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Abstract: We aim to understand the dynamics of Bitcoin blockchain trading volumes and, specifically,
how different trading groups, in different geographic areas, interact with each other. To achieve this
aim, we propose an extended Vector Autoregressive model, aimed at explaining the evolution of
trading volumes, both in time and in space. The extension is based on network models, which improve
pure autoregressive models, introducing a contemporaneous contagion component that describes
contagion effects between trading volumes. Our empirical findings show that transactions activities
in bitcoins is dominated by groups of network participants in Europe and in the United States,
consistent with the expectation that market interactions primarily take place in developed economies.
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1. Introduction

The bitcoin is the leading cryptocurrency by capitalisation, with a market share greater than 50%
of the total cryptocurrency market, corresponding to 330 billion USD at its historical peak, in December
2017. Recent studies report that the same market capitalisation is concentrated on a limited number
of owners. In particular, Credit Swiss in January 2018 provided a study which indicates that 97% of
Bitcoins are held by 4% of all Bitcoin addresses. Bloomberg reported similar findings by suggesting
that about 40 percent of Bitcoin is held by perhaps 1000 users.

The previous empirical findings suggest that the trading movement by a few bitcoin owners has
the potential to cause major disruptions in the price of all cryptocurrencies. An example of this is the
transaction that took place on 12 November 2017, when a user moved 25,000 Bitcoins, worth at the
time USD159 million, to an exchange. A very important research question is therefore: “to find the
bitcoin owners who are most connected in the markets, in terms of trading volumes”.

Unfortunately, the anonymity of bitcoin transactions makes very difficult to find an answer to the
previous question. However, although it may be difficult to trace the “physical” identity of the users,
it may be possible to understand their “statistical” identity, applying appropriate econometric models
to the (very large) database of payments generated by bitcoin trades themselves. This may help to
answer a less demanding, but still important research question: “to find groups of bitcoin owners who
are most connected in the market, in terms of trading volumes”.

In this study, we classify bitcoin owners according to their observed trading behaviour, in ten
classes of increasing average size. We add to this classification the geographical area of the owners,
defined (very broadly) by the continent to which they belong. We then apply network econometric
models to understand the map of interconnections that exist between the defined owner groups and,
in this way, identify the trading groups who lead bitcoin markets, along time.
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The econometric research on the dynamics of cryptocurrency markets has mainly been focused on
the issue of price discovery and prediction. In this context, many of the stylized facts that are valid for
traditional financial time series apply, to some extent, also in the context of these alternative currencies
Elendner et al. (2017). A large stream of papers consider the dynamics of crypto prices, using VAR
models (Bianchi (2019); Catania et al. (2019); Bohte and Rossini (2019); Giudici and Abu-Hashish
(2019)), VECM models (Giudici and Pagnottoni (2019a), (2019b)), similarity networks Giudici and
Polinesi (2019) and Generalized Autoregressive Conditional Hetheroskedasticity (GARCH) models
Bouoiyour et al. (2016). The results from the different papers, however, seem far from consistent. In our
view, this is mostly due to the nature of the cryptocurrencies. For example, they are much more volatile
compared to traditional currencies, their exchange rates cannot be assumed to be independently and
identically distributed and their global nature limits researchers’ ability to account for systematic
causal factors.

In our opinion, it becomes necessary to move away from traditional price volatility models,
and focusing on the identification of the mechanisms that drive trading behaviour, as in our research
question. The available literature on trading volume dependency in cryptocurrency markets is
very limited. Notable exception to this are the papers by Tasca et al. (2018), Foley et al. (2019)
and Chen et al. (2018). In particular, Tasca et al. (2018) attempt to identify different clusters within
the Bitcoin economy by analyzing the trading patterns and ascribing them to particular business
categories. Using network-based methods, the authors have identified three market regimes that have
characterized Bitcoin transactions.

Our work intends to extract the network of payment relationship between Bitcoin users, owners,
similar to Tasca et al. (2018). We extend their work, acquiring evidence on whether trading volumes
behaviors of different groups of Bitcoin traders, defined by volume size and geographical region,
are interconnected and, therefore, affect each other.

