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Abstract: As is well-known, the benefit of restricting Lévy processes without positive jumps is
the “W, Z scale functions paradigm”, by which the knowledge of the scale functions W, Z extends
immediately to other risk control problems. The same is true largely for strong Markov processes Xt,
with the notable distinctions that (a) it is more convenient to use as “basis” differential exit functions
ν, δ, and that (b) it is not yet known how to compute ν, δ or W, Z beyond the Lévy, diffusion, and a
few other cases. The unifying framework outlined in this paper suggests, however, via an example
that the spectrally negative Markov and Lévy cases are very similar (except for the level of work
involved in computing the basic functions ν, δ). We illustrate the potential of the unified framework
by introducing a new objective (33) for the optimization of dividends, inspired by the de Finetti
problem of maximizing expected discounted cumulative dividends until ruin, where we replace ruin
with an optimally chosen Azema-Yor/generalized draw-down/regret/trailing stopping time. This is
defined as a hitting time of the “draw-down” process Yt = sup0≤s≤t Xs − Xt obtained by reflecting
Xt at its maximum. This new variational problem has been solved in a parallel paper.

Keywords: first passage; drawdown process; spectrally negative process; scale functions; dividends;
de Finetti valuation objective; variational problem

1. A Brief Review of First Passage Theory for Strong Markov Processes without Positive Jumps
and Their Draw-Downs

Motivation. First passage times intervene in the control of reserves/risk processes. The rough idea
is that when below low levels a, the reserves should be replenished at some cost, and when above high
levels b, the reserves should be invested to yield dividends—see for example Albrecher and Asmussen
(2010). There is a wide variety of first passage control problems (involving absorption, reflection
and other boundary mechanisms), and it has been known for a long while that these problems are
simpler in the “completely asymmetric” case when all jumps go in the same direction. In recent years
it has become clearer that most first passage problems can be reduced to the two basic problems of
going up before down, or vice versa, and that their answers may usually be ergonomically expressed
in terms of two basic “scale functions” W, Z (Albrecher et al. (2016); Avram et al. (2004, 2007, 2015,
2017a, 2017b, 2018a, 2018b); Avram and Zhou (2017); Bertoin (1997); Ivanovs and Palmowski (2012);
Kyprianou (2014); Landriault et al. (2017b); Li et al. (2017); Li and Zhou (2018); Suprun (1976)). The
proofs require typically not much more than the strong Markov property; it is natural, therefore, to
develop extensions to strong Markov processes. This has been achieved already in particular spectrally
negative cases such as random walks Avram and Vidmar (2017), Markov additive processes Ivanovs
and Palmowski (2012), Lévy processes with Ω state-dependent killing Ivanovs and Palmowski (2012),
certain Lévy processes with state-dependent drift Czarna et al. (2017), and is in fact possible in general.
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However, characterizing the functions W, Z is still an open problem, even for simple classic processes
such as the Ornstein-Uhlenbeck and the Feller branching diffusion with jumps.

Let Xt denote a one-dimensional strong Markov process without positive jumps, defined on a
filtered probability space (Ω, {Ft}t≥0,P). Denote its first passage times above and below by

Tb,+ = Tb,+(X) = inf{t ≥ 0 : Xt > b}, Ta,− = Ta,−(X) = inf{t ≥ 0 : Xt < a},

with inf ∅ = +∞.
Recall that first passage theory for diffusions and spectrally negative or spectrally positive Lévy

processes is considerably simpler than that for processes which may jump both ways. For these two
families, a large variety of first passage problems may be reduced to the computation of two monotone
“scale functions” W, Z (by simple arguments such as the strong Markov property). See Albrecher et al.
(2016); Avram et al. (2004, 2007, 2015, 2017a, 2018a); Avram and Zhou (2017); Bertoin (1997); Ivanovs
and Palmowski (2012); Li and Zhou (2018); Suprun (1976) for the introduction and applications of W, Z
in the Lévy case. For diffusions, the most convenient basic functions are the monotone solutions ϕ+, ϕ−
of the Sturm-Liouville equation—see Borovkov (2012). Finally, for spectrally negative or spectrally
positive Lévy processes and diffusions, off-shelf computer programs could easily produce the answer
to a large variety of problems, once approximations for the basic functions associated with the process
have been produced. This continues to be true in principle for non-homogeneous Markov processes
with one-sided jumps (by a simple application of the strong Markov property at the smooth crossing
exit from an interval). However, there are very few papers proposing methods to compute W, Z for
non-Lévy processes (see though Czarna et al. (2017), and Jacobsen and Jensen (2007), where the case of
Ornstein-Uhlenbeck processes with phase-type jumps is studied).

