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Abstract: SARS-CoV-2 represents the greatest epidemiological, clinical, and social challenge the hu-

man being has had to face in this century. SARS-CoV-2 is not merely a respiratory virus, as its target 

cells range from upper airway respiratory cells to pulmonary cells but also and above all to the 

cardiovascular cells, such as pericytes and endothelial cells. Indeed, the pathology related to SARS-

CoV-2, COVID-19, may be defined as a thromboinflammatory syndrome in its most severe form, 

characterized by sepsis-induced coagulopathy (SIC) and disseminated intravascular coagulopathy 

(DIC), which is prevalent in individuals already presenting a chronic level of inflammation (e.g., 

obese individuals, elderly) and hypertension. Pregnancy is not only an inflammatory-prone condi-

tion but is characterized by a consistent rearrangement of the blood circulation and coagulation 

profile. Cardiac output increases while arterial systolic and diastolic pressure decrease, regardless 

of the activation of the RAS system. ACE2, the SARS-CoV-2 entry receptor into the host cells, which 

transforms Ang II in Ang 1–7, is highly expressed in endothelial, smooth muscle cells and pericytes 

of placental villi, regulating blood pressure and fetal development. Pre-eclampsia is a pregnancy 

disorder characterized by hypertension and low levels of ACE2, endothelial dysfunction, and a high 

production of pro-inflammatory cytokines, resembling COVID-19 manifestations. Whereas pre-ec-

lampsia and COVID-19 have overlapping clinical features, a role for SARS-CoV-2 as a leading cause 

of pre-eclampsia in COVID-19 positive pregnant women has not been clarified yet. In this mini-

review, we will explore the possibility of the existence of such a link, focusing on the role of endo-

thelial dysfunction and RAS in both pre-eclampsia and SARS-CoV-2-induced COVID-19 pathogen-

esis. 
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1. Introduction 

Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the viral agent caus-

ing Coronavirus disease-19 (COVID-19), is a RNA-enveloped β-coronavirus with a high de-

gree of similarity–from 95 to 96%–at the level of the genomic sequence with the bat coro-

navirus RaTG13 [1]. The most striking difference is the presence of a cleavage site for the 

human protease furin, which is used by other respiratory viruses to better infect the target 

cells [2,3]. The acquisition of this cleavage site boosted SARS-CoV-2 capacity to enter in a 

wide variety of cells and tissues, probably after a period of cryptic spread in the human 

population. The first targets of SARS-CoV-2 are upper and lower airways and even the 

lungs. Therefore, among the principal clinical manifestations of COVID-19, interstitial 
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pneumonia was reported, which in some cases may evolve into Acute Respiratory Distress 

Syndrome (ARDS). However, in many COVID-19 patients, mechanical lung performance 

is conserved, with a good respiratory compliance, but these phenomena are counterbal-

anced by a severe hypoxemia, suggesting a decrease in pulmonary perfusion, because of 

a hyperinflammation-induced thrombosis of the pulmonary microcirculation. Indeed, hy-

perinflammation, which characterizes COVID-19 in its severe form, may locally activate 

the complement cascade, which, in turn, may directly damage the alveolar endothelium 

and recruit leukocytes which amplify the inflammatory response [4]. These local phenom-

ena are believed to expand broadly to other organs in the body, like kidneys and brain. 

Indeed, coagulation abnormalities, such as Sepsis Induced Coagulopathy (SIC) or Dissemi-

nated Intravascular Coagulopathy (DIC), characterize 71% of COVID-19-affected individuals 

[5] and are typical of life-threatening disease. These events highlight the importance of 

SARS-CoV-2’s impact on the cardiovascular system in the deterioration of COVID-19 pa-

tients’ clinical conditions. 

One of the major controllers of the whole body’s homeostasis is Angiotensin Convert-

ing Enzyme 2 (ACE2). In fact, it is the starter of the depressor axis of the renin-angiotensin 

system (RAS) [6] which controls blood pressure, plasmatic sodium concentration, and the 

extracellular volume [7]. Membrane-bound ACE2 is also the human gate that allows the 

SARS-CoV-2 virus to invade host cells [8]; a characteristic of SARS-CoV-2 infection is the 

decrease in the expression levels, malfunctioning, and irregular consumption of ACE2 [9]. 