From an econometric viewpoint, we propose an econometric network model which extends
Vector Autoregressive models. The extension is based on network models, which improve over pure
autoregressive models, as they introduce a contemporaneous contagion component that describes
contagion effects between groups of traders.

The validity of the model was demonstrated in recent studies on systemic risk, in which
researchers have proposed correlation network models, able to combine the rich structure of financial
networks (see, e.g., Lorenz et al. (2009); Battiston et al. (2012)) with a more parsimonious approach
that can estimate contagion effects from the dependence structure among market prices. The first
contributions in this framework are Billio et al. (2012) and Diebold and Yilmaz (2014), who derive
contagion measures based on Granger-causality tests and variance decompositions. More recently,
Ahelegbey et al. (2016) and Giudici and Spelta (2016) have extended this methodology introducing
stochastic correlation networks.

While bivariate systemic risk models (such as Acharya et al. (2012), Acharya et al. (2016) and
Adrian and Brunnermeier (2015)) explain whether the risk of an institution is affected by a market
crisis event or by a set of exogenous risk factors, correlation network models explain whether the same
risk depends on contagion effects, in a cross-sectional perspective.

We extend the approach of Giudici and Spelta (2016) enriching their graphical Gaussian model
with an autoregressive component derived through a VAR model, as in Ahelegbey et al. (2016). In
contrast with the latter, we employ partial correlations rather than correlations, and we do not follow a
Bayesian approach.

We remark that our work is related to some recent papers that explore the cross-country
trading in cryptocurrency markets Makarov and Schoar (2019), the network dynamics across
cryptocurrency markets Ji et al. (2019) and the information content of trading volumes in crypto
investing Bianchi (2019); Bouri et al. (2019). We combine the views of the previous paper into a
network-based analysis of bitcoin trading patterns across countries and trading groups.
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To demonstrate our methodology, we will consider the all world’s bitcoin transactions,
independently of the exchange in which they were traded, in the time period 25 February 2012
to 17 July 2017.

Our empirical findings show that transactions activities in bitcoins is dominated by groups of
network partici- pants in Europe and in the United States, consistent with the conventional wisdom
that posits market interactions, at least nominally, primarily take place in developed economies.

The paper is organized as follows: Section 2 contains our proposed model; Section 3 presents
the available data; Section 4 the empirical application of the proposed model to the obtained data;
Section 5 contains some concluding remarks.

2. Proposal

Let yi
t be the traded volume of Bitcoin by a specific group of traders i (i = 1, . . . , I), at time

t (t = 1, . . . , T). We assume that yi
t is a function of: (a) an autoregressive element that captures the

dependence on the past trading volumes of the same group; (b) a cross-sectional element that captures
the contemporaneous dependence on the trading volumes of other groups; (c) a stochastic residual.
Mathematically, we assume that in the case of the Bitcoin traded volumes, for each volume i and time t
the following equation holds:

yi
t =

p0

∑
p=1

αi
pyi

t−p + ∑
j 6=i

βijyj
t + εi

t, (1)

where p is a time lag (with a maximum value of p0 < t), αi
p and βij are the coefficients which are to be

estimated, and εi
t are residuals, which we assume standard Gaussian and independent.

Equation (1) models the Bitcoin volume dynamics as a structural VAR, in which the traded volume
in each group depends on its p past values, through the idiosyncratic autoregressive component
∑

p0
p=1 αi

pyi
t−p and, in addition, it depends on the contemporaneous values of the other groups, through

the systemic component ∑j 6=i βijyj
t.

Defining B0 as a I × I symmetric matrix with null diagonal elements containing the
contemporaneous coefficients, the previous model can be expressed in a more compact matrix form, as
follows:

Yt =
p0

∑
p=1

ApYt−p + B0Yt + εt, (2)

where Yt is a I-dimensional vector containing the traded volumes of all groups at time t, Yt−p is the
same vector, lagged at time t− p, Ap is a I × I matrix that contains the autoregressive coefficients and
εt is a vector of residuals.

