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Abstract: The prediction of future mortality improvements is of substantial importance for areas
such as population projection, government welfare policies, pension planning and annuity pricing.
The Lee-Carter model is one of the widely applied mortality models proposed to capture and predict
the trend in mortality reductions. However, some studies have identified the presence of structural
changes in historical mortality data, which makes the forecasting performance of mortality models
sensitive to the calibration period. Although some attention has been paid to investigating the time or
period effects of structural shifts, the potential time-varying age patterns are often overlooked. This
paper proposes a new approach that applies a Fourier series with time-varying parameters to the
age sensitivity factor in the Lee-Carter model to study the evolution of age effects. Since modelling
the age effects is separated from modelling the period effects, the proposed model can incorporate
these two sources of structural changes into mortality predictions. Our backtesting results suggest
that structural shifts are present not only in the Lee-Carter mortality index over time, but also in the
sensitivity to those time variations at different ages.

Keywords: mortality forecasting; structural changes; age effects; Fourier series; life expectancy

1. Introduction

As a consequence of technological developments and medical advances, human life
expectancy has continued to rise in recent decades. There is a need to predict and monitor
the evolution of future mortality levels in fields such as pension planning, insurance,
public health and government policy. Researchers and practitioners have proposed various
mortality forecasting models to accommodate different needs. For instance, Lee and Carter
(1992) introduced a parsimonious mortality model with age and time effects, which can
readily be estimated using singular vector decomposition. The Lee-Carter model is one of
the most popular models in the extrapolative family whose members assume a continuation
of past patterns. In the application of such models, the choice of the sample period can
have a significant impact on forecast accuracy (Booth et al. 2006).

On the one hand, adopting only the recent data may overlook historical features that
are pivotal for prediction. Also, as mortality data are usually available by single year, too
short a calibration period may lead to unstable parameter estimates. On the other hand,
longer estimation periods do not necessarily produce more accurate forecasts, as there
may exist certain structural changes in the sample. In the current literature, time effects
in mortality models (e.g., the pace of mortality reductions) are often captured by random
walk with drift (RWD), which may not be appropriate in the presence of structural changes
(van Berkum et al. 2013). For example, when a RWD is fitted to the mortality index in the
Lee-Carter model, the drift term is determined only by the beginning and ending values,
ignoring potential signals of structural changes within the sample period. Consequently,
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the predicted mortality rates will ignore structural shifts that could impact forecast trends,
and may yield results that are highly sensitive to the estimation period.

Approaches to incorporate the effect of structural changes can be considered in three
broad categories, the regime-switching model, broken-trend stationary (Perron 1989) and
difference stationary processes with breakpoints (van Berkum et al. 2013). Milidonis et al.
(2011) argued that regime-switching models can be employed to describe different mortality
states. Specifically, they allowed the error term of the mortality index in the Lee-Carter
model to switch between two states with different means and variances and suggested
potential deviations from the normality of the error term. The main criticism of regime-
switching models is that one may not expect influences on human mortality from devel-
opments such as medical advances to be reversed over time (van Berkum et al. 2013),
which makes the model somewhat unrealistic. It is also difficult to estimate the switching
frequencies as there are only a few major structural changes in the last century.

The other two categories focus on the existence of potential structural changes and
unit roots in the time series processes of mortality models. Sweeting (2011) proposed
a broken-trend stationary model to detect multiple structural changes using the Cairns-
Blake-Dowd model (Cairns et al. 2006) as a base. Li et al. (2011) applied a trend stationary
model to the mortality index in the Lee-Carter model using data from England and Wales
and the United States, allowing a structural change to occur at a breakpoint. They also
pointed out that this approach produces rather narrow prediction intervals, which may
not be adequate to capture uncertainties of future mortality rates. For difference stationary
models, the most common choice is a (multi-dimensional) random walk with drift (e.g.,
Cairns et al. 2009; Dowd et al. 2010). Nonetheless, several studies have expressed concerns
about the appropriateness of assuming a constant drift. For instance, O’Hare and Li (2015)
applied a random walk with drift process to the mortality index in the Lee-Carter model
and detected changes in the drift term over time based on the mortality data of Australia,
the Netherlands, the United Kingdom and the United States. Similar to applications of
the broken-trend stationary model, multiple breaks are also analyzed under the difference
stationary model in van Berkum et al. (2013, 2016).

