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Abstract: The paper is focused on the optimal scheduling of a drainage pumping station, complying
with variations in the pump rotational speed and a recurrent pattern for the inflow discharge.
The paper is structured in several consecutive steps. In the first step, the experimental set-up is
described and results of calibration tests on different pumping machines are presented to obtain
equations linking significant variables (discharge, head, power, efficiency). Then, those equations
are utilized to build a mixed-integer optimization model able to find the scheduling solution that
minimizes required pumping energy. The model is solved with respect to a case study referred to a
urban drainage system in Naples (Italy) and optimization results are analysed to provide insights on
the algorithm computational performance and on the influence of pumping machine characteristics
on the overall efficiency savings. With reference to the simulated scenarios, an average value of
32% energy can be saved with an optimized control. Its actual value depends on the hydraulic
characteristics of the system.

Keywords: pump scheduling; energy management in water systems; energy saving in water systems;
urban drainage; sewage pump; wet well; pumping station

1. Introduction

Nowadays, the issue of management efficiency is of great concern in the context of water
infrastructures. Focus is usually given to the reduction of cost of production [1], energy recovery [2],
reduction of water losses [3], reduction of pipe breaks and maintenance operations [4]. Cost of
production especially includes cost of the energy used for pumping, which, according to recent
reports [5,6], constitutes 4% of the entire amount of national electricity consumed in U.S. [4,7] and 7%
of the electrical energy worldwide [8,9]. Reduction of pumping energy use within water networks is
one of the most promising fields in the context of energy recovery and efficiency [10–12].

Pumping systems within water supply and drainage networks are equipped with multiple pumps,
starting with a minimum number of two, one of them is kept for replacement purposes. Pumping
systems has been commonly designed to work at fixed speed and constant hydraulic conditions (head
and discharge) which are close to the Best Efficiency Point (BEP) of the pump, so to have the best
possible performances. Given the presence of multiple pumps in the system, and possible variations in
the operating conditions (variable discharges and variable tank level to make an example), a scheduling
is needed to optimize system performances. A modern trend in the management of pumping systems is
based on the use of variable speed drives to change the impeller rotational speed of one or more pumps.
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This approach works well in pipelines with large friction losses and the energy use will reduce if the
pumps works for a longer time at lower speed and with smaller discharges [13] when compared to
fixed speed operations. Several examples of scheduling optimization exist in literature, with different
optimization algorithms, different variables and different objective functions; the evolution of research
in the field of energy efficiency optimization complies with the development of more and more
sophisticated optimization tools and algorithms. A first attempt of reducing operational costs in water
networks concerns the use of linear programming [14], integer linear programming [15], non-linear
programming [16,17] and dynamic programming [18], with limited possibilities of generalizing results
to any water network different from those tested. More recently, heuristic algorithms, such as genetic
algorithms, ant-colony or harmony search [19–22], were applied in the coupling with hydraulic
simulators, that were often overcome by using Artificial Neural Networks to reproduce results of the
hydraulic simulations [23]. The use of ANNs improved computational times, making it possible to
use these tools for real time control of pumping systems [24–27]. Some authors [28–30] developed
an energy efficiency model for pump scheduling with multiple objective functions. One last energy
efficiency method is the data-mining approach, where neural network algorithms are applied to
develop models for predicting the pump energy consumption and the flow rate after pumping, based
on previously collected data [9,31].

In the cited literature, pump scheduling optimization output usually consists of a set of values
describing whether each pump is working or not at a given time (ON/OFF scheduling) [4,32] and
which its rotational speed is [33], usually with one-hour pace [9]. For wastewater pumping systems
(both in combined and separated drainage networks), the main control is given by the water level in
a storage tank [34] upstream of the pumps; however, any efficient method for energy consumption
reduction should reproduce a control system which is able to deal with the highly complex, non-linear
behaviour of stormwater flow rates [11]. This complexity increases if the pump speed is considered in
scheduling optimization.

Aim of the Paper and Methodology

Variable speed control and pump scheduling has been applied to clear water pumping stations
in order to reduce the energy use so far. This work focuses on the optimal scheduling of a drainage
pumping station. This problem has not been deeply investigated in the technical literature yet, due
to the complexity of the mathematical formulation. Generally, these kinds of utilities are equipped
with one or more sewage pumps working at constant speed (CS), whose activation is controlled by the
water level within the wet well. When the pumping station is equipped with only one pump, if the
water level exceeds an assigned value, the pump turns on; conversely, as the water surface decreases
below a minimum value, the pump turns off. Some pumping stations are equipped with more than
one pump: in those cases there are usually different set points to control each of the pumps.

The main scopes of this study are:

• Formulating a complete mathematical model of a drainage pumping system
• Optimizing the pumping system aiming at reducing the required energy
• Showing the benefit of such an optimization comparing the results with a classical CS plant.

To achieve such objectives, the water level set points are removed and a new control technique
is presented, where both the instantaneous rotational speed of the pump and the ON/OFF sequence
are optimized. Such a flexibility in the control system makes the mathematical model quite complex,
since introducing integer variables and non linear equations. Thus, a mixed-integer non-linear
optimization model has been developed and a deterministic algorithm, i.e., a branch-and-bound
non-linear optimization algorithm, has been selected to solve it. To the author’s knowledge, only a
few studies on this topic have been presented so far [11,35], dealing with either simplified models or
heuristic approaches.