The two sided exit functions. The most important first passage functions are the solutions of the
two-sided upward and downward exit problems from a bounded interval [a, b]:Ψb

q,θ(x, a) := Ex

[
e−qTb,+−θ(XTb,+

−b)1{Tb,+<Ta,−}
]

Ψb
q,θ(x, a) := Ex

[
e−qTa,−+θ(XTa,−−a)1{Ta,−<Tb,+}

] q, θ ≥ 0, a ≤ x ≤ b. (1)

We will also call them killed survival and ruin first passage probabilities, respectively. Note that
these are functions of five variables, very hard to compute in general. For processes with one-sided
jumps, one of the exits must be smooth (without overshoot); in this case, the parameter θ is unnecessary
and will be omitted. Also, when a = 0, it will be omitted, to simplify the notation.

For diffusions and Lévy processes with one-sided jumps, the two sided exit functions have
well-known explicit formulas.

For spectrally negative Lévy processes, the simplest is the smooth survival probability,
whose factors are:

Ψb
q(x, a) =

Wq(x−a)
Wq(b−a) = e−

∫ b
x νq(s−a)ds. (2)

Wq(x) is called the scale function Bertoin (1998); Suprun (1976)1. We will assume throughout that Wq

is differentiable (see Chan et al. (2011) for information on the smoothness of scale functions). Then,

νq(s) =
W ′q(s)
Wq(s)

is the logarithmic derivative of Wq, and may be interpreted as the “survival function of
excursions lengths” Bertoin (1998). The non-smooth ruin probability has a more complicated explicit
formula involving a second scale function Zq Avram et al. (2004)—see Remark 1 below.

1 The fact that the survival probability has the multiplicative structure (2) is equivalent to the absence of positive jumps, by
the strong Markov property.
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The draw-down/regret/loss/process. Motivated by applications in statistics, mathematical
finance and risk theory, there has been increased interest recently in the study of the running maximum
and of the draw-down/regret/loss/process reflected at the maximum, defined by

Yt = Xt − Xt, Xt := sup
0≤t′≤t

Xs.

Of equal interest is the infimum, and the draw-up/gain/process reflected at the infimum,
defined by

Yt = Xt − Xt, Xt = inf
0≤t′≤t

Xs.

See Landriault et al. (2015, 2017a); Mijatovic and Pistorius (2012) for references to the numerous
applications of draw-downs and draw-ups.

Draw-down and draw-up times are first passage times for the reflected processes:

τd := inf{t ≥ 0 : Xt − Xt > d},
τd := inf{t ≥ 0 : Xt − Xt > d}, d > 0.

(3)

Such times turn out to be optimal in several stopping problems, in statistics Page (1954) in
mathematical finance/risk theory—see for example Avram et al. (2004); Carr (2014); Lehoczky (1977);
Shepp and Shiryaev (1993); Taylor (1975)—and in queueing. More specifically, they figure in risk
theory problems involving capital injections or dividends at a fixed boundary, and idle times until a
buffer reaches capacity in queueing theory.

Remark 1. The second scale function Z Avram et al. (2004); Ivanovs and Palmowski (2012); Pistorius (2004)
useful for solving the spectrally negative non-smooth ruin probability (and many other problems) is best defined
via the solution of the non-smooth total discounted “regulation” problem.

Let X[0
t = Xt + Lt denote the process Xt modified by Skorohod reflection at 0, with regulator Lt = −Xt,

let E[0
x denote expectation for this process and let

T[0
b = Tb,+ 1{Tb,+<T0,−} + τb 1{T0,−<Tb,+} (4)

denote the first passage to b of X[0
t .

(a) The Laplace transform of the total regulation (“capital injections/bailouts”) into the process reflected
non-smoothly at 0, until the first smooth up-crossing of a level b, may be factored as (Ivanovs and Palmowski
2012, Thm. 2):

IE[0
x

[
e
−qT[0

b −θL
T[0b

]
=


Zq,θ(x)
Zq,θ(b)

, θ < ∞

IEx

[
e−qT[0

b ; Tb,+ < T0,−

]
=

Wq(x)
Wq(b)

, θ = ∞
, (5)

with Zq,θ(x) determined up to a multiplying constant.
(b) Decomposing (5) at min(T+

b , T0,−) yields a formula (1) for the ruin probability Ivanovs and Palmowski
(2012). Indeed:

IE[0
x

[
e
−qT[0

b −θL
T[0b

]
=

Zq,θ(x)
Zq,θ(b)

=
Wq(x)
Wq(b)

+ IEx

[
e−qT0,−+θXT0,− ; T0,− < Tb,+

] Zq,θ(0)
Zq,θ(b)

=⇒ (6)

Ψb
q,θ(x)Zq,θ(0) = IEx

[
e−qT0,−+θXT0,− ; T0,− < Tb,+

]
Zq,θ(0) = Zq,θ(x)−Wq(x)Wq(b)−1Zq,θ(b). (7)

To simplify this formula, it is customary to choose Zq,θ(0) = 1.
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For non-homogeneous spectrally negative Markov processes, it is possible Avram et al. (2017a) to
extend the equalities (2), (7) to analogue expressions involving scale functions of two variables

Ψb
q(x, a) =

Wq(x, a)
Wq(b, a)

, Ψb
q,θ(x, a) = Zq,θ(x, a)−Wq(x, a)Wq(b, a)−1Zq,θ(b, a). (8)

However, it is simpler to start, following Landriault et al. (2017b), with differential versions,
whose existence will be assumed throughout this paper.

