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Abstract: An intersection–union test for supporting the hypothesis that a given investment strategy
is optimal among a set of alternatives is presented. It compares the Sharpe ratio of the benchmark
with that of each other strategy. The intersection–union test takes serial dependence into account and
does not presume that asset returns are multivariate normally distributed. An empirical study based
on the G–7 countries demonstrates that it is hard to find significant results due to the lack of data,
which confirms a general observation in empirical finance.
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1. Motivation

This work builds upon Frahm et al. (2012), in which the authors argue why joint and multiple
testing procedures should be applied in order to judge whether or not some investment strategy is
optimal among a set of several alternatives. Frahm et al. (2012) can be understood as a complement to
DeMiguel et al. (2009), who doubt that portfolio optimization on the basis of time-series information
is worthwhile at all. Indeed, modern portfolio theory suffers from a serious drawback, namely that
portfolio weights are very sensitive to estimation risk. It is well known that portfolio optimization fails
on estimating expected asset returns.

DeMiguel et al. (2009) show that well-established investment strategies are not significantly better
than the naive strategy, i.e., the equally weighted portfolio. Of course, this does not mean that naive
diversification is optimal, but we usually do not have enough observations in order to prove the
opposite. They highlight a general problem of empirical finance, namely that hypothesis testing is
difficult due to the lack of data. This is all the more true if there is more than one (single) null hypothesis.
The results reported by DeMiguel et al. (2009) are convincing, but their statistical methodology does
not take the undesirable effects of joint and multiple testing into account. The same holds true for
similar studies (see, e.g., Fletcher 2011; Low et al. 2016). By contrast, the test presented in this work is
designed to address those problems.

The literature provides a wide range of different investment strategies (see, e.g., Burgess 2000;
Conrad and Kaul 1998; DeMiguel et al. 2009; Menkhoff et al. 2012; Sawik 2012; Shen et al. 2007;
Szakmary et al. 2010; Vrugt et al. 2004; Zagrodny 2003) and we are typically concerned with the
question of whether a given investment strategy is optimal among a set of alternatives.1 In order to
validate our hypothesis, we usually compare the performance of our benchmark, e.g., its certainty

1 A different question is whether some asset universe allows the investor to achieve a higher performance compared to another
asset universe (Hanke and Penev 2018).
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equivalent or Sharpe ratio, with the performance of each other strategy that is taken into consideration.
Let d > 1 be the number of investment strategies and i ∈

{
1, 2, . . . , d

}
be our benchmark. We may

suppose that i = 1 without loss of generality. Furthermore, let η = (η1, η2, . . . , ηd) ∈ Rd be a (column)
vector of performance measures. Now, first of all, consider the hypotheses

H0∧ : η1 ≥ η vs. H1∧ : η1 6≥ η.

That is, H0∧ states that our benchmark is optimal. After performing a (joint) hypothesis test,
we could reject the null hypothesis H0∧ in favor of the alternative hypothesis H1∧. In this case, we could
say that there exists some strategy that is better than our benchmark, but not which one.2 By contrast,
if we are not able to reject H0∧, we must not conclude that our benchmark is optimal. A well-known
method for testing the intersection of a number of single null hypotheses is studied by Roy (1953),
which is called a union–intersection test (Sen and Silvapulle 2002). However, union-intersection tests
are not the object of this work.

By contrast, I consider here the following hypotheses:

H0∨ : η1 6≥ η vs. H1∨ : η1 ≥ η.

Now, the joint null hypothesis H0∨ asserts that our benchmark is not optimal. If we are able to reject
H0∨, our benchmark turns out to be (significantly) optimal among all alternatives. By contrast, in the
case in which we cannot reject the null hypothesis, we must not conclude that our benchmark is
outperformed by any other strategy. Applying a test for H0∨ might be the primary goal both in
theoretical and in practical applications of portfolio theory.

The former test can be rewritten, equivalently, as

H0∧ :
d∧

i=2

η1 ≥ ηi vs. H1∧ :
d∨

i=2

η1 < ηi,

whereas the latter test reads

H0∨ :
d∨

i=2

η1 < ηi vs. H1∨ :
d∧

i=2

η1 ≥ ηi.

This explains the chosen symbols for the null and the alternative hypothesis. However, in the following,
I focus on the latter test and write only “H0” and “H1” for notational convenience.