In the following step, we transform the model in (2) into a reduced form for the purpose of
facilitating the estimation process, thus becoming:

Yt = Γ1Yt−1 + ... + Γp0Yt−p0 + Ut, (3)

with 
Γ1 = (I− B0)

−1 A1,

...

Γp0 = (I− B0)
−1 Ap0,

Ut = (I− B0)
−1εt.

(4)
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This reduced form allows the estimation of the vectors of modified autoregressive coefficients
Γ1, ..., Γp0, using time series data on the traded volumes contained in the stacked vector
{Y1, . . . , Yt, . . . , YT}.

However, we are not interested in estimating Γp. In fact, the purpose of this analysis is
to disentangle its autoregressive and contemporaneous components, thus separately estimating
{A1, ..., Ap0} and B0. In this sense, once B0 is obtained, {A1, ..., Ap0} can be derived from (4).

To estimate B0, note that (I− B0)Ut = εt, so that Ut = B0Ut + εt. This implies that, for each
group i,

Ui
t = ∑

j 6=i
βijU j

t + εi
t, (5)

meaning that the off-diagonal elements of B0 can be obtained regressing each modified residual,
derived from the application of (3), on those of the other groups.

Please note that the regression model in (5) is based on the transformation derived in Equation
(4), which makes the modified residuals correlated. The direction of such correlation is, however,
unknown. In the application of (5) it is, therefore, not clear which volume residual assumes the form
of a response variable, and which one of an explanatory regressor.

To determine the direction of such dependence, we propose to approximate each pair of regression
coefficients βij and βji, with their partial correlation coefficient, which is undirected.

Mathematically, let Σ = Corr(U) be the correlation matrix between the modified residuals, and let
Σ−1 be its inverse, with elements σij. The partial correlation coefficient ρij|S between the residuals
Ui and U j, conditional on the remaining residuals (Us, s = 1, . . . , S), where S = I \ {i, j}, can be
obtained as:

ρij|S =
−σij
√

σiiσjj
. (6)

It can be shown that:

|ρij|S| =
√

βij · βji, (7)

which means that the absolute value of the partial correlation coefficient between Ui and U j, given all
the other residuals, can be obtained as the geometric average between the coefficients βij and βji

defined by equation (5) setting, respectively, i rather than j as response variables. Equation (7) justifies
the replacement of βij and βji with their corresponding partial correlation coefficient ρij|S.

From an economic viewpoint, the partial correlation coefficient expresses how the trading volume
of node i is affected by the contemporaneous trading volume of node j (j 6= i), keeping the other
volumes fixed.

An important advantage that derives from the employment of partial correlations lies in
the possibility of employing correlation network models based on the conditional independence
relationships described by partial correlations.

More precisely, let us assume that the vectors Ut are independently distributed according to a
multivariate normal distribution NI (0, Σ), where Σ represents the correlation matrix (that we assume
to be non-singular).

A correlation network model can be represented by an undirected graph G such that G = (V, E),
with a set of nodes V = {1, ..., I}, and an edge set E = V ×V that describes the connections between
the nodes. G can be represented by a binary adjacency matrix E with elements eij, each of them
providing the information of whether a pair of vertices in G is (symmetrically) linked between each
other (eij = 1) or not (eij = 0). If the nodes V of G are put in correspondence with the random variables
U1, ..., UI , the edge set E induces conditional independences on U via the so-called Markov properties
(see e.g., Lauritzen (1996)).
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Following up on (7), Whittaker (1990) proved that the following equivalence holds:

ρij|S = 0⇐⇒ Ui ⊥ Uj|UV\{i,j} ⇐⇒ eij = 0 (8)

where the symbol ⊥ indicates conditional independence.
From a graph theoretic viewpoint, the previous equivalence means that a link between two

volume residuals is present if and only if the corresponding partial correlation coefficient is significantly
different from zero.