Assumption 1. For all q, θ ≥ 0 and y ≤ x fixed, assume that Ψb
q(x, y) and Ψb

q,θ(x, y) are differentiable in b at
b = x, and in particular that the following limits exist:

νq(x, y) := lim
ε↓0

1−Ψx+ε
q (x, y)
ε

(9)

and

δq,θ(x, y) := lim
ε↓0

Ψx+ε
q,θ (x, y)

ε
(10)

Remark 2. A necessary condition for Assumption 1 to hold is that X is upward regular and creeping upward at
every x in the state space—see (Landriault et al. 2017b, Rem. 3.1). Within this class, it seems difficult to provide
examples where Assumption 1 is not satisfied.

It turns out that the differentiability of the two-sided ruin and survival probabilities as functions
of the upper limit provides a method for computing other first passage quantities; for example, (12)
and (23) below may be computed by solving the first order ODE’s in Theorem 2. Informally, we may
say that the pillar of first passage theory for spectrally negative Markov processes is proving the
existence of ν, δ.

In the Lévy case note that by (2) νq(x, y) =
W ′q(x−y)
Wq(x−y) = νq(x− y), and δq,θ(x, y) = δq,θ(x− y) where

Avram et al. (2017a)

δq,θ(x) := Zq,θ(x)−Wq(x)
Z′q,θ(x)

W ′q(x)
. (11)

Remark 3. For diffusions, Wq(x, a) is a certain Wronskian–see for example Borovkov (2012). Also, for Langevin
type processes with decreasing state-dependent drifts, Wq(x, a) solves a certain renewal equation Czarna et al.
(2017). The case of Ornstein-Uhlenbeck/Segerdahl-Tichy processes with exponential jumps is currently under
study in Avram and Garmendia (2019). Some information about the generalization to Ornstein-Uhlenbeck
processes with phase-type jumps can be found in Jacobsen and Jensen (2007). Beyond that, computing Wq(x, a)
or νq(x, a) is an open problem. This is an important problem, and we conjecture that the method of Jacobsen and
Jensen (2007) may be extended, at least to affine diffusions with phase-type jumps, and possibly to all diffusions
with phase-type jumps.

The drawdown exit functions. Recently, control results with drawdown times τd replacing classic
first passage times started being investigated—see for example Landriault et al. (2017a); Mijatovic and
Pistorius (2012). Two natural objects of interest for studying τd are the two sided exit times

Tb+,d = min(τd, Tb,+), Ta−,d = min(τd, Ta,−).

In terms of the two-dimensional process t 7→ (Xt, Yt), these are the first exit times from the regions
(−∞, b]× [0, d] and [a, ∞)× [0, d].
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Fundamental in the study of say Tb+,d are the following two Laplace transforms UbD/DbU
(up-crossing before draw-down/draw-down before up-crossing), which are analogues of the killed
survival and ruin probabilities :

UbDb
q,θ,d(x) = IEx

[
e−qTb,+−θ(XTb,+

−b); Tb,+ < τd

]
= IEx

[
e−qTb,+−θ(XTb,+

−b); Xτd > b
]

DbUb
q,θ,d(x) = IEx

[
e−qτd−θ(Yτd−d); τd < Tb,+

]
= IEx

[
e−qτd−θ(Yτd−d); Xτd < b

]
.

(12)

For spectrally negative Lévy processes, these have again simple formulas:

1.

UbDb
q,d(x) := IEx

[
e−qTb,+ ; Tb,+ ≤ τd

]
= e
−(b−x)

W′q(d)
Wq(d) , (13)

2. The function DbU may be obtained by integrating the fundamental law (Mijatovic and Pistorius
2012, Thm 1), (Landriault et al. 2017a, Thm 3.1)2

δq,θ(d, x, s) := IEx

[
e−qτd−θ(Yτd−d); Xτd ∈ ds

]
=
(

νq(d) e−νq(d)(s−x)+ ds
)

δq,θ(d)

⇔ IEx

[
e−qτd−θ(Yτd−d)−ϑ(Xτd−x)

]
=

νq(d)
ϑ + νq(d)

δq,θ(d) (14)

where δq,θ(d) is given by (11). Integrating yields

DbUb
q,θ,d(x) =

(
1− e

−(b−x)
W′q(d)
Wq(d)

)
δq,θ(d). (15)

Remark 4. The probabilistic interpretation of νq, the logarithmic derivative of Wq. Taking a = 0 for simplicity,
the last formula in (2) has the interesting interpretation as the probability that no arrival has occurred between
times x and b, for a non-homogeneous Poisson process of rate νq(s), s ∈ [x, b]. Alternatively, differentiating (2)
yields

d
ds

Ψb
q(s)− νq(s)Ψ

b
q(s) = 0, Ψb

q(b) = 1. (16)

This equation coincides the Kolmogorov equation for the probability that a deterministic process Ỹs = s,
killed at rate νq(s), reaches b before killing, when starting at s. It turns out, by excursion theory, that such a
process Ỹs may be constructed by excising the negative excursions from Xt, and by taking the running maximum
s as time parameter.