ACE2 converts Angiotensin II (AngII) in Ang1-7 and has an organ-protective effect, such 

that it has been hypothesized that the decrease of ACE2 expression during a lifetime may 

be a predisposing risk to the development of a severe disease. Furthermore, in critically-

ill patients, an imbalance between ACE2 and AngII may be directly responsible for the 

severity of the disease [10]. 

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy (>140/90 mmHg), occur-

ring after 20th week of gestation associated to proteinuria and/or other complications. 

Although its etiology is not completely clear, this condition seems to be linked to a hyper-

inflammatory response, leading to damage of the maternal endothelium [11]. As a hyper-

inflammatory syndrome, PE is also characterized by over-production of pro-inflamma-

tory cytokines, such as Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interferon-

γ (IFN-γ) [12] which are, intriguingly, among others, responsible for the so-called SARS-

CoV-2-induced cytokine storm [13]. During normal pregnancy, there is an overexpression 

of the rulers of the RAS system due to hormonal changes, in particular of estrogens. In 

fact, liver stimulation by estrogens increase angiotensinogen plasma level during normal 

pregnancy [14,15]. On the contrary, in women with PE many studies report that the in-

crease in angiotensinogen plasma level does not occur [16]. The increase in AngII levels, 

typical of normal pregnancies, is lacking during PE as well [17]. Furthermore, despite the 

fact that some papers describe no modification or even up-regulation of ACE2 expression 

in pre-eclamptic placental vasculature and cells [18,19], plasmatic levels of Ang1-7 have 

been found to be lower in pre-eclamptic versus normal pregnancies [20], underlying the 

importance of the correct functioning of the RAS system for the adequate development 

and completion of pregnancies. Indeed, proper RAS activation is indispensable to respond 

to the increasing demands of the developing fetus [21], and dysregulation of the RAS sys-

tem has been proposed as a leading cause of PE [22]. Therefore, RAS dysregulation, endo-

thelial damage, and hyperinflammation seem to represent common biological phenomena 

characterizing both COVID-19 and PE. 

In this mini-review, we focus on the cardiovascular mechanisms malfunctioning in 

both COVID-19 and PE, possibly underpinning a role of SARS-CoV-2 in the pathogenesis 

of PE and pre-term-birth in COVID-19 pregnant women, based on the current—although 

poor—available data. 
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2. SARS-CoV-2 and the Cardiovascular System: ED and RAS 

Cardiovascular disease (CVD) is one of the most prevalent and deadly conditions 

clinicians have to face when treating COVID-19 affected individuals. Therefore, therapies 

supporting the cardiovascular system represent one of the first lines of treatment of 

COVID-19 patients. COVID-19 cardiovascular manifestations may include thrombosis, 

coagulopathies, and till myocardial infarction, all sustained—at least in part—by a shared 

mechanism, endothelial dysfunction (ED), which also characterizes CVD and diabetes, 

major COVID-19 co-morbidities. At the very beginning of the pandemic, little attention 

was paid to the vascular contribution to the pathogenesis of COVID-19. Nevertheless, that 

endothelial cells (ECs) may be involved in viral-related pathological manifestations was 

already known [23]. Indeed, ECs play pivotal roles in organ homeostasis and in regulating 

the immune system. They enhance the immune response, as they are provided with class 

I and II Major Histocompatibility Complex molecules [24] and, therefore, are able to pre-

sent antigens and to stimulate CD4+ and CD8+ memory T lymphocytes [25]. Furthermore, 

ECs regulate vascular permeability and the access of the immune cells to the site of in-

flammation, amplifying this process also because they are centrally responsible for the 

cytokine storm [26]. Dysfunctional ECs possess pro-thrombotic properties which may ac-

count for the deep venous thromboembolism and pulmonary thromboembolism, typical 

of critically ill COVID-19 patients [27,28]. SARS-CoV-2-dependent alterations of ECs have 

been extensively reported [29] and endotheliitis has been proposed as the main cause of 

the generalized microcirculatory dysfunction and multi-organ failure in critically ill 