From a financial viewpoint, the previous equivalence implies that, if the partial correlation
between two measures is equal to zero, the corresponding volumes residuals are conditionally
independent and, therefore, the corresponding groups do not (directly) impact each other.

From a statistical viewpoint, it is also possible to test the null hypotheses that two groups of Bitcoin
owners are conditionally independent by controlling whether the corresponding partial correlation
coefficient is equal to zero, by means of the statistical test described in Whittaker (1990).

However, this poses a problem of multiple testing, and correcting for this problem could results
in loss of power (for example using Bonferroni’s inequality). One of the most widely used method
for limiting the number of spurious edges—while at the same time obtaining networks that are more
interpretable,—is through the use of a regularization approach. One such prominent approach of
regularization is the ‘least absolute shrinkage and selection operator (LASSO) which in its essence,
allows us to set estimates of exactly zero. More formally, the LASSO limits the sum of absolute
partial correlation coefficients which in turn lead to overall shrinkage of estimates and inviolably some
become zero. Mathematically, if σ̂ represents the sample variance–covariance matrix) LASSO aims
to estimate the precision matrix by maximizing the penalized likelihood function (with λk being the
penalty parameter).

l(Θ) = log detΘ−tr(σ̂Θ)− λk ∑i,j(|Θi,j|)

For the purpose of our study, both the significance testing and the graphical LASSO serve as a
robustness check for identifying the true network that emerges between Bitcoin owner groups.

3. Data

We consider all data from the Bitcoin blockchain, from 25 February 2012 to 17 July 2017 (1969
days with 1843 observed days), described in detail in Chen et al. (2018) . Bitcoin blocks are published
approximately every 10 min and contain information about the transaction size, the account ID
(anonymous), the participating accounts and the timestamp of the transactions.

The previous information is very useful to understand the time dynamics of volume transactions,
but it indicates nothing about the nature of the bitcoin owners who generate the trade. Trying to
capture some kind of information on bitcoin traders, we consider the website Blockchain.info provides
information about the IP address of the relying party that provides a secure access to the originator
of each transaction, and extract from it the approximate geographical provenience of the trader who
generates the transaction. To avoid a too large approximation error, we decided to group geographical
provenience in a few classes, corresponding to six continental groups: Africa (Af), Asia (As), Europe
(Eu), North America (N_A), Oceania (Oc) and South America (S_A). More precisely, the continent of
the bitcoin trader is identified from the data in Blockchain.info, comparing its IP address with a dataset
of IP address from MaxMind Inc. The approximate location of the transaction origin can be tracked by
recording the first node relaying it. We remark that this approach works as long as the running node
does not use an anonymizing technology.

We thus have a first grouping of bitcoin owners that roughly correspond to their continent of
residence. To further characterize them, for each of the six continental groups we associate to each
account IDs according the absolute size of the total transaction amount they generate in the considered
time period. We then further group the IDs of each continent according to the deciles of their statistical
distribution. The first group, which will be labeled 1 after the continent abbreviation, has the smallest
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transactions, corresponding to the 0–10% percentile class, while the tenth group with the largest
transactions is labeled 10 ,corresponding to 90–100% percentile class. The final result is a classification
of bitcoin owners in 60 groups: 10 groups per continent.

With this grouping we will investigate our research hypotheses, and search for the bitcoin owners
who mostly impact the market. Specifically we will be able to investigate whether large-size Bitcoin
owner affect the trade decisions of the others, or whether a specific continent drives the others, in terms
of bitcoin trades, or both.

We remark that, although the Bitcoin is the most liquid and largest cryptocurrency, there is
sometimes low liquidity in its transactions. Our data show that there are days without a single
transaction in Africa, Asia, Oceania and South America, with frequency of low liquidity varying
between 1% and 25%. We can overcome the liquidity problem by accumulating the 10 min data to a
daily frequency. In any case, this indicates that a further regional grouping, for example by countries,
would lead to lack of data for many of them.

For each of our considered groups, our main variable of interest is the volume of transactions,
in any given time point. To normalise such data, we consider the logarithm of the transaction volumes.
To avoid computational problems, when no transactions in a group arise within a day, we add 1 Satoshi
1 to each transaction. Given the large numbers under consideration, the bias effect of the correction is
negligible.

