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Highlights 

What are the main findings? 

• Manufacturer calibrations were insufficient; Headwall Nano-Hyperspec and Mica-
Sense sensors underestimated reflectance by approximately 0.05 and 0.015 reflec-
tance units, respectively. But applying the Empirical Line Method (ELM) reduced 
reflectance errors to within 0.005 units, greatly enhancing UAS sensor data reliability. 

• Effective ELM calibration required only two targets, with a minimum size of 0.6 m × 
0.6 m at 200 ft AGL; additional targets or different materials provided no further ac-
curacy gains. 

What are the implications of the main findings? 

• By applying ELM, UAS sensors can produce radiometrically accurate reflectance  

products, making them more suitable for scientific applications requiring precision 
(e.g., ecosystem monitoring, crop health assessment, land cover mapping) where sat-
ellite or crewed airborne data may not be feasible. 

• The study shows that only two properly sized calibration targets are needed for ef-
fective correction, reducing field workload and equipment requirements. This makes 
high-quality UAS-based remote sensing more operationally efficient and accessible 
for research and resource management applications. 

Abstract 

The use of Uncrewed Aerial Systems (UASs) for remote sensing applications has in-
creased significantly in recent years due to their low cost, operational flexibility, and rapid 
advancements in sensor technologies. In many cases, UAS platforms are considered via-
ble alternatives to conventional satellite and crewed airborne platforms, offering very 
high spatial, spectral, and temporal resolution data. However, the radiometric quality of 
UAS-acquired data has not received equivalent attention, particularly with respect to ab-
solute calibration. In this study, we (1) evaluate the absolute radiometric performance of 
two commonly used UAS sensors: the Headwall Nano-Hyperspec hyperspectral sensor 
and the MicaSense RedEdge-MX Dual Camera multispectral system; (2) assess the 
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effectiveness of the Empirical Line Method (ELM) in improving the radiometric accuracy 
of reflectance products generated by these sensors; and (3) investigate the influence of 
calibration target characteristics—including size, material type, reflectance intensity, and 
quantity—on the performance of ELM for UAS data. A field campaign was conducted 
jointly by the U.S. Geological Survey (USGS) Earth Resources Observation and Science 
(EROS) Center and the USGS National Uncrewed Systems Office (NUSO) from 15 to 18 
July 2023, at the USGS EROS Ground Validation Radiometer (GVR) site in Sioux Falls, 
South Dakota, USA, over a 160 m × 160 m vegetated area. Absolute calibration accuracy 
was evaluated by comparing UAS sensor-derived reflectance to in situ measurements of 
the site. Results indicate that the Headwall Nano-Hyperspec and MicaSense sensors un-
derestimated reflectance by approximately 0.05 and 0.015 reflectance units, respectively. 
While the MicaSense sensor demonstrated better inherent radiometric accuracy, it exhib-
ited saturation over bright targets due to limitations in its automatic gain and exposure 
settings. Application of the ELM using just two calibration targets reduced discrepancies 
to within 0.005 reflectance units. Reflectance products generated using various target ma-
terials—such as felt, melamine, or commercially available validation targets—showed 
comparable agreement with in situ measurements when used with the Nano-Hyperspec 
sensor. Furthermore, increasing the number of calibration targets beyond two did not 
yield measurable improvements in calibration accuracy. At a flight altitude of 200 ft above 
ground level (AGL), a target size of 0.6 m × 0.6 m or larger was sufficient to provide pure 
pixels for ELM implementation, whereas smaller targets (e.g., 0.3 m × 0.3 m) posed chal-
lenges in isolating pure pixels. Overall, the standard manufacturer-recommended calibra-
tion procedures were insufficient for achieving high radiometric accuracy with the tested 
sensors, which may restrict their applicability in scenarios requiring greater accuracy and 
precision. The use of the ELM significantly improved data quality, enhancing the reliabil-
ity and applicability of UAS-based remote sensing in contexts requiring high precision 
and accuracy. 

Keywords: UAS radiometric calibration, Headwall Nano-Hyperspec hyperspectral sen-
sor; Micasense Rededge-MX dual camera system; empirical line method; calibration tar-
gets 

1. Introduction 
In recent years, the use of Uncrewed Aerial Vehicles (UAVs) has rapidly expanded 

within the field of remote sensing, propelled by both scientific advancements and com-
mercial success [1]. UAVs, or Uncrewed Aerial Systems (UASs), are now widely used in 
diverse applications including agriculture and forestry for crop monitoring and precision 
farming, environmental assessments, firefighting for detection and management of forest 
fires and support in emergency operations, and earth observation tasks such as aerial pho-
tography, mapping, and surveying. The increasing popularity of UASs in remote sensing 
is largely attributed to several factors. Compared to traditional satellite and crewed aerial 
platforms, UAS offer significantly higher spatial, spectral, and temporal resolution at a 
much lower cost [1]. Furthermore, their low-altitude operation—typically under 120 m 
above ground level (AGL)—reduces the atmospheric path length, thereby minimizing ra-
diative interference and decreasing the need for complex atmospheric corrections [2]. 
UASs also provide operational flexibility. They can be rapidly deployed on-demand, in-
cluding under partially cloudy conditions, as long as clouds remain above the flight alti-
tude. This capability allows for consistent data collection even when satellite-based obser-
vations are impeded by cloud cover. Additionally, advances in electronics and materials 
science have contributed to the development of lightweight navigation systems, flight 
controllers [2], and durable plastic chassis with mechanical properties comparable to 
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metal-based frames [3]. These innovations have improved flight efficiency and extended 
operational time. Together, these attributes—coupled with cost-effectiveness and ongoing 
technological improvements—position UAS as powerful platforms for remote sensing. 
However, the rapid expansion of UAS applications has also underscored the need for 
standardized image calibration procedures and improved data quality. 

Radiometric calibration is a fundamental requirement for any optical sensor used in 
scientific remote sensing. All optical sensors initially record measurements in arbitrary 
units, typically referred to as Digital Numbers (DN). Without calibration—i.e., the con-
version of DN values into physical radiometric quantities such as radiance, reflectance, or 
temperature—these values are not scientifically meaningful and cannot be reliably used 
for analysis [3]. Consequently, consistent, accurate, and reproducible radiometric calibra-
tion is essential for all UAS-based remote sensing data intended for research applications. 

Prior to deployment, optical sensors are generally calibrated in controlled laboratory 
environments. This is commonly performed using an integrating sphere or a calibrated 
reflectance panel illuminated by a traceable light source [4-7]. Such laboratory characteri-
zation is also critical for evaluating key sensor properties including dark current, non-
uniformity, radiometric linearity, and vignetting effects, all of which influence sensor per-
formance and data quality. 

Once deployed in the field, sensor performance may drift due to environmental con-
ditions. For satellite-based sensors, factors such as launch vibration and exposure to the 
space environment can alter their initial calibration. To mitigate this, most satellite sys-
tems include onboard calibration mechanisms—such as solar diffusers, lamps, or shutter-
based dark calibrators—that monitor sensor stability over time. Additionally, independ-
ent validation is conducted using ground-based measurements and pseudo-invariant cal-
ibration sites (PICS) [8-11]. For UAS-mounted sensors, radiometric calibration is typically 
performed using one of three main approaches: the Empirical Line Method (ELM) using 
reflectance calibration panels, the use of downwelling irradiance sensors, or radiative 
transfer modeling [12-14]. Radiative transfer models estimate at-sensor radiance based on 
atmospheric and illumination conditions using complex radiative transfer codes. How-
ever, these models require detailed atmospheric characterization, which can be difficult 
to obtain accurately in the field. 

ELM remains one of the most widely used methods for UAS applications due to its 
simplicity and reliability. It requires one or more known reflectance targets within the 
image scene and directly relates DN values to surface reflectance. More recently, the use 
of downwelling irradiance sensors mounted on UAS platforms has gained traction. These 
sensors measure incident solar radiation during flight, enabling reflectance calibration 
without the need for external ground targets [13-15] although results can be inconsistent 
[16]. 

The Headwall Nano-Hyperspec hyperspectral sensor and the MicaSense RedEdge-
MX Dual multispectral imaging system are widely utilized in agricultural applications, 
including crop health monitoring and land cover/land use classification. Multispectral 
sensors, such as the MicaSense system, acquire imagery in a limited number of broad 
spectral bands and are commonly used for vegetation indices and general land surface 
monitoring [17]. In contrast, hyperspectral sensors like the Nano-Hyperspec capture data 
across hundreds of narrow, contiguous spectral bands, making them particularly well-
suited for applications requiring high spectral resolution, such as mineral identification, 
nutrient deficiency detection [18] and/or plant disease monitoring [19]. UAS-mounted 
sensors typically generate radiance or reflectance products based on internal metadata 
and the spectral profile of artificial calibration targets recommended by the manufacturer. 
These calibration parameters are generally fixed unless the sensor undergoes a new labor-
atory calibration or in-field radiometric adjustment. In many instances, UAS sensors are 
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not individually calibrated, and default metadata values are used across different systems 
[6]. Furthermore, both sensor sensitivity and calibration target reflectance may degrade 
over time, potentially compromising data quality. Addressing these factors is essential to 
ensure the accuracy of radiometric products generated from UAS platforms. 

