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Abstract: Managing unemployment is one of the key issues in social policies. Unemployment
insurance schemes are designed to cushion the financial and morale blow of loss of job but also to
encourage the unemployed to seek new jobs more proactively due to the continuous reduction of
benefit payments. In the present paper, a simple model of unemployment insurance is proposed with
a focus on optimality of the individual’s entry to the scheme. The corresponding optimal stopping
problem is solved, and its similarity and differences with the perpetual American call option are
discussed. Beyond a purely financial point of view, we argue that in the actuarial context the optimal
decisions should take into account other possible preferences through a suitable utility function.
Some examples in this direction are worked out.
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1. Introduction

Assessing the risk in financial industries often aims at finding optimal choices in decision-making.
In the insurance sector, optimality considerations are crucial primarily for the insurers, who have
to address monetary issues (such as how to price the insurance policy so as not to run it at a loss
but also to keep the product competitive) and time issues (e.g., when to release the product to the
market). Less studied but also important are optimal decisions on behalf of the insured individuals,
related to monetary issues (e.g., how profitable is taking up an insurance policy and the right portion
of wealth to invest), consumption decisions (e.g., whether to maximize or optimize own consumption),
or time-related decisions (such as when it is best to enter or exit an insurance scheme).

In this paper we focus on the particular type of products related to unemployment insurance (UI),
whereby an employed individual is covered against the risk of involuntary unemployment (e.g., due to
redundancy). Various UI systems are designed to help cushion the financial (as well as morale) blow of
loss of job and to encourage unemployed workers to find a new job as early as possible in view of the
continued reduction of benefits. The protection is normally provided in the form of regular financial
benefits (usually tax free) payable after the insured individual becomes unemployed and until a new
job is found, but often only up to a certain maximum duration and with payments gradually decreasing
over time. Many countries have UI schemes in place (Holmlund 1998; Kerr 1996), which are often run
and funded by the governments, with contributions from employers and workers, but also by private
insurance companies (GoCompare 2018). For example, the governmental UI systems administered
in France and Belgium in the 1990s provided benefits decreasing with time according to a certain
schedule; the amount of the benefit was determined by the age of the worker, their final wage/salary,
the number of qualifying years in employment, family circumstances, etc.
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In this work we introduce and analyze a simple UI model focusing on the optimal time for the
individual to join the scheme. Before setting out the model formally, let us describe the situation in
general terms. Consider an individual currently at work but who is concerned about possible loss
of job, which may be a genuine potential threat due to the fluidity of the job market and the level of
demand in this employment sector. To mitigate this risk, the employer or the social services have an
unemployment insurance scheme in place, available to this person (perhaps after a certain qualifying
period at work), which upon payment of a one-off entry premium would guarantee to the insured
a certain benefit payment proportional to their final wage and determined by a specified declining
benefit schedule, until a new job is found (see Figure 1).
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Figure 1. A time chart of the unemployment insurance scheme. The horizontal axis shows (continuous)
time; the vertical axis indicates the pay rate (i.e., income receivable per unit time). The origin t = 0
indicates the start of employment. Two pieces of a random path Xt depict the dynamics of the
individual’s wage whilst in employment. The individual joins the UI scheme at entry time τ (by paying
a premium P). When the current job ends (at time τ0 > τ), a benefit proportional to the final wage Xτ0

is payable according to a predefined schedule (e.g., see Example 1), until a new job is found after the
unemployment spell of duration τ1.

The decision the individual is facing is when (rather than if ) to join the scheme. What are the
considerations being taken into account when contemplating such a decision? On the one hand,
delaying the entry may be a good idea in view of the monetary inflation over time—since the entry
premium is fixed, its actual value is decreasing with time. Also, it may be reasonably expected that the
wage is likely to grow with time (e.g., due to inflation but also as a reward for improved skills and
experience), which may have a potential to increase the total future benefit (which depends on the final
wage). Last but not least, some savings may be needed before paying the entry premium becomes
financially affordable. On the other hand, delaying the decision to join the insurance scheme is risky,
as the individual remains unprotected against loss of job, with its financial as well as morale impact.

Thus, there is a scope for optimizing the decision about the entry time—probably not too early
but also not too late. Apparently, such a decision should be based on the information available to
date, which of course includes the inflation rate and also the unemployment and redeployment rates,
all of which should, in principle, be available through the published statistical data. Another crucial
input for the decision-making is the individual’s wage as a function of time. We prefer to have the
situation where this is modeled as a random process, the values of which may go up as well as
down. This is the reason why we do not consider salaries (which are in practice piecewise constant
and unlikely to decrease), and instead we are talking about wages, which are more responsive to
supply and demand and are also subject to “real-wage” adjustments (e.g., through the consumer price
index, CPI). Besides, loss of job is more likely in wage-based employments due to the fluidity of the
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job market. For simplicity, we model the wage dynamics using a diffusion process called geometric
Brownian motion.1

To summarize, the optimization problem for our model aims to maximize the expected net present
value of the UI scheme by choosing an optimal entry time τ∗. We will show that this problem can
be solved exactly by using the well-developed optimal stopping theory (Peskir and Shiryaev 2006;
Pham 2009; Shiryaev 1999). It turns out that the answer is provided by the hitting time of a suitable
threshold b∗, that is, the first time τb∗ when the wage process Xt will reach this level. Since the value of
b∗ is not known in advance, this leads to solving a free-boundary problem for the differential operator
(generator) associated with the diffusion process (Xt). In fact, we first conjecture the aforementioned
structure of the solution and find the value b∗, and then verify that this is indeed the true solution to
the optimal stopping problem.

In the insurance literature, there has been much interest towards using optimality considerations,
including optimal stopping problems. From the standpoint of insurer seeking to maximize their
expected returns, the optimal stopping time may be interpreted as the time to suspend the current
trading if the situation is unfavorable, and to recalculate premiums; see, e.g., Jensen (1997); Karpowicz
and Szajowski (2007); Muciek (2002); and further references therein. Insurance research has also focused
on optimality from the individual’s perspective. One important direction relevant to the UI context was
the investigation of the job seeking processes, especially when returning from the unemployed status
(Boshuizen and Gouweleeuw 1995; McCall 1970; Wang and Wirjanto 2016). This was complemented
by a more general research exploring ways to optimize and improve the efficacy of the UI systems
(also in terms of reducing government expenditure), using incentives such as a decreasing benefit
throughout the unemployment spell, in conjunction with sanctions and workfare; see Fredriksson
and Holmlund (2006); Hairault et al. (2007); Hopenhayn and Nicolini (1997); Kolsrud et al. (2018);
Landais et al. (2017), to cite but a few. A related strand of research is the study of optimal retirement
strategies in the presence of involuntary unemployment risks and borrowing constraints (Choi and
Shim 2006; De Angelis and Stabile 2019; Gerrard et al. 2012; Jang and Rhee 2013; Stabile 2006).

To the best of our knowledge, optimal stopping problems in the UI context (such as the optimal
entry to/exit from a UI policy) have not received sufficient research attention. This issue is important,
because knowing the optimal entry strategies is likely to enhance the motivation for individuals to
join the UI scheme, thus ensuring better societal benefits through the UI policies; see analysis and
discussion in Rebollo-Sanz and García-Pérez (2015). Knowledge of the optimal entry time for insured
individuals, which has impact on the amount and duration of benefits to be claimed, will also help the
insurers (both state and private) to optimize their financial practices; see a discussion in Landais and
Spinnewijn (2017). Thus, our present work attempts to fill in the gap by addressing the question of the
optimal timing to join the UI scheme.

It is interesting to point out that our optimal stopping problem and its solution have a lot in
common with (but are not identical to) the well-known American call option in financial mathematics,
where the option holder has the right to exercise it at any time (i.e., to buy a certain stock at an agreed
price), and the problem is to determine the best time to do that, aiming to maximize the expected
financial gain. However, unlike the American call option setting based on purely financial objectives,
the optimal stopping solution obtained in our UI model is not entirely satisfactory from the individual’s
point of view, because the (optimal) waiting time τb∗ may be infinite with positive probability (at least
for some values of the parameters), and even if it is finite with probability one, the expected waiting
time may be very long.

Motivated by this observation, we argue that certain elements of utility should be added to the
analysis, aiming to quantify the individual’s “impatience” as a measure of purpose and satisfaction.

1 For technical convenience, we choose to work with continuous-time models, but our ideas can also be adapted to discrete
time (which may be somewhat more natural, since the wage process is observed by the individual on a weekly time scale).
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We suggest a few simple ideas of how utility might be accommodated in the UI optimal stopping
framework. Despite the simplicity of such examples, in most cases they lead to much harder optimal
stopping problems. Not attempting to solve these problems in full generality, we confine ourselves to
exploring suboptimal solutions in the class of hitting times, which nonetheless provide useful insight
into possible effects of inclusion of utility into the optimal stopping context.

The general concept of utility in economics was strongly advocated in the classical book by
von Neumann and Morgenstern (1953), whose aim was in particular to overcome the idealistic
assumption of a strictly rational behavior of market agents.2 These ideas were quickly adopted
in insurance, dating back to Borch (1961), and soon becoming part of the insurance mainstream,
culminating in the Expected Utility Theory (see a recent book by Kaas et al. 2008) routinely used as a
standard tool to price insurance products. In particular, examples of use of utility in the UI analysis
are ubiquitous; see, e.g., Acemoglu and Shimer (2000); Baily (1978); Fredriksson and Holmlund
(2006); Hairault et al. (2007); Holmlund (1998); Hopenhayn and Nicolini (1997); Kolsrud et al. (2018);
Landais et al. (2017); Landais and Spinnewijn (2017). There have also been efforts to combine optimal
stopping and utility (Chen et al. 2019; Choi and Shim 2006; Henderson and Hobson 2008; Karpowicz
and Szajowski 2007; Muciek 2002; Wang and Wirjanto 2016). However, all such examples were limited
to using utility functions to recalculate wealth, while other important objectives and preferences such
as the desire to buy the policy or to reduce the waiting times have not been considered as yet, as far as
we can tell.

The rest of the paper is organized as follows. In Section 2, our insurance model is specified and
the optimization problem is set up. In Section 3, the optimal stopping problem is solved using a
reduction to a suitable free boundary problem, including the identification of the critical threshold b∗.
This is complemented in Section 4 by an elementary derivation using explicit information about the
distribution of the hitting times for the geometric Brownian motion. Section 5 addresses various
statistical issues and also provides a numerical example illustrating the optimality of the critical
threshold b∗. In Section 6, we carry out the analysis of parametric dependence in our model upon two
most significant exogenous parameters, the unemployment rate and the wage drift, and also give an
economic interpretation thereof. In Section 7, we make a useful comparison of our problem and its
solution with the classical American call option, which leads us to the discussion of the necessity of
utility-based considerations in the optimal stopping context. Finally, Section 8 contains the summary
discussion of our results, including suggestions for further work. Throughout the paper, we use the
standard notation a ∧ b := min{a, b}, a ∨ b := max{a, b}, and a+ := a ∨ 0.

2. Optimal Stopping Problem

2.1. The Model of Unemployment Insurance

Let us describe our model in more detail. Suppose that time t ≥ 0 is continuous and is measured
(in the units of weeks) starting from the beginning of the individual’s employment. We assume
without loss of generality that the unemployment insurance policy is available immediately (although
in practice, a qualifying period at work would normally be required for eligibility). Let Xt > 0
denote the individual’s wage (i.e., payment per week, paid in arrears) as a function of time t ≥ 0,
such that X0 = x. We treat X = (Xt, t ≥ 0) as a random process defined on a filtered probability
space (Ω,F , (Ft), P), where Ω is a suitable sample space (e.g., consisting of all possible paths of (Xt)),
the filtration (Ft) is an increasing sequence of σ-algebras Ft ⊂ F , and P is a probability measure
on the measurable space (Ω,F ), which determines the distribution of various random inputs in the
model, including (Xt). It is assumed that the process (Xt) is adapted to the filtration (Ft), that is, Xt is

2 Impact of individualistic (not always rational) perception in economics and financial markets is the subject of the modern
behavioral economics (see, e.g., a recent monograph by Dhami 2016).
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Ft-measurable for each t ≥ 0. Intuitively, Ft is interpreted as the full information available up to time
t, and measurability of Xt with respect to Ft means that this information includes knowledge of the
values of the process Xt.

Furthermore, remembering that Xt is positive valued, we use for it a simple model of geometric
Brownian motion driven by the stochastic differential equation

dXt

Xt
= µ dt + σ dBt, X0 = x, (1)

where Bt is a standard Brownian motion (i.e., with mean zero, E(Bt) = 0; variance, Var(Bt) = t; and
with continuous sample paths), and µ ∈ R and σ > 0 are the drift and volatility rates, respectively.
The Equation (1) is well known to have the explicit solution (Shiryaev 1999, chp. III, §3a, p. 237)

Xt = x exp
{
(µ− 1

2 σ2) t + σBt

}
(t ≥ 0). (2)

Note that
Ex(Xt) = x eµt, Varx(Xt) = x2e2µt(eσ2t − 1

)
, (3)

where Ex and Varx denote expectation and variance with respect to the distribution of Xt given the
initial value X0 = x.