The logarithmic derivative νq(s) will be needed below in the de Finetti problem (17), where we will use the
fact that the expected dividends vq(b) paid at a fixed barrier b, starting from b, equal the expected discounted
time until killing, which is exponential with parameter νq(b), being therefore simply the reciprocal of the killing
parameter νq(b):

vq(b) := IEb

[∫ Tb]
0,−

0
e−qtd(Xt − b)

]
= νq(b)−1. (17)

2 Please note that (Mijatovic and Pistorius 2012, Thm. 1) give a more complicated “sextuple law” with two cases, and that
(Landriault et al. 2017a, Thm 3.1) use an alternative to the function Zq(x, θ), so that some computing is required to get (11)
and (14).
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We see in the equation above and others that νq may serve as a convenient alternative characteristic of a
spectrally negative Markov process, replacing Wq. Just as Wq, it may be extended to the case of generalized
drawdown killing introduced in Avram et al. (2017b); Li et al. (2017).

Contents. We start in Section 2 by presenting a pedagogic first passage example illustrating the
W, Z paradigm: the first time

TR = Ta,b,d = Ta,− ∧ Tb,+ ∧ τd. (18)

when (X, Y) with X Lévy leaves a rectangular region R = [a, b]× [0, d].

Remark 5. Please note that letting a→ −∞, b→ ∞ reduces Ta,b,d to τd, and letting d→ ∞, b→ ∞ reduces
Ta,b,d to Ta,−. Hence both classic first passage and drawdown times appear as special cases of Ta,b,d. For finite
a, b, d, our region has two classic and one drawdown exit boundary.3

In Section 3 we provide geometric considerations which reduce computations of the Laplace
transforms of the “three-sided” exit times of (X, Y) to that of Laplace transforms of two-sided exit
problems involving Ta,−, Tb,+ and τd (like (1) and (12))—see Figure 1.

Only the strong Markov property is used; however, for the sake of simple notations we restricted
the exposition to the family of Lévy processes (which have also the convenient feature that the scale
functions W, Z may be computed by inverting Laplace transforms Avram et al. (2004, 2015); Bertoin
(1998); Ivanovs and Palmowski (2012); Kyprianou (2014)).

In Section 4 we enlarge the framework to that of generalized drawdown times Avram et al. (2017b);
Li et al. (2017). This immediately entails that ν, δ become functions of two variables defined in (9) and
(10), and the extension to the spectrally negative Markov case becomes natural. We turn therefore to
exits from certain trapezoidal-type regions in Section 5, under the spectrally negative Markov model.

In Section 6 we consider processes reflected at an upper barrier and formulate a Finetti’s optimal
dividends type objective with combined ruin and generalized drawdown stopping; this involves
adding one reflecting vertex to our trapezoidal region. Included here is a new variational problem for
de Finetti’s dividends with generalized drawdown stopping (33); since the solution is not immediate
even in the Lévy case, this has been provided in the parallel paper Avram and Goreac (2018).

2. Geometric Considerations Concerning the Joint Evolution of a Lévy Process and Its
Draw-Down in a Rectangle

To study the process (Xt, Yt), it is useful to start with its evolution in a rectangular region
R := [a, b]× [0, d] ⊂ R×R+, where a < b and d > 0. Define

TR = Ta,b,d := inf{t : (Xt, Yt) /∈ R} = τd ∧ Ta,− ∧ Tb,+.

A sample path of (X, Y), where X is chosen to be a spectrally negative Lévy process, and the
region R is depicted in Figure 1.

3 Choosing a, b, d optimally in various control problems involving optimal dividends and capital injections should be of
interest, and will be pursued in further work.
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Figure 1. A sample path of (X, Y) with X a spectrally negative Lévy process. The region R has d = 10,
a = −6 and b = 7; the dark boundary shows the possible exit points of (X, Y) from R. The base of the
red line separates R in two parts with different behavior.

As is clear from the figure and from its definition, the process (X, Y) has very particular dynamics
on R: away from the boundary ∂1 := {(x1, x2) ∈ R× R+ : x2 = 0} it oscillates during negative
excursions from the maximum on line segments lXt

where, for c ∈ R, lc := {(x1, x2) ∈ R× R+ :
x1 + x2 = c}.