COVID-19 patients. Viral structures have been detected within ECs, with massive recruit-

ment of neutrophils and monocytes to the vasculature and inflammation of the endothe-

lium [29]. All the vascular cells, including ECs, smooth muscle cells, and accessory peri-

cytes express ACE2, as well as the Transmembrane Serine Protease 22 (TMPRSS2) protease 

[30,31], which cuts Spike, the SARS-CoV-2 protein mediating the binding of the virus to 

ACE2 and cell infection, at the S1/S2 and S2′ sites and is responsible for the full entry of 

the virus within the cells [3]. Indeed, experimental evidence has documented direct ECs 

infection by SARS-CoV-2, which may be prevented by a human recombinant ACE2 

(hrACE2) in capillary and kidney organoids. Nevertheless, the neutralizing activity of 

hrACE2 is not complete, indicating alternative routes for CoV-2 to infect target cells [32]. 

Intriguingly, SARS-CoV-2 Spike protein also possess the ACE2 binding site upstream, in 

the receptor binding domain (RBD), an RGD (arginine-glycine-aspartate) motif [33] which is 

the docking site for integrins. Integrins are heterodimeric, ubiquitously expressed, cell 

surface receptors, mediating cell adhesion, migration, and signaling and are particularly 

important for the physiology of the endothelium [34]. 

Although COVID-19 ED pathogenesis is still an object of investigation, it has been 

recently hypothesized that CoV-2-dependent coagulopathy may be promoted by an im-

balance between pro-angiogenic and anti-angiogenic factors. In particular, in COVID-19 

patients a high ratio of soluble fms-like tyrosine kinase 1 (sFlt-1)/Placental Growth Factor 

(PlGF) has been detected [35]. CoV-2 represses ACE2 expression, increasing Ang II levels 

which, in turn, promotes the growth of sFlt-1 levels. sFlt-1 acts as a decoy for PlGF and 

impairs nitric oxide (NO) production, leading to ED. The decrease in NO production, a 

hallmark of ED, may also depend on the lack of endothelial Nitric Oxide Synthase (eNOS) 

phosphorylation on serine 1177 (ser1177), due to the SARS-CoV-2-dependent decrease in 

ACE2 expression and the consequent impaired activation of the Mas receptor signaling 

[36] along the RAS pathway. The actors of the RAS pathway are two axes with opposite 

function, mediating vasoconstriction/dilation. Starting from renin-dependent production 

of AngI from Angiotensinogen made in the liver, AngI is processed by Angiotensin Con-

verting Enzyme (ACE) in AngII. The ACE/AngII/Angiotensin 1 (AT1R) pressor axes pro-

mote sympathetic nervous system tension, increasing vasoconstriction and blood pres-

sure and inducing inflammation, fibrosis, and myocardial hypertrophy, through the acti-

vation of various kinases (e.g., JNK, p38, MAPKs) [37]. AngII may also bind AT2R, which 

has different functions and distribution with respect to AT1R, but retains vasoconstriction 
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activity [38]. The counterpart of this axis is the ACE2/Ang1-7/Mas-a G-protein-coupled re-

ceptor (GPCR), as well as AT1R and AT2R, which mediates vasodilation and has an organ 

protective effect. ACE2 may cleave AngI to Ang 1-9 and, most importantly, cleaves AngII 

in Ang1-7, which activate Mas. In turn, the Mas-dependent PI3-kinase/AKT pathway 

leads to eNOS ser1177 phosphorylation, NO production, activation of phospholipase C, 

and increase in intracellular calcium levels [36]. These events are responsible for the anti-

inflammatory and anti-fibrotic responses of ECs and for the organ protective effects of this 

axis. Decreasing ACE2 levels [9], SARS-CoV-2 deregulates RAS pathways, affecting the 

homeostasis of whole organs. Based on these data, it may be suggested that the direct EC 

infection by SARS-CoV-2 and a detrimental remodeling of the endothelium, together with 

reduced levels of ACE2, leading to a decrease in NO production, may contribute to ED. 

Furthermore, an unbalanced ACE2/AngII ratio may promote vasoconstriction, fibrosis, 

and organ damage because of an impaired production of Ang1-7 and Mas activation. 