Let us now specify the unemployment insurance scheme. An individual who is currently
employed may join the scheme by paying a fixed one-off premium P > 0 at the point of entry.
If and when the current employment ends (say, at time instant τ0), the benefit proportional to the
final wage Xτ0 is payable according to the benefit schedule h(s); that is, the payout at time t ≥ τ0 is
given by Xτ0 h(t− τ0). However, the payment stops when a new job is found after the unemployment
spell of duration τ1. For simplicity, we assume that both τ0 and τ1 have exponential distribution (with
parameters λ0 and λ1, respectively); as mentioned in the Introduction, this guarantees a Markovian
nature of the corresponding transitions. These random times are also assumed to be statistically
independent of the process (Xt).

Possible transitions in the state space of our insurance model are presented in Figure 2, where
symbols “0” and “1” encode the states of being employed and unemployed, respectively, whereas
suffixes “+” and “–” indicate whether insurance is in place or not, respectively. Note that all transitions,
except from 0– to 0+ (which is subject to optimal control based of observations over the wage process
(Xt)), occur in a Markovian fashion; that is, the holding times are exponentially distributed (with
parameters λ0 if in states 0– and 0+, or λ1 if in states 1– and 1+).
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0 (employed)
1 (unemployed)
+ (with insurance)
– (without insurance)

Figure 2. Schematic diagram of possible transitions in the unemployment insurance scheme. Here,
τ0 and τ1 are the (exponential) holding times in states 0 and 1, with parameters λ0 and λ1, respectively,
whereas τ is the entry time (i.e., from state 0– to state 0+), which is subject to optimal control based on
observations over the wage process (Xt).
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The individual’s decision about a suitable time to join the scheme is based on the information
available to date. In our model, this information encoded in the filtration (Ft) is provided by ongoing
observations over the wage process (Xt). Thus, admissible strategies for choosing τ must be adapted
to the filtration (Ft); namely, at any time instant, t ≥ 0, it should be possible to determine whether τ

has occurred or not yet, given all the information in Ft. In mathematical terms, this means that τ is a
stopping time, whereby for any t ≥ 0 the event {τ > t} belongs to the σ-algebra Ft (see, e.g., Yeh 1995,
chp.1, §3, p. 25).

Remark 1. In general, a stopping time τ is allowed to take values in [0, ∞] including ∞, in which case waiting
continues indefinitely and the decision to join the scheme is never taken. In practice, it is desirable that the
stopping time τ be finite almost surely (a.s.) (i.e., Px(τ < ∞) = 1), but this may not always be the case
(see Section 4.1).

2.2. Setting the Optimal Stopping Problem

As was explained informally in the introduction, there is a scope for optimizing the choice of
the entry time τ, where optimality is measured by maximizing the expected financial gain from the
scheme. Our next goal is to obtain an expression for the expected gain under the contract. First of
all, conditional on the final wage Xτ0 , the expected future benefit to be received under this insurance
contract is given by

Xτ0 E
(∫ τ1

0
e−rs h(s)ds

)
= β Xτ0 , (4)

where r is the inflation rate and

β :=
∫ ∞

0
λ1e−λ1tH(t)dt, H(t) :=

∫ t

0
e−rs h(s)ds. (5)

Note that the expectation in formula (4) is taken with respect to the (exponential) random waiting
time τ1 (with parameter λ1), and that the expression inside integration involves discounting to the
beginning of unemployment at time τ0.

Example 1. A specific example of the benefit schedule h(s) is as follows,

h(s) =

{
h0 , 0 ≤ s ≤ s0,

h0 e−δ(s−s0), s ≥ s0,
(6)

where 0 < h0 ≤ 1, 0 ≤ s0 ≤ ∞, and δ > 0. Thus, the insured receives a certain fraction of their final wage
(i.e., h0Xτ0 ) for a grace period s0, after which the benefit is falling down exponentially with rate δ. This example
is motivated by the declining unemployment compensation system in France (Kerr 1996).3 Having specified
the schedule function, all calculations can be done explicitly. In particular, the constant β in (4) is calculated
from (5) as

β =
h0
(
1− e−(r+λ1)s0

)
r + λ1

+
h0 e−(r+λ1)s0

r + λ1 + δ
.

3 More specifically, according to the French UI system back in the 1990s (Kerr 1996, p. 8), a worker aged 50 or more, with
eight months of insurable employment in the last twelve months, was entitled to full benefits equal to 57.4% of the
final wage payable for the first eight months, thereafter declining by 15% every four months; however, the payments
continued for no longer than 21 months overall. This leads to choosing the following numerical values in (6): h0 = 0.574,
s0 = 8 (52/12) .

= 34.7 (weeks) and δ = −(3/52) ln (1− 0.15) .
= 0.0094 = 0.94% (per week). The restriction of the

benefit term by 21 (52/12) = 91 weeks can be taken into account in our model by adjusting the parameter λ1 from the
condition E(τ1) = 91, giving λ1

.
= 0.0110. A more conservative choice is to use a tail probability condition, for example,

P(τ1 > 91) = 0.10, yielding λ1 = − ln (0.10) /91 .
= 0.0253 (with E(τ1)

.
= 39.5).
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In the extreme cases s0 = 0 or s0 = ∞, this expression simplifies to

β =


h0

λ1

(
1− r + δ

r + λ1 + δ

)
, s0 = 0,

h0

λ1

(
1− r

r + λ1

)
, s0 = ∞.

Here, the first factor has a clear meaning as the product of pay per week (h0) and the mean duration of the benefit
payment (E(τ1) = 1/λ1), whereas the second factor takes into account the discounting at rates r and δ.

Returning to the general case, if the contract is entered immediately (subject to the payment
of premium P), then the net expected benefit discounted to the entry time t = 0 is given by the
gain function

g(x) := Ex
(
e−rτ0 β Xτ0

)
− P, (7)

where x = X0 is the starting wage and the symbol Ex now indicates expectation with respect to both
τ0 and Xτ0 . Recall that the random time τ0 is independent of the process (Xt) and has the exponential
distribution with parameter λ0. Using the total expectation formula (Shiryaev 1996, §II.7, Definition 3,
p. 214, and Property G*, p. 216) and substituting the expression (3), the expectation in (7) is computed
as follows,

Ex
(
e−rτ0 Xτ0

)
= Ex

(
e−rτ0 Ex(Xτ0 |τ0)

)
= Ex

(
e−rτ0(x eµτ0)

)
= x

∫ ∞

0
e(µ−r)tλ0 e−λ0 t dt

=
λ0x

r + λ0 − µ
. (8)

Thus, substituting (8) into (7) and denoting

r̃ := r + λ0, β1 :=
βλ0

r̃− µ
, (9)

the gain function is represented explicitly as

g(x) = β1x− P. (10)

Of course, the computation in (8) is only meaningful as long as

µ < r + λ0 = r̃. (11)

Assumption 1. In what follows, we always assume that the condition (11) is satisfied.

Remark 2. In real-life applications, the wage growth rate µ is rather small (but may be either positive or
negative). It is unlikely to exceed the inflation rate r, but even if it does, then it is hardly possible economically
that it is greater than the combined inflation–unemployment rate r̃ = r + λ0. Thus, the condition (11) is
absolutely realistic.

To generalize the expression (10), consider a delayed entry time τ > 0 (tacitly assuming that
τ < ∞). Discounting first to the entry time τ when the deduction of the premium P is activated, and
then further down to the initial time moment t = 0, yields the expected net present value of the total
gain as a function of the initial wage x,

eNPV(x; τ) := Ex
[
e−rτ

(
e−r(τ0−τ)β Xτ0 − P

)
1{τ<τ0}

]
, (12)
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where the expectation on the right now also includes averaging with respect to τ, which is a functional
of the path (Xt). Note that the indicator function under the expectation specifies that the entry time τ

must occur prior to τ0, for otherwise there will be no gain.

Remark 3. The notation (12) emphasizes that the expected net present value depends on the specific entry
time τ. As was intuitively explained in the Introduction, there is a scope for optimizing the choice of τ, where
optimality is measured by maximizing eNPV(x; τ).

Formula (12) indicates that the decision time τ has a finite (random) expiry date τ0 (using the
terminology of financial options). However, the expectation in (12) involves averaging with respect to
τ0. Moreover, taking advantage of exponential distribution of τ0, the expression (12) can be rewritten
without any expiry date (i.e., as a perpetual option).

Lemma 1. The expected net present value defined by formula (12) can be expressed in the form

eNPV(x; τ) = Ex

[
e−r̃τg(Xτ)1{τ<∞}

]
, (13)

where the function g(·) is defined in (7) and r̃ = r + λ0 (see (9)).

Proof. Since the distribution of τ0 is exponential, the excess time τ̃0 := τ0 − τ conditioned on {τ < τ0}
is again exponentially distributed (with the same parameter λ0) and independent of τ. Hence,
conditioning on τ (restricted to the event {τ < ∞}) and using the total expectation formula as
before, together with the (strong) Markov property of the process (Xt), we get from (12)

eNPV(x; τ) = Ex

(
Ex
[
e−rτ(e−r(τ0−τ)β Xτ0 − P)1{τ0>τ}

∣∣τ])
= Ex

(
e−rτEx

[
(e−rτ̃0 β Xτ+τ̃0 − P) |τ

]
· Ex

(
1{τ0>τ}

∣∣τ))
= Ex

(
e−rτ EXτ (e

−rτ̃0 β X̃τ̃0 − P) · Px(τ0 > τ |τ)
)

, (14)

where X̃t := Xτ+t (t ≥ 0) is a shifted wage process starting at X̃0 = Xτ . Substituting Px(τ0 > τ|τ) =
e−λ0τ and recalling notation (7), formula (14) is reduced to (13).

Finally, without loss we can remove the indicator from the expression (13) by defining the value
of the random variable under expectation to be zero on the event {τ = ∞}. This definition is consistent
with the limit at infinity. Indeed, observe using (2) and (8) that

e−r̃tg(Xt) = e−r̃t
(

β1x e(µ−σ2/2)t+σBt − P
)

= β1x exp
{
−t (r̃− µ + 1

2 σ2 + σ t−1Bt)
}
− Pe−r̃t. (15)

Due to the condition (11), r̃− µ + 1
2 σ2 > 1

2 σ2 > 0. In addition, by the (strong) law of large numbers for
the Brownian motion (see, e.g., Durrett 1999, Exercise 6.4, p. 265, or Shiryaev 1999, chp. III, §3b, p.246),

lim
t→∞

t−1Bt = 0 (P-a.s.).

Thus, the limit of (15) as t→ ∞ is zero (Px-a.s.). Hence, the event {τ = ∞} does not contribute to the
expectation (13), so that, substituting (8), we get

eNPV(x; τ) = Ex
(
e−r̃τ g(Xτ)

)
. (16)
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To summarize, identification of the optimal entry time τ = τ∗, in the sense of maximizing the
expected net present value eNPV(x; τ) as a function of strategy τ (see (16)), is reduced to solving the
following optimal stopping problem,

v(x) = sup
τ

Ex
(
e−r̃τ g(Xτ)

)
, (17)

where the function g(x) is given by (10) and the supremum is taken over the class of all admissible
stopping times τ (i.e., adapted to the filtration (Ft)). The supremum v(x) in (17) is called the value
function of the optimal stopping problem.

2.3. Allowing for Mortality

The simple model of unemployment insurance set out in Section 2.1 can be easily extended to
include mortality. Following (Merton 1971, pp. 399–401), suppose that the individual who contemplates
taking out the unemployment insurance policy may die (say, at a random time τ2 from zero),
independently of employment-related events and subject to a constant force of mortality λ2. That is to
say, given that the individual is alive at current age t ≥ 0, the residual lifetime τ2 − t is an independent
random variable exponentially distributed with parameter λ2,

P (τ2 − t > s | τ2 > t) = e−λ2 s (s ≥ 0).

The necessary modifications to the unemployment insurance model of Section 2.2 start by
adjusting the formula for the expected future benefit (see (4)). Assuming that death does not occur
prior to the time τ0 of losing the job (i.e., τ2 > τ0, so that τ̃2 := τ2 − τ0 is exponentially distributed with
parameter λ2), the benefit payments cease at τ1∧ τ̃2 (i.e., when a new job is found or at death, whichever
occurs first). Since τ1 and τ̃2 are independent and both have exponential distributions, the random
variable τ1 ∧ τ̃2 has the exponential distribution with parameter λ1 + λ2. Hence, the constant β from
(5) is now written as

β =
∫ ∞

0
(λ1 + λ2) e−(λ1+λ2) t H(t)dt.