The primary objective of this study is to evaluate the absolute radiometric calibration 
performance of the Headwall Nano-Hyperspec hyperspectral sensor and the MicaSense 
RedEdge-MX Dual Camera multispectral sensor. Reflectance products derived using the 
manufacturer’s recommended calibration procedure were compared to in situ measure-
ments for validation. The Empirical Line Method (ELM) was applied to enhance the radi-
ometric accuracy of reflectance outputs from both sensors. Additionally, this study inves-
tigates the influence of calibration target characteristics—including material type, size, re-
flectance intensity, and quantity—on the effectiveness of radiometric calibration for UAS-
based imaging systems. 

2. Materials and Methods 
To achieve the objectives of this study, a field campaign was conducted from 15 to 18 

July 2023, at the U.S. Geological Survey (USGS) Earth Resources Observation and Science 
Center (EROS) Ground Viewing Radiometer (GVR) site in Sioux Falls, South Dakota, USA. 
The campaign was supported by the USGS EROS Cal/Val Center of Excellence (ECCOE) 
and the USGS National Uncrewed Systems Office (NUSO), which provided calibration 
targets, instrumentation, remote pilots, and field personnel. 

2.1. Field Campaign 

This field campaign was conducted over a 160 m × 160 m vegetated area at USGS 
EROS that has been used for Landsat sensor calibration and validation since 2021 (Figure 
1). The campaign involved three daily UAS flights for each sensor—Headwall Nano-Hy-
perspec (hyperspectral) and MicaSense RedEdge-MX Dual (multispectral)—over the 
course of four days, from 15 to 18 July 2023. A summary of the flight schedule is provided 
in Table 1. 

(a) (b) 

Figure 1. (a) Layout of targets during the field campaign at U.S. Geological Survey (USGS) Earth 
Resources Observation and Science (EROS) Center Ground Validation Radiometer (GVR) site using 
MicaSense RGB imagery. The red arrows indicate the path by which handheld spectrometer meas-
urements were collected across the large, natural vegetated target area of 160 m × 160 m. (b) Location 
of different artificial targets used in the UAS field campaign. 
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Table 1. Field campaign date and data acquisition time along with satellite overpass by Environ-
mental Mapping and Analysis Program (EnMAP), Landsat 9 (L9), Sentinel-2B (S2B). 

Date Time Coincident Overpass 
2023-07-15 10 AM, 12 PM, 2 PM EnMAP (11:48 AM) 

2023-07-16 10 AM, 12 PM, 1 PM 
L9 (11:11AM), 

S2B (11:18 AM), 
EnMAP (12:13 PM) 

2023-07-17 10 AM, 12 PM, 1 PM  
2023-07-18 10 AM, 12 PM, 2 PM  

For each flight, UAS platforms first acquired images of calibration targets, followed 
by imaging of the EROS GVR site. The campaign was specifically designed to coincide 
with satellite overpasses from platforms including Landsat 9 Operational Land Imager 
(OLI), Sentinel-2A Multispectral Imager (MSI), and the Environmental Mapping and 
Analysis Program (EnMAP). This coordination aimed to enable cross-platform validation 
of surface reflectance measurements. However, during the first three days, coincident sat-
ellite overpasses were adversely affected by cloud cover and wildfire smoke [20]. As a 
result, direct comparisons between UAS and satellite imagery are not presented in this 
paper. Atmospheric conditions on 18 July 2023 were improved relative to the previous 
days. Consequently, only data acquired on this date are presented and discussed in the 
remainder of this study. 

Both the Headwall and MicaSense sensors were flown at an altitude of 200 feet (62 
m) above ground level (AGL). This altitude was selected as a tradeoff between full cover-
age of the EROS GVR site and the limitations of UAS battery life. At this altitude, the entire 
site could be surveyed using a single battery, minimizing the time gap between acquisi-
tion of calibration targets and natural vegetation. Flying at a lower altitude would have 
extended the overall flight duration, thereby increasing the time interval between the ac-
quisition of calibration target images and the sampling of the natural site. This extended 
interval could also introduce greater variability in solar angle during data collection, po-
tentially compromising the fidelity of the radiometric calibration. 

2.2. Targets 

A variety of calibration targets were deployed during the field campaign. Because 
one of the focuses of the campaign was on evaluating different materials for constructing 
artificial targets suitable for calibration and validation of UAS imagery, some targets were 
fabricated at USGS EROS, while others were acquired from commercial vendors. Table 2 
shows the summary of target material, size, and source of artificial calibration targets. 
Figure 1b shows the layout and variety of artificial targets that were used during the field 
campaign. 

Targets were made from six different materials: felt, melamine, plywood, Permaflect, 
Spectralon, and pigmented polyester fabric. Felt targets were purchased and wrapped 
around thick material for structure and support. Melamine and Plywood targets were 
commercially purchased and subsequently painted with different levels of intensity-mod-
ifying paint at EROS. The following paints, each with a flat finish and applied using a 
roller, used in this experiment were: Dura Clean (Dutch Boy Paints, Cleveland, OH) colors 
True Black (DFTB), Ultra-White (DFUW), Refined Gray (DFRG), Baltic Gray (DFBG), and 
Pittsburgh Ultra (The Pittsburgh Paints Company, Cranberry Township, PA) color Light 
Drizzle (PFLD). Permaflect and Spectralon targets were manufactured by Labsphere 
(North Sutton, NH, USA) and Malvern Panalytical (Malvern, Worcestershire, UK), respec-
tively. Fabric tarps manufactured by Group 8 Technology, Inc. (Provo, UT, USA) with 
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three grayscale levels were provided by Headwall Photonics, Inc. (Bolton, MA, USA) as 
part of the purchase of their hyperspectral sensor for calibration. 

In addition to material variations, targets of different sizes were also employed. The 
fabric tarps were 1.4 m x 1.4 m, felt targets were 0.9 m × 0.9 m, Melamine and Plywood 
targets were 0.6 m × 0.6 m, Permaflect targets were 1 m × 1 m, and Spectralon panels were 
approximately 0.3 m × 0.3 m in size. A 150 m × 150 m homogeneous vegetated area at the 
EROS GVR site served as the natural target for comparison. 

Using targets of different materials and sizes provided insights into the impact of 
target characteristics on the calibration and validation of UAS-acquired imagery. 

Table 2. Summary of target material, size, and source of artificial calibration targets. 

Target Material Size (m × m) Source Notes 

Felt 0.9 × 0.9  Commercial felt material wrapped 
around rigid backing 

Wrapped around thick mate-
rial for structure and support 

Melamine 0.6 × 0.6 Commercial Purchase + EROS Modifica-
tion Painted for varying intensity 

Plywood 0.6 × 0.6 Commercial Purchase + EROS Modifica-
tion 

Painted for varying intensity 

Permaflect 1.0 × 1.0 Labsphere Commercially manufactured 
calibration target 

Spectralon 0.3 × 0.3 
Malvern Panalytical (manufactured by 
Labsphere) 

Commercially manufactured 
white reference calibration 
panel 

Fabric tarp   1.4 × 1.4 Group 8 Technology 
Pigmented polyester fabric; 
used for hyperspectral cali-
bration 

Vegetative Site 150 × 150 Natural site (USGS EROS) Homogeneous vegetative 
surface 

2.3. Equipment Used 

The EROS ECCOE field team operated a field spectrometer to measure the surface 
reflectance of both the EROS GVR site and the artificial calibration targets [21]. Simulta-
neously, the USGS NUSO team operated the UAS platforms to acquire imagery of the 
same targets and vegetated site [22]. The spectrometer measurements were calibrated us-
ing a reflectance calibration panel that provided reference data for evaluating the radio-
metric accuracy of the UAS-derived reflectance products. Additionally, spectrometer-
based measurements of the calibration targets were used to calibrate the UAS imagery 
through implementation of the Empirical Line Method (ELM). 

The technical specifications of the primary equipment used during the field cam-
paign are detailed in the following sections. 

2.3.1. UAS Sensor Overview 

The technical specifications of the Headwall Nano-Hyperspec hyperspectral sensor 
and the MicaSense RedEdge-MX Dual multispectral sensor used during the field cam-
paign are described in the sections below. 

Headwall Nano-Hyperspec 

The Headwall Nano-Hyperspec (Headwall Photonics, Inc., Bolton, MA, USA) is a 
pushbroom hyperspectral sensor, which captures imagery line-by-line as the UAS moves 
along its flight path. Each line consists of 640 spatial pixels, with all pixels recorded sim-
ultaneously across 274 spectral channels. The sensor operates with 12-bit radiometric 



Remote Sens. 2025, 17, 3738 7 of 31 
 

 

resolution and captures data across the visible to near-infrared range, from 398 nm to 1002 
nm. It has a spectral sampling interval of approximately 2.2 nm, with a full width at half 
maximum (FWHM) of ~6 nm [23]. The sensor was paired with a 12 mm focal length lens. 
Additional technical details and performance characterizations of the sensor are available 
in [7,24]. 