As Xt increases, the line segment lXt
on which (X, Y) oscillates advances to the

right—continuously, in the spectrally negative case, and in general possibly with jumps.
On ∂1, we observe the Markovian upward ladder process, i.e., the maximum X with downward

excursions excised, with extra spatial killing upon exiting R. If only time killing was present,
with d = ∞, this would be a killed drift subordinator, with Laplace exponent κ(s) = s + Φq (as
a consequence of the Wiener-Hopf decomposition Kyprianou (2014)). In the rectangle, in the spectrally
negative case, the ladder process becomes a killed drift with generator Gϕ(s) := ϕ′(s)− νq(d)ϕ(s)
Albrecher et al. (2014); Avram et al. (2017b). Finally, with generalized drawdown (when the upper
boundary is replaced by one determined by certain parametrizations (d̂(s), d(s))—see below), the
generator will have state-dependent killing:

Gϕ(s) := ϕ′(s)− νq(d(s))ϕ(s). (19)

Several functionals (ruin, dividends, tax, etc.) of the original process may be expressed as
functionals of the killed ladder process. This explains the prevalence of first order ODE’s—see
(25) for one example—when working with spectrally negative processes. Several implications for
TR are immediately clear from these dynamics: for example, the process (X, Y) can leave R only
through ∂R ∩ {(x1, x2) ∈ R×R+ : x1 ≤ b− d} or through the point (b, 0) (see the shaded region in
Figure 1). Also,

1. If b ≤ a + d, it is impossible for the process to leave R through the upper boundary of ∂R and for
these parameter values TR reduces to Ta,− ∧ Tb,+. Here it suffices to know the functions (1) to
obtain the Laplace transform of TR.

2. If a + d ≤ x, it is impossible for the process to leave R through the left boundary of ∂R, and
TR reduces to Tb,+ ∧ τd. Here it suffices to apply the spectrally negative drawdown formulas
provided in Landriault et al. (2017a); Mijatovic and Pistorius (2012).

3. In the remaining case x ≤ a + d ≤ b, both drawdown and classic exits are possible. For the latter
case, see Figure 1. The key observation here is that drawdown [classic] exits occur iff Xt does
[does not] cross the line x1 = d + a. The final answers will combine these two cases.
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3. The Three Laplace Transforms of the Exit Time out of a Rectangle for Lévy Processes without
Positive Jumps

In this section we provide Laplace transforms of TR and of the eventual overshoot at TR. One can
break down the analysis of TR to nine cases, depending on which of the three exit boundaries Ta,−,
Tb,+ or τd occurred, and on the three relations between x, a, b and d described above.

The following results are immediate applications of the strong Markov property and of known
first passage and draw-down results.

Theorem 1. Consider a spectrally negative Lévy process X with differentiable scale function Wq. Then, for
fixed d ≥ 0 and a ≤ x ≤ b, letting UbD, DbU denote the functions defined in (13), (15), we have:

a + d ≤ x ≤ b x ≤ a + d ≤ b b ≤ a + d

IEx
[
e−qTb,+ ; Tb,+ ≤ min(τd, Ta,−)

]
= UbDb

q,d(x) Ψ(a+d)
q (x, a)UbDb

q,d(a + d) Ψb
q(x, a)

IEx

[
e−qTa,−+θ(XTa,−−a); Ta,− ≤ min(τd, Tb,+)

]
= 0 Ψ(a+d)

q,θ (x, a) Ψb
q,θ(x, a)

IEx

[
e−qτd−θ(Yτd−d); τd ≤ min(Tb,+, Ta,−)

]
= DbUb

q,θ,d(x) Ψ(a+d)
q (x, a)DbUb

q,θ,d(a + d) 0

(20)

Proof. Please note that in the third column the d boundary is invisible and does not appear in the
results, and in the first column the a boundary is invisible and does not appear in the results. These
two cases follow therefore by applying already known results.

The middle column holds by breaking the path at the first crossing of a + d. The main points here
are that

1. the middle case may happen only if Xt visits a before a + d;
2. the first case (exit through b) and the third case (drawdown exit) may happen only if Xt visits first

a + d, with the drawdown barrier being invisible, and that subsequently the lower first passage
barrier a becomes invisible.

The results follow then due to the smooth crossing upward and the strong Markov property.

Proof. Let us check the first and third row of the second column. Applying the strong Markov property
at Ta+d,+ yields

IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd, Ta,−)

]
= IEx

[
e−qTb,+ ; Ta+d,+ ≤ Ta,−

]
IEa+d

[
e−qTb,+ ; Tb,+ ≤ τd

]
=

Wq(x− a)
Wq(d)

e
−(b−a−d)

W′q(d)
Wq(d)

and

IEx

[
e−qτd−θ(Yτd−d); τd ≤ min(Tb,+, Ta,−)

]
= IEx

[
e−qτd−θ(Yτd−d); Ta+d,+ ≤ Ta,−

]
IEa+d

[
e−qτd−θ(Yτd−d); τd ≤ Tb,+

]
=

Wq(x− a)
Wq(d)

δq,θ(d)

(
1− e

−(b−a−d))
W′q (d)
Wq (d)

)
.