Next, we need to take into account the effect of death in service, that is, if τ2 ≤ τ0. To be specific, it is
reasonable to assume that the lump sum to be paid by the employer in this case is proportional to the
final wage, say a†Xτ2 . Then, separating the cases where death occurs after or prior to loss of job, it is
easy to see that the definition (7) of the gain function (i.e., net expected benefit discounted to the policy
entry time) takes the form

g(x) = Ex
(
e−rτ0 β Xτ01{τ0<τ2}

)
+ Ex

(
e−rτ0 a†Xτ21{τ2≤τ0}

)
− P. (18)

The first expectation in (18) is computed using conditioning on τ0 and the total expectation
formula (cf. (8)),

Ex
(
e−rτ0 Xτ01{τ0<τ2}

)
= Ex

[
e−rτ0 Ex

(
Xτ01{τ0<τ2}

∣∣ τ0
)]

= Ex
[
e−rτ0 Ex(Xτ0 | τ0) · Px(τ2 > τ0 | τ0)

]
= Ex

(
e−rτ0 x eµτ0 e−λ2τ0

)
= x

∫ ∞

0
e(µ−r−λ2)t λ0 e−λ0 t dt

=
λ0 x

r + λ0 + λ2 − µ
, (19)

where in the second line we used conditional independence of Xτ0 and τ2 given τ0. Similarly,
by conditioning on τ2 the second expectation in (18) is represented as
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Ex
(
e−rτ0 Xτ21{τ2≤τ0}

)
= Ex

[
Xτ2 Ex

(
e−rτ01{τ0≥τ2}

∣∣ τ2
)]

= Ex

[
Xτ2

∫ ∞

τ2

e−rt λ0 e−λ0 t dt
]

=
λ0

r + λ0
Ex
(
Xτ2 e−(r+λ0)τ2

)
. (20)

Again conditioning on τ2, the last expectation is computed as follows,

Ex
(
Xτ2 e−(r+λ0)τ2

)
= Ex

[
e−(r+λ0)τ2 Ex(Xτ2 |τ2)

]
= Ex

(
e−(r+λ0)τ2 x eµτ2

)
= x

∫ ∞

0
e−(r+λ0−µ)tλ2 e−λ2 t dt

=
λ2x

r + λ0 + λ2 − µ
. (21)

Finally, substituting the expressions (19)–(21) into the definition (18), we obtain explicitly

g(x) =
λ0 x

r + λ0 + λ2 − µ

(
β +

λ2 a†

r + λ0

)
− P.

This expression has the same form as (10) but with the parameters r̃ and β1 redefined as follows
(cf. (9)),

r̃ := r + λ0 + λ2, β1 :=
λ0

r̃− µ

(
β +

λ2 a†

r + λ0

)
.

In addition, the inequality (11) of Assumption 1 is updated accordingly. Subject to this reparameterization,
all subsequent calculations leading to the optimal stopping problem (17) remain unchanged.

For the sake of clarity and in order not to distract the reader by unnecessary technicalities, in the
rest of the paper we adhere to the original version of the model (i.e., with no mortality, λ2 = 0);
however, see the discussion at the end of Section 6.4 indicating an important regularizing role of
mortality, helping to avoid undesirable inconsistencies of the model at small unemployment rates λ0.

2.4. A Priori Properties of the Value Function

The next lemma shows that the optimal stopping problem (17) is well posed.

Lemma 2. The value function x 7→ v(x) of the optimal stopping problem (17) has the following properties:

(i) v(0) = 0 and, moreover, v(x) ≥ 0 for all x ≥ 0;
(ii) v(x) < ∞ for all x ≥ 0.

Proof. (i) If x = 0 then, due to (2), Xt ≡ 0 (P0-a.s.) and the stopping problem (17) is reduced to

v(0) = sup
τ

E0(−Pe−r̃τ),

which has the obvious solution τ = ∞ (P0-a.s.), with the corresponding supremum value v(0) = 0.
Furthermore, by considering τ = ∞ (Px-a.s.) it readily follows from (17) that v(x) ≥ 0 for all x ≥ 0.

(ii) Recalling that µ < r̃ (see Assumption 1), observe that the process e−r̃tXt is a supermartingale;
indeed, for 0 ≤ s ≤ t we have, using (2) and (3),

Ex(e−r̃tXt |Fs) = e−r̃tXs E
(
eσ(Bt−Bs)+(µ− 1

2 σ2)(t−s))
= e−r̃tXs eµ(t−s) ≤ e−r̃sXs (Px-a.s.).
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In particular,
Ex(e−r̃tXt) ≤ Ex(X0) = x.

Hence, by Doob’s optional sampling theorem for non-negative, right-continuous supermartingales
(Yeh 1995, Theorem 8.18, pp.140–41), we have

Ex(e−r̃τXτ) ≤ Ex(X0) = x,

and it follows that the supremum in (17) is finite.

2.5. The Optimal Stopping Rule

For the wage process (Xt), consider the hitting time τb of a threshold b ∈ R, defined by

τb := inf{t ≥ 0 : Xt ≥ b} ∈ [0, ∞].

(As usual, we make a convention that inf∅ = ∞.) Clearly, τb is a stopping time, that is, {τ ≤ t} ∈ Ft

for all t ≥ 0. Since the process Xt has a.s.-continuous sample paths, on the event {τb < ∞} we have
Xτb = b (Px-a.s.).

As we will show, the optimal strategy for the optimal stopping problem (17) is to wait until the
random process Xt hits a certain threshold b∗ (see Figure 3). More precisely, the solution to (17) is
provided by the following stopping rule,

τ∗ =

{
τb∗ if x ∈ [0, b∗],

0 if x ∈ [b∗, ∞).
(22)

That is to say, if x ≥ b∗ then one must stop and buy the policy immediately, or else wait until the
hitting time τb∗≥ 0 occurs and buy the policy then. (Of course, these two rules coincide when x = b∗.)
However, if it happens so that τb∗ = ∞, then, according to the above rule, one must wait indefinitely,
and therefore never buy the policy.
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Figure 3. Simulated wage process Xt (left) and Yt = ln Xt (right) according to the geometric Brownian
motion model (2), with X0 = 346 (euros) and parameters µ = 0.0004 and σ = 0.02 (see Example 3).
The dashed horizontal line in the left plot indicates the optimal threshold b∗ .

= 352.37 (euros) first
attained in this simulation at τ∗= 54 (weeks). The dashed line in the right plot shows the estimated
drift of the log-transformed data (see Section 5.2).
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The specific value of the critical threshold b∗ is given by

b∗ =
Pq∗

β1(q∗ − 1)
, (23)

where

q∗ =
1
σ2

(
−(µ− 1

2 σ2) +
√
(µ− 1

2 σ2)2 + 2r̃σ2
)

. (24)

It is straightforward to check, using condition (11), that q∗ > 1 (see also Section 3.2). Finally,
the corresponding value function (17) is specified as

v(x) =

(β1b∗ − P)
( x

b∗
)q∗

, x ∈ [0, b∗],

β1x− P, x ∈ [b∗, ∞).
(25)

Equivalently, substituting the expression (23), formula (25) is explicitly rewritten as

v(x) =


P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1)
,

β1x− P, x ≥ Pq∗
β1(q∗ − 1)

.
(26)

In particular, the function x 7→ v(x) is strictly increasing for x ≥ 0, with v(0) = 0 (cf. Lemma 2).
These results will be proved in Section 3.

2.6. Deterministic Case

For orientation, it is useful to consider the simple baseline case σ = 0, where the random process
Xt (see (2)) degenerates to the deterministic function

Xt = x eµt (t ≥ 0).

Hence, any stopping time τ is nonrandom, say τ = t, and the optimal stopping problem (17) is
reduced to

v(x) = sup
t≥0

[
e−r̃t(β1x eµt − P)

]
. (27)

The problem (27) is easily solved, with the maximizer t∗ given by

t∗ = inf
{

t ≥ 0 : x eµt ≥ b∗0
}
∈ [0, ∞], (28)

where

b∗0 =


P r̃

β1(r̃− µ)
, µ > 0,

P
β1

, µ ≤ 0.
(29)

The expression (29) is consistent with the general formula (23), noting that, in the limit as σ ↓ 0, the
quantity (24) is reduced to (cf. (11))

q∗ =


r̃
µ
> 1, µ > 0,

∞, µ ≤ 0.

With this convention, it is easy to check that the value function (27) is given by the general formula (25).
In particular, if µ ≤ 0 and x < b∗0 , then, according to (28), t∗ = ∞ and from (27) we get v(x) = 0;
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indeed, the function t 7→ x eµt is nonincreasing, so it never attains the required threshold b∗0 > x.
In contrast, if x ≥ b∗0 , then by (28) t∗ = 0 (for any µ), and (27) readily yields v(x) = β1x− P.

3. Solving the Optimal Stopping Problem

The optimal stopping problem (17) involves two tasks: (i) evaluating the value function v(x) and
(ii) identifying the maximizer τ = τ∗. A standard approach is to try and guess the solution and then to
verify that it is correct.

3.1. Guessing the Solution

Let us look more closely at the nature of the value function v(x) that we are trying to identify.
Observe that by picking τ = 0 in (17) yields the lower estimate

v(x) ≥ g(x). (30)

Clearly, if v(x) > g(x) then we have not yet achieved the maximum payoff available, so we should
continue to wait. On the other hand, if v(x) = g(x) then the maximum has been attained and we
should stop. This motivates the definition of the two regions, C (continuation) and S (stopping),

C := {x ≥ 0 : v(x) > g(x)}, S := {x ≥ 0 : v(x) ≤ g(x)}.

By virtue of the Markov property of the process Xt, the same argument can be propagated to
any time t ≥ 0, provided that stopping has not yet occurred. Namely, if Xt = x′ (and τ ≥ t) then the
problem (17) is updated with the new (residual) stopping time τ′ = τ − t and with the initial value x
replaced by x′.

Thus, it is natural to expect that the optimal strategy prescribes to continue as long as the current
wage value Xt belongs to the region C (i.e., v(Xt) > g(Xt)), but to stop when Xt first enters the region S
(i.e., v(Xt) ≤ g(Xt)). That is to say, the optimal stopping time should be given by4

τ∗ = inf{t ≥ 0 : Xt ∈ S} = inf{t ≥ 0 : v(Xt) ≤ g(Xt)} ∈ [0, ∞]. (31)

To clarify the plausible structure of the stopping set, S, recall (see the proof of Lemma 2(i)) that
a zero value of the stopping problem (17) is achieved by simply using the strategy τ ≡ ∞, that
is, by never joining the scheme. Thus, if the initial wage X0 = x is small (e.g., such that g(x) =

β1x− P < 0) then, in order to secure a positive payoff, we should wait for a sufficiently high wage Xt.
This suggests that the stopping rule (31) is reduced to the first hitting time for a certain set on the plane
{(t, x) : t ≥ 0, x ≥ 0}. Furthermore, noting that the definition (31) is time homogeneous, in that it does
not change in the course of time t, we also hypothesize the simplest situation whereby the regions C
and S are determined by a constant threshold y = b∗ > 0,

C = [0, b∗), S = [b∗, ∞). (32)

In other words, the conjectural hitting boundary does not depend on time.
Hence, we are led to the reduced optimal stopping problem over the subclass of hitting times,

u(x) = sup
b≥0

Ex
(
e−r̃τb g(Xτb)

)
. (33)

4 This conclusion is in accord with the general optimal stopping theory (Peskir and Shiryaev 2006, §2.2).
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In particular, formula (31) specializes to

τb∗ = inf{t ≥ 0 : Xt ≥ b∗} = inf{t ≥ 0 : u(Xt) ≤ g(Xt)} ∈ [0, ∞]. (34)

Our first task is to identify the value function u(x) in (33) and the corresponding maximizer b = b∗

by solving the corresponding free-boundary problem (Section 3.2). After that, we will have to show
that this solution is optimal in the general class of stopping times, that is, u(x) = v(x) for all x ≥ 0
(Section 3.3).

3.2. Free-Boundary Problem

According to general theory of optimal stopping (Peskir and Shiryaev 2006, chp. IV), in the
continuation region C = [0, b) (see (32)) the value function u(x) from (33) must be harmonic with respect
to the underlying process X̃t generated by Xt. More precisely, due to the discounting exponential
factor in the optimal stopping problem (33), the process X̃t is obtained from Xt by independent killing
(or discounting) with rate r̃ (Peskir and Shiryaev 2006, §§ 5.4, 6.3). Thus, if b is a suitable threshold and
τb is the corresponding hitting time, then for any x ≥ 0 the following condition must hold,

Ex
[
e−r̃(τb∧t)u(Xτb∧t)

]
= u(x) (t ≥ 0). (35)

Note that the geometric Brownian motion Xt determined by the stochastic differential Equation (1)
is a diffusion process with the infinitesimal generator

L := µx
d

dx
+ 1

2 σ2x2 d2

dx2 (x > 0). (36)

The generator of the killed process X̃t is then given by (Peskir and Shiryaev 2006, § 6.3, p.127)

L̃ = L− r̃ I, (37)

where I is the identity operator. Then the harmonicity condition (35) can be reduced to the differential
equation L̃u = 0, that is, Lu− r̃u = 0 (see (37)).

On the boundary x = b of the set C = [0, b), due to the stopping rule (34) we have u(b) = g(b).
Moreover, according to the smooth fit principle (Peskir and Shiryaev 2006, §9.1), we must also satisfy
the condition u′(b) = g′(b). Finally, in view of the equality v(0) = 0 (see Lemma 2(i)), we add a
Dirichlet boundary condition at zero, u(0+) = limx↓0 u(x) = 0. Thus, we arrive at the following
free-boundary problem, 

Lu(x)− r̃u(x) = 0, x ∈ (0, b),
u(b) = g(b),
u′(b) = g′(b),
u(0+) = 0,

(38)

where both b > 0 and u(x) are unknown.
Substituting (10) and (36), the problem (38) is rewritten explicitly as

µx u′(x) + 1
2 σ2x2u′′(x)− r̃u(x) = 0, x ∈ (0, b),

u(b) = β1b− P,
u′(b) = β1,
u(0+) = 0.