The test proposed in this work is very simple: The null hypothesis is rejected if and only if we
can reject each single hypothesis H0i : η1 < ηi in favor of H1i : η1 ≥ ηi. Let Ai be the event that H0i is
rejected. The probability that all single null hypotheses are rejected amounts to

P
(

d⋂
i=2

Ai

)
≤

d∧
i=2

P(Ai).

If H0i is true for some i ∈
{

2, 3, . . . , d
}

, we must have that P(Ai) ≤ αi, where αi ∈ (0, 1) denotes the
significance level of the (single) hypothesis test for H0i. Under H0, at least one single null hypothesis
must be true and thus we have that

d∧
i=2

P(Ai) ≤
d∨

i=2

αi .

2 In order to identify the outperforming strategies, we would have to apply a multiple test. For more details on that topic,
see Frahm et al. (2012) as well as Romano and Wolf (2005).
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Hence, the proposed test for H0 has level α ∈ (0, 1) if α2, α3, . . . , αd ≤ α. The least conservative
choice is α2 = α3 = . . . = αd = α, in which case H0 is rejected if and only if the largest p-value of all
single tests falls below α. Throughout this work, I assume that each single test has level α.

At first glance, this testing procedure might seem to suffer from a lack of power because it
does not take the dependence structure of the single test statistics into account. Nonetheless, it is
a likelihood-ratio test that is commonly referred to as an intersection–union test (Berger 1997).
Thus, it inherits the general asymptotic optimality properties of likelihood-ratio tests that are known
from likelihood theory (see, e.g., van der Vaart 1998, chp. 15 and 16). Another striking feature might
be the fact that the overall test has the same significance level as each single test. This is because H0 is
rejected only if all single tests lead to a rejection and so we need no Bonferroni correction in order to
preserve the significance level of each single test. For more details on that topic, see Berger (1997) as
well as Sen and Silvapulle (2002).

In this work, I present an intersection–union test in order to decide whether a given investment
strategy is optimal among a set of alternative strategies. This is done with respect to the Sharpe
ratio. Joint and multiple tests for the Sharpe ratio are applied also in Frahm et al. (2012) by using a
stationary block–bootstrap procedure. By contrast, I provide here analytical results. I refrain from
assuming that asset returns are serially independent and multivariate normally distributed. Each single
test represents a (nonparametric) generalization of the Jobson–Korkie test (Jobson and Korkie 1981;
Memmel 2003). Finally, I apply the intersection–union test to historical data.

The same problem is addressed by Ledoit and Wolf (2008) as well as Schmid and Schmidt (2009) in
a bivariate setting. However, the intersection–union test presented here is motivated by a multivariate
point of view, i.e., d > 2, and its primary goal is to avoid any kind of selection bias that can occur
when testing a joint hypothesis. Thus, it cannot be said that the intersection–union test is “better”
or “worse” than the tests proposed by Ledoit and Wolf (2008). It is hardly possible to provide any
general answer to this question at all (Ledoit and Wolf 2008, sct. 4 and 5). Instead, I try to fill a gap
between Frahm et al. (2012) as well as Ledoit and Wolf (2008):

(i) I derive closed-form expressions for the standard errors of the test statistics, instead of providing
numerical results that have been obtained by bootstrapping, and

(ii) I do this for the case d ≥ 2 but not (only) for d = 2.

2. The Intersection–Union Test

2.1. Gordin’s Condition

In the following, “Xn → X” denotes almost sure convergence, whereas “Xn  X” stands for
convergence in distribution. Let Pt > 0 be the price of some asset or, more generally, the value
of some strategy at time t ∈ Z. Throughout this work, the terms “asset” and “strategy” as
well as “price” and “value” are used synonymously. The asset return after Period t is defined as
Rt := Pt/Pt−1 − 1.3 I assume that the return process {Rt} is (strongly) stationary with expected return
µ := E(Rt) and variance σ2 := Var(Rt) < ∞. The process

{
Rt
}

shall also be ergodic. This means that
1
n ∑n

t=1 f (Rt)→ E
(

f (R)
)

for each integrable function f of R, where the random variable R has the
same distribution as each component of {Rt}. This guarantees that every finite moment of R can be
consistently estimated by the corresponding moment estimator. The return process is ergodic if it is
mixing (Bradley 2005). More precisely, for all k, l = 1, 2, . . . , the random vector (Rt, Rt+1, . . . , Rt+k) is
asymptotically independent of (Rt−n, Rt−n+1, . . . , Rt−n+l) as n→ ∞ (Hayashi 2000, p. 101).