MicaSense RedEdge-MX Dual Camera Imaging System 

The MicaSense sensor is a five-band multispectral imaging system designed for agri-
cultural applications such as crop health monitoring and precision management [6]. The 
MicaSense RedEdge-MX Dual Camera System (AgEagle Aerial Systems Inc., Wichita, 
Kansas, USA) consists of two integrated five-band sensors: the RedEdge-MX and the 
RedEdge-MX Blue. Together, the system captures imagery across 10 distinct spectral 
bands. 

The MicaSense sensor operates at a maximum capture rate of one image per second 
with a field of view (FOV) of 47.2°. The center wavelengths and full width at half maxi-
mum (FWHM) values for each spectral band are provided by the manufacturer and listed 
in Table 3. 

The relative spectral responses (RSRs) of the MicaSense RedEdge-MX Dual system 
are shown in Figure 2. The RedEdge-MX and RedEdge-MX Blue sensors are represented 
by solid and dashed lines, respectively. RSRs for the RedEdge-MX were characterized 
through laboratory measurements, while those for the RedEdge-MX Blue were modeled 
using Gaussian distributions based on the manufacturer-provided center wavelengths 
and FWHM values in Table 3. 

Table 3. Center wavelengths and full width half max of MicaSense Dual Camera Imaging System. 

Band Descriptor Center Wavelength (nm) Bandwidth (nm) 
Coastal Blue 444 28 

Blue 475 32 
Green  531 14 
Green 560 27 
Red 650 16 
Red 668 14 

Red Edge 705 10 
Red Edge 717 12 
Red Edge 740 18 

Near-Infrared 842 57 
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Figure 2. Micasense relative spectral responses. Solid and Dashed curves represent Micasense 
RedEdge-MX and RedEdge-MX Blue, respectively. From left to right, these spectral curves corre-
spond to the center wavelengths (in ascending order) and bandwidths for each multispectral band 
presented in Table 2. 

2.3.2. Spectrometer 

The primary instruments used in this study included a pair of general-purpose spec-
trometers, each paired with a calibrated white reference panel. The spectrometers were 
FieldSpec 4 models acquired from Malvern Panalytical (Malvern, Worcestershire, UK). 
Internally, the FieldSpec 4 system integrates three spectrometers within a single housing: 
a visible and near-infrared (VNIR) spectrometer covering 350–1000 nm, a shortwave in-
frared (SWIR 1) spectrometer covering 1000–1800 nm, and a SWIR 2 spectrometer cover-
ing 1800–2500 nm [25]. Designed for field portability, the FieldSpec 4 features an 8° fore-
optic field of view (FOV) and measures radiant energy across a broad spectral range from 
350 nm to 2500 nm. The instrument offers 1 nm spectral sampling and variable spectral 
resolution: approximately 3 nm in the 350–1000 nm range and 10 nm in the 1000–2500 nm 
range. Spectral sampling precision is 1.4 nm in the 350–1000 nm range and 1.1 nm in the 
1000–2500 nm range. Wavelength accuracy across the full spectral range is ±0.5 nm. The 
instrument was radiometrically calibrated by Malvern Panalytical, with reported radiance 
calibration uncertainties of 3.58% at 350 nm, 2.56% at 654.6 nm, 2.38% at 900 nm, 2.35% at 
both 1600 nm and 2000 nm, and 3.15% at 2400 nm. The long-term stability for these chan-
nels is approximately 2%. 

2.3.3. Reference Calibration Panel 

Another key component used in this study was the Spectralon® panel, manufactured 
by Labsphere, Inc. (North Sutton, NH, USA). The 12″ × 12″ (0.3 m x 0.3 m) Spectralon panel 
served as a reflectance calibration standard for spectrometer measurements and was es-
sential for computing surface reflectance using the reflectance-based method [26-28]. Each 
Spectralon panel, commonly referred to as a “white reference panel,” was characterized 
at the manufacturing facility, where its spectral reflectance was measured under con-
trolled laboratory conditions. A set of calibration constants was provided by the manu-
facturer. However, the panels were not initially characterized for hemispherical bidirec-
tional reflectance factor (BRF). Therefore, the panels were further characterized by the 
College of Optical Sciences at the University of Arizona, which performed comprehensive 
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hemispherical BRF measurements and quantified associated uncertainties. Additional 
technical details about the spectrometer and Spectralon panel can be found in [25,29]. 

2.4. Data Collection Methodology 

Various artificial targets and the natural vegetated site were measured simultane-
ously using both a spectrometer and UAS platforms. The measurement sequence began 
with the spectrometer, followed by UAS imaging, to ensure temporal consistency. 

2.4.1. Spectrometer Measurement 

The USGS EROS ECCOE team used a dual-spectrometer approach to measure sur-
face reflectance of the artificial calibration targets and the vegetated site. Each spectrome-
ter was paired with a calibrated white reference panel [29]. One spectrometer was station-
ary and continuously measured downwelling irradiance throughout the field campaign. 
The second spectrometer was mobile and was used to measure the reflectance of targets 
and the site at various locations. 

Each field session began with measurements of the fixed reference calibration panel, 
followed by measurements from the mobile reference calibration panel. After establishing 
baseline irradiance conditions, the mobile spectrometer was used to measure the artificial 
targets and subsequently the vegetative target. The vegetated site was sampled following 
the walking path shown by the red lines in Figure 1a. To maintain calibration accuracy, 
the mobile spectrometer was redirected to the reference panel approximately every five 
minutes during both artificial and natural target measurements. 

2.4.2. UAS Measurement Sequence 

Low-altitude UAS flights were conducted by the NUSO at the EROS Center in Sioux 
Falls, SD. To enable UAS positional post-processing corrections, a Global Navigation Sat-
ellite System (GNSS) base station was run throughout the day of data collection. Survey 
control was established using 12 AeroPoint smart targets (Propeller, Sydney, Australia) 
as temporary ground control points (GCPs) distributed across the vegetated field prior to 
mapping [30]. 

A DJI Matrice 600 Pro (M600, SZ DJI Technology Co., Ltd., Shenzhen, China) hexa-
copter UAS with approved government edition firmware carrying a MicaSense RedEdge-
MX Dual sensor was flown at an altitude of 62 m (200 feet) above ground level with an 
automatic exposure setting. At this flight altitude, MicaSense multispectral images had a 
ground sample distance (GSD) and swath of ~3.8 cm and 24.46 m, respectively. A Mica-
Sense-provided calibration panel (serial number RP06-2210452-OB) was imaged before 
and after each UAS flight as recommended by MicaSense. A downwelling light sensor 
(DLS 2, also known as a sun sensor) that came with the MicaSense Dual configuration was 
secured to the top of the UAS to capture incident illumination data. 

Headwall Nano-Hyperspec hyperspectral UAS flights were flown using a second 
M600 aircraft at an altitude of 62 m (200 ft) above ground level. The hyperspectral camera 
was mounted on a gimbal, which compensated for roll, pitch, and yaw movements of the 
aircraft during flight to maintain a nadir orientation of the camera. At flight altitude, the 
hyperspectral sensor had a GSD and swath width of ~4.16 cm and 53.20 m, respectively. 
Sensor exposure was set based on current illumination levels prior to each flight using a 
white piece of paper to avoid saturation of bright materials. 

After setting each sensor’s capture and exposure parameters according to recommen-
dations by their manufacturers, the NUSO remote pilots coordinated their mapping 
flights with the ECCOE team’s spectral measurements to reduce temporal variability be-
tween the ground-based and aerial datasets. By the time the mobile spectrometer operator 
had performed measuring of the series of artificial targets on the ground, the multispectral 
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UAS data collection began, followed by the hyperspectral UAS data collection within 
minutes. Both UASs were programmed to follow the same general flight path: first, a sin-
gle transect was flown from east to west over the row of artificial targets. Then, each air-
craft transitioned to flying north–south parallel transects to capture imagery from west to 
east across the vegetated field, similar to the pattern walked by the mobile spectrometer 
operator illustrated in Figure 1a. 

2.5. Data Processing and Manufacturer Recommendation Calibration Workflows 

This section describes the processing steps applied to the hyperspectral and multi-
spectral data, summarized in Figure 3. 

 

Figure 3. Diagram summarizing data processing workflows presented in Section 2.5. Radiometric 
and positional corrections were applied to the input hyperspectral and multispectral images. Posi-
tional corrections rely on Global Navigation Satellite System (GNSS) base station data, subsequently 
uploaded to the U.S. National Oceanic and Atmospheric Administration’s Online Positioning User 
Service (OPUS) to refine its location accuracy. For the hyperspectral processing, this corrected base 
data was used to generate a Smoothed Best Estimate of Trajectory (SBET) based on the sensor’s 
integrated GNSS Inertial Measurement Unit (IMU). A Digital Elevation Model (DEM) from the U.S. 
Geological Survey’s 3DEP Elevation Program (3DEP) was incorporated to orthorectify radiometri-
cally calibrated hyperspectral images in both radiance and reflectance units for analysis. For the 
multispectral processing, ground control points (GCPs) were used to georeference the structure-
from-motion photogrammetry project to ultimately generate a reflectance orthomosaic. 