A real flow pattern of a drainage system has been selected as a case study and different scenarios
have been simulated to investigate the performance of the optimization model. The results show that
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the energy savings obtainable by the scheduling optimization depend on the characteristics of the
hydraulic system: the comparison between the CS control and the optimized control demonstrate that
an average value of 32% energy can be saved, with a peak value of more than 70% only in the best
case. The presented mathematical model and the encouraging results achieved suggest the possibility
to develop real-time algorithms to control drainage and sewer pumps to reduce their energetic impact.

2. Pumping Station Description and Case Study

2.1. Classical Design

A pumping station is designed to collect and transport water to a point of higher elevation.
The inflow water is stored in a wet well, where the submersible pump is located. In larger plants,
surface pumps could be alternatively installed into dry wells and connected to the tank with a suction
pipe. The pump lifts the water through a pressurized pipe toward another collecting system (i.e., a tank
or a channel). Generally, the pumps work at constant rotational speed and fairly constant discharge,
while the inflow is time dependent. If the grid frequency is not modified (i.e., 50 Hz in EU and 60 Hz
in USA) the motor velocity (N) attains its maximum value Nmax. The difference between the inflow
and the outflow causes modifications to the water level within the wet well. The classical control of the
constant speed (CS) pump is based on the water level: when it rises above a certain level the pump is
started. The pump is selected so that its discharge is higher than the maximum inflow: in this way, as
the pump is started, the water level decreases. As the water level reaches a minimum value, the pump
is turned off and the cycle starts again. A sketch of the wet well is shown in Figure 1.

Figure 1. Sketch of the wet well of the pumping station with a single submersible pump.

In the larger pumping stations, two or more pumps are placed to work in parallel, and different
water levels are set to start and stop each of the parallel pumps. Since each pump operates in constant
conditions, it is selected so that, at the selected discharge (Q), it exhibits the maximum efficiency.
In other words, the designed outflow corresponds to the Best Efficiency Point (BEP) of the pump
(QBEP

Nmax
). The time interval between two consecutive starts of the pump, τ, with Qin inflow discharge,

is then equal to:

τ = W
QBEP

Nmax

Qin(QBEP
Nmax
−Qin)

(1)

where W is the volume of water stored between the maximum and the minimum water levels within
the well. The number of starts per hour, Sh can be calculated as:
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Sh =
3600

τ
(2)

where τ is expressed in seconds. If the inflow discharge Qin is considered as a θ portion of the QBEP
Nmax

,
then the number of starts per hour can be written as:

Sh = 3600
QBEP

Nmax

W
θ(1− θ) (3)

where the volume W is expressed in m3, QBEP
Nmax

in m3/s and Sh in starts per hour. For a wet well with a
single pump, in order to avoid that the number of starts per hour (Sh) exceeds the maximum value
indicated by the pump manufacturer (Sh

max), the value of θ must be set to 0.5, as it can be demonstrated
by deriving Equation (3) with respect to θ. Then, the volume can be calculated as:

W = 900
QBEP

Nmax

Sh
max

(4)

This formula, that relates the volume of the wet well only to the characteristics of the chosen
pump, ensures that the number of starts per hour will never exceed the maximum allowed value,
whatever the inflow discharge. The maximum number of starts occurs when the inflow discharge
is the half of QBEP

Nmax
and reduces otherwise. The choice of the pump in the design is crucial: a larger

pump allows dealing with larger inflow discharge, but implies an increase of the volume, with a
subsequent increase of the building costs and of the retention time. The latter can be calculated as the
ratio between the volume of the well and the average input discharge [36]. The retention time should
be kept short to avoid septicity in the tank if it collects sewage or wastewater. The effect of the pump
choice is discussed hereafter.

2.2. Experimental Investigation of the Behaviour of Two Submersible Pumps

Two submersible sewage pumps have been tested in the HELAB, the HydroEnergy Laboratory of
the University of Naples (CeSMA). The laboratory has been specifically designed for the experimental
tests of turbomachines according to ISO 9906 regulation. A large underground storage reservoir
(110 m3 of water) is used to feed the pump. The pumps were located on the bottom of the tank and
connected to a 250 mm pipe that conveyed the water through an electro-magnetic discharge meter
(accuracy < 0.5%) and then back to the tank. The pressure was measured with a piezoelectric transducer
(accuracy < 0.5%). A digital power meter (accuracy < 0.5%) was used to measure the input power.
A SCADA system ensured the automatic and simultaneous acquisition of the data. A speed-driver
was used to modify the electric frequency ( f ) and to regulate the speed of the asynchronous motor.
For each of the six tested frequencies (50, 45, 40, 35, 30 and 25 Hz respectively), a gate valve was
used to set different discharge values. For each discharge, all the measurements were averaged on
500 samples (with a 0.01 s sampling rate) to reduce the fluctuation of the signal. For each of the two
pumps, the maximum number of starts per hour, namely Sh

max suggested by the manufacturer is 10.
Thus, a complete set of experimental points of discharge (Q), head (H), power (P) has been obtained.
The rotational speed (N, in rpm) of the pump can be calculated (if the slip of the motor is neglected) by:

N =
60 f
pp

(5)

where pp is the number of pole pairs of the motor. The efficiency (η) has been calculated as the ratio
between the hydraulic and the electric power:
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η =
γHQ

P
(6)

being γ the specific weight of water, equal to 9806 N/m3. For each frequency, the head curve (HN(Q))
and the power curve (PN(Q)) can be interpolated by a polynomial regression (second and third order
respectively). Thus, the efficiency can be calculated by Equation (6).