The ergodicity of
{

Rt
}

implies that µn → µ, where µn := 1
n ∑n

t=1 Rt is the sample mean of
R1, R2, . . . , Rn. Put another way, the return process satisfies the Strong Law of Large Numbers. In order
to preserve the Central Limit Theorem (CLT), i.e.,

√
n (µn − µ)  N

(
0, σ2

L
)
, we need an additional

3 Any capital income that occurs during Period t is considered part of Pt.
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requirement. This is known as Gordin’s condition (Hayashi 2000, p. 402). LetHt := (Rt, Rt−1, . . .) be
the history of {Rt} at time t ∈ Z. It is assumed that E(Rt | Ht−n) converges in mean square to µ as
n→ ∞ and, according to Hayashi (2000, p. 403), we must have that

∞

∑
k=0

√
E(ε2

k) < ∞

with εk := E(Rt | Ht−k) − E(Rt | Ht−k−1) for k = 0, 1, . . . . It can be shown that σ2
L = ∑∞

k=−∞ Γ(k),
where Γ is the autocovariance function of {Rt} (Hayashi 2000, Proposition 6.10). The number σ2

L is
referred to as the large-sample variance of {Rt}, whereas σ2 represents its stationary variance. In the
following, I assume that τ2 := Var

(
(Rt − µ)2) < ∞ and that Gordin’s condition is satisfied not only

for {Rt} but also for {(Rt − µ)2}.
The aforementioned requirements can easily be extended to any d-dimensional return process

(Hayashi 2000, p. 405) and applied to a broad class of standard time-series models. There exists a
number of alternative criteria for the CLT, which can be found, e.g., in Brockwell and Davis (1991, p. 213)
as well as Hamilton (1994, p. 195). However, to the best of my knowledge, Gordin’s condition represents
the most unrestrictive set of assumptions about the serial dependence structure of a stochastic process
(Eagleson 1975). In particular, it can be considered a natural generalization of the CLT for martingale
difference sequences (Hayashi 2000, p. 106).

It is worth emphasizing that the number of dimensions, d, is supposed to be fixed. At least,
we have to assume that n/d → ∞. If n/d tends to a finite number, the CLT might become
invalid and other interesting issues, which are well-known from random matrix theory, can arise
(Frahm and Jaekel 2015). By contrast, if the number of observations relative to the number of strategies
is sufficiently large, we may expect that the CLT is satisfied under the aforementioned conditions.

I suppose, without loss of generality, that the risk-free interest rate is constantly zero. That is,
I implicitly refer to asset returns in excess of the risk-free interest rate that can be observed at the
beginning of each period. The Sharpe ratio η := µ/σ (Sharpe 1966) is frequently used as a performance
measure both in theory and in practice. In the following section, I present the intersection–union test,
which can be applied in order to judge whether a given investment strategy possesses the largest
Sharpe ratio among a set of alternatives. This can be done under the quite general assumptions about
the return process {Rt}mentioned above.

2.2. Asymptotic Properties of Sharpe Ratios

In this section, I present some asymptotic properties of Sharpe ratios. The reader can find the
derivations in Appendix A. It holds that

σ2
n :=

1
n

n

∑
t=1

(Rt − µn)
2 =

1
n

n

∑
t=1

(Rt − µ)2 − (µn − µ)︸ ︷︷ ︸
→ 0

2 → σ2

and
√

n
(
σ2

n − σ2) = √n

{
1
n

n

∑
t=1

[
(Rt − µ)2 − σ2

]}
−
√

n (µn − µ)︸ ︷︷ ︸
 N (0,σ2

L)

(µn − µ)︸ ︷︷ ︸
→ 0

 N
(
0, τ2

L
)
.