2.5.1. UAS Hyperspectral Data Processing 

The hyperspectral images were post-processed using the sensor manufacturer’s pro-
prietary software following their recommended workflow, as summarized in this section. 

Global Navigation Satellite System (GNSS) base station data was post-processed us-
ing the U.S. National Oceanic and Atmospheric Administration’s Online Positioning User 
Service (OPUS) to refine its positional accuracy. The Headwall Nano-Hyperspec sensor 
was flown with an integrated Applanix APX-15 (Trimble Applanix, Richmond Hill, On-
tario, Canada) high-resolution GNSS-Inertial Measurement Unit (IMU) to record the sen-
sor’s spatial position and orientation throughout each UAS flight. The trajectory data files 
from the IMU were post-processed using the OPUS-corrected base station data in Ap-
planix POSPac UAV software. This processing produced a Smoothed Best Estimate of 
Trajectory (SBET) file, which was subsequently used in the orthorectification of the hyper-
spectral imagery. 
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Raw hyperspectral imagery was imported into Headwall SpectralView software and 
converted to radiance units (mW/(cm2·sr·µm)) using a radiometric calibration file pro-
vided by the manufacturer, along with dark reference data acquired immediately before 
each flight. Reflectance conversion was then performed using a light gray fabric tarp with 
an approximate reflectance of 56%. The Spectral Angle Mapper tool in SpectralView was 
used to select 100 representative pixels from within the tarp region. These pixels were 
related to a reference spectrum corresponding to the tarp’s known reflectance. The de-
rived calibration relationship was applied for each spectral band across the entire image 
to scale pixel values to units of reflectance (ranging from 0.0 to 1.0). 

Reflectance-calibrated hyperspectral images were orthorectified to correct for geo-
metric distortions introduced by aircraft motion and terrain displacement. This process 
utilized the SBET file created in Section 2.5 from the GNSS-inertial solution system and a 
1 m digital elevation model (DEM) raster downloaded from the USGS 3D Elevation Pro-
gram (3DEP) lidar explorer [31]. The orthorectification was performed in SpectralView’s 
Ortho-Rectification tool, with parameters manually optimized to maximize spatial align-
ment between images. 

These processing steps yielded a series of hyperspectral images, each with 274 spec-
tral bands spanning the visible and near-infrared wavelengths. 

2.5.2. UAS Multispectral Data Processing 

The MicaSense images were post-processed in photogrammetry software following 
the manufacturer’s recommended workflow, as summarized in this section. 

A separate project was created in Agisoft Metashape Professional software to gener-
ate structure-from-motion (SfM) data products from the multispectral images using a 
standard workflow [32]. After importing and aligning photos, an initial optimization or 
bundle adjustment was performed to refine the estimated positions and orientations of 
the cameras within the photogrammetry project. 

Ref. [30] GCPs were post-processed using corrections from the concurrently operat-
ing GNSS base station and imported into the photogrammetry project as markers for 
georeferencing the multispectral data products. The GCP locations were manually refined 
to match the center of each checkered target within images. 

The point cloud (also known as tie points, resulting from the photo alignment and 
optimization) was edited using an iterative error reduction procedure to filter the data 
and delete points with high errors based on user-defined thresholds. Next, a dense cloud 
was generated using the remaining tie points, followed by DEM generation with interpo-
lation enabled. These structural SfM data products capture topographic variation and el-
evations across the scene. 

Radiometric calibration of MicaSense camera converts the sensor raw values to abso-
lute spectral radiance with a unit of W/𝑚ଶ/Sr/nm using Equation 1. This process compen-
sates for a range of sensor and imaging conditions such as sensor black-level, sensitivity, 
gain and exposure setting, and lens vignette effects. All of these parameters in the model 
can be read from metadata embedded within the image files [33]. 

L = V(x,y) × ௔భ௚  × ௣ି௣ಳಽ௧೐ା௔మ௬ି௔య௧೐௬, (1) 

where p is the normalized raw pixel value. 𝑝஻௅  is the normalized black level value. 𝑎ଵ,𝑎ଶ,𝑎ଷ are the radiometric calibration coefficients. 𝑉(𝑥,𝑦) is the vignette polynomial 
function for pixel (x,y). 𝑡௘ is the image exposure time. 𝑔 is the sensor gain setting. 𝑥,𝑦 
are the pixel column and row number. L is the spectral radiance in W/𝑚ଶ/Sr/nm. 

Using photos containing the MicaSense calibration panel (acting as a reference with 
known reflectance values), the images captured at flight altitude were calibrated to reflec-
tance units using the “Calibrate Reflectance” tool in Metashape, following MicaSense 
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processing guidelines. The calibration was performed both with and without the sun sen-
sor data, and the impact of the sun sensor on the resulting reflectance values within the 
reference tarps was assessed. Enabling the sun sensor parameter led to more variable and 
less accurate reflectance values across the day, so we decided to leave this parameter un-
checked and exclude the sun sensor data in subsequent analysis. 

An orthomosaic was generated using the resulting 16-bit reflectance images and the 
DEM surface. Multispectral bands 1 through 10 of the orthomosaic were divided by a scale 
factor of 32,768 using the Raster Calculator tool to yield a 10-band reflectance raster prod-
uct with values between 0 and 1, where 1 indicates 100% reflectance [31]. These processing 
steps yielded a 10-band multispectral reflectance orthomosaic for each flight.  

2.6. Implementing the Empirical Line Method (ELM) 

The ELM was used to generate reflectance products from both the hyperspectral and 
multispectral sensors using independent calibration sources. ELM is one of the most 
widely used radiometric calibration techniques for UAS imagery due to its simplicity, ef-
fectiveness, and ease of implementation in the field [12]. 

ELM does not require detailed knowledge of atmospheric conditions, such as diffuse 
skylight or adjacent radiance. Furthermore, ELM does not depend on a calibrated sensor 
or fixed sun-sensor geometry, making it applicable across various platforms, including 
airborne and satellite-based sensors [34-37]. In this approach, an uncalibrated sensor first 
images known reflectance targets and then images the area of interest. ELM assumes the 
presence of one or more calibration targets in the imagery that span a broad range of re-
flectance values across the sensor’s spectral bands. These known reflectance values within 
the imagery are then used to derive a calibration relationship which is applied to convert 
image data to reflectance. 

Although ELM can technically be implemented with a single calibration target, prior 
research has shown that using two targets—one dark and one bright—significantly re-
duces calibration error [38]. Despite its simplicity, the ELM has critical nuances. For ex-
ample, it is essential to select calibration targets that cover the reflectance range of the 
scene. In addition, thorough spectral characterization of the targets is crucial to avoid in-
accuracies [12]. 

In this study, ELM was implemented using two reference targets per scene, one 
bright and one dark, to ensure coverage of the reflectance range within the scene, as shown 
in Figure 4a. Figure 4a shows reflectance and radiance for bright and dark Permaflect cal-
ibration targets. The blue and black lines represent the spectrometer-based reflectance 
measurements of the bright and dark Permaflect materials, respectively, while the cyan 
and gray lines show the corresponding radiance measurements from the UAS hyperspec-
tral sensor. UAS data were extracted using regions of interest (ROIs) that were manually 
selected for each target to include only pure pixels and exclude edge pixels, which may 
be affected by adjacency effects or the point spread function (PSF) of the sensor [17,39]. 

Calibration coefficients (slope and intercept) were calculated by performing a linear 
regression between the UAS sensor measurements (radiance for Headwall, reflectance for 
MicaSense) and in situ spectrometer-based reflectance measurements, as shown in Figure 
4b. These calibration coefficients convert the hyperspectral radiance product to a reflec-
tance and radiometrically normalized MicaSense reflectance product. Radiance and re-
flectance products were used instead of digital numbers because they were generated us-
ing manufacturer-recommended software, and hence, intrinsic hardware-related adjust-
ments such as lens distortion and vignetting correction were applied within the software. 
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(a) (b) 

Figure 4. (a) Reflectance and radiance comparison of bright and dark Permaflect targets. The blue 
and black lines represent reflectance spectra of the bright and dark Permaflect materials, respec-
tively, while the cyan and gray lines show the corresponding radiance measurements acquired dur-
ing the field campaign; (b) empirical line method (ELM) implementation for the 864.904 nm wave-
length from the UAS hyperspectral sensor. Blue symbols represent the scatter plot of radiance ver-
sus reflectance values for calibration targets, and the dashed black line indicates the ordinary least 
squares (OLS) regression fitted to the data. 

3. Results 
This section evaluates the quality of absolute radiometric calibration for the Mica-

Sense and Headwall sensors by comparing their reflectance products with in situ spec-
trometer measurements, and the improvement in radiometric accuracy achieved through 
the application of the ELM. In addition, the analysis explores the influence of calibration 
target material, size, and quantity on the effectiveness of the radiometric calibration. 