Figure 2 displays the experimental points and the interpolation curves of the two pumps. The best
efficiency of both pumps decreases as the frequency decreases. Turbomachinery affinity laws can be
used to simulate the pump behaviour under variable speed [37,38] but, unfortunately, they do not get
the efficiency reduction [39–41]. Indeed, Figure 3 shows that the dispersion of experimental point on
the chart (Q/N, H/N2) is negligible, while it is considerable in the chart (Q/N, P/N3).

Figure 2. Performance curves of the two tested machines (Machine 1 on the left column, Machine 2 on
the right column).
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Figure 3. Experimental points of Q/N, H/N2 and P/N3 for the two machines (Machine 1 on the left
column, Machine 2 on the right column).

Thus, according to affinity laws, a unique interpolating polynomial curve (calculated on all the
experimental points) has been used to calculate the head, namely:

HN =

[
c2

h

(
Q
N

)2
+ c1

h

(
Q
N

)
+ c0

h

]
· N2 (7)

while, for the power, a polynomial best fit has been calculated only for f = 50 Hz, i.e.,
N = Nmax = 3000 rpm on the values of pNmax

pNmax = c3
p

(
Q

Nmax

)3
+ c2

p

(
Q

Nmax

)2
+ c1

p

(
Q

Nmax

)
+ c0

p (8)

being pNmax =
PNmax

Nmax
3 . In order to calculate the power for any N rotational speed, a correction to the

affinity laws should be introduced. For each N rotational speed, the best efficiency (ηN
BEP) can be

calculated as:
ηBEP

N = c2
η N2 + c1

η N + c0
η (9)

where N is the speed of the pump calculated by Equation (5), as shown by Figure 4.
Thus, a new parameter can be introduced, namely the relative efficiency e [42]:

e =
ηN(Q)

ηBEP
N

(10)

As shown by Figure 5, the data (Q/N, e) lies on the same curve, with a little dispersion. Thus, for
each value of Q and N, e can be calculated by a polynomial regression on (Q/N)

e = c3
e

(
Q
N

)3
+ c2

e

(
Q
N

)2
+ c1

e

(
Q
N

)
+ c0

e (11)
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while the efficiency can be calculated by Equation (10). Finally, the power P can be calculated by
coupling Equations (6) and (8)–(10):

PN(Q) = pNmax · N3 · e · ηBEP
N (12)

Figure 4. Best efficiency variation with the rotational speed (Machine 1 on the left column, Machine 2
on the right column).

Figure 5. Relative efficiency of both machines (Machine 1 on the left column, Machine 2 on the
right column).

2.3. Input Discharge Pattern

Data used in the present study describe the wastewater flow arriving at the pumping station of
Coroglio (Naples, Italy) and collected along the “Arena S. Antonio” (ASA) urban basin. ASA is the
largest drainage basin in Western Naples (Italy), having a total area of 1760 ha and a length of the main
channel equal to 8.5 km. Originally, it was a stormwater sewer system, but after a strong urbanization
of the area it now collects wastewater as well [43]; the catchment is mainly urbanized, with a total
percentage of impervious area equal to 62%. The sewer starts at 159 m a.s.l., whereas its terminal
section, located at Coroglio treatment plant, has an average altitude of 1 m a.s.l. Different cross-section
configurations occur along the main sewer, with a terminal rectangular cross-section with a width of
9 m and a height of 3.7 m.

Runoff data is expressed in terms of water depth in the channel cross-section; data were
recorded by means of an ultrasound level gauge at the terminal section of the sewer, 80 m before
the pre-treatment plant in Coroglio. The time step of the recording is 90 s. The modelling of the
whole system, described in [44], allowed for the estimation of the head-discharge relation for the
measurement section and the subsequent estimation of flow rates corresponding to measured heads in
dry periods of the year 2016. In the present paper, flow rates describing the daily wastewater pattern
of the ASA basin for the day with maximum average daily discharge, which occurred on 18 June 2012
and were aggregated at the time scale of 15 min, were adopted.
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The scaled daily pattern q(t) was obtained dividing the measured discharge Qexp(t) by its
maximum value:

q(t) =
Qexp(t)

max(Qexp)
(13)

Then, for each simulation, the input discharge was calculated setting the maximum input flow
rate Qin

max as a fraction of the BEP discharge QNmax
BEP :

Qin
max =

QBEP
Nmax

α
(14)

where α is a coefficient that in this study has been set to 1, 1.5 and 2. The value of α affects two aspects
of the design of the pumping station. For an assigned inflow pattern, higher values of α lead to an
oversized plant, with a larger pump, and then a larger wet well (see (4)). On the contrary, the resilience
of the plant is higher, because, even if the maximum inflow discharge increases more than the design
value, the pump is able to deal with it. Once the value of α was set, then the input discharge pattern
Qin(t) was obtained:

Qin(t) = q(t) ·Qin
max (15)

The input pattern, and the effect of α on it, is shown in Figure 6 with reference to the BEP discharge
of the first machine.