This means that σ2
n is a consistent estimator for the stationary variance σ2 and

√
n
(
σ2

n − σ2) is
asymptotically normally distributed with large-sample variance τ2

L .
For assessing the large-sample variance of

{
Rt
}

, i.e., σ2
L = ∑∞

k=−∞ Γ(k), we need to estimate
the autocovariance function Γ. There are many ways to achieve this goal. Usually, one applies
either heteroscedasticity-autocorrelation consistent (HAC) inference or some bootstrap procedure
(Andrews 1991; Ledoit and Wolf 2008; Politis 2003). A nice comparison between HAC inference and
bootstrapping in the context of performance measurement can be found in Ledoit and Wolf (2008).
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Bootstrapping is a very powerful tool, but it can be computationally more intensive than HAC
inference. Moreover, sometimes it is not clear whether or not the necessary (mathematical) conditions
for the bootstrap are satisfied. The method proposed here, in some sense, bypasses the aforementioned
problems. However, also HAC estimation can be somewhat obscure when it comes to choosing the
right kernel and bandwidth, etc. For this reason, I keep things as simple as possible, i.e., I choose the
box-kernel-type HAC-estimator

σ2
Ln := Γn(0) + 2

l

∑
k=1

Γn(k),

where Γn is the empirical autocovariance function of {Rt} with l � n (Hayashi 2000, p. 142), i.e.,

k 7→ Γn(k) :=
1
n

n

∑
t=k+1

(
Rt − µn

)(
Rt−k − µn

)
.

It is a stylized fact of empirical finance that Γn(k) ≈ Γ(k) ≈ 0 for all k 6= 0, i.e., asset returns are
not significantly autocorrelated, and so we may expect that σ2

Ln ≈ σ2
n .

The large-sample variance of
{
(Rt − µ)2} is τ2

L , which can be estimated by

τ2
Ln := Πn(0) + 2

l

∑
k=1

Πn(k),

where Πn is the empirical autocovariance function of
{
(Rt − µn)2}, i.e.,

k 7→ Πn(k) :=
1
n

n

∑
t=k+1

(
(Rt − µn)

2 − σ2
n

)(
(Rt−k − µn)

2 − σ2
n

)
.

Typically, asset returns are conditionally heteroscedastic. This means that, in contrast to σ2
L vs. σ2,

the large-sample variance τ2
L can be significantly larger than the stationary variance τ2.

Gordin’s condition guarantees that

√
n

([
µn − µ

σ2
n − σ2

])
 N

(
0,

[
σ2

L κL

κL τ2
L

])
,

where κL represents the large-sample covariance between R and (R − µ)2. Due to the so-called
“leverage effect” (Black 1976), we can expect that κL is negative. Moreover, we already know that√

n (µn − µ) N
(
0, σ2

L
)

and, by applying the delta method (van der Vaart 1998, Chp. 3), we obtain

√
n (σn − σ) N

(
0,

τ2
L

4σ2

)
,

which can be used in order to calculate the standard error of σn.
The Sharpe ratio is estimated by ηn := µn/σn and the delta method leads to

√
n
(
ηn − η

)
 N

(
0,

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4

)
.

Schmid and Schmidt (2009) obtain the same large-sample variance of {ηn} under the assumption that
the processes are strongly mixing (Bradley 2005), but that assumption seems to be more restrictive
than Gordin’s condition.

To the best of my knowledge, Lo (2002) is the first who analyzes the potential impact of
serial dependence when estimating the Sharpe ratio. Mertens (2002) points out that the formula
for independent and identically distributed asset returns presented by Lo (2002) is based, implicitly,
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on the normal-distribution hypothesis. More precisely, he shows that the large-sample variance of
{ηn} is

1 +
η2

2
− γ3η +

γ4 − 3
4
· η2

if the components of {Rt} are independent and identically distributed, where

γ3 :=
E
(
(Rt − µ)3)

σ3 and γ4 :=
E
(
(Rt − µ)4)

σ4

denote the skewness and the kurtosis of Rt, respectively. Lo (2002) presumes that γ3 = 0 and γ4 = 3,
in which case the large-sample variance of {ηn} is 1 + η2/2. Some of those results can be found also in
Opdyke (2007). However, Ledoit and Wolf (2008) mention that the formula for serially dependent asset
returns presented by Opdyke (2007) is wrong because it does not distinguish between large-sample and
stationary (co-)variances. One purpose of this work is to clarify the aforementioned misunderstandings.

Suppose, without loss of generality, that we want to compare the Sharpe ratio of Strategy 1 with
that of Strategy 2. In Appendix A, the reader can verify that

√
n

([
η1n − η1

η2n − η2

])
 N

(
0,

[
ω11 ω12

ω21 ω22

])

with

ω11 =
σ2

L1
σ2

1
− η1κL1

σ3
1

+
η2

1τ2
L1

4σ4
1

, ω22 =
σ2

L2
σ2

2
− η2κL2

σ3
2

+
η2

2τ2
L2

4σ4
2

,

and
ω12 = ω21 =

λ11

σ1σ2
− η2σ1λ12 + η1σ2λ21

2σ2
1 σ2

2
+

η1η2λ22

4σ2
1 σ2

2
,

where [
λ11 λ12

λ21 λ22

]
is the large-sample covariance matrix of

(
R1t, (R1t − µ1)

2) and
(

R2t, (R2t − µ2)
2).