3. Pre-Eclampsia: A COVID-19 Mimicry? 

PE is a complex medical disorder which affects 2–8% of the general pregnant popu-

lation. After 20 weeks’ gestation, pregnant individuals affected by PE present several 

symptoms characterized by de novo hypertension, (ISSHP), proteinuria, and signs of 

damage to different organ system: the liver, kidneys, the Central Nervous System (CNS) 

and fetal growth [39]. PE may be a serious disease if not monitored. Its rapid evolution 

can progress to serious complications, including death of both mother and fetus [39]. 

There are two types of PE definitions depending on the weeks of gestation: early-onset PE 

before 34 weeks of gestation and late-onset PE after 34 weeks of gestation. The difference 

between early and late-onset PE is associated with a different healthy status. In fact, early-

onset PE present an impaired placentation in early pregnancy while late-onset PE is asso-

ciated with metabolic and cardiovascular maternal risk [40,41]. For these reasons, the ma-

ternal and neonatal outcomes are different and look like two maternal hemodynamic dif-

ferent entities. 

The impairment of placentation during early-onset PE is mostly related to fetus com-

plications resulting in prematurity and growth restriction or in severe cases perinatal 

death. On the contrary, late-onset PE, derived by maternal pre-existing risks, is more as-

sociated with maternal complications. For these reasons and for the different etiologic 

backgrounds, early- and late-onset PE are often assessed separately in pathophysiologic 

studies [42]. Untreated PE can lead to serious complications, not only for the baby but 

even for the pregnant individual. In fact, PE is the main cause of maternal mortality world-

wide [43]. Although the first paper in Medline about PE is dated 1914 [44], after more than 

a century of exhaustive research efforts, it is still not clear how PE may occur in pregnan-

cies with no apparent risk factors [45]. However, one of the most accepted theories is that 

a poor or inadequate placentation in early pregnancy may result in PE [46]. In fact, since 

early 1940 placental lesions have been associated with PE [47] and the placenta remained 

the major focus of PE research for many years. Lately, the role of the placenta has been 

revised and the role of the cardiovascular system has gained more and more importance; 

although the placenta is necessary for the occurrence of PE, the problem resides probably 

in the response of the whole maternal cardiovascular system [41]. Different cardiovascular 

profiles may account for different forms of pre-eclampsia and other complications of preg-

nancy in which placental perfusion may be only a part of the problem. Early onset pre-

eclampsia associated with fetal growth restriction may be associated to elevated maternal 

Peripheral Vascular Resistance and low cardiac output; this condition may be at the basis 

of placental hypoperfusion. The so-called “three stage” model tries to explain pre-eclamp-

sia onset: in the first stage occurring early during pregnancy, an incomplete immune–ma-

ternal toleration of the fetus provides an unbalanced intrauterine environment. The sec-

ond and consequential stage leads to an abnormal placental development, a disrupted 

spiral placental artery remodeling with different problems such as, first, decreased pla-
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cental blood flow, then decreased uteroplacental perfusion with risk of ischemia reperfu-

sion injury [48]. The third stage derives from the production of different pro-inflammatory 

cytokines, which characterizes the second stage [49], and antiangiogenic factors by syn-

cytiotrophoblasts in abnormal placental conditions. The overproduction of all these pro- 

inflammatory factors lead to the activation of the maternal inflammatory system and en-

dothelial dysfunctions [42]. However, while dysfunctional placenta remains a good start-

ing point to study PE, recent clinical findings show that placental lesions are not specific 

to PE diagnosis [50]. Moreover, this exclusively placental vision does not appropriately 

account for those forms of late onset pre-eclampsia with gestational-age fetuses without 

evidence of placental dysfunction, usually associated to normal or low peripheral vascular 

resistance and elevated cardiac output. This new point of view led researchers to look for 

other factors which may be associated with PE. Some predisposing and risk factors for 

CVD, like advanced maternal age, obesity, ethnicity, diabetes, and chronic hypertension, 

have been always considered to be related to poor placentation. 

Some recent data have also shown that chronic hypertensive patients may be associ-

ated with altered cardiovascular parameters before and at the beginning of pregnancy, 

long before the placentation process is completed. 