4. Generalized Draw-Down Stopping for Processes without Positive Jumps

Generalized drawdown times appear naturally in the Azema Yor solution of the
Skorokhod embedding problem Azéma and Yor (1979), and in the Dubbins-Shepp-Shiryaev, and
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Peskir-Hobson-Egami optimal stopping problems Dubins et al. (1994); Egami and Oryu (2015); Hobson
(2007); Peskir (1998). Importantly, they allow a unified treatment of classic first passage and drawdown
times (see also Avram et al. (2018b) for a further generalization to taxed processes)—see Avram et al.
(2017b); Li et al. (2017). The idea is to replace the upper side of the rectangle R by a parametrized curve

(x1, x2) = (d̂(s), d(s)), d̂(s) = s− d(s),

where s = x1 + x2 represents the value of Xt during the excursion which intersects the upper boundary
at (x1, x2) (see Figure 2). Alternatively, parametrizing by x yields

y = h(x), h(x) = d̂−1(x)− x.

Figure 2. Affine drawdown exit of (X, Y) d(s) = 1
3 s + 1.

Definition 1. Li et al. (2017) For any function d(s) > 0 such that d̂(s) = s − d(s) is nondecreasing, a
generalized drawdown time is defined by

τd̂(·) := inf{t ≥ 0 : Yt > d(Xt)} = inf
{

t ≥ 0 : Xt < d̂(Xt)
}

. (21)

Such times provide a natural unification of classic and drawdown times.
Introduce

Ỹt := Yt − d(Xt), t ≥ 0

to be called draw-down type process. Please note that we have Ỹ0 = −d̂(X0) < 0, and that the process Ỹt is
in general non-Markovian. However, it is Markovian during each negative excursion of Xt, along one of the
oblique lines in the geometric decomposition sketched in Figure 1.

Example 1. With affine functions

d(s) = (1− ξ)s + d ⇔ d̂(s) = ξs− d, ξ ∈ [0, 1], d > 0, (22)

we obtain the affine draw-down/regret times studied in Avram et al. (2017b).
Affine drawdown times reduce to a classic drawdown time (3) when ξ = 1, d(s) = d, and to a ruin time

when ξ = 0, d̂(s) = −d, d(s) = s + d. When ξ varies, we are dealing with the pencil of lines passing through
(x1, x2) = (−d, d). In particular, for ξ = 1 we obtain the rectangle case from section 3, and for ξ = 0 we have
an infinite strip with a vertical boundary at x1 = −d.

One of the merits of affine drawdown times is that they allow unifying the classic first passage theory with
the drawdown theory Avram et al. (2017b); in particular, the generalized drawdown functions (23) below unify
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the classic and drawdown survival and ruin probabilities (and have relatively simple formulas as well—see
Avram et al. (2017a)).

Introduce now generalized drawdown analogues of the drawdown survival and ruin probabilities
(12) for which we will use the same notation:

UbDb
q,d̂(·)(x) = IEx

[
e−qTb,+ ; Tb,+ ≤ τd̂(·)

]
DbUb

q,θ,d̂(·)(x)) = IEx

[
e
−qτd̂(·)−θỸτ

d̂(·) ; τd̂(·) < T+
b

]
.

(23)

Remark 6. In the spectrally negative case, these functions may be represented as integrals:

UbDb
q,d̂(·)(x) = e−

∫ b
x νq(s,d̂(s))ds,

DbUb
q,θ,d̂(·)(x) =

∫ b

x
e−
∫ y

x νq(s,d̂(s))dsνq(y, d̂(y))δq,θ(y, d̂(y))dy,
(24)

where νq(y, d̂(y)), δq,θ(y, d̂(y)) are defined in (9), (10).
This is already apparent in (Landriault et al. 2017b, Cor 3.1), and may be easily understood probabilistically

from Figure 2: the first equation is the probability of no occurrence in a non-homogeneous Poisson process,
and the second decomposes the transform of the deficit, by conditioning on the point y ∈ [x, b] where the
maximum occurred.

We provide now a heuristic proof valid for the Lévy case when νq(y, d̂(y)) = νq(y− d̂(y)) = νq(d(y))
and δq,θ(y, d̂(y)) = δq,θ(y− d̂(y)) = δq,θ(d(y)).

1. Due to creeping, UbD is a product of infinitesimal events

Ψy+ε
q (y, y− d(y)) =

Wq(d(y))
Wq(d(y) + ε)

∼ 1− ενq(d(y)) ∼ e−ενq(d(y)).

Taking product, with ε = dy, yields (24).
2. Informally, we condition on the density Xt ∈ dy. The integrand of DbU is obtained multiplying survival

infinitesimal events up to level y by an infinitesimal termination event in [y, y + dy]. The probability of
this event, conditioned on survival up to y, is given by the deficit formula

Ψy+ε
q,θ (y, y− d(y)) = Zq,θ(d(y))−Wq(d(y))

Zq,θ(d(y) + ε)

Wq(d(y) + ε)

∼ ε(−Z′q,θ(d(y)) + νq(d(y))Zq,θ(d(y)) = ενq(d(y))δq,θ(d(y))

For a rigorous (rather intricate) proof, see Avram et al. (2018b).