(39)

Let us look for a solution of (39) in the form u(x) = xq (x > 0), with a suitable parameter q ∈ R. Then
the differential equation in (39) yields

1
2 σ2q (q− 1) + µq− r̃ = 0. (40)
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This quadratic equation has two distinct roots,

q1,2 =
1
σ2

(
−(µ− 1

2 σ2)±
√
(µ− 1

2 σ2)2 + 2r̃σ2
)

,

where q2 < 0 < q1 = q∗ (see (24)). Also note that, due to the condition (11), the left-hand side of (40)
is negative at q = 1, therefore q1 > 1. Thus, the general solution of the differential Equation (39) is
given by

u(x) = Axq1 + Bxq2 , x ∈ (0, b), (41)

with arbitrary constants A and B. However, since q2 < 0, the condition u(0+) = 0 implies that B = 0.
Hence, (41) is reduced to u(x) = Axq1 ≡ Axq∗ (0 < x < b). Furthermore, the boundary conditions
in (39) yield {

Abq∗ = β1b− P,
Aq∗bq∗−1 = β1,

whence we find
A =

β1b− P
bq∗

, b =
Pq∗

β1(q∗ − 1)
. (42)

Thus, the required solution to (39) is given by

u(x) =

 (β1b− P)
( x

b

)q∗
, x ∈ [0, b],

β1x− P, x ∈ [b, ∞)
(43)

where the threshold b is defined in (42) and q∗ > 1 is the positive root of the Equation (40), given
explicitly by formula (24).

3.3. Verification of the Found Solution

Using (42) and (43), it is easy to see that

u(x) = g(x), x ∈ [b, ∞),

u(x) > g(x), x ∈ [0, b),
(44)

in accord with the heuristics outlined in Section 3.1 (see (32)). However, there is no need to check that
the function u(x) defined in (43) solves the reduced optimal stopping problem (33), because we can
verify directly that u(x) provides the solution to the original optimal stopping problem (17), that is,
u(x) = v(x) for all x ≥ 0.

Remark 4. Since u(0) = 0 by formula (43) and v(0) = 0 according to Lemma 2(i), in what follows it suffices
to assume that x > 0.

The proof of the claim above (commonly referred to as verification theorem) consists of two parts.

(i) Let us first show that u(x) ≥ v(x) (x > 0). If the map x 7→ u(x) was a C2-function (i.e., with
continuous second derivative), then the classical Itô formula (Øksendal 2003, Theorem 4.1.2, p. 44)
applied to e−r̃tu(Xt) would yield, on account of (1) and (36),

e−r̃tu(Xt) = u(x) +
∫ t

0
e−r̃s(Lu(Xs)− r̃u(Xs)

)
ds + Mt (Px-a.s.), (45)

where

Mt :=
∫ t

0
e−r̃su′(Xs) σXs dBs (t ≥ 0). (46)
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However, for the function u(x) given by (43), its C2-smoothness breaks down at the point x = b,
where it is only C1. However, u(x) is strictly convex on (0, b) (i.e., u′′(x) > 0) and linear on (b, ∞),
and we can define the action Lu(x) at x = b by using the one-sided second derivative, say,

u′′(b−) = Pq∗b−2. (47)

In this situation, a generalization of the Itô formula holds, known as the Itô–Meyer formula (see
(Shiryaev 1999, chp. VIII, §2a, p.757)), which ensures that the representation (45) is still valid.

Recall that by construction (see the differential equation in (38)), we have

Lu(x)− r̃u(x) = 0, x ∈ (0, b). (48)

Moreover, it is easy to check using (47) that the equality (48) also extends to x = b. On the other
hand, on account of the condition (11) and the definition of b in (42), for x > b we get

Lu(x)− r̃u(x) = µβ1x− r̃ (β1x− P)

= β1x(µ− r̃) + r̃P

< β1b(µ− r̃) + r̃P

=
P (µq∗ − r̃)

q∗ − 1
< 0, (49)

because, due to the Equation (40) and the inequality q∗ > 1,

µq∗ − r̃ = − 1
2 σ2q∗(q∗ − 1) < 0.

Thus, combining (48) and (49) we obtain

Lu(x)− r̃u(x) ≤ 0 (x > 0). (50)

Substituting the inequality (50) into formula (45), we conclude that, for any x > 0 and all t ≥ 0,

u(x) + Mt ≥ e−r̃tu(Xt) (Px-a.s.). (51)

According to formula (46), (Mt) is a continuous local martingale (Shiryaev 1999, chp. II, §1c,
p. 101). Let (τn) be a localizing sequence of bounded stopping times, so that τn ↑ ∞ (Px-a.s.) and
the stopped process (Mτn∧t) is a martingale, for each n ∈ N.

Now, let τ be an arbitrary stopping time of (Xt). From (51) we get

u(x) + Mτn∧τ ≥ e−r̃(τn∧τ)u(Xτn∧τ)

≥ e−r̃(τn∧τ)g(Xτn∧τ) (Px-a.s.), (52)

using that u(x) ≥ g(x) for all x ≥ 0 (see (44)). Taking expectation on both sides of the inequality
(52) gives

u(x) ≥ Ex
[
e−r̃(τn∧τ) g(Xτn∧τ)

]
, (53)

since by Doob’s optional sampling theorem (Yeh 1995, Theorem 8.10, p.131)

Ex(Mτn∧τ) = Ex(M0) = 0.
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By Fatou’s lemma (Shiryaev 1996, §II.6, Theorem 2(a), p.187), from (53) it follows

u(x) ≥ Ex

(
lim inf

n→∞
e−r̃(τn∧τ) g(Xτn∧τ)

)
= Ex

(
e−r̃τ g(Xτ)

)
. (54)

Finally, taking in (54) the supremum over all stopping times τ, we obtain

u(x) ≥ sup
τ

Ex
(
e−r̃τ g(Xτ)

)
= v(x) (x > 0),

as claimed.

(ii) Let us now prove the opposite inequality, u(x) ≤ v(x) (x > 0). According to (30) and (44),
we readily have u(x) = g(x) ≤ v(x) for x ∈ [b,+∞). Next, fix x ∈ (0, b) and consider the
representation (45) with t replaced by τn ∧ τb, where (τn) is the localizing sequence of stopping
times for (Mt) as before. Then, by virtue of the identity (48) (which, as has been explained, is also
true for x = b), it follows that

u(x) + Mτn∧τ = e−r̃(τn∧τb)u(Xτn∧τb) (Px-a.s.). (55)

Similarly as above, taking expectation on both sides of the equality (55) and again applying Doob’s
optional sampling theorem to the martingale (Mτn∧t), we obtain

u(x) = Ex
[
e−r̃(τn∧τb)u(Xτn∧τb)

]
. (56)

Note that, for 0 < x < b, we have 0 ≤ u(x) ≤ u(b) and 0 ≤ Xτn∧τb ≤ b (Px-a.s.), hence

0 ≤ e−r̃(τn∧τb)u(Xτn∧τb) ≤ u(b) (Px-a.s.).

Using that τn ↑ ∞, observe that, Px-a.s.,

lim
n→∞

e−r̃(τn∧τb)u(Xτn∧τb) = e−r̃τb u(Xτb)1{τb<∞} + lim
n→∞

e−r̃τn u(Xτn)1{τb=∞}

= e−r̃τb u(b)1{τb<∞}, (57)

because Xτb = b on the event {τ < ∞}, while 0 ≤ u(Xτn) ≤ u(b) on the event {τ = ∞}.
Hence, letting n→ ∞ in (56) and using the dominated convergence theorem (Shiryaev 1996, §II.6,
Theorem 3, p.187), we get, on account of (57),

u(x) = Ex
(
e−r̃τb u(b)1{τb<∞}

)
= Ex

(
e−r̃τb g(b)1{τb<∞}

)
= Ex

(
e−r̃τb g(Xτb)1{τb<∞}

)
≤ v(x),

according to (17). That is, we have proved that u(x) ≤ v(x) for all 0 < x < b, as required.

Thus, the proof of the verification theorem is complete.

4. Elementary Solution of the Reduced Problem

4.1. Distribution of the Hitting Time

In view of the formula (2), the hitting problem for the process Xt is reduced to that for the
Brownian motion with drift,

τb := inf{t ≥ 0 : Xt = b} ≡ inf{t ≥ 0 : Bt + µ̃t = b̃}, (58)
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where

µ̃ =
µ− 1

2 σ2

σ
, b̃ =

1
σ

ln
b
x

. (59)

Suppose that x ≤ b, so that b̃ ≥ 0. The explicit expression for the Laplace transform of the hitting
time (58) is well known (see, e.g., Durrett 1999, Exercises 6.29 and 6.31, p. 268, or Etheridge 2002,
Proposition 3.3.5, p. 61).

Proposition 1. For x ≤ b and any θ > 0, set

Φx,b(θ) := Ex(e−θτb) ≡ Ex

(
e−θτb1{τb<∞}

)
. (60)

Then

Φx,b(θ) = exp
{
−b̃
(√

µ̃2 + 2θ − µ̃

)}
, θ > 0, (61)

where µ̃ and b̃ are defined in (59).

Substituting the expressions (59), the formula (61) is rewritten as

Φx,b(θ) =
( x

b

)q1(θ)
, θ > 0, (62)

where q1(θ) is given by (cf. (24))

q1(θ) =
1
σ2

(
−(µ− 1

2 σ2) +
√
(µ− 1

2 σ2)2 + 2θσ2
)

. (63)

As usual, it is straightforward to extract from the Laplace transform (60) some explicit
information about the distribution of the hitting time τb. First, by the monotone convergence theorem
(Shiryaev 1996, §II.6, Theorem 1(a), p.186) we have

lim
θ↓0

Φx,b(θ) = Ex(1{τb<∞}) = Px(τb < ∞).

Hence, noting from (63) that

q1(0) =

 0 if µ− 1
2 σ2 ≥ 0,

1− 2µ

σ2 if µ− 1
2 σ2 < 0,

(64)

we obtain

Px(τb < ∞) =
( x

b

)q1(0)
=

 1, µ− 1
2 σ2 ≥ 0,( x

b

)1−2µ/σ2

, µ− 1
2 σ2 < 0.

(65)

Remark 5. The result (65) shows that hitting the critical threshold b = b∗, as required by the stopping rule,
is only certain when the wage growth rate is large enough, µ ≥ 1

2 σ2. Thus, the “dangerous” case is when
µ < 1

2 σ2, whereby relying only on the optimal stopping recipe may not be practical. This observation may serve
as a germ of the idea to connect the optimality problem in the insurance context with the notion of utility (cf. the
discussion in Section 7.1 below).

Via the Laplace transform Φx,b(θ), we can also obtain the mean hitting time Ex(τb) in the case
µ ≥ 1

2 σ2, where τb < ∞ (Px-a.s.). Namely, again using the monotone convergence theorem we have

lim
θ↓0

∂Φx,b(θ)

∂θ
= − lim

θ↓0
Ex(τb e−θτb) = −Ex(τb).
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Hence, differentiating formula (62) at θ = 0 and noting from (63) that q1(0) = 0 (cf. (64)) and

q′1(0) =


∞, µ = 1

2 σ2,
1

µ− 1
2 σ2

, µ > 1
2 σ2,

we get

Ex(τb) = − ln
( x

b

) ( x
b

)q1(0)
q′1(0) =


∞, µ = 1

2 σ2,
ln(b/x)
µ− 1

2 σ2
, µ > 1

2 σ2.
(66)

4.2. Alternative Derivation

An alternative (and more direct) method to derive the formulas (65) and (66) is based on general
theory of Markov processes by solving the suitable boundary value problems (Øksendal 2003, §9).
Namely, the hitting probability π(x) := Px(τb < ∞) as a function of x > 0 satisfies the Dirichlet
problem (Øksendal 2003, §9.2) {

Lπ(x) = 0 (0 < x < b),

π(b) = 1.
(67)

The differential equation in (67) reads

1
2 σ2x2π′′(x) + µxπ′(x) = 0 (0 < x < b),

which is easily solved to give
π(x) = c1x1−2µ/σ2

+ c2.

If 1− 2µ/σ2 < 0 (i.e., µ− 1
2 σ2 > 0) then c1 = 0 (since π(x) is bounded), and due to the boundary

condition π(b) = 1 it follows that c2 = 1 and π(x) ≡ 1. A similar argument shows that π(x) ≡ 1 in
the case 1− 2µ/σ2 = 0. Finally, if 1− 2µ/σ2 > 0 then, noting that π(0) = 0, we conclude that c2 = 0
and, due to the boundary condition, c1 = b−1+2µ/σ2

. Thus, formula (65) is proved.
Similarly, the mean hitting time m(x) := Ex(τb) (with µ− 1

2 σ2 > 0) satisfies the Poisson problem
(Øksendal 2003, §9.3) {

Lm(x) = −1 (0 < x < b),

m(b) = 0.
(68)

As usual, to solve the problem (68), it is convenient to approximate it with a two-sided boundary
problem by adding an auxiliary Neumann (reflection) condition at ε > 0,

Lmε(x) = −1 (ε < x < b),

mε(b) = 0,

m′ε(ε) = 0,

(69)

and then taking the limit of mε(x) as ε ↓ 0. This procedure will produce the correct solution m(x) since
limε↓0 Px(τε < ∞) = Px(τ0 < ∞) = 0 (for any x > 0).

A particular solution to the inhomogeneous differential equation

1
2 σ2x2m′′ε (x) + µxm′ε(x) = −1 (ε < x < b)

can be sought in the form m0(x) = c0 ln x, which gives c0 = −1/(µ− 1
2 σ2). Thus, the general solution

of (69) can be expressed as

mε(x) = − ln x
µ− 1

2 σ2
+ c1x1−2µ/σ2

+ c2. (70)
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Now, using the boundary conditions in (69) it is straightforward to check that

lim
ε↓0

c1 = 0, lim
ε↓0

c2 =
ln b

µ− 1
2 σ2

.