To date, most attention has been paid to investigating structural shifts via the time
effects of mortality models, neglecting the evolution of age effects. It is often assumed that
the age response to mortality changes remains constant over time. Carter and Prskawetz
(2001) estimated the parameters of the Lee-Carter model using different subsamples with
a fixed length. They found that the pattern of age response changed significantly for the
Austrian population over the sample period 1947–1999. Nevertheless, their paper did
not propose a readily applicable method to predict future age patterns. Li et al. (2013)
rotated the shape of the Lee-Carter age response to depict the acceleration (deceleration) of
mortality improvements at older (younger) ages. The life expectancy at birth is employed as
an indicator for the occurrence of the rotation in age patterns, which involves the projection
of future life expectancy. Despite the subtleness of the rotation approach, they emphasized
the importance of incorporating the changing age patterns into mortality predictions. In
the recent work of Li and Wong (2020), the authors attempted to capture the movements
of age patterns by analyzing the age response in the Lee-Carter model from (relatively)
homogeneous subperiods. They suggested three ways to estimate future age responses,
including assuming a continuation of the latest patterns, fitting a modified Heligman and
Pollard (1980) curve and applying principal components analysis. Specifically, estimated
parameters of the fitted curve and principal components over successive subperiods can
be extrapolated via linear regression to compute the age sensitivity parameter for a future
period. Their study emphasized the importance of considering the changing age patterns
of structural changes in mortality predictions.

In light of the findings of time-varying age effects, this paper proposes a method
to fit and forecast the evolution of the age sensitivity factor under the Lee-Carter model,
integrating for the first time structural changes in both age and time effects. The method
is applied to mortality data for the male population aged 0 to 89 from 1950 to 20161 of
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Australia, Canada, New Zealand, Sweden, the United Kingdom and the United States,
from the Human Mortality Database (Human Mortality Database 2019).

Inspired by the findings in Carter and Prskawetz (2001), we first examined the structure
of the age effects under the Lee-Carter model. Setting the same length of fitting periods as
in their paper, the first subsample included years 1950–1973. Then, both the starting and
ending points of the subsample increased by one year sequentially until the latest data in
the sample were employed. For example, the sample period between 1950 and 2016 can be
arranged to form 44 subperiods. Figure 1 shows the estimated age sensitivity parameters
of the Lee-Carter model calibrated using the sequential subsamples. The colour intensity
of the curve increases with the date of the corresponding subsample, with the darkest
representing the parameters obtained from the latest subperiod. For presentation purposes,
we only displayed the values with a 10-year gap.
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Figure 1. Age sensitivity factors under the Lee-Carter model estimated from sequential subsamples
with a fixed sample size.

It was interesting to see that the age responses were wave-like, and the shape prop-
agated and deformed over time. These observations inspired us to fit a Fourier series
with time-varying parameters comprised of single or multiple sine and cosine waves. The
Fourier analysis was initially introduced by the mathematician Baron Jean Baptiste Joseph
Fourier in his study about temperature distributions. It helped to decompose complicated
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periodic functions into a sum of sinusoidal components and identify critical features of
interest. It can interpret characteristics of a time series process (e.g., peaks, troughs, cy-
cles) in terms of values in the frequency domain (e.g., frequencies, amplitudes, phases).
Researchers have applied the Fourier analysis to a wide range of fields such as optics
(Lombardet et al. 2005; Mei and Svanberg 2015), agriculture (Canisius et al. 2007), electricity
(Amaral et al. 2008), magnetics (Gysen et al. 2010) and insurance (Powers and Powers 2015).
For more technical details of Fourier series and its applications, one may refer to Chapters
1 and 2 of Bracewell (1978).

An alternative to the Fourier approach is fitting a smooth curve using cubic splines
comprising piecewise third-order polynomials joined at a set of knots. Splines are capable
of producing a good fit when the number of knots is sufficiently large. However, the
coefficients of splines are not readily interpretable, causing difficulties in choosing an
appropriate method to predict their future trends. In this paper, we applied both the
Fourier function and cubic splines to capture the development of age patterns of mortality
and compare their performances with those under the baseline Lee-Carter model.

Overall, we propose a potential method to model the time-varying age patterns of
mortality development. Our main objective was to investigate the performance of the
proposed models and to test the impact of incorporating the age effects of structural
changes. The remainder of the paper is organized as follows. Section 2 introduces the
specifications of the Lee-Carter and proposed models constructed using the Fourier series
and cubic splines. Sections 3 and 4 compare the prediction performance of the mortality
models and conduct backtesting using mortality data of the six above-mentioned countries.
Section 5 presents a case study to illustrate how the proposed model can readily integrate
the age and period effects of structural changes based on data from the United Kingdom.
Section 6 concludes.

2. Methodology

The original Lee-Carter model expresses the logarithm of central death rates ln(mx,t)
as a linear/bilinear combination of age and time effects,

ln(mx,t) = αx + βxkt + εx,t, (1)

where αx represents the average mortality level at each age, kt is a time-varying mortality
index, βx is the age-specific factor2 indicating the sensitivity of ln(mx,t) to the changes in kt,
and εx,t follows a Gaussian distribution with a mean of zero. As mentioned earlier, there
has been clear evidence against the assumption of a time-invariant age response in the
original Lee-Carter model, which can be addressed by allowing the age sensitivity factor to
vary over time.

