detection time was
shortened, which proved the value of rich time clues. The best compromise is observed
between L = 5 and L = 7, and the performance reaches the peak while maintaining an
acceptable reasoning speed. After the window is increased to L = 7, there is marginal or no
further improvement, and slight degradation is introduced in some sequences, which may
be due to the accumulation of uncorrelated time noise, the reduction in resolution per frame
in the fused representation, and the significant reduction in throughput per second. These
findings not only verify the inclusion of temporal modeling in the architecture, but also
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provide practical guidance for resource-constrained deployments. In these deployments,
choosing an appropriate temporal depth can retain most of the accuracy advantages without
affecting the real-time processing requirements.

Figure 7 analyzes the influence of time window length L on detection accuracy and
delay. The left Y-axis (line plot) shows that Fl-score increases as L increases from 1 to the
optimal range (usually L = 5 or L = 7), benefiting from a richer time context. However,
too long windows will not produce further accuracy improvement, and may even cause
slight degradation due to time redundancy. The right Y-axis (scatter cloud) describes
the detection time (TTD) distribution of each target. Although a longer window will
slightly increase the average TTD, the proposed method maintains a balanced trade-off and
achieves a high F1-score with the minimum delay growth. The long tail of TTD distribution
represents a challenging low-contrast target, which is still shorter than the competitive
method, indicating that the response ability to difficult cases has been improved.
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Figure 7. Effect of temporal window length on detection accuracy and latency.
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The experimental results in Table 4 confirm that our model is relatively insensitive to
small changes in hyperparameters, with only minor fluctuations in detection performance
(F1-score). This indicates strong robustness and adaptability of our framework under
different configurations. Such stability is critical for practical deployment, as it suggests that
the method does not require precise hyperparameter tuning to achieve high performance.

Table 4. Performance with hyperparameter variations on the IRAir dataset.

Hyperparameters Values/F1-Score
. . 1.0 (original) 0.5 2.0

Loss weight of residuals
80.23 80.86 80.10
3 x 3 (original) 5x5 7x7

ConvLSTM kernal size
80.23 79.02 78.75

1 (original) 2 3
Number of ConvLSTM layers
80.23 79.65 80.73
) 1 x 10™* (original) 2x107* 5x 107
Learning rate

80.23 80.59 80.30

In general, the experimental evidence shows that the integration of inter-frame motion
cues, dual-branch spatio-temporal coding, and multi-scale fusion achieves a balanced
improvement in detection accuracy, noise robustness, and positioning accuracy. The frame-
work always provides high accuracy and recall, achieves a large amount of AP gain, reduces
FAR, and reliably executes in different resolutions. These characteristics not only verify
the contribution of the method, but also emphasize the practical value of the system in the
satellite-based infrared small target detection, in which the operational constraints require
high reliability and adaptability to various sensing and environmental conditions.

5. Conclusions

This paper proposes a novel end-to-end framework for detecting small aerial targets
in satellite-based infrared video sequences. We introduce an inter-frame motion-enhanced
pipeline that highlights inter-frame dynamics, a spatio-temporal feature extraction back-
bone, and a multi-scale fusion strategy to integrate coarse semantic and fine-grained
cues effectively. Extensive experiments on various datasets demonstrate that the method
achieves superior performance compared with existing state-of-the-art approaches. The ab-
lation study further verifies the contribution of each module, and shows that residual input,
temporal attention coding, and multi-scale fusion play an important role in achieving
robust detection performance under low visibility and background clutter.

In the future, we plan to explore the following directions: Research on more effective
extraction of backbone network, e.g., attention-based transformer module. Combined with
other sensing methods, such as visible spectrum or radar, it can further improve detection
robustness under occlusion or adverse conditions. The framework provides a good foundation
for various applications of remote monitoring and an early warning system, and lays a
foundation for the further development of satellite-based dynamic target perception.
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