Hence, from (70) we get

m(x) = lim
ε↓0

mε(x) =
ln (b/x)
µ− 1

2 σ2
,

which retrieves the result (66).

Remark 6. The same method applied to the killed process X̃t with generator L̃ = L− r̃ I (see (37)) provides
a neat interpretation of the value function u(x) as given by (43). Namely, rewrite the expectation in (33)
(i.e., eNPV(x; τb)) in the form Ẽx(g(X̃τb)), where Ẽx denotes expectation with respect to the killed process (X̃t),
and note that, for b ≥ 0,

Ẽx
(

g(X̃τb)
)
=

{
g(b) P̃x(τb < ∞), x ∈ [0, b],

g(x), x ∈ [b, ∞).

In turn, the hitting probability π̃(x) := P̃x(τb < ∞) can be easily found by solving the corresponding Dirichlet
problem (cf. (67)), {

L̃π̃(x) = 0 (0 < x < b),

π̃(b) = 1.

Indeed, repeating the calculations in Section 3.2, it is straightforward to get π̃(x) = (x/b)q∗ .

4.3. Direct Maximization

Using the results of the previous sections, we can easily solve the optimal stopping problem (17),
at least in the subclass of hitting times τ = τb (see (33)),

u(x) = sup
b≥0

eNPV(x; τb) = sup
b≥0

Ex
(
e−r̃τb(β1Xτb − P)

)
. (71)

Observe that if x ≥ b then τb = 0 and Xτb = x (Px-a.s.), so that eNPV(x; τb) ≡ β1x − P for all
b ∈ [0, x]. Let now b ∈ [x, ∞). As already noted, on the event {τb < ∞} we have Xτb = b (Px-a.s.),
hence, according to (17) and (62),

eNPV(x; τb) = (β1b− P)Ex(e−r̃τb) = (β1b− P)
( x

b

)q∗
(b ≥ x), (72)

where q∗ = q1(θ)|θ=r̃ (cf. (24) and (63)). It is straightforward to find the maximizer for the function (72).
Indeed, the condition (∂/∂b)eNPV(x; τb) ≥ 0, equivalent to

β1b−q∗ − q∗(β1b− P)b−q∗−1 ≥ 0,

holds for all b ∈ [0, b∗], where

b∗ =
Pq∗

β1(q∗ − 1)
, (73)

which is the same optimal threshold as before (cf. (23)). Thus, the supremum of eNPV(x; τb) over
b ≥ x is attained at b = b∗ if x ≤ b∗ or at b = x if x ≥ b∗.
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The corresponding value function u(x) is then calculated as (cf. (25))

u(x) =

(β1b∗ − P)
( x

b∗
)q∗

, x ∈ [0, b∗],

β1x− P, x ∈ [b∗, ∞).
(74)

Finally, substituting (73) into (74), we obtain explicitly (cf. (26))

u(x) =


P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1)
,

β1x− P, x ≥ Pq∗
β1(q∗ − 1)

.
(75)

5. Statistical Issues and Numerical Illustration

5.1. Specifying the Model Parameters

From the practical point of view, in order to exercise the stopping rule (22), the individual
concerned needs to be able to compute the critical threshold b∗ expressed in (23), for which the
knowledge is required about β1 (defined in (9)) and therefore about the parameters r, λ0, µ and β

(see (5)); furthermore, to evaluate the quantity q∗ defined in (24), one needs to estimate µ− 1
2 σ2 and σ2

itself. Specifically,

• The loss of job rate λ0 can be extracted from the publicly available data about the mean length at
work, which is theoretically given by E(τ0) = 1/λ0.

• Likewise, the inflation rate r is also in the public domain.
• To specify the wage growth rate µ, a simple approach is just to set µ = r as a crude version of a

“tracking” rule. However, it may be possible that the individual’s wage growth rate µ is, to some
extent, stipulated by the job contract—for example, that it must not exceed the inflation rate r by
more than 1% per annum (applicable, e.g., to civil servants) or, by contrast, that it must be no less
than r minus 0.5% per annum (more realistic in the private sector). In practical terms, this would
often mean that the actual growth rate µ is kept on the lowest predefined level.

• More generally, the wage growth rate µ can be estimated by observing the wage process Xt. This
can be implemented by first using regression analysis on Yt = ln Xt and estimating the regression
line slope µ− 1

2 σ2 (see (2)). In addition, the volatility σ2 can be estimated by using a suitable
quadratic functional of the sample path (Yt).

• Finally, knowing the benefit schedule (which should be available through the insurance policy’s
terms and conditions), it is in principle possible to calculate, or at least estimate the value β.

To summarize, certain estimation procedures need to be carried out along with the online
observation of the sample path (Xt). More details (most of which are quite standard) are provided in
the next two subsections.

5.2. Estimating the Drift and Volatility

Denote for short a := µ− 1
2 σ2. According to the geometric Brownian motion model (2), we have

Yt := ln Xt = ln x + σBt + at, Y0 = ln x.

Suppose the process Xt is observed over the time interval t ∈ [0, T] on a discrete-time grid ti = iT/n
(i = 0, . . . , n), and consider the consecutive increments

Zi := Yti −Yti−1 = σ(Bti − Bti−1) + a (ti − ti−1) (i = 1, . . . , n). (76)
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Note that the increments of the Brownian motion in (76) are mutually independent and have normal
distribution with zero mean and variance ti − ti−1 = T/n, respectively. Therefore, (Zi) is an
independent random sample with normal marginal distributions,

Zi ∼ N
(

aT
n

,
σ2T

n

)
(i = 1, . . . , n).

Then, it is standard to estimate the parameters via the sample mean and sample variance,

ân :=
n
T
· Z̄ =

Z1 + · · ·+ Zn

T
=

YT −Y0

T
, (77)

σ̂2
n :=

n
T
· 1

n− 1

n

∑
i=1

(Zi − Z̄)2. (78)

These estimators are unbiased,

E(ân) = a = µ− 1
2 σ2, E(σ̂n

2) = σ2,

with mean square errors

Var(ân) =
σ2

T
, Var(σ̂2

n) =
2σ4

n− 1
.

In turn, the parameter µ is estimated by

µ̂n = ân +
1
2 σ̂2

n ,

with mean E(µ̂n) = E(ân) +
1
2 E(σ̂2

n) = a + 1
2 σ2 = µ and mean square error

Var(µ̂n) = Var(ân) +
1
4 Var(σ̂2

n) =
σ2

T
+

σ4

2(n− 1)

(due to independence of the estimators ân and σ̂2
n).

Note that the estimator ân in (77) only employs the last observed value, YT ; in particular, its mean
square error is not sensitive to the grid size ∆ti = T/n, and only tends to zero with increasing
observational horizon, T → ∞. This makes the estimation of the drift parameter a difficult in the
sense that very long observations over Yt are required to achieve an acceptable precision (Ekström
and Lu 2011, Example 2.1, p. 3). For instance, let µ = 0.004 and σ = 0.02 (per week), then a = 0.0038;
if T = 25 (weeks) then the 95%-confidence bounds for a are given by â± 1.96 σ/

√
T = â± 0.00784,

so the margin of error is about twice as big as the value of a itself. To reduce it, say to 0.5a, one needs
T ≈ 425 (weeks), which exemplifies slow convergence.

In contrast, the mean square error of the estimator σ̂2
n in (78) tends to zero as n→ ∞, with T fixed.

Thus, estimation of the parameter σ2 can be made asymptotically precise.
A numerical example illustrating the estimation of µ and σ2 using simulated data will be given

at the end of Section 5.4. A brief discussion of practical choices of µ, based on sensitivity analysis,
is provided at the end of Section 6.3.

5.3. Hypothesis Testing

In view of the drawback in the general solution of the optimal stopping problem in that the
stopping time τb∗ may be infinite, that is, Px(τb∗ = ∞) > 0, which occurs when a = µ− 1

2 σ2 < 0
(see Section 4.1), a reasonable pragmatic approach to decision-making in our model may be based on
testing the null hypothesis H0 : a ≥ 0 versus the alternative H1 : a < 0 (at some intuitively acceptable
significance level, e.g., α = 0.05). Namely, as long as H0 remains tenable, one keeps waiting for the
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hitting time τb∗ to occur, but once H0 has been rejected, it is reasonable to terminate waiting and buy
the policy immediately.

The corresponding test is specified as follows. Again, suppose that the process Yt is observed on a
discrete time grid ti = iT/n, and set Zi = Yti −Yti−1 (i = 1, . . . , n). Let z(α) be the upper α-quantile of
the standard normal distribution N (0, 1), that is, 1−Φ(z(α)) = α, where Φ(x) = 1√

2π

∫ x
−∞ e−u2/2 du.

Then the null hypothesis H0 : a ≥ 0 is to be rejected at significance level α whenever

Z1 + · · ·+ Zn ≤ inf
a≥0

{
aT − z(α)σ

√
T
}

,

that is,
YT −Y0 ≤ −z(α)σ

√
T. (79)

This test is uniformly most powerful among all tests with probability of error of type I not exceeding α,
that is, P(reject H0 |H0 true) ≤ α.

The normal test (79) assumes that the variance σ2 is known. As mentioned before, this presents
no real restriction if the process Yt is observable continuously (i.e., if the grid (ti) can be refined
indefinitely). If this is not the case (e.g., because the wage process can only be observed on the weekly
basis) then the test (79) is replaced by the t-test,

YT −Y0 ≤ −tn−1(α) σ̂
√

T,

where σ̂2 is the sample variance (see (78)) and tn−1(α) is the upper α-quantile of the t-distribution with
n− 1 degrees of freedom.

In practice, the hypothesis testing is carried out sequentially (e.g., weekly) as the observational
horizon T increases. The advantage of this approach is that the resulting stopping time is finite with
probability one (i.e., Px-a.s.); indeed, it is the minimum between the optimal stopping time τb∗ (which
is finite Px-a.s. under the null hypothesis H0 : a ≥ 0) and the first time of rejecting H0 (which is finite
Px-a.s. if H0 is false).

5.4. Numerical Examples

To be specific, we use euro as the monetary unit. First of all, the value of the constant β, which
encapsulates information about the benefit schedule as well as the rate λ1 of finding new job (see (5)),
is chosen to be

β = 30.

Thus, the overall expected benefit payable over the lifetime of the policy (and projected to the beginning
of unemployment) is taken to be equal to 30 weekly wages; that is, if the final wage is 400 (euro per
week) then the total to be received is

400.00× 30 = 12 000.00 (euro).

Further, we set
λ0 = 0.01, r = 0.0004.

This means that the expected time until loss of job is 1/λ0 = 100 (weeks), that is, about 1 year and 11
months, whereas the annual inflation rate is

e(365/7)·0.0004 − 1 = 0.02107617 ≈ 2.11%,

which is quite realistic.
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Next, we need to specify the premium P and the parameters of the wage process Xt, First, choose
the initial value x = X0 as

x = 346.00 (euro).

This is motivated by the French labour legislation, whereby the current minimum pay rate is set as
9.88 euro per hour (WageIndicator 2018), with a 35-hour workweek (Estevão and Sá 2008; Gubian et al.
2004), giving

9.88× 35 = 345.80 (euro per week).

As for the premium, it is set at the value

P = 9 000.00 (euro),

which equates to about 26 minimum weekly wages (i.e., income over about half a year). For simplicity,
we also choose

µ = r = 0.0004, (80)

so that the wage growth rate is the same as inflation r (in reality, it could be slightly less). Then from (9),
using (80), we get

β1 =
λ0 β

r̃− µ
= β = 30.

For the volatility σ, we will illustrate two opposite cases, µ < 1
2 σ2 and µ > 1

2 σ2.

Example 2. Set σ = 0.04, then µ − 1
2 σ2 = −0.0004 < 0. From (24) we calculate q∗ = 3.864208,

then (42) yields
b∗ = 404.7410 = 404.74 (euro).

Using (65), the hitting probability is calculated as

Px(τb∗ < ∞) = 0.9245906.

Finally, using (43), we obtain the value of this contract,

v(346) = 1714.2780 = 1714.28 (euro).

Example 3. Now, set σ = 0.02, then µ − 1
2 σ2 = 0.0002 > 0. Furthermore, using (24) we calculate

q∗ = 6.728416, and from (42)
b∗ = 352.3705 = 352.37 (euro).

Hence, using (66), the expected hitting time is found to be

E(τb∗) = 91.22197 = 91.2 (weeks).

Finally, according to formula (25), the value of this contract is calculated as

v(346) = 1389.6190 = 1389.62 (euro).

In the simulation of the process Xt shown in Figure 3, the drift a = µ− 1
2 σ2 is estimated using formula (77)

as â .
= 0.0005994. Estimation of the variance σ2 according to formula (78) (on a weekly time grid) gives

σ̂2 .
= 0.0003723, while the true value is σ2 = 0.0004. Hence, the parameter µ is estimated by µ̂

.
= 0.0007855;

recall that the true value is µ = 0.0004.
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6. Parametric Dependencies

In this section, we aim to explore the parametric dependencies of the solution of our insurance
problem, that is, of the optimal threshold b∗ given by (23) and the value function v = v(x) given
by (25). In particular, it is helpful to analyze different asymptotic regimes as well as (the sign of)
appropriate partial derivatives, so as to ascertain the direction of changes under small perturbations
and to understand their economic meaning. This is a key ingredient of sensitivity analysis and of the
so-called comparative statics (Merton 1969, Section VII).