We conclude that √
n
(
∆ηn − ∆η

)
 N

(
0, ω11 + ω22 − 2ω12

)
with ∆ηn := η1n − η2n and ∆η := η1 − η2. It is worth emphasizing that the benchmark must be chosen
before examining the Sharpe ratios. Otherwise, the entire procedure would suffer from a selection bias
and then the results derived so far are no longer valid. However, this is not a serious drawback: If our
choice of the benchmark is based on historical data, we can simply apply the test out of sample.

As already mentioned at the end of Section 1, the given result represents a nonparametric
generalization of the Jobson–Korkie test (Jobson and Korkie 1981), which is frequently used in finance.
The latter is based on the assumption that asset returns are serially independent and multivariate
normally distributed. In this special case, it follows that

√
n
(
∆ηn − ∆η

)
 N

(
0, 2 (1− ρ12) +

η2
1 + η2

2 − 2η1η2ρ2
12

2

)
,

where ρ12 := σ12/(σ1σ2) is the linear correlation coefficient between the return on Strategy 1 and the
return on Strategy 2. This expression for the large-sample variance of {∆ηn} corrects a typographical
error made by Jobson and Korkie (1981), which is observed by Memmel (2003).
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2.3. Empirical Study

In order to demonstrate the intersection–union test, I consider monthly excess returns on the
MSCI stock indices for the G–7 countries, i.e., Canada, France, Germany, Italy, Japan, UK and USA,
from January 1970 to January 2018. The given indices are calculated on the basis of USD stock prices
that are adjusted for dividends, splits, etc.4 The sample size corresponds to n = 577 and the risk-free
interest rate is calculated on the basis of the secondary market 3-month US treasury bill rate at the
beginning of each period.5 I choose the equally weighted portfolio (EWP) of all G–7 countries as a
benchmark. This choice can be justified by the argument that investors should make use of international
diversification (Jorion 1985).

For estimating the large-sample variances, I choose the lag length l = 12. First of all, I show
that Γn(k) ≈ 0 for all k ∈

{
1, 2, . . . , l

}
. For this purpose, I focus on the empirical autocorrelation

function, i.e., k 7→ ρn(k) := Γn(k)/Γn(0). Figure A1 (see Appendix B) contains the correlograms with
respect to {Rt} for the EWP and each G–7 country. The red lines indicate the critical thresholds for
the null hypothesis that the (true) autocorrelation at k is zero on the level α = 0.05. Furthermore, the
reader can find the Ljung–Box Q-statistic in each plot, whose critical threshold on the level α = 0.05
amounts to 21.0261. The given results confirm the general opinion that first-order autocorrelations
of asset returns do not significantly differ from zero.6 Put another way, the large-sample variances
and covariances of asset returns are not significantly larger than their stationary counterparts. This
picture changes substantially in Figure A2, which shows the empirical autocorrelations with respect
to
{
(Rt − µn)2}. Now, the Ljung-Box test always leads to a rejection of the null hypothesis H0 :

ρ(1) = ρ(2) = . . . = ρ(12) = 0. That is, there is a strong evidence that monthly asset returns exhibit
conditional heteroscedasticity.

Table 1 contains the estimated large-sample variances divided by their stationary counterparts
both for {Rt} and for

{
(Rt − µn)2}. We can see that the estimates of the large-sample variance of {Rt}

do not differ very much from the stationary ones—except for Japan, where the large-sample variance
seems to be more than twice the stationary variance. By contrast, the estimates of the large-sample
variance of

{
(Rt − µn)2} are always more than twice their stationary counterparts. Hence, it is

inappropriate to ignore the serial dependence structure of monthly asset returns.

Table 1. Variance ratios.