In Figure 1 we illustrate the daily log accumulated transaction sizes over all 10 groups in each
continent. The largest transaction sizes appear in Europe and North America, whose dynamic pattern
is quite steady. Asia and Oceania are evidently more volatile then Europe and North America, but less
volatile than Africa and South America. The descriptive statistics, reported in Table 1, provide further
evidence to these findings. Note in particular that Asia, Oceania, Africa and South America have a
minimum value of zero, indicatinga lack of liquidity in certain time periods.

For deeper insights into the data features of the groups in each continent, the empirical distribution
of the log transaction sizes is displayed by means of boxplots in Figure 1. For each continent, the left
plot corresponds to the first group, namely the group 1 with the smallest transactions, and the right
one to the group 10 with the largest transactions, respectively.

Table 1. Descriptive statistics of the accumulated log transactions of the 6 regions Africa (Af), Asia (As),
Europe (Eu), North America (N_A), Oceania (Oc), South America (S_A). Eu and N_A show a related
behavior in terms of the descriptive statistics, as so do As and Oc. Also Af and S_A behave related.

Af As Eu N_A Oc S_A

mean 142.25 193.77 232.18 230.45 186.60 155.80
sd 72.84 19.81 11.59 9.18 24.55 62.39

skewness −1.30 −4.81 −0.86 −1.61 −4.59 −1.91
kurtosis 2.98 44.71 5.27 10.50 34.79 5.12

min 0.00 0.00 162.72 154.25 0.00 0.00
max 222.76 240.14 257.76 254.96 235.36 228.09

From Figure 1, the narrow box width of Europe and North America suggests that these continents
are characterised by transaction sizes with low volatility and a few outliers. However for Asia and
Oceania the daily transaction sizes are more volatile, and lead to larger center boxes and wider whiskers.
South America becomes extreme in the sense of showing even longer whiskers, with transaction sizes
varying stronger between groups. Africa follows a very different picture from the other continents: it
has the lowest liquidity and a much higher volatility and it shows frequent drops of the transaction
volume to 0.

1 The BTC transactions are reported in Satoshi values, the smallest fraction of a BTC, where 1 BTC = 100,000,000 Satoshi.
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(a) Af (b) As

(c) Eu (d) N_A

(e) Oc (f) S_A

Figure 1. Daily volume transactions (expressed in logarithms) of the 10 groups displayed as boxplots,
where the left boxplot represents the first group and the right one the ten groups of the respective
continent. The scatter plot displays the accumulated log transaction size of the 10 groups. The time
period goes from 25 February 2012 until 17 July 2017 in all 6 continents.

4. Empirical Findings

In this Section secwe present the results from the application of the proposed model. First we
evaluate the model in terms of predictive accuracy, to gauge its validity in the present context; second,
we interpret the model results in terms of our research hypotheses, aimed at assessing the dependency
patterns among the trading behaviour of different bitcoin traders.

We first consider an unregularised network, whose edges are all present, even when the
corresponding partial correlation is very low.

By calculating the partial correlations as specified in (6), we can derive the B0 matrix and, then, the
autoregressive parameters A1, . . . , Ap0. We are thus able to disentangle the time-dependent volume of
node i, separately estimating the autoregressive idiosyncratic component and the contemporaneous
one, according to Equation (2). Table 2 presents the assessment of the predictive performance of our
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model, to understand if the proposed approach is suitable, from a statistical viewpoint. Specifically,
we want to investigate whether the inclusion of the contemporaneous component improves predictive
accuracy, with respect to a much simpler pure autoregressive model. Table 2 contains the results of the
predictive assessment.

Table 2. Comparison between the root mean square errors obtained with our full VAR model and with
a model composed by the solely autoregressive component.