The end result for generalized drawdown times is (Avram et al. 2018b, Thm1):

Theorem 2. Consider a process X for which the functions Ψ, Ψ are differentiable in the upper variable b.
Assume d(x) > 0 and d̂(x) = x− d(x) nondecreasing. Then, ∀q, θ ≥ 0, b ∈ R, the functions UbD(x) =
UbDb

q(x, d̂(·)), DbU(x) = DbUb
q,θ(x, d̂(·)) satisfy (24). Alternatively, they satisfy the ODE’s

UbD′(y)− νq(y, d̂(y))UbD(y) = 0, UbD(b) = 1, (25)

DbU′(y)− νq(y, d̂(y))DbU(y) + δq,θ(y, d̂(y)) = 0, DbU(b) = 0. (26)
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Remark 7. The operator involved in the ODE’s above is the generator of the upward ladder process, under time
and spatial killing, and with the downward excursions excised. Once this known, variations involving different
boundary conditions are easily obtained as well.

5. The Three Laplace Transforms of the Exit Time out of a Curved Trapezoid, for Processes
without Positive Jumps

We will replace now the classic drawdown time in Section 3 by a generalized one. Similar
geometric considerations, with d(·), a + h(a) replacing d, a + d in Theorem 1, yield:

Theorem 3. Consider a spectrally negative Lévy process X with differentiable scale function Wq. Then, for
a ≤ x ≤ b and d(·) satisfying the conditions of Definition 1, we have:

a + h(a) ≤ x x ≤ a + h(a) ≤ b b ≤ a + h(a)

IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
= UbDb

q,d̂(·)
(x) Ψa+h(a)

q (x, a)UbDb
q,d̂(·)

(a + h(a)) Ψb
q(x, a)

IEx

[
e−qTa,−+θ(XTa,−−a); Ta,− ≤ min(τd̂(·), Tb,+)

]
= 0 Ψa+h(a)

q,θ (x, a) Ψb
q,θ(x, a)

IEx

[
e
−qτd̂(·)−θ(Yτ

d̂(·)
−d)

; τd̂(·) ≤ min(Tb,+, Ta,−)

]
= DbUb

q,θ,d̂(·)
(x) Ψa+h(a)

q (x, a)DbUb
q,θ,d̂(·)

(a + h(a)) 0

Proof. Note that if b ≤ a + h(a) (narrow band), it is again impossible for the process to leave R
through the upper boundary of ∂R, and TR reduces to Ta,− ∧ Tb,+, and nothing changes. Similarly, if
a + h(a) ≤ x (flat band), it is impossible for the process to leave R through the left boundary of ∂R,
and TR reduces to Tb,+ ∧ τd. Finally, the two zones in the intermediate case are separated by a + h(a)
(instead of a + d).

6. de Finetti’s Optimal Dividends for Spectrally Negative Markov Processes with Generalized
Draw-Down Stopping

In this section, we revisit the de Finetti’s optimal dividend problem for spectrally negative Markov
processes with the point b becoming a reflecting boundary, instead of absorbing, as it was in Section 3.

Define the Skorokhod reflected/constrained process at first passage times below or above by:

X[a
t = Xt + Lt, Xb]

t = Xt −Ut. (27)

Here

Lt = L[a
t = −(Xt − a)−, Ut = Ub]

t =
(
Xt − b

)
+ (28)

are the minimal “Skorohod regulators” constraining Xt to be bigger than a, and smaller than b,
respectively.

Let now

Vb](x) = Vb]
q,d̂(·)

(x) := IEx

[∫ τd̂(·)∧Ta,−

0
e−qtdUb]

t

]
(29)

denote the present value of all dividend payments at b, until the first passage time either below a, or
below the drawdown boundary for the process Xb]

t reflected at b, starting from x ≤ b (a generalization
of the famous de Finetti objective). By the strong Markov property, it holds that

Vb](x) = IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
v(b), v(b) = vq(b, d̂(b)) := IEb

[∫ τd̂(·)

0
e−qtdUb]

t

]
. (30)
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Remark 8. The function v(b), the expected discounted time until killing for the reflected process, when starting
from b, equals the time the process reflected at b spends at point (b, 0) in Figure 2, before a downward excursion
beyond d̂(b) kills the process. In the Lévy case, it is well-known Kyprianou (2014) that this time is exponential
with parameter νq(b, d̂(b)), and thus its expectation is the reciprocal of the killing parameter νq(b, d̂(b)), i.e.,

v(b) = νq(b, d̂(b))−1 (31)

Excursion theoretic arguments show that (31) continues to hold in the spectrally negative Markov case (for
a proof under a similar setup, see (Czarna et al. 2018, sct. 4)).