In what follows, we confine ourselves to a discussion of the two most important exogenous
parameters—the wage drift µ and the unemployment rate λ0. The constraint (11) implies that the
range of the parameters µ and λ0 is specified as follows,

−∞ < µ < r̃ = r + λ0, 0∨ (µ− r) < λ0 < ∞.

Remark 7. The next two technical subsections are elementary but rather tedious, and the reader wishing to
grasp the results quickly may just inspect the plots in Figures 4 and 5.

6.1. Monotonicity

By virtue of the quadratic Equation (40), the formula (23) can be conveniently rewritten as

b∗ =
P( 1

2 σ2q∗+ r̃)
βλ0

. (81)

First, fix λ0 and consider the function µ 7→ b∗. Differentiating the Equation (23) and then again
using (23) to eliminate µ, we obtain

∂q∗
∂µ

= − q∗
1
2 σ2(2q∗ − 1) + µ

= − q2
∗

1
2 σ2q2∗ + r̃

< 0. (82)

Hence, using (81) and (82),

db∗

dµ
=

∂b∗

∂µ
+

∂b∗

∂q∗
· ∂q∗

∂µ
= −

P ( 1
2 σ2q2

∗)

βλ0 (
1
2 σ2q2∗ + r̃)

< 0. (83)

and, therefore, b∗ is a decreasing function of µ (see Figure 4a).
Similarly, the Equation (40) yields

∂q∗
∂λ0

=
1

1
2 σ2(2q∗ − 1) + µ

=
q∗

1
2 σ2q2∗ + r + λ0

> 0. (84)

From (81) and (84), after some rearrangements we obtain

db∗

dλ0
=

∂b∗

∂λ0
+

∂b∗

∂q∗
· ∂q∗

∂λ0

= −
P( 1

2 σ2q∗+ r)
βλ2

0
+

P ( 1
2 σ2q∗)

βλ0 (
1
2 σ2q2∗ + r + λ0)

= −
P
[
( 1

2 σ2q∗+ r)( 1
2 σ2q2

∗ + r) + λ0r
]

βλ2
0 (

1
2 σ2q2∗ + r + λ0)

< 0, (85)

and it follows that the function λ0 7→ b∗ is decreasing (see Figure 4b).
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Figure 4. Graphs illustrating parametric dependencies of the optimal threshold (23): (a) on the wage
drift µ < r̃ and (b) on the unemployment rate λ0 > 0 ∨(µ − r), for selected values of λ0 and µ,
respectively. The values of other model parameters used throughout are as in Example 3: r = 0.0004,
P = 9 000, β = 30, and σ = 0.02. The dashed horizontal line in both plots indicates the initial
wage x = 346. The dashed vertical line in (a) indicates µ = r. The lower dashed horizontal line in (b)
shows the asymptote P/β = 300 (see (99)).
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Figure 5. Graphs illustrating parametric dependencies of the value function (25): (a) on the wage drift
µ < r̃ and (b) on the unemployment rate λ0 > 0∨(µ− r), for selected values of λ0 and µ, respectively.
The values of other model parameters used throughout are as in Example 3: r = 0.0004, P = 9000,
β = 30, σ = 0.02, and x = 346. The dashed horizontal lines in both plots correspond to the value
v∗ := βx− P = 1380. The dashed vertical line in (a) indicates µ = r; in this case, shown as curve II in
plot (b), v(x) ≡ v∗ for all λ0 ≥ λ∗

.
= 0.012420 (see (92)). That is why curves III, IV and V in plot (a) all

intersect at µ = r.

Let us now turn to the value function v = v(x). First, consider v as a function of µ, thus keeping
λ0 fixed. Using the expression (23), we can rewrite the first line of the formula (25) (i.e., for x ≤ b∗) as

v =
P

q∗ − 1

( x
b∗
)q∗

. (86)
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Differentiating (86), we get

∂v
∂q∗

= − P
(q∗ − 1)2

( x
b∗
)q∗

(
1 + (q∗ − 1) ln

(
b∗

x

))
< 0, (87)

∂v
∂b∗

= − Pq∗
(q∗ − 1)b∗

( x
b∗
)q∗

< 0. (88)

Hence, on account of the inequalities (82), (84), (87) and (88),

dv
dµ

=
∂v
∂µ

+
∂v
∂q∗
· ∂q∗

∂µ
+

∂v
∂b∗
· db∗

dµ
> 0. (89)

If x ≥ b∗, then from the second line of (25) we readily obtain

dv
dµ

=
βλ0x

(r̃− µ)2 > 0. (90)

Thus, in all cases dv/dµ > 0, which implies that the function µ 7→ v is increasing (see Figure 5a).
Finally, fix µ and consider the function λ0 7→ v. If x ≥ b∗, then v is given by the second line of (25),

that is,

v =
βλ0x

λ0 + r− µ
− P. (91)

In particular, if µ = r, then (91) is reduced to v ≡ v∗ := βx− P. From (91) it follows that

dv
dλ0

=
βx(r− µ)

(λ0 + r− µ)2


< 0, µ > r,

= 0, µ = r,

> 0, µ < r.

Due to monotonicity of the function λ0 7→ b∗ (see (85)), v is given by (91) as long as λ0 ≥ λ∗, for some
critical value λ∗ ≡ λ∗(µ) ≤ ∞. It will be shown below (see (99)) that limλ0→∞ b∗ = P/β, so λ∗ < ∞
if and only x > P/β. Clearly, λ∗ is determined by the condition b∗ = x (see (23)) together with the
Equation (40). In the special case µ = r (assuming that x > P/β), these equations can be solved to yield

λ∗ =
P

βx

(
1
2 σ2βx
βx− P

+ r

)
. (92)

In particular, in Example 3 this gives λ∗
.
= 0.012420. From the consideration above, it also follows that

if x > P/β, then (see (91))
lim

λ0→∞
v = v∗ = βx− P. (93)

In the case x ≤ b∗, we use formula (86). Similarly to (89),

dv
dλ0

=
∂v

∂λ0
+

∂v
∂q∗
· ∂q∗

∂λ0
+

∂v
∂b∗
· db∗

dλ0
. (94)

Substituting the expressions (82), (84), (87), and (88) into (94), canceling immaterial factors and recalling
formula (81), the condition dv/dλ0 < 0 is reduced to(

1
2

σ2q∗ + r
)(

1
2

σ2q2
∗ + r

)
+ λ0r <

(
1

q∗ − 1
+ ln

(
b∗

x

))(
1
2

σ2q2
∗ + r + λ0

)
. (95)

It can proved that if µ ≥ r, then the inequality (95) holds for all λ0 < λ∗, but the analysis becomes
difficult for µ < r. Numerical plots (see Figure 5b) suggest that in the latter case the function λ0 7→ v
may be non-monotonic, with the derivative dv/dλ0 possibly vanishing in up to two points, provided
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that r− ε < µ < r with ε > 0 small enough. To be more specific, the plots in Figure 5b illustrate the
case x > P/β, with the common asymptote (93). For x ≤ P/β, the plots look similar (not shown here)
but with limλ0→∞ v = 0 (see (102) below), so the derivative dv/dλ0 may vanish in at most one point.

6.2. Limiting Values

Let us investigate the functions b∗ and v in the limits (i) µ → −∞ or µ ↑ r̃, and (ii) λ0 → ∞ or
λ0 ↓ 0 (µ < r), λ0 ↓ µ− r (µ ≥ r). Start by observing, using Equation (40), that

lim
µ→−∞

q∗ = ∞, lim
µ↑r̃

q∗ = 1, (96)

and moreover,

q∗ − 1 ∼ r̃− µ
1
2 σ2+ r̃

(µ ↑ r̃). (97)

Similarly, limλ0→∞ q∗ = ∞; on the other hand, if µ < r then limλ0↓0 q∗ = q∗|λ0=0 > 1, while if µ ≥ r
then

q∗ − 1 ∼ λ0 − (µ− r)
1
2 σ2+ µ

(λ0 ↓ µ− r). (98)

Hence, from (81) and (96) it readily follows that b∗ → ∞ (µ→ −∞) and

b∗ →
P( 1

2 σ2+ r̃)
βλ0

(µ ↑ r̃).

Also, using that q∗ → ∞ (λ0 → ∞), from (23) we get

b∗ → P
β

(λ0 → ∞). (99)

In the opposite limit, if µ > r then, according to (81) and (98),

b∗ →
P ( 1

2 σ2+ µ)

β(µ− r)
(λ0 ↓ µ− r), (100)

while if µ ≤ r then limλ0↓0 b∗ = ∞; in particular, for µ = r

b∗ ∼
P( 1

2 σ2 + r)
βλ0

(λ0 ↓ 0). (101)

For the value function v = v(x), from formula (86) we get, using (96) and (97),

lim
µ→−∞

v = 0, lim
µ↑r̃

v = ∞.

Furthermore, according to (93), if x > P/β, then v → v∗ = βx− P as λ0 → ∞. In the opposite case,
due to monotonicity of b∗ (see (85)) and the limit (99) we have b∗ > P/β ≥ x, so using formula (86)
and recalling that q∗ → ∞, we get

v ≤ P
q∗ − 1

→ 0 (λ0 → ∞). (102)

Now, consider the limit of v as λ0 approaches the lower edge of its range. If µ < r then (86) implies
that limλ↓0 v = 0, since b∗ → ∞ and q∗ → q∗|λ0=0 > 1. If µ = r then, using (98) and (101) (with µ = r),
we obtain

v ∼ βxλ
q∗−1
0 = βx exp

{
(q∗ − 1) ln λ0

}
→ βx (λ0 ↓ 0). (103)
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Finally, if µ > r, then from (86) it readily follows, according to (98) and (100),

v ∼ βx(µ− r)
λ− (µ− r)

→ ∞ (λ0 ↓ µ− r). (104)

6.3. Comparative Statics and Sensitivity Analysis

The goal of comparative statics is to understand how varying values of exogenous parameters
affect a target function of interest. For instance, consider the optimal threshold b∗ as a function of
both unemployment rate λ0 and wage drift µ. Rather then fixing one of these parameters and then
plotting b∗ against the remaining parameter (as was done in Figure 4), it is useful to plot a family of
comparative statics plots showing the isolines (or level curves) for different values (levels) of the function,
that is, b∗(λ0, µ) = const (see Figure 6a). As may be expected from Figure 4, the plots of the function
λ0 = λ0(µ) (determined implicitly by the level condition) behave as monotone decreasing graphs.
Analogous plots for the value function are presented in Figure 6b; the plots become non-monotonic for
v large enough. If λ0 is fixed then the value v grows with µ, in agreement with (89) and (90). Similarly,
if µ > r is fixed then v decreases with λ0, converging to the limit v∗ = βx− P as λ0 → ∞ (see (93)),
represented by curve II in Figure 5b. If v > v∗ then there are up to two different values of λ0 (and
common µ) producing the same value v, while for v smaller than but close enough to v∗, the number
of such roots may increase to three (see the discussion in Section 6.4).
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Figure 6. Isolines (level curves) of the optimal stopping problem solution on the (λ0, µ)-plane:
(a) b∗(λ0, µ) = const (optimal threshold (23)); (b) v(λ0, µ) = const (value function (25)). The values
of other parameters used throughout are as in Example 3: r = 0.0004, P = 9 000, β = 30, σ = 0.02,
and x = 346. The slanted dashed lines in both plots show the boundary µ = λ0 + r (see (11)).
In plot b, the horizontal dashed line indicates µ = r and the vertical dashed line shows λ∗

.
= 0.012420

(cf. Figure 5b).

Let us also comment on the sensitivity of our numerical examples presented in Section 5.4.
The question here is, how much the output values (say, the optimal threshold b∗and the value v) would
change under a small variation of one of the background parameters. In the linear approximation,
the change factor is given by the corresponding partial derivative. As in the previous sections,
we address the sensitivity with regard to the wage drift µ (around the set value µ = 0.0004) and the
unemployment rate λ0 (around λ0 = 0.01). Other model parameters are fixed as in Section 5.4, that is,
r = 0.0004, P = 9 000, β = 30, and x = 346. As for the volatility parameter σ, it is set to be σ = 0.04 as
in Example 2 or σ = 0.02 as in Example 3. The required partial derivatives of b∗ and v can be computed
using the formulas derived in Section 6.1; the results are presented in Table 1a.
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Table 1. Sensitivity check of numerical results for the functions b∗ and v in Examples 2 and 3:
(a) parametric derivatives and (b) increments in response to a 1%-change in the background parameters.

(a) Derivatives

Derivative Example 2 Example 3

db∗/dµ −16 037.57 −13 962.43
dv/dµ 842 062.30 993 991.20

db∗/dλ0 −6 323.813 −3 161.906
dv/dλ0 −46 485.530 −8 768.435

(b) Increments (euro)

Increment Example 2 Example 3

∆b∗ (µ) −0.06415 −0.05585
∆v (µ) 3.36825 3.97597

∆b∗ (λ0) −0.63238 −0.31619
∆v (λ0) −4.64855 −0.87684

Numerical values in Table 1a may seem quite big, but they should be offset by small background
values of the parameters, µ = 0.0004 and λ0 = 0.01. If we increase them by a small amount, say by 1%,
then the absolute increments would be

∆µ = 0.0004/100 = 4 · 10−6, ∆λ0 = 0.01/100 = 10−4.