Figure 6. BEP discharge of the first machine and input pattern depending on α.

2.4. Plant Behaviour

The pumping head Hman can be calculated from the pumping discharge, by using a quadratic
head-loss formula,

Hman = H0 − Hw(t) + KQp(t)
2 (16)

H0 being the static head when the wet well is empty, Hw the water level in the wet well, depending on
time t and K a coefficient depending on the material and the diameter of the outlet pipe. H0 can be set
as a ratio of the BEP head at maximum speed HBEP

Nmax
, namely β:

β =
H0

HBEP
Nmax

(17)
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If the pump is correctly designed, the pumping head Hman corresponding to QBEP
Nmax

is close to
HBEP

Nmax
. Then, the coefficient K can be calculated as follows:

K =
HBEP

Nmax
− H0

QBEP
Nmax

2 =
HBEP

Nmax
− βHBEP

Nmax

QBEP
Nmax

2 (18)

The effect of β on the plant head curve is showed in Figure 7, together with the pump head curves.

Figure 7. Pump head curves and plant curve depending on β.

The water level into the wet well Hw can be calculated by the continuity equation:

Qin(t)−Qp(t) =
dWw

dt
(19)

Ww being the volume of water inside the wet well. If S is the cross section of the wet well, then
Ww = S · Hw. Thus, from the continuity equation, the water level in the wet well can be written as:

Hw(t) = Hw(t− dt) +
Qin(t)−Qp(t)

S
dt (20)

3. Optimization Model

The optimization model has been written in order to minimize the energy requested to pump the
water out of the wet well. Thus, the objective function ET has been set as follows:

ET =
∫

T
P(t)dt (21)

T being the time window and P(t) the instantaneous power requested by the pump at the instant
t. This equation should be of course discretized, in order to be solved. Thus, the optimizing
function becomes:

ET =
nT

∑
i=1

Pi∆t (22)

i being the generic time interval whose length is ∆t. During ∆t, each variable is assumed constant.
For each i time interval, the power Pi is a function of the rotational speed of the pump (Ni) and of the
pumped discharge (Qi), as expressed by Equation (12). Furthermore, the pump can be either switched
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on or off. Thus, a new binary variable has been added, namely the switch Ii, which is equal to 1 if the
pump is on at the i-th interval, and 0 otherwise. Thus, the requested power for each time interval can
be calculated as follows:

Pi = P(Qi, Ni, Ii) =
(

pNmax
i · N

3
i · ei · ηN

BEP

)
· Ii (23)

From Equation (23), the power at each time interval appears as a function of the discharge,
the rotational speed and the switch. The rotational speed can be set between the value corresponding
to the maximum grid frequency (namely 50 Hz, corresponding to 3000 rpm) and cannot be lower
than 1500 rpm to avoid a danger heating of the machine [45]. Once the rotational speed is selected,
the discharge can be calculated: if the pump is switched off, the discharge is obviously zero; otherwise,
it can be calculated by equating the head curve of the pump in Equation (7) and that of the plant in
Equation (16), as follows:

H0 − Hwi + KQi
2 = c2

hQi
2 + c1

hQi Ni + c0
hNi

2 (24)

The water level in the wet well, Hwi that appears in Equation (24) is related to the continuity
equation, namely Equation (20), which can be written by applying a centered finite difference scheme:

Hwi = Hwi−1 +
Qini + Qini−1 −Qi −Qi−1

2S
∆t (25)

Actually, only the speed and the switch are independent variables, while the discharge and the
water level in the wet well could be calculated by means of Equations (24) and (25). Nevertheless,
in order to improve the coding, they can be set as decision variables, subjected to some constraints.
In addition to Equation (25), which is a linear constraint involving Hwi and Qi, the pumped discharge
of each time step can be set between a maximum and a minimum value, as follows:

0 ≤ Qi ≤ Qad
max · Ii (26)

The right side of such a constraint is written to force the discharge to zero if the pump is switched
off. Qad

max is set to a high value, e.g., 3 times QBEP. Furthermore, the momentum equation can be
modified as follows, in order to include the switch (Ii):

(H0 − Hwi) · Ii + KQi
2 = c2

hQi
2 + c1

hQi Ni + c0
hNi

2 · Ii (27)

Such equality is satisfied if the pumping head equals the plant equation and collapses to an
identity if the pump is switched off. Moreover, a minimum and a maximum bond are fixed also for the
water level in the wet well:

Hmin
w ≤ Hwi ≤ Hmax

w (28)