EWP Canada France Germany Italy Japan UK USA

σ2
Ln/σ2

n 1.4987 1.0299 1.2036 1.1255 1.6913 2.1828 1.2720 1.0118

τ2
Ln/τ2

n 2.5962 2.7550 2.3081 2.9514 2.3707 2.8368 2.5027 2.6202

Table 2 contains the means, standard deviations, and Sharpe ratios for the EWP and the G–7
countries based on the monthly asset returns from January 1970 to January 2018. The standard
errors are given in parentheses. Despite the large number of observations, the standard errors of
µn and ηn are big compared to the corresponding estimates. This is a common problem in financial
econometrics or, more specifically, in performance measurement. The last row of Table 2 contains the
standard errors of the Sharpe ratios under the Jobson–Korkie assumption, i.e., that asset returns are
serially independent and multivariate normally distributed. These numbers are smaller than their
nonparametric counterparts and they do not vary too much. Under the Jobson–Korkie assumption,
the large-sample variance of {ηn} is 1 + η2/2 ≈ 1. Hence, the standard error of ηn is approximately
1/
√

n , which explains why the standard errors are almost constant in the last row of Table 2.

4 The total returns have been retrieved from the MSCI webpage (MSCI 2018).
5 The data have been obtained from the Federal Reserve Bank of St. Louis (FRED 2018).
6 The only exception is Japan, where we can find a relatively large Q-statistic of 31.7637.
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Table 2. Means, standard deviations, and Sharpe ratios for the EWP and the G–7 countries. The standard
errors are given in parentheses.

EWP Canada France Germany Italy Japan UK USA

µn 0.0053 0.0052 0.0062 0.0060 0.0033 0.0054 0.0052 0.0057
SE(µn) 0.0023 0.0024 0.0029 0.0028 0.0040 0.0037 0.0020 0.0026

σn 0.0461 0.0560 0.0640 0.0627 0.0732 0.0599 0.0436 0.0620
SE(σn) 0.0030 0.0040 0.0037 0.0041 0.0038 0.0035 0.0028 0.0077

ηn 0.1149 0.0923 0.0971 0.0961 0.0449 0.0898 0.1202 0.0927
SE(ηn) 0.0581 0.0462 0.0492 0.0479 0.0537 0.0624 0.0548 0.0508
SEJK(ηn) 0.0419 0.0417 0.0417 0.0417 0.0417 0.0417 0.0418 0.0417

Now, in principle, we would like to support the (alternative) hypothesis that the EWP is optimal
compared to each G–7 country. Unfortunately, Table 2 shows that UK has the largest Sharpe ratio
and so the EWP cannot be significantly better. Interestingly, this was not always the case. A closer
inspection of the data reveals that the EWP had the largest Sharpe ratio before the financial crisis
2007–2008. However, now we have to stop our testing procedure. Nonetheless, for informational
purposes, I provide the Sharpe-ratio differences for each seven pairs, the corresponding standard
errors, and the associated t-statistics in Table 3. The reader can verify that it would have been hard to
reject H0, anyway. The problem is that every t-statistic must be greater than Φ−1(1− α) = 1.6449 in
order to reject H0, but this stringent condition is fulfilled only for Italy.

The lower part of Table 3 contains the standard errors of the Sharpe ratio differences and the
t-statistics that are calculated under the Jobson–Korkie assumption. Although the standard errors
of ηn that are obtained under the same distributional assumption are always lower than their
nonparametric counterparts (see the last row of Table 2), the same effect cannot be observed regarding ∆ηn.
The Jobson–Korkie assumption underestimates the standard errors for some indices, but it overestimates
them for other indices. All in all it appears to be very difficult to compare investment strategies by
historical observation because the given results are hardly ever significant if we apply a joint or a multiple
hypothesis test (Frahm et al. 2012).

Table 3. Sharpe ratio differences, standard errors, and t-statistics.

Canada France Germany Italy Japan UK USA

∆ηn 0.0226 0.0178 0.0187 0.0700 0.0251 −0.0053 0.0222

SE(∆ηn) 0.0213 0.0317 0.0419 0.0269 0.0374 0.0381 0.0376
t 1.0635 0.5598 0.4472 2.6054 0.6718 −0.1397 0.5891

SEJK(∆µn) 0.0291 0.0227 0.0257 0.0299 0.0354 0.0290 0.0274
tJK 0.7758 0.7821 0.7298 2.3420 0.7083 −0.1833 0.8089

3. Conclusions

In portfolio optimization, we are often concerned with the question of whether a given investment
strategy is optimal among a set of alternatives. In this work, I presented an intersection–union test for
the null hypothesis that the benchmark is suboptimal in terms of the Sharpe ratio. The proposed test
can easily be implemented. Furthermore, it accounts for serial dependence and it does not presume
that asset returns are multivariate normally distributed. Thus, it is compatible with the stylized facts
of empirical finance. However, an empirical study demonstrates that, in most practical applications,
it is hard to reject the null hypothesis due to the lack of data.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A. Asymptotic Results

We can write σ = f (σ2) with f : σ2 7→
√

σ2. The first derivative of f at σ2 is (2σ)−1. Hence,
the asymptotic variance of

√
n (σn − σ) is τ2

L (2σ)−2 = τ2
L/(4σ2).