Hence, using Table 1a, we obtain the corresponding approximate increments of the target functions b∗

and v (see Table 1b), which look more palatable. One interesting observation is that the value v reacts
about 5 times stronger to the change of the unemployment rate λ0 when the volatility σ gets 2 times
bigger (from σ = 0.02 in Example 3 to σ = 0.04 in Example 2); in contrast, the change of v in response
to an increase of the wage drift is much less pronounced. This highlights the primary significance of
the unemployment rate, which is of course only natural.

Sensitivity analysis with regard to the wage drift µ is also useful in the light of the difficulty
in estimation of µ from the data, mentioned in Section 5.2. The results in Table 1b suggest that a
reasonably small error in selecting µ has only a minor effect on the identification of the optimal
threshold b∗ and the value v; for instance, overestimating it by 1% will decrease b∗ by just 0.01 euro,
while the value v will be up by about 0.60 euro. Thus, an individual using a moderately inflated
value of their wage rate would take a slightly overoptimistic view about the timing of joining the
insurance scheme and its expected benefit. On the other hand, a risk-averse individual may take a
more conservative view and prefer to underestimate their wage drift µ, which will raise the threshold
b∗ resulting in a longer waiting time. For the insurance company though, it may be reasonable to
try and avoid underestimation of the wage drift of potential customers, so as to reduce the risk of
overpaying the benefits.

6.4. Economic Interpretation

Monotonic decay of the optimal threshold b∗ with an increase of the unemployment rate λ0

(see (85) and Figure 4b) has a clear economic appeal: a bigger unemployment rate λ0 means a higher
risk of losing the job, which demands a lower target threshold b∗ in order to expedite joining the
insurance scheme. The economic rationale for the monotonicity of b∗ as a function of µ (see (83) and
Figure 4a) is different—a bigger wage drift µ makes it more likely to reach a higher final wage Xτ0 by
the time of loss of job, so lowering the threshold b∗ adds incentive to an earlier entry.

Monotonic growth of the value v as a function of the wage drift µ (see (89), (90), and Figure 5a) is
also meaningful—indeed, when the wage drift µ gets bigger, there is more potential to reach a higher
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final wage Xτ0 by the time of loss of job, which increases the expected benefit β1 (see (9)) and, therefore,
the value v = v(x) of the insurance policy.

The behavior of the value function v = v(x) in response to a varying unemployment rate λ0 is
more interesting, as indicated by the plots in Figure 5b. In the case µ < r, it is satisfactory to see that
the value v, vanishing in the limit as λ0 ↓ 0, starts growing with λ0, thus reflecting a good efficiency
of the insurance policy against an increasing risk of unemployment. On the other side of the policy,
this may present a growing risk for the insurance company which will have to finance an increasing
number of claims. But with the unemployment rate λ0 getting ever bigger, the value v should stay
bounded, so must converge to a limit as λ0 → ∞, given by v∗ = βx − P if x > P/β (see (93)) or
v∗ = 0 otherwise (see (102)). In particular, Figure 5b shows that, for a certain range of µ, the value v
achieves its maximum at some λ0. However, the graphs also reveal that if µ keeps increasing then
the value plots may have a more complicated non-monotonic behavior, which is harder to interpret
economically.

On the other hand, as is evident from Figure 5b, in the case µ ≥ r our model produces a
counter-intuitive increase of the value v as λ0 approaches the left edge of its range—it is hard to believe
that the value may grow as the risk of unemployment falls. Moreover, as was computed in (104), for
µ > r the corresponding limit of v is infinite! But perhaps the most striking example emerges in the
borderline case µ = r, whereby formally setting λ0 = 0 we would get, according to (101), that the
threshold b∗ is infinite (unlike the case µ > r, see (101)), so that the wage process (Xt) never reaches it;
therefore, we never buy the insurance policy (understandably so, as there is no risk of losing the job),
and nonetheless its value is positive in this limit (see (93)). The explanation of this paradox lies in the
way how the optimal stopping is exercised for small λ0 > 0: here, the threshold b∗ is high and there is
only a very small probability that it is ever reached; before this happens, we stay idle, but if and when
the threshold is hit then the expected payoff is rather big, which contributes enough to the expected
net present value to keep it positive in the limit λ0 ↓ 0 (see (103)).

Thus, the artefacts in our model as indicated above are caused by not putting any constraint on
the waiting times. This can be rectified, for example, by introducing mortality, as was sketched in
Section 2.3; in particular, such a regularization should restore a zero limit of v at the lower edge of λ0.

7. Including Utility Considerations

7.1. Perpetual American Call Option

Our model (and its solution) resembles that of the optimal stopping problem for the (perpetual)
American call option (see a detailed discussion in Shiryaev 1999, chp. VIII, §2a). More specifically,
the holder of a call option may exercise the right to buy an asset (e.g., one unit of stock) at any time for
a predetermined strike price K, where the decision is based on observations over the random process
of stock prices (St), assumed to follow a geometric Brownian motion model. The term perpetual is used
to indicate that there is no expiration date, so the right to buy extends indefinitely.

The optimal time instant τ = τ∗ to buy, bearing in mind a purely financial target of maximizing
the profit Sτ − K, is the solution of the following optimal stopping problem,

V(x) = sup
τ

Ex
(
e−rτ(Sτ − K)+

)
, (105)

where St is a geometric Brownian motion with parameters µ < r and σ > 0, the supremum is taken
over all stopping times τ adapted to the filtration associated with (St). The positive truncation (·)+
corresponds to the constraint that the option holder is not in a position to buy at the price K higher
than the current spot price St. The solution to (105) is well known (Shiryaev 1999, chp. VIII, §2a) to be
given by the hitting time τ∗ = τb∗ , with the optimal threshold

b∗ =
Kq∗

q∗ − 1
,
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where q∗ is given by formula (24) but with r̃ = r + λ0 replaced by r. The corresponding value function
is given by

V(x) =

(b∗ − K)
( x

b∗
)q∗

, x ∈ [0, b∗],

x− K, x ∈ [b∗, ∞).

Observe that our optimal stopping problem (17) can be rewritten as

v(x) = β1 sup
τ

Ex
(
e−r̃τ(Xτ − K̃)

)
, K̃ := P/β1, (106)

which makes it look very similar to the perpetual American call option problem (105). However,
there are several important differences. Firstly, unlike the gain function in the American call option
problem (105), no truncation is applied in (106), because the financial gain is not the sole priority in this
context and therefore the individual is prepared to tolerate negative values of β1Xτ − P (despite the
fact that, under the optimal strategy, the value function v(x) is always non-negative, see Lemma 2(i)
and formula (25)).5 In addition, as was mentioned in Remark 5 and in Section 5.3, the hitting time τb∗

may be infinite with a positive probability (i.e., when µ < 1
2 σ2), which may be deemed impractical in

the insurance context, but is considered to be acceptable for exercising the American call option. This
simple observation helps to realize the fundamental conceptual difference between the two problems;
indeed, the insurance optimal stopping does not focus only on the financial gain, but also places
an ultimate priority on acquiring an insurance cover per se. Hence, a more realistic formulation of
the optimal stopping problem in the UI model should involve a certain utility, which specifies the
individual’s weighted preferences for satisfaction; for example, impatience against waiting for too
long before joining the UI scheme.

7.2. Heuristic Optimal Stopping Models with Utility

Here, we present a few informal thoughts about the possible inclusion of utility in the optimality
analysis. As already mentioned, in the case µ < 1

2 σ2 the probability of hitting the critical threshold b∗

is less than 1, so there is a probability that the individual will never join the insurance scheme if the
optimal stopping rule is strictly followed. This is of course not desirable, as the individual puts high
priority on getting insured at some point in time (hopefully, prior to loss of job).

One simple way to take these additional requirements into account is to extend the optimal
stopping problem (17) as follows:

v†(x) = sup
τ

[
κ Px(τ < ∞) + eNPV(x; τ)

]
= sup

τ
Ex

(
κ1{τ<∞}+ e−r̃τ g(Xτ)

)
, (107)

where the supremum is again taken over all stopping times τ adapted to the process (Xt), and the
coefficient κ ≥ 0 is a predefined weight representing the individual’s personal attitude (preference)
towards the two contributing terms. If Px(τ < ∞) = 1 then the first term in (107) is reduced to a
constant (κ), leading to a pure optimal stopping problem as before; however, if Px(τ < ∞) < 1 then
the first term enhances the role of candidate stopping times τ that are less likely to be infinite.

The problem (107) can be rewritten in a more standard form by pulling out the common
discounting factor under expectation,

v†(x) = sup
τ

Ex
(
e−r̃τ G(τ, Xτ)

)
, (108)

5 The equivalence of the problems (105) and (106), which we have established directly, is not a coincidence: it is known
(Villeneuve 2007, Proposition 3.1, p.185) that, under mild assumptions, the solution of the general optimal stopping problem
v(x) = supτ Ex(e−rτ g(Xτ)) does not change with the positive truncation of g(·).
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with
G(t, x) := κ er̃t+ g(x), (t, x) ∈ [0, ∞]× [0, ∞). (109)

Unfortunately, the optimal stopping problem (108) is not amenable to an exact solution as before,
because the gain function (109) depends also on the time variable (Peskir and Shiryaev 2006, chp. IV).
In this case, the problem (108) may again be reduced to a suitable (but more complex) free-boundary
problem, but the hitting boundary (of a certain set on the (t, x)-plane) is no longer a straight line.

More generally, our optimal stopping problem can be modified by replacing the indicator in (107)
with the expression e−ρτ (ρ > 0),

v†(x) = sup
τ

Ex
(
κ e−ρτ+ e−r̃τ g(Xτ)

)
, (110)

which retains the flavour of progressively penalizing larger values of τ, including τ = ∞. Here, the
gain function (109) takes the form

G(t, x) = κ e(r̃−ρ)t+ g(x).

In particular, by choosing ρ = r̃ the problem (110) is transformed into

v† = sup
τ

Ex
(
e−r̃τ(β1Xτ + κ − P)

)
,

which is the same problem as (17) but with the premium P replaced by P− κ.
Another, more drastic approach to amending the standard optimal stopping problem (17) stems

from the observation that even if τ < ∞ (Px-a.s.), it may take long to wait for τ to happen—for instance,
if Ex(τ) = ∞. In other words, it is reasonable to take into account the expected value of τ, leading to
the combined optimal stopping problem

v†(x) = sup
τ

[
κ Px(τ < ∞) + κ exp{−Ex(τ)}+ eNPV(x; τ)

]
. (111)

If Px(τ < ∞) < 1 then Ex(τ) = ∞ and the problem (111) is reduced to (107), whereas if Px(τ < ∞) = 1
then, effectively, only the term with the expectation remains in (111). However, a disadvantage of the
formulation (111) is that it cannot be expressed in the form (108). Trying to amend this would take us
back to the version (110).

It is interesting to look at how the value function depends on the preference parameter κ. The next
property is intuitively obvious.

Proposition 2. For each x > 0, the value function v†(x) of the optimal stopping problem (110) is a strictly
increasing function of κ. The same is true for the problem (111).

Proof. We use the notation v†(x; κ) to indicate the dependence of the value function on the parameter κ.
For κ1 < κ2 and any stopping time τ 6≡ ∞, we have

Ex
(
κ1 e−ρτ+ e−r̃τ g(Xτ)

)
< Ex

(
κ2 e−ρτ+ e−r̃τ g(Xτ)

)
≤ v†(x; κ2). (112)

Suppose that τ∗ is a maximizer for the optimal stopping problem (110) with κ = κ1. Then, according
to (112),

v†(x; κ1) = Ex
(
κ1 e−ρτ∗+ e−r̃τ∗g(Xτ∗)

)
< v†(x; κ2),

that is, v†(x; κ1) < v†(x; κ2) as claimed. Similar arguments apply to the problem (111).



Risks 2019, 7, 94 34 of 41

7.3. Suboptimal Solutions

As already mentioned, the optimal stopping problems outlined in Section 7.2 are difficult to solve
in full generality. To gain some insight about the qualitative effects of the added utility-type terms,
it may be reasonable to restrict our attention to solutions in the subclass of hitting times τb. Despite
such solutions will only be suboptimal, the advantage is that the reduced problems can be solved
using that all the ingredients are available explicitly (see Section 4.1).

For example, the original problem (107) is replaced by

u†(x) = sup
b≥0

[
κ Px(τb < ∞) + eNPV(x; τb)

]
. (113)

Similarly as in Section 4.3, we only need to maximize the functional in (113) over b ≥ x. Indeed, if
b ≤ x then τb = 0 (Px-a.s.) and, according to (7) and (16),

sup
b≤x

[
κ Px(τb < ∞) + eNPV(x; τb)

]
= κ + eNPV(x; 0) = κ + β1x− P,

whereas

sup
b≥x

[
κ Px(τb < ∞) + eNPV(x; τb)

]
≥
[
κ Px(τb < ∞) + eNPV(x; τb)

]
b=x

= κ + β1x− P.