The first suggested link between COVID-19 and PE is RAS dysfunction. During preg-

nancy, there are many functional adaptations in the hemodynamic systems. Plasma vol-

ume is increased and to keep blood pressure in normal range, body adaptation involves: 

decreased sensitivity to RAS [51], increased compliance of the vascular wall [52], and in-

creased NO production by ECs [53]. Moreover, cardiac output is increased together with 

glomerular filtration [42]. All these phenomena lead to a complex mechanism of adapta-

tion whose impairment leads to PE. For these reasons, pre-eclamptic pregnant woman 

have lower levels of components of RAS (AngII) than healthy pregnant women do. How-

ever, importantly, AngII sensitivity is increased in pre-eclamptic women compared with 

healthy pregnant women [51]. The importance of AngII adaptation is strictly dependent 

on its role. In fact, Ang II is a vasoconstrictor agent and lack of AngII adaptation during 

pregnancy may develop hypertension [42]. The reason why AngII is increased during PE 

is unknown. One hypothesis leads to the alteration of placental and/or vascular AT1R 

expression, or heterodimerization of AT1R with bradykinin receptors [54]. Other mecha-

nisms, such as increased angiotensin 1–7 expression, AT1-R autoantibodies (AT1R-AAs), 

and hemopexin could also be involved [54]. That RAS dysregulation is one of the main 

factors leading to PE is well established [55,56]. In this regard, it has to be highlighted that 

all the components of renal RAS are also present at local levels at the uteroplacental unit 

[57,58] and very recently it has been hypothesized that renin and RAS molecules secreted 

by the placenta may contribute to the development of PE via the activation of intrarenal 

RAS (iRAS). This phenomenon could rely on exosome shedding, which not only contains 

RAS molecular components but also microRNAs (miRNAs) which may target mRNA en-

coding for RAS proteins and ATR1/AAs, agonists of AngII. Both miRNAs and ATR1/AAs 

lead to the suppression of circulating RAS and to the activation of iRAS [22]. Indeed, a 

role for mir155 in PE has already been suggested, although discordant results have been 

reported [59,60] as well as for mir663, upregulated in the pre-eclamptic condition, which 

targets renin [61]. 

Although recent studies suggest that SARS-CoV-2 infection does not have a severe 

course in pregnant women [62], an increased incidence of PE has been reported among 

pregnant women infected with SARS-CoV-2 compared with the general population. 

ACE2 upregulation confers protective effects in acute lung injury. Nevertheless, SARS-

CoV-2 downregulates ACE2 expression [63]. In women of reproductive age and especially 

in the second and third trimester of pregnancy, high level of estrogens could be protective 

by increasing the expression of ACE2 counteracting SARS-CoV-2-dependent ACE2 down-

regulation. In vivo experimental studies have demonstrated that during pregnancy, the 

placenta and uterus increase ACE2 levels. ACE 2 generate the vasodilator Ang1–7 inhib-
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iting the vasoconstrictor AngII. During the third trimester of pregnancy, there is an in-

crease in plasma levels of Ang-1-7 [64] which are different between healthy pregnant 

women and pre-eclamptic pregnant women [20]. This may contribute to the systemic vas-

odilation and decrease in blood pressure and to other physiological adaptations that occur 

in normal pregnancy. ACE2 regulates blood pressure and fetal development. Previous 

reports record that especially maternal viral infections contribute to the development of 

PE inducing maternal systematic inflammatory response [65]. In fact, PE induces an exag-

gerated inflammatory response leading to endothelial damage [11]. In addition, severe 

COVID-19 is characterized by a systemic hyperinflammatory response. The same proin-

flammatory cytokines typical of the COVID-19 cytokine storm are overexpressed in mes-

enchymal stromal cells of pre-eclamptic placentas [12,66] Possibly, SARS-CoV-2 intrauter-

ine infection may alter the expression of ACE2. This alteration raises AngII levels in the 

placenta, inducing PE [67]. Finally, thrombocytopenia (<100,000/mL), which characterizes 

pre-eclamptic conditions, is a parameter used to evaluate the severity of COVID-19 pa-

tients [68]. 