3.1. Headwall Nano-Hyperspec Hyperspectral Sensor 

3.1.1. Comparing Reflectance Using Manufacturer-Recommended Calibration Workflow 
with in Situ Measurement 

Headwall provides proprietary software and a calibration profile based on three re-
flectance calibration targets of varying intensities to generate its reflectance products. Fig-
ure 5 compares the spectral profile of the EROS GVR vegetated site obtained from the 
UAS and in situ measurements. In the figure, the red line represents the UAS-derived 
reflectance generated using Headwall’s recommended calibration workflow, and the 
green line represents the spectrometer-based measurement. Error bars indicate one stand-
ard deviation (1σ) and represent spatial variability across the site. 

The UAS-derived spectral profile exhibits varying degrees of disagreement with the 
spectrometer measurements across the spectral range. Specifically, the hyperspectral re-
flectance product tends to overestimate surface reflectance at wavelengths less than 430 
nm and underestimate reflectance at wavelengths greater than 700 nm. One of the primary 
contributors to this discrepancy is likely the spectral characteristics of the calibration tar-
gets used in the UAS processing workflow. To investigate this further, the spectral profiles 
of the calibration targets were compared directly with in situ spectrometer measurements. 
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Figure 5. Comparison between U.S. Geological Survey (USGS) Earth Resources Observation and 
Science (EROS) Center Ground Validation Radiometer (GVR) site reflectance measurements across 
the vegetated area. The red spectral profile was generated using the Headwall manufacturer-rec-
ommended UAS reflectance calibration approach and the green spectral profile was measured by 
the USGS EROS Cal/Val Center of Excellence (ECCOE) field team during the field campaign. Error 
bars are 1-sigma and represent spatial variation in the site. 

Figure 6 shows a comparison of spectral profiles for three calibration targets, fabric 
tarp spectral profiles provided by Headwall at the time of sensor purchase in 2021 to gen-
erate UAS reflectance products, along with in situ measurements of each tarp collected 
during the field campaign in 2023. The targets have nominal reflectance values of 56%, 
32%, and 11%. Headwall provided reflectance profiles for these targets are shown by ma-
genta, cyan, and gray symbols, respectively, while corresponding in situ measurements 
are shown by red, blue, and black symbols, respectively. Across all targets, the spectral 
profiles, provided by Headwall, appear systematically darker than the in situ measure-
ments. For the 32% and 56% targets, the reflectance of fabric tarps, provided by Headwall, 
are consistently lower by approximately 0.05 reflectance units at wavelengths greater than 
420 nm. The 11% target shows minimal difference between the two measurements. Over-
all, the Headwall and in situ spectral profiles agree more closely at wavelengths below 
550 nm, with increasing divergence observed at longer wavelengths. 
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Figure 6. Comparison of spectral profiles of three grayscale calibration tarps. For each tarp, there is 
a Headwall-provided spectrum and an in situ measurement collected by the U.S. Geological Survey 
(USGS) Earth Resources Observation and Science (EROS) Cal/Val Center of Excellence (ECCOE) 
field team. 

3.1.2. Reflectance Calibration Using ELM and in Situ Measurements 

Hyperspectral reflectance was generated by applying the Empirical Line Method 
(ELM), as described in Section 2.6. Radiance data were first processed using Headwall’s 
proprietary software and then converted to reflectance using ELM. The method was im-
plemented using in situ measurements from two Permaflect calibration targets: one bright 
(approximately 55% reflectance) and one dark (approximately 5% reflectance). 

Figure 7 presents a comparison between the spectral profile of the EROS GVR vege-
tated site obtained from UAS hyperspectral reflectance products generated using the two-
point Empirical Line Method (ELM) and in situ spectrometer measurements. In the figure, 
the green line represents the in situ measurement, while the blue line represents hyper-
spectral UAS reflectance calibrated using the two-point ELM. The ELM-corrected hyper-
spectral UAS reflectance shows strong agreement with the in situ data, with differences 
within 0.005 reflectance units across most of the spectral range. A noticeable increase in 
noise is observed in the hyperspectral reflectance profile beyond 930 nm, which is at-
tributed to reduced optical efficiency in silicon-based photodetectors at longer wave-
lengths. 
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Figure 7. Comparison between U.S. Geological Survey (USGS) Earth Resources Observation and 
Science (EROS) Center Ground Validation Radiometer (GVR) site spectral profiles. The green spec-
tral profile represents the ECCOE measurement, and the blue spectral profile is the UAS hyperspec-
tral reflectance product generated using the two-point ELM. 

To evaluate the impact of target materials on calibration, UAS hyperspectral reflec-
tance products were generated using the two-point Empirical Line Method (ELM) with 11 
different target combinations. These reflectance products were then compared against in 
situ measurements. Figure 8a presents the absolute reflectance differences between the 
spectral profiles derived from the UAS hyperspectral reflectance products and the in situ 
measurements. The absolute reflectance differences can be categorized into three distinct 
groups. 

1. High inconsistency across the spectrum: Combinations such as the bright and dark 
fabric tarps result in absolute reflectance differences within 0.02 reflectance units 
across all wavelengths. 

2. Low error up to 690 nm: Target combinations like the felt targets yield absolute re-
flectance differences of less than 0.005 reflectance units up to 690 nm, and less than 
0.01 reflectance units for the remaining wavelengths. 

3. Low error in the visible green-red region: Some combinations achieve absolute re-
flectance differences of less than 0.005 reflectance units between 550 nm and 690 nm, 
and less than 0.01 reflectance units for the rest of the spectrum. 

Figure 8b illustrates the mean absolute reflectance differences across spectral chan-
nels between the UAS hyperspectral reflectance and the in situ measurements. The 1-
sigma error bars represent the standard deviation of these mean absolute differences. For 
most target combinations, the mean absolute difference remains within 0.005 reflectance 
units, with the exception of the following combinations: light and dark fabric tarps, White 
and DFTB Melamine, and DFUW and DFTB Melamine. 
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(a) (b) 

Figure 8. (a) Absolute reflectance differences between UAS hyperspectral reflectance products gen-
erated using the two-point Empirical Line Method (ELM), using difference target combinations, and 
in situ measurement over EROS GVR site; (b) Mean absolute reflectance difference between hyper-
spectral reflectance over EROS GVR site and in situ measurement. 

3.1.3. Impact of Number of Calibration Targets 

The Empirical Line Method (ELM) requires at least one known reference target 
within the image. Previous studies have utilized a single-point calibration approach and 
reported errors of approximately 20% and 15%, respectively [40,41]. A more accurate ap-
proach is the two-point calibration method, which uses two well-characterized reflectance 
panels—one dark and one bright—ideally encompassing the range of reflectance values 
within the image. This enables the derivation of a calibration curve that better aligns with 
the actual surface reflectance. It is worth noting that some researchers have deployed four 
or more calibration targets to further improve calibration accuracy [42,43]. 

In this study, hyperspectral reflectance products were generated using different com-
binations of calibration targets and were compared against in situ measurements to assess 
the impact of the number and type of targets on radiometric calibration accuracy. Four 
reflectance products were derived from the same radiance dataset acquired on 18 July 
2023, at 12 PM. These reflectance products were produced using four different target com-
binations: (1) light gray and black felt; (2) DFBG and DFTB melamine; (3) light and dark 
Permaflect; and (4) all 19 targets deployed during the experiment. These products are la-
beled as ‘Felt’, ‘Melamine’, ‘Permaflect’, and ‘All Target’, respectively, in Figure 9a. 

Figure 9a presents a scatter plot comparing in situ reflectance with hyperspectral ra-
diance for the 864.9 nm channel, along with the corresponding ordinary least squares 
(OLS) fitted lines. The slopes and intercepts of the fitted OLS lines are similar across all 
combinations, indicating consistency in radiometric calibration. This process was re-
peated across all spectral channels, and the resulting slopes and intercepts were applied 
to convert radiance to reflectance. 

Figure 9b compares the spectral profiles of the EROS GVR vegetated site using ELM 
with the different target combinations. Blue, black, green, red, and brown symbols repre-
sent in situ measurements and UAS hyperspectral reflectance, implementing ELM using 
all targets, felt, melamine, and Permaflect, respectively. The spectral profiles obtained us-
ing the various combinations show high similarity. The reflectance differences between 
the UAS hyperspectral reflectance and in situ measurements are within 0.005 reflectance 
units for most wavelengths. 
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(a) (b) 

Figure 9. (a) Scatter plot comparing in situ reflectance with hyperspectral radiance for the 864.9 nm 
channel, along with the corresponding ordinary least squares (OLS) fitted lines. Blue symbols and 
dashed lines represent data using all 19 targets; green represents the Felt combination; red corre-
sponds to the Melamine combination; and brown depicts the Permaflect combination. (b) 
Comparison of spectral profiles for the EROS GVR vegetated site using ELM with various target 
combinations. 