Finally, a last constraint that involves Ii can be written, considering the maximum allowable starts
per hour of the pump (Sh

max). This last non-linear constraint can be written with reference to a new
variable, that counts the number of starts for each one-hour window, Sh

i, that is a non linear function
of Ii. It can be calculated as the sum of the occurrence of the event (Ij − Ij−1) > 0), where j is the
generic time interval of a one-hour window before the i instant. Hence,

Sh
i ≤ Sh

max (29)

All the equations written above can be summarized in the following model, written for the T
time window:
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minimize
Ni ,Ii ,Qi ,Hwi

ET = ∑
T

Pi∆t

subject to

(H0 − Hwi) · Ii + KQi
2 = c2

hQi
2 + c1

hQi Ni + c0
hNi

2 · Ii

Hwi = Hwi−1 +
Qini + Qini−1 −Qi −Qi−1

2S
∆t

0 ≤ Qi ≤ Qad
max · Ii

1500 ≤ Ni ≤ 3000

0 ≤ Ii ≤ 1

Hmin
w ≤ Hwi ≤ Hmax

w

Shi ≤ Smax

Ii ∈ Z, Qi ∈ R, Ni ∈ R
∀i = 1 . . . nT

(30)

Resolution of the Optimization Model

The optimization problem involves linear and non linear constraints, continuous and integer
variables and the objective is a non linear function of the selected variables. The problem is classified
as mixed integer non linear problem (MINLP). The Basic Open-source Nonlinear Mixed INteger
programming (BONMIN) [46] code has been chosen to solve the optimization. The selected algorithm
is a branch-and-bound based algorithm [47] specifically designed for mixed integer non linear problems
and has been successfully used in hydraulic problems in recent times [48]. For each step, the algorithm
solves the continuous relaxed problem through the Interior Point OPTimizer (IPOPT) [49] and the
Coin-or branch and cut (Cbc) algorithm [50] to solve the mixed integer problem. Even if the algorithm
is designed for convex problems, it can retrieve heuristic solutions in case of non-convex problems [51].
The problem described by Equation (30) is quite complex and the convexity has not been proven herein.
Thus, all the options for the resolution of non-convex problems have been selected.

The problem can be quite large, depending on the choice of the time window, T, and the length of
the time interval, ∆t. Each of the four variables is a vector with nT elements, while the 11 constraints
in Equation (30) can be written for any i interval. Thus the problem has 4 · nT variables and 11 · nT
constraints. A Mixed Integer Non Linear Programming is classified as a NP-hard problem [52], where
the computational time and resources exponentially increase with the number of variables. If the input
pattern is considered periodic, i.e., the pattern keeps happening every day, the optimization should
be performed on the whole daily pattern. The choice of the length of the time interval ∆t is crucial:
it cannot be too short, in order to avoid a too large number of variables, while a too long interval
produces unreliable results, due to the coarse discretization of the problem. Furthermore, the filling
time (with the maximum input discharge) of a wet well is generally lower than thousands of seconds:
then, ∆t should be lower than the filling time, in order to avoid the complete filling of the wet well
when the pump is switched off. In this paper, ∆t has been chosen equal to 60 s.

Thus, in order to get reliable results in a reasonable time, once ∆t has been chosen, the whole day
has been divided in nw time windows of T length (being nw · T = 1day), and the optimization problem
has been solved for each of them. The optimal solution for the whole day, i.e., the optimal sequence of
speeds and switches, has been obtained as the union of nw consecutive solutions. Hence, the optimal
daily energy, Eopt, can be calculated as the sum of the energy of each time window ET :

Eopt =
nw

∑
T=1

ET (31)

In this way, only a nearly-optimal solution can be found, and in this paper the dependency of the
results on the length of the window has been investigated.



Resources 2018, 7, 73 12 of 20

4. Application and Results

The optimization model has been applied to several different situations. Two different wet wells
have been designed for the two pumps, based on Equation (4), resulting in W = 26.6 m3 and 15.19 m3

respectively. A constant cross section wet well has been chosen, with a 10 m2 base surface, then Hmax

results 2.66 m and 1.52 m respectively. Different scenarios have been created by selecting the values
of the α and the β coefficients. This means that, assigned the pump (machine 1 or 2), different input
patterns have been calculated by setting the α value equal to 1, 1.5 and 2 respectively. The resulting
values of Qin

max are shown in Table 1. Different plants have been simulated by setting β equal to 0,
0.25, 0.5, 0.75 and 1 respectively, resulting in different values of H0 and head loss. For each scenario,
a reference value of daily requested energy, namely Ere f has been calculated, as follows:

Ere f =
∫

day
γQin(t)[H0 + KQin2

(t)]dt (32)

Table 1. Parameters of 30 the different studied scenarios, resulting from the choice of the machine and
different values of α and β.