Group RMSE_Full RMSE_AR Group RMSE_Full RMSE_AR
Africa1 0.1945 0.2052 N_A1 0.2495 0.2500
Africa2 0.1298 0.1315 N_A2 0.4590 0.4613
Africa3 0.1600 0.1584 N_A3 0.5523 0.5596
Africa4 0.1521 0.1538 N_A4 0.3241 0.3631
Africa5 0.1492 0.1460 N_A5 0.8437 0.8530
Africa6 0.1609 0.1538 N_A6 1.2396 1.2653
Africa7 0.1385 0.1419 N_A7 0.9865 0.9951
Africa8 0.1382 0.1371 N_A8 0.8721 0.9041
Africa9 0.1276 0.1250 N_A9 0.6895 0.6962
Africa10 0.0960 0.0979 N_A10 1.2575 1.2698
Asia1 0.2258 0.2286 Oceania1 0.3182 0.3209
Asia2 0.2340 0.2264 Oceania2 0.2447 0.2477
Asia3 0.3148 0.3173 Oceania3 0.3717 0.3655
Asia4 0.3479 0.3432 Oceania4 0.4795 0.4914
Asia5 0.4328 0.4501 Oceania5 0.4909 0.5057
Asia6 0.5425 0.5493 Oceania6 0.5837 0.5782
Asia7 0.6143 0.6064 Oceania7 0.5857 0.5965
Asia8 0.6403 0.6455 Oceania8 0.8265 0.8353
Asia9 0.5294 0.6863 Oceania9 0.3350 0.3255
Asia10 0.5565 0.5623 Oceania10 0.2659 0.2733
Europe1 0.0558 0.0572 S_A1 0.2577 0.2663
Europe2 0.1414 0.1433 S_A2 0.2162 0.2183
Europe3 0.1779 0.1894 S_A3 0.2315 0.2326
Europe4 0.1405 0.1423 S_A4 0.2307 0.2302
Europe5 0.1822 0.1839 S_A5 0.2196 0.2231
Europe6 0.2241 0.2257 S_A6 0.2227 0.2234
Europe7 0.2852 0.2880 S_A7 0.2152 0.2145
Europe8 0.3673 0.3688 S_A8 0.2052 0.2061
Europe9 0.4021 0.4028 S_A9 0.1970 0.1960
Europe10 0.3460 0.3481 S_A10 0.1749 0.1757

From Table 2 note that the proposed model overperforms a pure autoregressive model, as the
corresponding root mean squared errors of the one-step ahead predictions are lower in the vast
majority of cases. It can be shown that the overall RMSE is equal to about 0.37 for the proposed model,
against 0.42 for the autoregressive one, further confirming its superiority.

We now move towards the interpretation of the results that can be drawn from our model and,
specifically, from the partial correlations (Equation (6)). In Figure 2, each node represents one of
the 60 groups of traders and each present edge indicate that two traders are dependent on each
other, in terms of their transactions (conditionally on all the others). Differently, when an edge is
missing, the corresponding traders behave independently of each other (conditionally on all the others).
Each edge is associated with a weight, which corresponds to a partial correlation coefficient. The size
of each edge in Figure 2 is proportional to such weight. On the other hand, the coloring of an edge
between two nodes indicates the sign of the partial correlation coefficient: green highlights a positive
partial correlation and red a negative partial correlation.
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Figure 2. Unregularized Partial Correlation Network.

What we can observe from the network that emerges from Figure 2 is that there exist many
interconnections between Bitcoin groups of users. Precisely, the summary statistics provided in the
upper left corner of Figure 2 indicates that the network contains a total of 1770 non-zero links between
groups. Although the graph is difficult to interpret, some clusters can be identified. We can see about
five clusters which in most part correspond to the continents, with the exception of Europe and North
America which are placed in the same cluster, suggesting that there exist strong dependence between
the traders of the two continents. This is something that we expected to see due to the economic and
political similarities among the two regions, as well as on their news sharing.