3.2. MicaSense RedEdge-MX Dual Multispectral Sensor 

The absolute calibration of the MicaSense UAS multispectral sensor was evaluated 
by comparing its reflectance products with in situ measurements over various calibration 
targets. Figure 10 compares MicaSense reflectance values with in situ measurements over 
the EROS GVR site and the Light Permaflect target. The MicaSense reflectance product 
shows good agreement with in situ measurements across most spectral channels, with the 
exception of the red-edge bands. The difference between the MicaSense reflectance and 
the in situ measurements is within 0.005 reflectance units for most spectral bands but 
within approximately 0.015 reflectance units for the red-edge bands. 

 
(a) (b) 

Figure 10. Micasense UAS multispectral reflectance comparison with in situ measurements over (a) 
the EROS GVR site vegetated field; (b) light Permaflect artificial target. 

The MicaSense reflectance product consistently underestimates the reflectance of the 
Light Permaflect target. While the actual reflectance of Light Permaflect is approximately 
0.55, the MicaSense reflectance product reports it as roughly 0.35 for the four shortest 
wavelength bands and about 0.47 for the remaining bands. This results in a reflectance 
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discrepancy of approximately 0.20 for the four shortest wavelength bands and 0.08 for the 
others. 

Figure 11 presents a comparison between MicaSense reflectance products and in situ 
measurements across various targets. Different colors represent the reflectance differences 
between in situ measurements and corresponding MicaSense reflectance values derived 
using the manufacturer-recommended calibration procedure. The reflectance differences 
are minimal for low-reflectance targets such as vegetation, dark Permaflect, black felt, 
dark gray felt, and light gray felt. However, the discrepancy increases for high-reflectance 
targets such as white felt, the 75% reflective Spectralon panel, and light Permaflect. 

MicaSense reflectance products show good agreement with in situ measurements for 
targets with reflectance values of approximately 0.35 or lower. For targets with reflectance 
values greater than 0.35, deviations become noticeable. This discrepancy grows with in-
creasing reflectance, as indicated by the cyan-colored symbols in Figure 11, which repre-
sent the brighter targets. 

 

Figure 11. Micasense reflectance comparison with in situ measurement over different targets. 

Reflectance Calibration Using ELM and In Situ Measurements 

MicaSense UAS multispectral reflectance data were generated using the ELM, as de-
scribed in Section 2.6. The ELM implementation used light gray felt (35% reflectance) and 
black felt (5% reflectance) as bright and dark calibration targets, respectively. Figure 12a 
compares spectral profiles from in situ measurements and UAS multispectral reflectance 
calibration methods over the EROS GVR vegetated site. Red symbols indicate MicaSense 
reflectance processed with the manufacturer’s recommended workflow, green symbols 
represent in situ spectrometer measurements, and blue symbols represent UAS multispec-
tral reflectance calibrated using ELM. For most spectral bands, the ELM-derived reflec-
tance is closer to the in situ measurements than the MicaSense calibration output. 

Figure 12b illustrates the differences between Micasense reflectance using the manu-
facturer’s recommended software and ELM reflectance with in situ measurements. Green 
symbols represent the difference between MicaSense reflectance, using the manufacturer 
recommended procedure and in situ data, while blue symbols represent the difference 
between ELM reflectance and in situ data. For most spectral channels, the ELM reflectance 
exhibits a smaller deviation from in situ measurements than the manufacturer-derived 
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reflectance. The difference between manufacturer reflectance and in situ measurements is 
within 0.015, whereas the difference for the ELM is within 0.005, as shown in Figure 12b. 

 
(a) (b) 

Figure 12. (a) MicaSense reflectance comparison of EROS GVR site spectral profiles. Green symbols 
represent in situ measurements, red symbols represent reflectance using the manufacturer-recom-
mended workflow, and blue symbols represent reflectance using ELM; (b) MicaSense reflectance 
difference with in situ measurements. Green symbols represent the differences between MicaSense 
reflectance using the manufacturer-recommended workflow and in situ measurements. Blue sym-
bols represent the difference between multispectral reflectance using ELM and in situ measurement. 

4. Discussion 
This section discusses inconsistencies in UAS hyperspectral sensor data caused by 

gimbal malfunctions, as well as saturation issues in UAS multispectral data resulting from 
the sensor’s automatic exposure settings. The importance of stable atmospheric conditions 
during UAS field campaigns is also discussed because fluctuations can adversely affect 
image calibration and overall data quality. This section also discusses the impact of target 
specification and quantity on radiometric calibration of UAS sensors. 

4.1. Headwall Nano-Hyperspec Hyperspectral Sensor 

The Headwall UAS hyperspectral sensor underestimated surface reflectance over the 
vegetative site, as shown in Figure 5. This underestimation is attributed to inaccurate cal-
ibration of the reflectance targets. Specifically, the spectral profile of the calibration target 
provided by the sensor manufacturer appears darker than in situ measurements, as illus-
trated in Figure 6. This discrepancy in the target’s spectral profile propagates into the re-
flectance product, reducing its accuracy. 

To address sensor underestimation of surface reflectance, the Empirical Line Method 
(ELM) was implemented using in situ measurements of the calibration targets instead of 
the manufacturer’s provided spectral profile. As a result, the reflectance profile of the veg-
etative target, derived from the Headwall sensor, showed improved agreement with in 
situ site measurements (Figure 7). This finding emphasizes that the accuracy of reflectance 
products using ELM is highly dependent on the precise characterization of the calibration 
targets. To ensure the quality of UAS-derived reflectance products, it is essential either to 
regularly calibrate the reference targets or to perform in situ measurements during UAS 
data collection. 

The application of ELM significantly improved the quality of the hyperspectral re-
flectance data, reducing the average absolute difference to within 0.005 when compared 
with in situ measurements. This level of accuracy suggests that the Headwall Nano-Hy-
perspec sensor, when properly calibrated, has strong potential for validating satellite-
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based surface reflectance products from well-calibrated platforms such as Landsat and 
Sentinel. 

The following subsections address the gimbal issue encountered during one of the 
data collections and also discuss the adverse impacts of atmospheric conditions on cali-
brating UAS imagery. 

4.1.1. 18 July, 10 AM Gimbal Issue 

Figure 13a shows a comparison between the UAS hyperspectral reflectance and in 
situ measurements. Blue symbols represent the UAS hyperspectral profile of the site, 
whereas green symbols represent coincident in situ measurements. Despite the stable at-
mospheric conditions during the flight, the Nano Spec hyperspectral profile shows a sig-
nificant discrepancy compared to the in situ measurements, as shown in Figure 13a. The 
observed discrepancy is larger than the one attributed to calibration issues shown in Fig-
ure 5. One potential source for the observed discrepancy might be sensor orientation dur-
ing the flight. 

The hyperspectral sensor was mounted to the UAS using a gimbal, which compen-
sates for roll, pitch, and yaw movements of the aircraft during flight and maintains a nadir 
orientation of the sensor. Figure 13b plots the pitch and roll angles recorded during the 
flights on 18 July 2023, at 10 AM and 12 PM, to better understand sensor alignment. The 
yaw angle is not plotted, as it remained similar across both flights. In the plot, the red and 
blue curves represent roll and pitch angles from the 10 AM flight, while the green and 
brown curves represent angles from the 12 PM flight. During the initial ~280 s of the 
flights, the roll and pitch angles from both flights remain near nadir and are relatively 
similar. After that point, the roll and pitch angles from the 10 AM flight increase for an 
unknown reason, while those from the 12 PM flight remain near nadir for the remainder 
of the flight. Specifically, the roll angle during the 10 AM flight changes from approxi-
mately 0° to 50°, staying around 20° for most of the remaining time. The pitch angle ranges 
from −30° to 20°, fluctuating mostly between approximately −4° and −15°. 

(a) (b) 

Figure 13. (a) UAS hyperspectral reflectance comparison with in situ measurements. Blue symbols 
represent UAS hyperspectral reflectance and green symbols represent in situ measurement; (b) UAS 
flight parameter comparison between 18 July 2023, 10 AM and 12 PM flight. Red and blue lines 
represent sensor roll and pitch angles from the 10 AM flight, respectively. Green and brown lines 
represent the sensor roll and pitch angle from the 12 PM flight, respectively. 

To investigate whether the discrepancy observed in Figure 13a can be attributed to 
sensor misalignment during the 10 AM flight, only the Headwall Nano-Hyperspec data 
collected under near-nadir roll and pitch angles were considered for comparison with in 
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situ measurements. There were only two UAS hyperspectral images that include the 
EROS GVR site vegetated area and were captured with near-nadir alignment. These im-
ages were located on the west side of the site and include the first two transects of the in 
situ measurements, as shown in Figure 1. UAS hyperspectral reflectance values were ex-
tracted using a subset of the EROS GVR site ROI and compared with average in situ meas-
urements from the first two transects, as shown in Figure 14. In Figure 14, the blue curve 
represents UAS hyperspectral reflectance, and the green curve represents coincident in 
situ measurements. The UAS hyperspectral reflectance closely agrees with the in situ 
measurements. The reflectance values match within 0.005 for most wavelengths, with a 
slightly larger discrepancy of up to 0.013 observed around ~450 nm and wavelengths 
greater than 930 nm. 