Machine α β Qmax H0 Ere f Ecs
[-] [-] [-] [L/s] [m] kWh/day kWh/day

1 1.00 0.00 236.66 0.00 616.9 1960.8
1 1.00 0.25 236.66 9.71 790.4 1956.7
1 1.00 0.50 236.66 19.42 963.9 1951.0
1 1.00 0.75 236.66 29.13 1137.4 1939.4
1 1.00 1.00 236.66 38.84 1310.8 1914.4
1 1.50 0.00 157.78 0.00 182.8 1305.5
1 1.50 0.25 157.78 9.71 355.6 1306.0
1 1.50 0.50 157.78 19.42 528.3 1298.8
1 1.50 0.75 157.78 29.13 701.1 1291.5
1 1.50 1.00 157.78 38.84 873.9 1274.7
1 2.00 0.00 118.33 0.00 77.1 978.1
1 2.00 0.25 118.33 9.71 221.7 979.5
1 2.00 0.50 118.33 19.42 366.3 975.6
1 2.00 0.75 118.33 29.13 510.8 969.0
1 2.00 1.00 118.33 38.84 655.4 957.2

2 1.00 0.00 135.04 0.00 356.5 1112.8
2 1.00 0.25 135.04 9.83 456.7 1113.7
2 1.00 0.50 135.04 19.67 557.0 1110.7
2 1.00 0.75 135.04 29.50 657.2 1106.2
2 1.00 1.00 135.04 39.33 757.5 1098.3
2 1.50 0.00 90.03 0.00 105.6 743.7
2 1.50 0.25 90.03 9.83 205.5 741.7
2 1.50 0.50 90.03 19.67 305.3 739.3
2 1.50 0.75 90.03 29.50 405.2 738.7
2 1.50 1.00 90.03 39.33 505.0 732.2
2 2.00 0.00 67.52 0.00 44.6 557.0
2 2.00 0.25 67.52 9.83 128.1 556.3
2 2.00 0.50 67.52 19.67 211.7 554.5
2 2.00 0.75 67.52 29.50 295.2 554.7
2 2.00 1.00 67.52 39.33 378.7 549.5

Each scenario has been optimized, setting a time window of 30 min and a ∆t of 1 min, so that
nT = 30. Thus, for each time window, 120 optimal variables have been found. For the first instant of
the day, the water level within has been set as half of the maximum level. Table 2 shows the values of
energy required by the optimal solution Eopt, as well as the calculated values Ecs, namely the daily
energy required by CS pumping station, i.e., a pumping station where the pump operates only at its
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maximum speed and its starts and stops are controlled only by the water level has been also calculated.
Two new parameters, namely ηcs and ηopt, calculated as the ratio between Ecs or Eopt respectively and
Ere f are also shown.

Table 2. Results of the optimization with a time window of 30 min (C.T.—computational time).

Machine α β Ere f Ecs Eopt ηcs ηopt ε C.T.
[-] [-] [-] [kWh/day] [kWh/day] [kWh/day] [-] [-] [-] [min]

1 1.0 0.00 616.9 1960.8 924.5 0.315 0.667 2.121 1.8
1 1.0 0.25 790.4 1956.7 1132.3 0.404 0.698 1.728 1.3
1 1.0 0.50 963.9 1951.0 1404.9 0.494 0.686 1.389 1.6
1 1.0 0.75 1137.4 1939.4 1684.4 0.586 0.675 1.151 1.4
1 1.0 1.00 1310.8 1914.4 1924.8 0.685 0.681 0.995 2.4
1 1.5 0.00 182.8 1305.5 384.2 0.140 0.476 3.398 6.6
1 1.5 0.25 355.6 1306.0 541.9 0.272 0.656 2.410 1.6
1 1.5 0.50 528.3 1298.8 829.3 0.407 0.637 1.566 21.2
1 1.5 0.75 701.1 1291.5 1129.8 0.543 0.621 1.143 904.6
1 1.5 1.00 873.9 1274.7 1321.8 0.686 0.661 0.964 3.0
1 2.0 0.00 77.1 978.1 284.5 0.079 0.271 3.438 5.4
1 2.0 0.25 221.7 979.5 373.5 0.226 0.594 2.623 1.4
1 2.0 0.50 366.3 975.6 622.6 0.375 0.588 1.567 2906.8
1 2.0 0.75 510.8 969.0 867.2 0.527 0.589 1.117 383.3
1 2.0 1.00 655.4 957.2 1004.3 0.685 0.653 0.953 3.5

2 1.0 0.00 356.5 1112.8 538.5 0.320 0.662 2.067 2.3
2 1.0 0.25 456.7 1113.7 660.5 0.410 0.692 1.686 1.2
2 1.0 0.50 557.0 1110.7 817.6 0.501 0.681 1.358 28.6
2 1.0 0.75 657.2 1106.2 975.0 0.594 0.674 1.135 1.4
2 1.0 1.00 757.5 1098.3 1093.7 0.690 0.693 1.004 2.5
2 1.5 0.00 105.6 743.7 218.8 0.142 0.483 3.399 2.2
2 1.5 0.25 205.5 741.7 316.9 0.277 0.648 2.340 1.6
2 1.5 0.50 305.3 739.3 484.7 0.413 0.630 1.525 16,559.1
2 1.5 0.75 405.2 738.7 643.4 0.548 0.630 1.148 1.6
2 1.5 1.00 505.0 732.2 740.0 0.690 0.682 0.990 2.6
2 2.0 0.00 44.6 557.0 159.3 0.080 0.280 3.496 2.5
2 2.0 0.25 128.1 556.3 214.4 0.230 0.598 2.595 1.3
2 2.0 0.50 211.7 554.5 362.8 0.382 0.583 1.529 977.0
2 2.0 0.75 295.2 554.7 486.9 0.532 0.606 1.139 2.1
2 2.0 1.00 378.7 549.5 562.0 0.689 0.674 0.978 2.5

The values of ηCS demonstrate that, as the maximum inflow approaches the BEP discharge,
the efficiency of the pump station increases. Furthermore, the values of ηOPT are even larger than ηCS,
demonstrating that the optimal regulation allows a better energy efficiency of the system.