Furthermore, the Sharpe ratio can be written as η = g(µ, σ2) with g : (µ, σ2) 7→ µ/
√

σ2. We obtain

∂g(µ, σ2)

∂µ
=

1
σ

and
∂g(µ, σ2)

∂σ2 = − µ

2σ3 .

Hence, the asymptotic variance of
√

n
(
ηn − η

)
reads

σ2
L

σ2 − 2 · µκL

2σ4 +
µ2τ2

L
4σ6 =

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4 .

Furthermore, if the components of {Rt} are independent and identically distributed, we have
that σ2

L = σ2,

κL = Cov
(

Rt, (Rt − µ)2) = E
(

Rt(Rt − µ)2)− µσ2

= E
(
(Rt − µ)3)+ µσ2 − µσ2 = E

(
(Rt − µ)3),

and τ2
L = Var

(
(Rt−µ)2) = E

(
(Rt−µ)4)− σ4, i.e., κL/σ3 = γ3 and τ2

L/σ4 = γ4− 1. Thus, we conclude that

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4 = 1+

η2

2
− γ3η +

γ4− 3
4
· η2 .

Now, consider the asymptotic covariance matrix of

√
n

([
η1n− η1

η2n− η2

])
.

The above result immediately leads to

ω11 =
σ2

L1
σ2

1
− η1κL1

σ3
1

+
η2

1τ2
L1

4σ4
1

and ω22 =
σ2

L2
σ2

2
− η2κL2

σ3
2

+
η2

2τ2
L2

4σ4
2

.

Moreover, the asymptotic covariance between
√

n
(
η1n− η1

)
and
√

n
(
η2n− η2

)
is

ω12 = ω21 =

[
∂g(µ1, σ2

1)/∂µ1

∂g(µ1, σ2
1)/∂σ2

1

]′[
λ11 λ12

λ21 λ22

][
∂g(µ2, σ2

2)/∂µ2

∂g(µ2, σ2
2)/∂σ2

2

]

=
λ11

σ1σ2
− µ2λ12

2σ1σ3
2
− µ1λ21

2σ3
1 σ2

+
µ1µ2λ22

4σ3
1 σ3

2
=

λ11

σ1σ2
− η2σ1λ12 + η1σ2λ21

2σ2
1 σ2

2
+

η1η2λ22

4σ2
1 σ2

2
.

If the asset returns are serially independent, the large-sample (co-)variances coincide with their
stationary counterparts. More precisely, it holds that σ2

L1 = σ2
1 , σ2

L2 = σ2
2 , and λ11 = σ12. Moreover,

by using some standard results for the multivariate normal distribution (Muirhead 1982, p. 43),
we obtain κL1 = κL2 = 0, τ2

L1 = 2σ4
1 , τ2

L2 = 2σ4
2 , λ12 = λ21 = 0, and λ22 = 2σ2

12. Thus, we have that

ω11 =
σ2

1
σ2

1
+

η2
12σ4

1
4σ4

1
= 1+

η2
1

2
and ω22 =

σ2
2

σ2
2
+

η2
22σ4

2
4σ4

2
= 1+

η2
2

2

as well as

ω12 =
σ12

σ1σ2
+

η1η22σ2
12

4σ2
1 σ2

2
= ρ12 +

η1η2ρ2
12

2
.
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This leads to the large-sample variance of ∆ηn, i.e.,

ω11 +ω22− 2ω12 = 2 (1− ρ12) +
η2

1 + η2
2 − 2η1η2ρ2

12
2

.

Appendix B. Correlograms

Figure A1. Correlograms with respect to {Rt} of the EWP and each G–7 country.
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Figure A2. Correlograms with respect to
{
(Rt − µn)2} of the EWP and each G–7 country.
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