 

Figure 14. Comparison between EROS GVR site spectral profiles. The green spectral profile repre-
sents the ECCOE measurement, and the blue spectral profile is from the Headwall Nano Spec re-
flectance product generated using the ELM. 

4.1.2. Significance of Atmosphere Stability 

Atmospheric conditions represent one of the most challenging variables during field-
based remote sensing campaigns. Maintaining stable atmospheric conditions throughout 
data acquisition is critical, particularly when sampling calibration targets and the EROS 
GVR site. Discrepancies in atmospheric conditions between these measurements can in-
troduce errors during the empirical line method (ELM) implementation, as illustrated in 
Figure 15a. In this figure, the green and blue curves represent in situ measurements and 
ELM-derived reflectance using Permaflect targets, respectively. The observed differences 
are likely the result of atmospheric inconsistencies between calibration and target site 
measurements. 

To monitor atmospheric behavior during the campaign, one field spectrometer was 
directed at a spectral calibration panel to record downwelling irradiance. This information 
is visualized in Figure 15b and 15c, where the blue curves show downwelling irradiance 
measured during calibration target sampling and EROS GVR site sampling, respectively. 
Under clear-sky conditions, downwelling irradiance is expected to decrease monoton-
ically over time as the solar zenith angle increases with the lowering sun. However, Figure 
15b,c exhibit intermittent dips and spikes in irradiance caused by transient cloud cover 
and variable aerosol scattering and absorption. Notably, Permaflect targets were 
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measured after 69,400 UTC seconds, during a period characterized by a spike in down-
welling irradiance. This timing likely contributed to the atmospheric inconsistency that 
caused the discrepancy observed in Figure 15a. Similar discrepancies were observed with 
other calibration targets—except for the fabric tarps. 

Figure 15d presents a comparison between UAS hyperspectral reflectance over the 
EROS GVR site and corresponding in situ measurements. The difference between the two 
datasets remains within 0.005 reflectance units across most wavelengths. The close agree-
ment is likely due to the relatively stable atmospheric conditions at the time of fabric tarp 
target measurement, around 68,620 UTC seconds, compared to other target measure-
ments. 

 
(a)  (b) 

 
(c) (d) 

Figure 15. (a) UAS hyperspectral reflectance calibrated using Permaflect calibration targets, com-
parison with in situ measurements. Blue symbols represent hyperspectral reflectance and green 
symbols represent in situ measurement; (b,c) Downwelling irradiance during calibration target 
measurement and the EROS GVR site for White Panels 99A and 99B, respectively; (d) UAS hyper-
spectral reflectance, calibrated using fabric tarp targets, compared with in situ measurements. Blue 
symbols represent UAS hyperspectral reflectance, and green symbols represent in situ measure-
ments. Time is shown in UTC seconds. 

4.2. MicaSense Sensor 

The MicaSense sensor demonstrates superior absolute calibration accuracy com-
pared to the Headwall hyperspectral sensor. As illustrated in Figure 10a, MicaSense 
shows the best agreement with vegetation surface reflectance in comparison to artificial 
targets. For wavelengths below 700 nm, MicaSense sensor reflectance measurements agree 
with in situ data within 0.005 reflectance units, and within 0.015 units for wavelengths 
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above 700 nm. Application of the ELM further enhances this performance, reducing dis-
crepancies to within 0.005 across all bands. However, despite this improvement, Figure 
10b reveals that reflectance differences can reach up to 0.20 in certain cases, particularly 
for bright targets. 

A comparative analysis indicates that MicaSense performs more reliably on darker 
targets than brighter ones. The sensor shows strong agreement with in situ measurements 
for surfaces with reflectance between 30 and 40% or lower but tends to saturate for targets 
exceeding this range. This suggests a bias in sensor response toward darker surfaces—
likely a result of its design intent to support agricultural professionals, where typical veg-
etative reflectance falls within the 30–40% range [6]. 

To better understand this limitation, digital number (DN) statistics were analyzed for 
a range of calibration targets (Table 4). MicaSense is a 16-bit sensor, producing DNs be-
tween 0 and 65,535. The sensor saturated when imaging highly reflective targets, such as 
Spectralon 75%, Spectralon 50%, and the light fabric tarp targets. The gray fabric tarp tar-
get (38% reflectance) exhibited a mean DN of 65,140.87—close to the upper boundary of 
the sensor’s dynamic range—while the dark fabric tarp target (5% reflectance) produced 
a mean DN of 28,032.66, positioned near the middle of the range. These results indicate 
that the sensor’s automatic exposure and gain control are insufficiently responsive to 
bright targets, leading to overexposure. Similar findings have been reported in prior stud-
ies [17]. 

This behavior may indicate an intentional design trade-off: the sensor’s auto-expo-
sure settings appear optimized to fully utilize the dynamic range when imaging targets 
with reflectance in the 30–40% range, typical of vegetative surfaces. This maximization of 
radiometric resolution within the expected reflectance range enhances performance for 
agricultural applications, which aligns with the sensor’s intended use. 

The manufacturer’s calibration method uses a 50% reflective panel with a surface 
area of 10.16 cm × 10.16 cm. Despite this relatively bright calibration reference, the result-
ing reflectance profiles for vegetative surfaces still match in situ measurements within 
0.015 reflectance units, indicating reasonably robust calibration under typical field condi-
tions. 

Table 4. MicaSense image digital number of selected targets. 

Target Digital Number (DN) 
 Minimum Maximum Mean Std 

Spectralon 75% 65,520 65,520 65,520 0 
Spectralon 50% 65,520 65,520 65,520 0 

Light Tarp 65,520 65,520 65,520 0 
Mid Tarp 62,576 65,520 65,140.87 637.84 
Dark Tarp 26,448 30,608 28,032.66 640.63 

4.3. Target Specification 

One of the main objectives of this research was to assess target material, size, and 
quantity to improve UAS data quality using ELM. 

4.3.1. Target Material 

Spectralon (polytetrafluoroethylene) targets provide highly diffuse reflectance and 
possess nearly Lambertian reflective properties [29,44]. However, Spectralon panels are 
expensive and need meticulous care to maintain their calibration, so they might not be a 
viable option to use as calibration targets for all UAS calibrations and operations. Re-
searchers have used various artificial targets, such as Masonite hardboard, Permaflect, 
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mirrors, concrete, mirrors, and asphalt, as well as natural targets like sand and water bod-
ies to implement the ELM [17,37,45-47]. Different types of commercial and homemade 
targets were used in this experiment. Among the targets used in this experiment, Perma-
flect is comparatively Lambertian in nature (visual observation). However, the absolute 
difference between the in situ measurement and UAS hyperspectral reflectance, imple-
menting ELM using different target combinations, is within 0.005 as shown in Figures 6 
and 7. This suggests that the calibration of UAS imagery using felt, Permaflect, melamine, 
and plywood gives similar accuracy despite Permaflect being more Lambertian in nature. 
This might be because the Bidirectional Reflectance Distribution Function (BRDF) is min-
imum as the acquisition is at noon. Felt and Permaflect targets are lighter than melamine 
and painted plywood; portability and ease of use for calibration materials are additional 
factors to consider during UAS operations. 

4.3.2. Target Size 

Target size in ELM is driven by the ability to obtain pure pixels over a calibration 
target because any contamination of the spectra of the calibration targets is directly trans-
ferred to the retrieved reflectance. Researchers have suggested that the calibration target 
size should be at least several times greater than the sensorʹs ground instantaneous field 
of view [12]; others suggest that the side of the square calibration target should be at least 
10 times larger than the maximum pixel size [45]. The dimension of the target is provided 
in terms of pixel size or sensor ground instantaneous field of view, as pure pixels from the 
calibration target depend on multiple factors such as flight altitude, point spread function, 
and adjacency effects. 

Four different sizes of targets were used in this experiment: Spectralon panels were 
0.3 m×0.3 m, painted plywood and melamine targets were 0.6 m×0.6 m, felt targets were 
0.9 m×0.9 m, and Permaflect targets were 1 m×1 m. The UAS was flown at 200 ft (62 m) 
above ground level (AGL) which resulted in pixel sizes of 3.8 cm and 4.16 cm for Headwall 
and MicaSense sensors, respectively. For the Headwall (UAS hyperspectral) imagery, the 
75% reflectance panel provided only 9 pure pixels. It was challenging to extract pure pix-
els from the Spectralon panels because of their smaller size; however, the rest of the targets 
provided at least 72 pure pixels that could be used to implement ELM. The major factor 
that impacts the number of pure pixels is the flight altitude of UAS. As described by the 
Federal Aviation Administration (FAA) 14 CFR Part 107 rules, the legal upper limit for a 
small UAS, less than 55 pounds, is 400 ft AGL. Depending on the application, many re-
searchers fly UAS at altitudes of 100–200 ft AGL [13,17]. For such users, a calibration target 
of 0.6 m×0.6 m should provide enough pure pixels. However, remote pilots conducting 
higher altitude flights might need 1 m × 1 m calibration targets to comfortably obtain 
enough pure pixels to implement ELM. 