The benefit column, namely ε, shows the ratio between Ecs and Eopt. The higher ε values are
larger than 2 and occur when β is zero. This means that, with such an optimization, more than half
of the energy requested by the classical operation can be saved. The ε value decreases as β increases.
Values of ε lower than 1 (resulting from values of Eopt slightly higher than Ecs) occur when β is equal
to 1. This can be considered a weakness of the model, since the constant speed operation is a feasible
solution for the optimization model and should be selected by the algorithm (thus, a ε equal to 1 should
be a lower bound). Values of ε slightly lower than 1 could be due either to the discretization or to the
non convexity of the problem. Among the different scenarios, an average value of 32% energy can be
saved with an optimized control. The last column of the Table shows the computational time. It is
highly variable and, even if in the majority of the cases is reasonable, reaches a maximum value of
11.5 days. A pattern of the computational time is apparently not detectable. The unstable behaviour of
the optimization algorithm is probably due to the non-convexity of the problem, together with the
choice of dividing the entire day in multiple time windows.
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Figure 8 shows the dependency of ηcl and ηopt on α and β. The efficiency of the optimal regulation
is generally larger than the efficiency of the classical regulation, but, the difference reduces as β

increases, i.e., the head loss reduces. The efficiency of both systems is higher when α is lower and when
α is equal to 1 the efficiency of the optimal regulation is close to the maximum value, independently
from the value of β. The efficiency of the optimal scheduling is fairly constant as β exceeds 0.25.
This means that, if the head loss changes during the life of the plant, the efficiency of the system can be
kept constant during the years through an optimal scheduling of the pump operations.

Figure 8. Efficiency of optimal (ηopt) and classical (ηcl) sytems with α and β.

Figure 9 shows the benefit, ε, that can be obtained when the optimal regulation is used to replace
the classical system. Such a benefit decreases as β increases, i.e., as the head loss reduces, following the
behaviour of ηCS and ηOPT . The reduction of the benefit as β increases is due to two reasons: when the
head loss reduces, a reduction in the output discharge produces smaller reductions in the required
head, as shown in Figure 7. Consequently, the total energy required to pump the entire volume of
water slightly depends on the output discharge. Furthermore, as shown in Figure 7, as β approaches 1,
the plant line intersects regions of the pump performance where the efficiency is lower. Thus, a speed
regulation aimed at a reduction of the outflow discharge becomes less effective.

The highest value of ε is 3.44 and occurs when α is equal to 2.0 and β is equal to zero. This means
that up to more than 70% energy can be saved. A similiar behaviour occurs for α equal to 1.5. Lower
benefits can be obtained when α is equal to 1.

For the first five scenarios, the dependency of the best solution on the time window has been
tested, repeating the optimization with a time window of 60 and 120 min respectively. In each of the
three cases, the timestep is fixed and equal to 1 min. The results are shown in Table 3. The improvement
in terms of saved energy is really low, demonstrating that a time window of 30 min is sufficient to get
the optimal result.
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Figure 9. Variation of the benefit (ε) of the optimal system with α and β.

Table 3. Comparison of the optimization results with different values of time window (T).

T Eopt ηopt ε C.T.
[min] [kWh/day] [-] [-] [min]

30 924.5 0.667 2.121 1.8
30 1132.3 0.698 1.728 1.3
30 1404.9 0.686 1.389 1.6
30 1684.4 0.675 1.151 1.4
30 1924.8 0.681 0.995 2.4

60 920.8 0.670 2.129 1.8
60 1127.9 0.701 1.735 1.5
60 1399.3 0.689 1.394 2.0
60 1676.7 0.678 1.157 1.8
60 1910.2 0.686 1.002 2.2

120 918.6 0.672 2.135 6.6
120 1125.7 0.702 1.738 2.4
120 1396.5 0.690 1.397 3.4
120 1672.6 0.680 1.159 2.0
120 1902.0 0.689 1.007 3.5

5. Conclusions

In the present paper, an optimization problem is described concerning the pump scheduling of
a drainage pumping station. Compared to current literature, the main difficulty lies in the pump
rotational speed, that is able to vary in a given range altering the usual operational field of the machine.
To comply with the peculiarities of the problem, the paper is structured into several consecutive steps:

1. An experimental campaign is undertaken to explore the effects of variable speed on the pumping
efficiency. Specifically, in accordance with the affinity laws, an empirical equation is provided
to compute the pumping head (Equation (7)), whereas a novel approach based on the concept
of relative efficiency (Equation (10)) is provided to compute the pumping power under variable
speed conditions (Equation (12)).