4. Integrating SARS-CoV-2 Infection and Pre-Eclampsia 

The experience with SARS-CoV and MERS-CoV showed different pregnancy out-

comes, ranging from mild consequences to high pressure, PE, acute renal failure for preg-

nant women ; from no consequences, to intrauterine growth restriction (IUGR) and pre-term 

birth (PTB) [69,70] to death for newborns [71]. Despite the wide body of clinical and mo-

lecular evidence (see above) that underpins an interrelationship between COVID-19 and 

PE a causative role for SARS-CoV-2 in the development of pre-eclamptic conditions has 

still to be clearly demonstrated. However, it has been reported that in SARS-CoV-2-posi-

tive pregnant women, the incidence of PE was 15.7% with respect to 9.3% of non-COVID-

19 pregnancies [72]. This may depend on potential intrauterine SARS-CoV-2 infection, 

leading to the increased expression of ACE2 and elevated AngII levels in placental villi 

with subsequently vasoconstriction and restricted fetal blood flow, all phenomena typical 

of early-onset PE [73]. Data related to SARS-CoV-2 entry molecules ACE2 and TMPRSS2 

expression in the human placenta are contradictory. Indeed, ACE2 has been reported to 

be widely expressed in the human placenta, in particular in syncytiotrophoblasts, cyto-

trophoblasts, vascular cells of villi (ECs and smooth muscle cells (SMCs)) in the decidua 

and even in ECs and SMCs of umbilical cord [19,74]. Furthermore, a cytokine proinflam-

matory profile (IL-2, IL6, IL-7, and TNF-α) is found both in SARS-CoV2-infected and pre-

eclamptic pregnant women, as well as ferritin plasma and low platelet count [12,75]. In 

particular, a low platelet count (<100,000/mL) is an independent risk factor used to deter-

mine the severity in PE [76], but it is also a useful parameter to determine COVID-19 se-

verity [12]. Mendoza et al. report that six out of eight COVID-19 pregnant women with 

severe pneumonia revealed laboratory test results and biophysical and biochemical pa-

rameters typically occurring in late-onset pre-eclamptic women [77]. Moreover, a case re-

port related to the analysis of the placenta of a COVID-19-affected pregnant woman with 

hypertension, coagulopathy, and PE, who underwent pregnancy termination of pre-via-

ble pregnancy, by dilation and evacuation, at 22 weeks of gestation, demonstrated SARS-

CoV-2 infection of the placenta—especially in syncytiotrophoblasts, overlapping ACE2 

expression [74]—and the umbilical cord, both by real-time PCR and electron microscopy. 

Fetal tissues were, however, negative for SARS-CoV-2 at the molecular testing [78], con-

firming those reports assessing no vertical transmission of the infection. Other studies on 

the morphological characteristics of placentas derived from COVID-19-affected pregnant 

women testify a gross malfunctioning of the local vasculature, with diffuse fetal thrombi, 

arteriopathy of the decidua, and villitis of unknown etiology with respect to normal preg-

nancies [79]. These findings, together with the demonstration of the direct placenta infec-

tion by SARS-CoV-2, may suggest an involvement of ACE2/Ang1-7/Mas axis in determin-

ing the vascular pathology of COVID-19 placentas and in the SARS-CoV-2-dependent on-

set of early onset PE, which, as stated above, is characterized by decreased levels of Ang1-
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7 [20]. An interesting analysis of the expression of ACE2 and TMPRSS2 in placental tissues 

derived from non-COVID-19 affected women at different time of gestation and with dif-

ferent pathological features demonstrated an increase in ACE2 and TMPRSS2 in placentas 

from the first pregnancy trimester, to decline at later stages, suggesting a major suscepti-

bility to SARS-CoV-2 infection early during pregnancy. No changes in the expression of 

these two SARS-CoV-2 entry molecules—which were barely detectable—have been found 

at the decidual interface in PTB and pre-eclamptic pregnancies, compared to uncompli-

cated pregnancies [80]. However, a decrease in ACE2 mRNA was detected in the uterus 

of a rat model of pregnancy-induced hypertension, when compared to control pregnant 

rats [81]. Studies on the human placenta performed at the single cell level gave opposite 

results. In fact, Li et al. observed 32 cell types within a population of 65,000 cells, 4 of 

which expressed ACE2 at considerable levels, including decidual stromal and perivascu-

lar cells, cytotrophoblasts in villi, and syncytiotrophoblasts in placenta. Co-expression of 

ACE2 and TMPRSS2 was also observed in villous cytotrophoblasts and syncytiotropho-

blasts, although TMPRSS2 was found at low levels in these latter [82]. Conversely, another 

publication reported negligible co-expression of these two molecules both at the single 

cell level and at single nuclear level in placental cells [83]. However, recently, another 

work confirmed the expression of both ACE and TMPRSS2 in human placenta at the sin-

gle cell level, but most importantly, also at the protein level, by immunohistochemical 

analyses of placental tissues, with different degrees of expression according to the tri-

mester of pregnancy and the cell type evaluated [84]. This last report suggests that, alt-

hough limited, a vertical transmission of SARS-CoV-2 infection is possible, as recently de-

scribed [85]. 