Furthermore, by (Avram et al. 2018b, Thm. 1) included above as (24), it holds that

IEx

[
e−qTb,+1{Tb,+<τd(·)}

]
= e−

∫ b
x νq(z,d̂(z))dz. (32)

When a = −∞, we arrive finally to an explicit formula

Vb](x) =
e−
∫ b

x νq(y,d̂(y))ds

νq(b, d̂(b))
(33)

expressing the expected dividends in terms of νq(y, d̂(y)). Please note that in the Lévy case
Equation (33) simplifies to:

Vb](x) =
Wq(d(x))
Wq(d(b))

νq(d(b))−1

(using x− l(x) = d(x)), which checks with (Wang and Zhou 2018, Lem. 3.1–3.2).
The problem of choosing a drawdown boundary to optimize dividends in (33) is solved in Avram

and Goreac (2018) via Pontryaghin’s maximum principle.

7. Example: Affine Draw-Down Stopping for Brownian Motion

Consider optimizing expected dividends Vb](x) given in Equation (29) with respect to the optimal
dividend barrier b for Brownian motion with drift X(t) = σBt + µt and with affine drawdown stopping
d(x) = (1− ξ)x + d, where ξ ∈ [0, 1], d ≥ 0, a ≤ x ≤ b.

Please note that if a + h(a) > b, where h(x) = d(x)/ξ, then the drawdown constraint is invisible,
and the problem reduces to the classical de Finetti objective. Hence, we consider a + h(a) ≤ b.

The scale function of Brownian motion is

Wq(x) =
2e−µx/σ2

∆
sinh(x∆/σ2) =

1
∆
[e(−µ+∆)x/σ2 − e−(µ+∆)x/σ2

],

where ∆ =
√

µ2 + 2qσ2. Assume that x ≥ a + h(a) = a + d(a)
ξ = a + d

ξ , then as a special case of
spectrally negative Levy process, the expected dividends for Brownian motion equals

Vb](x) = IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
v(b) =

(
Wq(d(x))
Wq(d(b))

) 1
1−ξ Wq(d(b))

W ′q(d(b))
, (34)

see (Avram et al. 2017b, Thm. 1.1), with tax parameter γ = 0, and (Avram et al. 2017b, Rem. 7), with
tax parameter γ = 1. The barrier influence function which must be optimized in b becomes

BI(b, d, ξ) =
Wq((1− ξ)x + d)1− 1

1−ξ

W ′q((1− ξ)x + d)
=

σ2

2

exµ/σ2
csch

(
x
√

µ2 + 2qσ2/σ2
)

coth
(
(d + x− xξ)

√
µ2 + 2qσ2/σ2

)
− µ/

√
µ2 + 2qσ2

. (35)
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The critical point b∗ satisfies

W ′′q Wq

(W ′q)2 ((1− ξ)b∗ + d) = − ξ

1− ξ
, (36)

that is b∗ satisfies

−
qσ2 + µ2 + µ

√
2qσ2 + µ2 sinh

(
2b∗
√

2qσ2 + µ2

σ2

)
−
(
qσ2 + µ2) cosh

(
2b∗
√

2qσ2 + µ2

σ2

)
(√

2qσ2 + µ2 cosh
(

b∗
√

2qσ2 + µ2

σ2

)
− µ sinh

(
b∗
√

2qσ2 + µ2

σ2

))2 = − ξ

1− ξ
.

In Figure 3 given below, we have an illustration of plot of barrier influence function and its
derivative for Brownian motion with drift µ = 1/2 and σ = 1.

1 2 3 4 5 6

0.5

1.0

BI(b)

BI'(b)

Figure 3. Optimizing dividends with affine drawdown stopping where µ = 1/2, q = 1/10, σ = 1,
ξ = 1/3, b = 20, d = 1. The critical point b∗ = 2.12445.

Remark 9. Please note that once ξ is fixed, we get nontrivial results for the optimal barrier. However, if we
maximize over ξ as well, the optimum is achieved by the classical de Finetti solution ξ = 0 =⇒W ′′q (b∗+ d) = 0,
corresponding to forced stopping below −d (d is just a shift of the origin, with respect to the classical solution
W ′′q (b∗) = 0) Avram and Goreac (2018). In the diffusion case, it is not yet known whether examples in which
the generalized de Finetti problem improves on the classic de Finetti solution are possible.

Remark 10. Let us note now that Equation (36) holds in fact for any spectrally negative Lévy process. Similar
computations may be therefore performed for any spectrally negative Levy process, by plugging exact or
approximate formulas for the scale function into the function

W ′′q Wq

(W ′q)2 (37)

which is required to solve (36).
The easiest case is the Cramér-Lundberg process with phase-type claims, since in this case the scale function

is a sum of exponentials. For example, for a Cramér-Lundberg process with premium rate c > 0, Poisson arrivals
of intensity λ and exponential claims with mean 1/µ, the scale function is Wq(x) = c−1( µ + ∆+

∆+ − ∆− e∆+x −
µ + ∆−

∆+ − ∆− e∆−x), x ≥ 0, where ∆± =
q + λ − µc ±

√
(q + λ − µc)2 + 4cqµ

2c , and similar computations may be
performed (see also (Wang and Zhou 2018, Example 5.2)).
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