2. On the basis of the above-mentioned theoretical framework, a mixed-integer optimization problem
(Equation (30)) is built that is made up of an objective function (the overall pumping energy) to be
minimized and a set of constraints for the variables of interest. The model is also able to comply
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with the ON/OFF switch of the pump, and two parameters (α and β) are introduced to simulate
different scenarios for the inflow discharge and the plant configuration. The influence of the time
window and step for computations is also discussed.

3. The model is solved for a case study (a literature sewage daily pattern provided for the City
of Naples, Italy) relying on a literature algorithm, and some indicators are analyzed to test the
computational performance of the algorithm and the overall energy savings given by the optimal
solution for the different scenarios. The case study was developed assuming a known inflow
pattern and a constant energy cost during the day.

The optimization results show that, if the pump scheduling, i.e., the pump starts and rotational
speed, is optimized, meaningful energy saving can be pursued. The amount of saving depends on
the plant characteristics, in terms of inflow discharge and head loss. Among the different simulated
scenarios, the average ratio of saved energy is equal to 32%, with a peak value of more than 70% in the
most convenient scenario. The efficiency of the optimal system increases as the difference between the
pump maximum discharge and the inflow decreases, while the effect of the head losses is mild and
the efficiency of the optimal scheduling is fairly constant if the head loss is not too high, i.e., the static
head is higher than one fourth of the BEP head of the pump. This could mean that the efficiency of an
optimal scheduled plant can be kept fairly constant over the years, even if the plant head loss changes
due to the wear of the pipeline.Nevertheless, when the head loss of the pumping pipeline reduces
to zero, the benefit due to an optimized control, when compared to a classical control based on the
water level, becomes negligible. The optimization algorithm that has been implemented showed good
performance in terms of computational time, even if in certain cases it extends to several days, with no
detectable patterns. In order to keep the optimization problem small, the entire day is divided into
multiple time windows. The final solution is the sum of the optimal scheduling of each time window.
A final comparison shows that a time window of 30 min is sufficient to detect the optimal solution and
a further extension of it does not give significant improvements in terms of energy saving.

This entire study is developed assuming hypothesis of knowing the inflow pattern and considering
a constant cost of the energy. Future developments could include (i) the variability of the energy cost
during the day, e.g., saving energy during the day and working more during the night and (ii) a real
time optimized control to face the random variability of the inflow pattern.
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Abbreviations

The following abbreviations are used in this manuscript:

α Ratio between QBEP
Nmax

and Qin
max

β Ratio between static head and HBEP
Nmax

∆t Length of the timestep
ηBEP Efficiency of the pump at its BEP
ηBEP

Nmax
Efficiency of the pump at its BEP for the maximum rotational speed

ηBEP
N Efficiency of the pump at its BEP at N rotational speed

ηCS Efficiency of the CS operation
ηopt Efficiency of optimal scheduling
ηN Efficiency of the pump at N rotational speed
τ Time interval between two consecutive starts of the pump
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θ Ratio between Qin and QBEP
Nmax

ε Benefit of the optimal operation, when compared to the CS mode
BEP Best Efficiency Point
c2

h, c1
h, c0

h Regression coefficients of the head curve
c3

p, c2
p, c1

p, c0
p Regression coefficients of the power curve

c3
η , c2

η , c1
η , c0

η Regression coefficients of the efficiency curve
c2

e , c1
e , c0

e Regression coefficients of the relative efficiency curve
C.T. Computational time
CS Constant Speed operation
e Relative efficiency
E Required pumping energy
ECS Daily required pumping energy for the CS operation
Eopt Daily required pumping energy resulting from the optimization
Ere f Daily reference energy
ET Required pumping energy for each time window
f Electrical frequency
H Pumped head
HBEP

Nmax
Pumped head at Nmax rotational speed at the BEP of the pump

Hman Required pumping head
HNmax Pumped head at Nmax rotational speed
H0 Static head
HN Pumped head at N rotational speed
Hw Water level in the wet well
Hmax

w Maximum allowable water level in the wet well
Hmin

w Minimum allowable water level in the wet well

i Subscript indicating the i-th timestep
I Switch of the pump
K Head loss coefficient
nt Number of timesteps in the time window
nw Number of time windows within the whole day
N rotational speed of the pump
Nmax Maximum rotational speed of the pump
P Pumped power
PNmax Pumped power at Nmax rotational speed
PN Pumped power at N rotational speed
pp Number of pole pairs of the motor
pNmax Ratio between PNmax and Nmax

3

Q Pumped discharge
q(t) Non dimensional inflow pattern
QBEP

Nmax
Discharge of the pump at its BEP for the maximum rotational speed

Qin
max Maximum inflow discharge

Qexp Measured drainage discharge
Qin Inflow discharge
Qp Outflow discharge
S Cross section of the wet well
Sh

max Maximum allowable number of starts per hour
Sh Number of starts per hour
t Time
T Time window
W Storage volume of the wet well
Ww Volume of water inside the wet well
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