4.3.3. Number of Targets 

ELM is one of the common methods to radiometrically calibrate airborne remote 
sensing data because of its simplicity and effectiveness [12]. However, users have imple-
mented the ELM using different numbers of calibration targets. Researchers have imple-
mented ELM using one calibration target [40,41]; however, most researchers have used 
two calibration targets of different intensities [48-50], and some researchers have used four 
or more calibration targets to improve calibration [42,43]. Researchers using a single-point 
calibration method for their images have reported 15–20% error. ELM calibration using a 
single calibration target assumes that a surface with zero reflectance will produce zero 
radiance. However, in reality, the sensor records additional energy due to diffuse and 
adjacent radiance which induces an offset that results in inaccurate calibration. To miti-
gate this issue, researchers have adapted ELM using two calibration targets, one dark and 
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one bright [12,37]. ELM using dark calibration targets can include the offset due to diffuse 
and adjacent radiance by considering dark targets, which are not observed as zero radi-
ance, as “true black” [34]. 

This research also used the two-point ELM to account for diffuse and adjacency ef-
fects. Additional targets were also used to study where calibration can be improved but 
found that there is no significant improvement in calibration by increasing the number of 
calibration targets. Figures 9a and 9b show that the slope and intercept of a calibration 
curve are similar when using two calibration points and 19 calibration points. This is be-
cause the sensor response is linear in nature. However, if the sensor response is non-linear, 
then the number of calibration points would have an impact on calibration accuracy. 
Wang et al. [45] showed that their sensor digital number and reflectance are exponential; 
in this scenario, a greater number of calibration targets would increase calibration accu-
racy. 

Despite using different sizes, types, and numbers of targets to implement the ELM, 
the experiment generated similar output reflectance spectral profiles which agree with in 
situ measurement within 0.005 for most wavelengths. 

5. Lessons Learned, Limitations, and Future Work 
5.1. Lessons Learned 

UAS imaging sensor manufacturers’ recommended calibration procedures might not 
provide the calibration accuracy that their users need. The MicaSense multispectral sensor 
reflectance agreed with in situ measurements within 0.015 reflectance units, and the Head-
wall hyperspectral reflectance agreed within 0.08 reflectance units. MicaSense showed 
better absolute radiometric calibration than the Headwall sensor, so applications that do 
not need absolute reflectance accuracy better than 0.015, in the case of MicaSense, and 0.08, 
in the case of Headwall, can go with the manufacturer-recommended protocols. However, 
the radiometric calibration accuracy can be improved by implementing two-point ELM. 

Headwall and MicaSense reflectance differences with in situ measurements de-
creased to within 0.005 reflectance units by implementing two-point ELM. It was found 
that adding more calibration targets does not improve radiometric calibration of a sensor 
if the sensor has a linear response. During two-point ELM implementation, the bright tar-
get should be chosen intentionally to utilize the sensorʹs dynamic range. The optimal 
bright calibration target would be a few reflectance units brighter than the brightest re-
flectance present within the scene to be mapped. For example, if the brightest pixel in an 
image is 0.4, bright calibration targets with 0.45 reflectance would help fully use the dy-
namic range of the sensor. 

Different target materials provide similar calibration quality. UAS hyperspectral re-
flectance values were within 0.005 of in situ measurements using felt, melamine, and Per-
maflect targets. Felt and Permaflect targets are lighter (in weight) than melamine, and tar-
get weight is one factor to consider during a field campaign. Another factor to consider 
while choosing the calibration targets would be diffuse reflectance. Targets producing dif-
fuse reflectance have less directional dependency, which minimizes the impact of illumi-
nation angle changes. For UAS flight altitudes within 200 ft AGL, a target size of 0.6 m× 
0.6 m is likely to provide enough pure pixels (~100 pixels) to implement ELM. 

It is crucial to ensure that gimbals are functioning properly as they stabilize the sen-
sor platform during the flight which directly influences the quality, consistency, and ac-
curacy of the collected imagery. 
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5.2. Limitation of Field Campaign 

The ELM calibration target should be within the stage for implementing ELM, and 
the time difference between the calibration target measurement with spectrometer and 
the UAS should be minimal. However, it took ~20 min to sample 19 artificial targets, dur-
ing which the illumination geometry and atmospheric conditions might have changed 
slightly, which could have adversely impacted the calibration. 

Due to the large number of targets, targets were sampled at the beginning of the ex-
periment before the UAS imaged the site. However, sampling at the end of the experiment 
as well helps to account for the change in illumination angle and atmospheric conditions. 
The panels used in the experiment did not have BRDF characterization, which would help 
to compensate for the change in illumination angle. 

5.3. Future Work 

Due to the large number of calibration targets, the targets were sampled using a spec-
trometer only once before each UAS flight. Recommended future studies include down-
sizing of the number of calibration targets. These targets could be sampled both before 
and after each UAS flight, and both of these measurements could be used to implement 
ELM. This could help to minimize calibration errors induced due to changes in illumina-
tion and atmospheric conditions. The BRDF of the targets could be characterized to help 
more accurately estimate the reflectance of the target. 

ELM is simple and effective but has its own challenges. Calibration targets are 
needed and are typically laid out during field UAS data acquisition, which is labor- and 
cost-intensive. Calibration targets must be kept clean, stored properly, and undamaged to 
preserve their calibration. However, over time, their calibrations can change due to expo-
sure to sunlight and environmental conditions during the field campaign. To maintain 
their calibrations, targets should either be measured frequently in a calibration laboratory 
or measured during the field campaign using a calibrated source. To mitigate the depend-
ency on calibration targets, researchers have also used downwelling irradiance to calcu-
late surface reflectance [51]. Downwelling irradiance can be modeled using atmospheric 
radiative transfer models [52] or measured using a downwelling irradiance sensor [14]. 
MicaSense and other multispectral sensor types come with downwelling irradiance sen-
sors, although their inclusion in the radiometric calibration workflow can have variable 
effects on the output surface reflectance. 

Future UAS field campaigns could be conducted with coincident satellite observa-
tions. UAS surface reflectance could be compared with satellite surface reflectance meas-
urements and in situ measurements to help understand the potential of UAS for validat-
ing satellite surface reflectance products in an operational manner. 

6. Conclusions 
This study aimed to evaluate the absolute calibration of the Headwall Nano-Hyper-

spec hyperspectral sensor and the MicaSense RedEdge-MX Dual multispectral imaging 
system. ELM was implemented to calibrate the imagery from these sensors, with results 
compared against in situ measurements. This analysis assessed the impact of ELM on im-
proving data quality. This study also examined the influence of target specifications such 
as size, material, and intensity on calibration outcomes. 

The absolute calibration of hyperspectral and multispectral sensors was assessed by 
comparing their reflectance, obtained using manufacturer-recommended procedures, 
with in situ measurements of a vegetated target. Results showed that the UAS hyperspec-
tral sensor underestimated the target’s reflectance by approximately 0.05. This discrep-
ancy was attributed to inaccuracies in the spectral profiles of the fabric tarp calibration 
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targets provided by the sensor manufacturer at the time of purchase, which were darker 
than the in situ reflectance measurements obtained during the field campaign. Conse-
quently, this discrepancy was propagated into the UAS hyperspectral reflectance product. 
However, when the Headwall radiance product was converted to a reflectance product 
using the Empirical Line Method (ELM), the discrepancy was reduced to within 0.005. 

The MicaSense sensor exhibited a difference of approximately 0.015 compared to in 
situ measurements, which decreased to within 0.005 after implementing the ELM. While 
the MicaSense sensor calibration was accurate for vegetated targets, substantial reflec-
tance discrepancies were observed for targets with reflectance values exceeding ~0.40. 
This issue arose because the sensor’s automatic settings failed to adjust gain and exposure 
time adequately for high-intensity targets, leading to saturation. 

Applying the ELM using one dark and one bright target improved the data quality 
of both sensors in this study. However, adding more calibration targets did not necessarily 
enhance calibration accuracy. For a UAS flight altitude above ground level (AGL) of 200 
ft, a target size of 0.6 m × 0.6 m or larger provided sufficient pure pixels for implementing 
ELM with the Headwall and MicaSense sensors, whereas smaller targets (e.g., 0.3 m × 0.3 
m) made identifying pure pixels challenging. ELM results using felt, Permaflect, and mel-
amine calibration targets showed comparable outcomes. 

Both the Headwall Nano-Hyperspec hyperspectral sensor and the MicaSense 
RedEdge-MX Dual camera imaging system multispectral sensor have limitations in accu-
rately predicting reflectance. Absolute calibration accuracy was higher for the MicaSense 
sensor compared to the Headwall sensor. Users should be aware of these limitations when 
utilizing the data for various applications. Nonetheless, ELM significantly enhances data 
quality and improves the reliability of these sensors for remote sensing applications. 
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