Note also that the groups representing the larger traders in Europe and North America - N_A10,
N_A9, Eu10, Eu9 - show stronger positive connections than other groups. This may be explained by
the fact that these groups have a comparable size of transactions, which come from a similar set of
information, which induce them to behave similarly. If we match this result with that in Figure 1,
which indicates the relatively larger volumes of transactions coming from these groups, we obtain a
clear indication that these are the groups which can mostly impact the market. Note also that these
exists a strong positive link between Oc10 and Eu9, and not between Oc9 and Eu09. This is consistent
with our previous finding: the transaction volumes of Oc10 are more comparable in their size to Eu9,
rather than to Eu10 (see Figure 1) and, therefore, they act similarly.

As mentioned previously, in unregularized correlation networks some edges may present but
may not be statistically significant. In the graphical representation, such situations will be visualized
as very weak connections in the network. To prevent this and to correctly identify the significant
associations between Bitcoin groups, a crucial step is to impose restrictions that will limit (or eliminate)
the occurrence of spurious edges. One way to achieve this is by testing the statistical significance of
partial correlations.

Figure 3 presents the same network containing only links that are found statistically significant at
both 5% and 1% level of significance.
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Figure 3. Regularized partial correlation networks (without edges that are not significant).

Figure 3 shows that the structure of the network does not change significantly if we impose
different levels of significance. What we observe from the graphs is that the majority of links that were
present in the unregularized network have disappeared, reducing the total number of links from 1770
to 146 and 137, respectively. Interesting, even though a significant portion of the links were removed,
the clustering of nodes remains the same as in Figure 2. Specifically, we see the formation of clusters
equivalent to the continents and we also see significant interconnection between traders in Europe and
North America. Furthermore, we also see a statistically significant positive correlation Oceania’s top
group and Europe’s and between Asia’s top group and Europe’s.

To further confirm our findings, we perform a further robustness check through the application of
the graphical LASSO. As discussed previously, LASSO is a very popular method for eliminating
spurious links. Figures 4 and 5 represent the networks that emerge by the applying graphical
LASSO with different smoothness parameters λ. We remark that, unlike the classical LASSO, in the
graphical approach the choice of λ cannot be done based on cross-validation as it represents a
completely unsupervised process. As we are mainly interested in assessing the robustness of the
results, we consider four alternative values for λ, and see whether what found in Figure 3 changes.

Figure 4. GLASSO partial correlation networks [varying lambda], 1/2.
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Figure 5. GLASSO partial correlation networks [varying lambda], 2/2.

From Figures 4 and 5, the changing λ does change the structure of the network, but the underlying
clusters remain the same, thus confirming the close interconnection between Europe and North
America, as well as those between top traders in Oceania and Europe.

A closer inspection of Figure 4, reveals frequent linkages between European and North American
nodes, which is in line with the previous observations. Positive linkages appear more often inside
each continent, compared to negative ones. One the other hand negative and positive edges appear
frequently between two continents (see Table 3). The largest two groups in both continents share strong
links with each other, confirming that that they probably share a common information set. Interestingly
the largest trader group from Asia, AS10, has multiple positive edges to several groups in Europe
and North America. Considering that most bitcoin mining farms are based in Asia, and especially
in China, it follows that a large amount of capital is acquired and, therefore, traded, from Asia with
the rest of the world. Last, note that the largest volume trading groups from Oceania and South
America also share links with each other and with the larger Western-World groups. This observation
leads to the conclusion that the large traders around the world are somewhat connected, possibly
communicating with each other. On the other hand smaller groups, which have less information,
shows less connections around the world.

Table 3. Count of links between and within North America and Europe.

Lambda 0.001 Lambda 0.01
Positive Negative Positive Negative

Within Europe 17 14 17 13
Within North America 21 13 19 13
Between Europe and North America 48 53 45 48

Figure 5 shows what happens when we increase the penalty level to λ = 0.25. Most edges vanish,
but the previously found connections persists. Still the largest trader groups from Europe and North
America remain connected, while the edges from Oc9, S_A10 and As10 persist to stay connected with
them. The connection goes via the largest groups in Europe, namely Eu9 and Eu10. Other persisting
edges exist between the smaller groups from Asia and Europe, yet with small magnitude. Within the
continents many edges are not affected by the penalty, hence emphasize the importance of the regional
connectedness. Finally, when increasing the penalty parameter to λ = 0.5, most cross-continent
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edges are ruled out, except for the ones between the largest groups in Europe and North America.
The remaining edges only appear within the continents.