Assume that µ − 1
2 σ2 < 0 (for otherwise Px(τb < ∞) = 1, thus leading to the same optimal

stopping problem as before). Then, according to (65), the probability Px(τb < ∞) becomes a strictly
decreasing function of b ∈ [x, ∞), and so the maximum in (113) is achieved by a different stopping
strategy, with a lower optimal threshold b†. More precisely, by virtue of formulas (65) and (72),
the problem (113) is explicitly rewritten as

u†(x) = sup
b≥x

[
κ
( x

b

)1−2µ/σ2

+ (β1b− P)
( x

b

)q∗
]

, (114)

where q∗ > 1 is defined in (24). Differentiating with respect to b, it is easy to check that the maximizer
for the problem (114) is given by

b† = min

{
b ≥ x : aκ

(
b
x

)q∗−a
+ (q∗ − 1)β1b ≥ Pq∗

}
,

where a := 1− 2µ/σ2 < 1 < q∗.
The following (slightly artificial) version of the utility keeps the spirit of (113) but is amenable to

the exact analysis:

u†(x) = sup
b≥0

[
κ
{

Px(τb < ∞)
}q∗/(1−2µ/σ2)

+ eNPV(x; τb)

]
. (115)

Indeed, using the same substitutions (65) and (72) as before, (115) is reduced to (cf. (114))

u†(x) = sup
b≥x

[
(β1b + κ − P)

( x
b

)q∗]
, (116)

which is the same problem as (71) but with P replaced by P− κ (cf. (72)). Therefore, from (73) we
immediately obtain the maximizer

b† =
(P− κ)q∗
β1(q∗ − 1)

= b∗− κq∗
β1(q∗ − 1)

≤ b∗. (117)
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This is a strictly decreasing (linear) function of κ; in particular, b† = b∗ if κ = 0 and b† = 0 if κ = P. The
corresponding value function is given by (cf. (74))

u†(x) =

(β1b† + κ − P)
( x

b†

)q∗
, x ∈ [0, b†],

β1x + κ − P, x ∈ [b†, ∞),
(118)

or more explicitly (cf. (75))

u†(x) =


P− κ

q∗ − 1

(
β1(q∗ − 1)x
(P− κ)q∗

)q∗
, 0 ≤ x ≤ (P− κ)q∗

β1(q∗ − 1)
,

β1x + κ − P, x ≥ (P− κ)q∗
β1(q∗ − 1)

.
(119)

If x is fixed then the problem value u†, as a function of κ, is given by the first or the second line in (119)
according as κ ∈ [0, κ†] or κ ∈ [κ†, ∞), respectively, where

κ† := P− β1(q∗ − 1)x
q∗

. (120)

The dependence of b† and u†(x) upon the utility parameter κ ∈ [0, P] is illustrated in Figure 7, while
Figure 8 demonstrates the functional dependence of the hitting probability Px(τb < ∞) and the mean
hitting time Ex(τb) upon the variable threshold b ≥ 0, along with the corresponding plots of the
expected net present value eNPV(x; τb).
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Figure 7. Functional dependence on the preference weight κ in the reduced optimal stopping
problem (115): (a) the optimal threshold b† (see (117)) and (b) the value function u†(x) (see (119)).
Numerical values of the parameters used are as in Example 3: r = µ = 0.0004, P = 9 000,
β = 30, σ = 0.02, and x = 346. In particular, if κ = 0 then b† coincides with b∗ .

= 352.3705 and
u†(x) coincides with v(x) .

= 1389.6190. The dashed vertical lines on both plots indicate the value
κ† .

= 162.7108 (see (120)) separating different regimes for u†(x) according to (119). When κ = κ†,
we have b† = x = 346, shown as a dashed horizontal line in plot a; the corresponding value function
is given by u†(x) = β1x + κ†− P .

= 1542.7110 (see (118)), shown as a dashed horizontal line in plot b.
Note that the graph of u†(x) in plot b looks almost linear for κ ∈ [0, κ†], because the ratio κ/P is
quite small, 0 ≤ κ/P ≤ κ†/P .

= 0.01808; the slope here is approximately v(x)(q∗ − 1)/P .
= 0.88448,

as compared to slope 1 of the linear graph for κ ≥ κ†.
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Figure 8. Theoretical graphs for functionals of the hitting time τb versus threshold b ≥ 0. Upper row:
(a) the hitting probability Px(τb < ∞) (see (65)) and (b) the mean hitting time Ex(τb) (see (66)). Bottom
row: the expected net present value eNPV(x; τb) (see (72)) with µ < 1

2 σ2 (c) or µ > 1
2 σ2 (d). The values

of parameters used throughout are as in Section 5.4: x = 346, P = 9 000, β1 = 30, µ = 0.0004, and
σ = 0.04 (left) or σ = 0.02 (right). The dashed vertical lines in each plot indicate x and b∗ .

= 404.7410
(left) (see Example 2) or b∗ .

= 352.3705 (right) (see Example 3).

Remark 8. Note that u†(x) is a strictly increasing function of κ ∈ [0, P], in accord with Proposition 2.
In particular, u†(x) coincides with the original value function u(x) given by (75), but with the premium P
replaced by P− κ. This can be interpreted as the individual’s consent to convert additional satisfaction, gained
by virtue of pursuing the optimal stopping problem (115) instead of (17), into a higher premium, P† = P + κ.
Such an effect is characteristic of the use of risk-averse utility functions under the Expected Utility Theory
(Kaas et al. 2008); see also a discussion below in Section 7.4.

In the case µ > 1
2 σ2, instead of (111) we may consider the simplified problem

u†(x) = sup
b≥0

[κ exp{−Ex(τb)}+ eNPV(x; τb)] . (121)

Upon the substitution of formulas (66) and (72), it is rewritten in the form (cf. (114))

u†(x) = sup
b≥x

[
κ

ln(b/x)
µ− 1

2 σ2
+ (β1b− P)

( x
b

)q∗
]

. (122)
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Again, the maximization problem (122) can be solved (at least, numerically). For an analytic solution,
it is convenient to modify the problem (121) as follows,

u†(x) = sup
b≥0

[
κ exp

(
− q∗

µ− 1
2 σ2

Ex(τb)

)
+ eNPV(x; τb)

]
.

Similarly to (122), this leads to the maximization problem that coincides with (116) and, therefore,
has the same solution (117) and (118) (or, equivalently, (119)).

7.4. Connections to Expected Utility Theory

The considerations above can be linked to the standard Expected Utility Theory (Kaas et al. 2008).
In the usual setting, it is assumed that an individual uses (perhaps, subconsciously) a certain utility
U(w), as a function of financial wealth w, to assess losses, gains and the resulting satisfaction.
Generically, given the current wealth w and some random future loss Y, the expected loss (measured
via utility U(·)) may be expressed as E

[
U(w−Y)

]
. The individual is inclined to pay a premium P and

buy the insurance policy as long as the expected utility without insurance is no more than U(w− P),

E [U(w−Y)] ≤ U(w− P). (123)

The balance condition
E [U(w−Y)] = U(w− P) (124)

determines the maximum premium Pmax the customer is prepared to pay (in fact, at this point it makes
no difference whether to buy the insurance or not).

In the baseline case with U(w) ≡ w, the conditions (123) and (124) are reduced to

P ≤ Pmax = E(Y). (125)

However, choosing a different utility function may well change this threshold. For instance, if the
random loss Y has exponential distribution with parameter θ = 0.001, then according to (125) we have
Pmax = E(Y) = 1/θ = 1000. In contrast, let the utility function be chosen as U(w) = 1− exp

(
− 1

2 θw
)
.

Here, the utility is between 0 and 1 if the wealth w is positive, but it becomes increasingly negative for
a negative wealth; that is, strong weight is placed against negative wealth, which may be characteristic
of a risk-averse individual. In this case, it is easy to check that

Pmax =
2 ln 2

θ
= 1386.294 > 1000.

Thus, the individual is happy to pay more than before to protect themselves from the perceived
risk of significant losses. That is to say, an additional amount of satisfaction is convertible into an
extra premium.

In our case, if the UI was to be entered immediately, at time t = 0, then the value of this decision
would be eNPV(x; 0) = β1x− P (see (8) and (16)). Clearly, in order for this to be non-negative, the
premium P must satisfy the condition

P ≤ Pmax = β1x.

For instance, in the setting of the numerical example in Section 5.4, we get Pmax = 30× 346 = 10 380,
while the set premium is P = 9 000.

Similarly, if the decision was taken at a stopping time τ, then, conditional on the wage Xτ ,
the maximum premium payable would be given by Pmax = β1Xτ . Thus, the value of Pmax goes up or
down together with the current wage. However, in our setting the entry time is not decided in advance,
being subject to the stopping rule based on observations over (Xt). As a result, the value function v(x)
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(x > 0) of the optimal stopping problem is always positive for any premium P, no matter how high
(see formula (26)). Apparently, this is manufactured by selecting the threshold b∗high enough, which
guarantees that, in the (rare) event of hitting it, the mean value of this strategy will be positive.

This may not be satisfactory from the standpoint of the Expected Utility Theory; however, there is
no contradiction, because in its standard version this theory does not allow for an optional stopping.
Adding utility terms to the gain function in the spirit of Sections 7.2 and 7.3 helps to amend the
situation (see Remark 8), but the maximum premium payable still remains indeterminate.

The explanation of this paradox lies in the simple fact that the gain function in the optimal
stopping problems considered so far does not include any losses. A simple way to account for such
losses is to include consumption in the model. Namely, suppose for simplicity that the consumption
rate c is constant; for instance, the net present value of consumption over time interval [0, t] is given by

∫ t

0
e−rsc ds =

c (1− e−rt)

r
.

It is natural to assume that the wage Xt is sufficient to finance the consumption, so that Ex(Xt) =

x eµt ≥ c for all t ≥ 0 (see (3)). In turn, for this to hold it suffices to assume that X0 = x ≥ c and µ ≥ 0.
Hence, we need to take into account consumption only over the unemployment spell [τ0, τ0 + τ1],
where the wage is replaced by the UI benefit. The expected net present value of this consumption is
given by

γ := E
(

e−rτ0

∫ τ1

0
e−rsc ds

)
= E(e−rτ0) · E

(
c (1− e−rτ1)

r

)
=

λ0c
(r + λ0)(r + λ1)

,

using independence of τ0 and τ1 and their exponential distributions (with parameters λ0 and λ1,
respectively). Thus, our basic optimal stopping problem (17) is modified to

v‡(x) = sup
τ

Ex
(
[e−r̃τ g(Xτ)− γ

)
,

which has the same solution as before (see Section 2.5) but with the new value function
v‡(x) = v(x)− γ, that is (cf. (25)),

v‡(x) =

(β1b∗ − P)
( x

b∗
)q∗
− γ, x ∈ [0, b∗],

β1x− P− γ, x ∈ [b∗, ∞).

Now, the inequality v‡(x) ≥ 0 can be easily solved for P to yield

P ≤ P‡
max :=

β1b∗ − γ

(
b∗

x

)q∗
, x ∈ [0, b∗],

β1x− γ, x ∈ [b∗, ∞).
(126)

Note that P‡
max in (126) is a decreasing function of γ, but an increasing function of x. Thus, as could be

expected, the maximum affordable premium gets lower with the increase of consumption, but becomes
higher with the increase of the wage.

Remark 9. Of course, consumption can also be incorporated into the optimal stopping models involving utility
(see Sections 6.3 and 7.2), but we omit technical details.



Risks 2019, 7, 94 39 of 41

8. Concluding Remarks

In this paper, we have set up and solved an optimal stopping problem in a stylized UI model.
The model and its solution are useful by illustrating approaches to optimal strategy of an individual
seeking to get insured. By including consumption in the model, we have also demonstrated how a fair
premium can be calculated, which makes our UI model usable also from the insurer’s perspective.

An explicit closed-form solution of the corresponding optimal stopping problem was possible
due to some simplifying assumptions—in particular, exponential distribution of time τ0 to loss of job
and constant inflation rate r. The analysis also strongly relied on the simplest model for the wage
process (Xt), that is, geometric Brownian motion with constant drift µ and volatility σ2.

Let us indicate a few directions of making our UI model more realistic. Firstly, indefinite term of
UI insurance could be replaced by a finite expiration term for the benefit schedule (akin to American
call option with finite horizon), which would lead to a harder (time-dependent) optimal stopping
problem (cf. Peskir and Shiryaev 2006, §25.2). Also, the assumption of exponential distribution of
τ0 needs to be tested on the basis of real unemployment data. Note, however, that fitting a different
distribution for τ0 will invalidate the expression (13) for the expected net present value eNPV(x; τ)

and, therefore, will change the gain function in the optimal stopping problem (17), making it more
difficult to solve.

The parameters of the model may also need to be made time-dependent, causing obvious
complications to the model. On the other hand, the implicit assumption of passive waiting for a
new job during the unemployment spell may not be realistic, or at least not desirable as individuals
would rather be expected to seek jobs more proactively. Thus, it may be interesting to combine our UI
model with job-seeking models such as in Boshuizen and Gouweleeuw (1995).

The inclusion of utility terms in the optimal setting is novel in this context, and illuminates
significant changes in the individual’s behavior when driven by utility considerations. In particular,
the value of the optimal stopping problem (110) is an increasing function of the preference coefficient
κ (see Proposition 2). This result is intuitively appealing, as it conforms with the usual impact of
utility function (under the Expected Utility Theory), allowing one to convert extra satisfaction into
extra premium. This is confirmed by our analysis of suboptimal solutions in Section 7.3 (see Figure 7).
Finally, it would be interesting to study the optimal stopping problem (110) in more detail.
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