A computational comparison between differentially expressed genes by SARS-CoV-

2 infection and PE associated genes [86–88] reported that SARS-CoV-2 modulates the ex-

pression of several genes typical of pre-eclamptic conditions. Intriguingly, Gene Set En-

richment Analyses (GSEA) showed that one of the most affected pathways is related to de-

fective vascular response. Indeed, many angiogenic/antiangiogenic and vasoactive mole-

cules have been found to be deregulated by SARS-CoV-2 [86]. Of note, among them sFlt-

1 and endoglin (ENG), two antiangiogenic molecules contributing to PE development, are 

upregulated by SARS-CoV-2. As stated above, sFlt-1 act as a decoy for PlGF, preventing 

its binding to membrane-bound Flt-1 [89] and impairing its angiogenic function. ENG im-

pairs Vascular Endothelial Growth Factor (VEGF) and PlGF activity, cooperating with sFlt-1 

[90,91]. Moreover, vasoconstrictive (Urotensin-2, Angioteninogen, Endothelin-1) and pro-

thrombotic peptides (e.g., Thrombomodulin, Plasminogen Activator Inhibitor-1, Sigma-1 

ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP)) are also deregulated [92], possibly sug-

gesting at least one of the molecular mechanism–besides RAS dysfunction-for the vascular 

malformations detected in COVID-19 pregnant patients. 

Another issue to take into account is the presence of genetic polymorphisms predis-

posing one either to PE or SARS-CoV-2 infection. To date, the one linked to the risk both 

to develop PE and COVID-19 is the ACE I/D (insertion/deletion) polymorphism. This pol-

ymorphism consists in the insertion or deletion of a 287 bp sequence in the intron 16 of 

ACE gene. The DD genotype results in higher ACE levels and risk to develop hyperten-

sion [93] due to an increase in AngII levels, whereas the II genotype is characterized by 

low ACE. Despite controversial results, some reports established a relationship between 

the DD ACE genotype and PE [94]. Intriguingly, the II ACE genotype is inversely corre-

lated both to COVID-19 incidence and mortality [95], suggesting the DD genotype as a 

predisposing factor to develop the disease and confirming hypertension as an underlying 

clinical condition contributing to the pathogenesis of both COVID-19 and PE. 

5. Conclusions 

Both PE and COVID-19 are multifactorial diseases, whose pathogenesis relies on car-

diovascular as well as immune dysfunction. Taking into account the vascular side of the 

story, the dysfunction of the RAS system, ED, the imbalance of angiogenic/antiangiogenic 
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factors, the presence of ACE genetic polymorphisms, together with the detection of SARS-

CoV-2 viral particles in placenta-derived cells and to the shared histopathological charac-

teristics of pre-eclamptic and COVID-19 placentas, strongly supports a role of SARS-CoV-

2 in promoting the development of pre-eclamptic-like conditions in pregnant women with 

severe COVID-19 symptoms (Figure 1). In fact, it has also to be considered that, despite 

the lack of an outstanding demonstration of SARS-CoV-2 entry into placental cells 

through ACE2 and TMPRSS2, SARS-CoV2-related systemic inflammation may contribute 

to the development of pre-eclamptic conditions. For these reasons, we suggest that an as-

sociation between COVID-19 and development of PE may be possible, although thorough 

studies are required to fully elucidate the underlying molecular pathogenic mechanisms, 

recommending a careful surveillance of SARS-CoV-2 infected pregnant women. 

 

Figure 1. Comparison of activated RAS pathway leading to endothelial dysfunction (ED) during SARS-CoV-2 infection 

(left) and Preeclampsia (right). 
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