To further establish the robustness of the results to the varying value of λ, Table 4 compares some
centrality values, averaged over the whole network, under the four considered values of λ.

Table 4. Average centralities across different lambda parameters.

λ = 0.001 λ = 0.01 λ = 0.25 λ = 0.5

Average degree 1.189206937 1.157479 0.855028 0.663931
Average betweenness 270.5666667 288.5667 269 39.3
Average closeness 0.000448235 0.000428 0 0

From Table 4 note that, consistently with our previous findings, by increasing the parameter λ the
average centrality decreases, according to degree, betweenness and closeness. Regardless of this, our
main conclusions remain stable.

To summarise, our empirical findings give an answer to our research proposition: which are the
group of traders that mostly affect the bitcoin markets? These groups were found among the top two
classes of traders in North America and Europe, strongly and positively connected to each other. These
traders are linked to the others, affecting their behaviours. In particular, they are especially linked with
the top traders from Oceania and South America. In addition, top traders from Asia, and especially
larger ones, are highly linked to the others, likely as a result of their mining activity.

5. Conclusions

In the paper, we proposed a model that explains the dynamics of Bitcoin trading volumes, based
on a correlation network VAR process that models the interconnections between different groups of
traders.

Our main methodological contribution consists of the introduction of partial correlations and
correlation networks into VAR models. This allows describing the correlation patterns between trading
volumes and to disentangle the autoregressive component of volumes from its contemporaneous part.
The introduction of VAR correlation networks also allows building a volume predictive model that
leverages the information contained in the correlation patterns.

Our main financial findings show that trading volumes are highly correlated within geographical
regions. Groups of traders with high transaction volumes over all continents covary in the network
model, leading to the conclusion this groups share a mutual information set. The results are robust
over various penalized network models. This result may have different economical explanations, such
as a common behaviour, a common time-zone, similar institutional and legal contexts.

Our results also contribute to the identification of group of bitcoin traders that are the most likely
influencers of the market. These are found to high volume traders, especially from North America,
Europe, and Asia. These results are in line with the expectation that trading follows the news sharing
patterns and the major Bitcoin mining localization patterns.

The proposed model can be very useful for policy makers and regulators. It can be used to predict
“regular” trading volumes and, therefore, identify anomalies. Our empirical findings show that the
proposed model is able to predict trading volumes with an error that is lower than that of a pure
autoregressive model.

Our result suggests that policy makers and regulators, interested in preserving the integrity of
bitcoin markets, should also pay particular attention to the transactions coming from large volume
traders, and especially of those from America, Europe and Asia, which have the potential to disrupt
the market.

The main weakness of this work is related to the available sample. It refers to a specific cryptoasset,
the bitcoin; it relates to a specific period of time and is taken directly from blockchain transactions,
rather than from market exchanges. These limitations derive from the proprietary nature of the data
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that was made available to us. However, we believe that our model is rather general, and can be
easily extended on a different database. This in particular to deal with transactions that take place on
crypto exchanges, more frequent that those taking place on the blockchain, considered here. Further
work may concern acquiring data on the electronic identity of the traders, to investigate the reason of
“regional” behaviours, as also discussed in Tasca et al. (2018) and Foley et al. (2019).

From a methodological viewpoint, it may be worth considering extending correlation network
models to become time dependent, although this requires acquiring data with a higher frequency. In
addition, it may be worth considering an extension of the model that accounts for exogenous factors,
such as regulatory interventions, transaction fees, sentiment and media coverage. This may require an
event-based analysis, aimed at understanding not only trading patterns, but also what may originate
them. To achieve this task our work could be extended with Bayesian network models, following
Giudici et al. (2014), Giudici and Bilotta (2014) and Cerchiello and Giudici (2016).
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