The term βx,t is denoted as the age response at age x in year t. Projecting βx,t directly
brings almost a hundred time series processes for a wide age range. To reduce the dimen-
sionality, a parametric function can be fitted to the time-varying age response. Specifically,
we considered two methods—the Fourier-like series and cubic splines with time-varying
parameters and refer to them as the Fourier and cubic Lee-Carter models in the rest of the
paper. Unlike other approaches of dimensionality reduction such as the principal compo-
nent analysis that contains artificial variables (Vyas and Kumaranayake 2006), the Fourier
series has the advantage that its parameters are interpretable. This property becomes useful
in incorporating assumptions of future age patterns into mortality projections.
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For a given sample relating to year t, the age response βx,t can be expressed as a series
ordered by age x. We then add the time dimension to the coefficients and apply a Fourier
series3 as follows,

βx,t = a0,t +
N
∑

j=1
Aj,tsin

(
2π f j × x + Pj,t

)
+ ex,t

= a0,t +
N
∑

j=1
b1,j,tsin

(
2π f j × x

)
+

N
∑

j=1
b2,j,tcos

(
2π f j × x

)
+ ex,t,

(2)

where a0,t represents the intercept of the Fourier series relating to year t, N is a predefined
total number of harmonic waves, the amplitude parameter Aj,t measures the distance
from the peak (or trough) to the central value, the phase parameter Pj,t represents the
number of “sinusoidal periods” (measured in the age dimension) that has been shifted
from a predefined point, the frequency parameter f j gives the number of cycles per unit
of age, and ex,t is the Gaussian error term with null mean. One could use time-varying
frequencies to obtain a better fit, but allowing frequency values to change over time leads
to different dimensions of Fourier parameters at different points of time, which makes
the extrapolation infeasible. Given the frequency values, one can estimate a0,t, b1,j,t, and
b2,j,t via linear regression sequentially. Figure 2 presents a flow diagram of the modelling
process of βx,t.
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As illustrated, the entire sample period can be split into different subperiods. These
subperiods were structured as overlapping to some extent4 in order to obtain more data
points and smoother changes over time for the Fourier parameters. However, these over-
lapping subsamples would give different αx and kt values. To make the estimates of the
age sensitivity factor more comparable across the subperiods, we first fitted the Lee-Carter
model to the whole sample period and treated the computed αx and kt as given. The
Lee-Carter model was then calibrated to each (overlapping) subperiod in turn using a
Poisson updating scheme5 (Brouhns et al. 2002; Li 2013) and a unique set of βx,t values
was obtained, where t referred to the last year of a subsample. For instance, the first βx,t1

corresponded to the age response over the period from the starting year of the sample
to 24 years later; the last one βx,tend corresponded to the years between the ending year
of the sample and 24 years earlier. The age sensitivity parameters calibrated on different
subperiods of the sample from 1950 to the latest year are plotted in Figure 3.
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Here, we followed the choice of Carter and Prskawetz (2001) and used an arbitrary
fixed value of 24 years for each subsample, although other lengths of subperiods may be
chosen. We tested four different lengths of the subperiods and presented the estimated age
response parameters in Figure A1 in Appendix A. When longer subperiods were employed,
the changes in the shape of age response were relatively less evident. Overall, the lengths of
20, 24, and 30 years produced a similar extent of “volatility” in the age response parameters
calibrated on sequential subsamples6. On the other hand, the 10-year window appeared to
be too short and the resulting parameter estimates were volatile.

In general, the curves of most of the countries showed two peak values occurring at
the youngest ages and around ages 50–65. One exception was Sweden whose age-specific
response curve was relatively flat over middle ages. The magnitude of the first peak
tended to be greater than the other, implying a high sensitivity of new-borns to mortality
changes. Compared with the curves presented in Figure 1, the age sensitivity factors in
Figure 3 showed less evident development patterns over time (e.g., peaks shifting towards
higher ages). The βx,t plotted in Figure 3 were estimated by treating the same set of αx
and kt values as given. Therefore, the shapes of βx,t from different subperiods were more
comparable with one another than those estimated using different sets of αx and kt.
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When modelling the human age response, it was desirable to keep the main features in
the original values such as the peaks mentioned above. Also, the spikes at the youngest ages
might have affected the estimates of Fourier parameters which then would not capture the
characteristics at older ages7 adequately. To differentiate between the noticeable patterns at
younger and older ages, the estimated age sensitivity factors displayed in Figure 3 may
be described as one quarter of a complete wave at the younger ages followed by a half
wave with a smaller amplitude over the remaining age range. Therefore, we decomposed
the age response into two waves and estimated two sets of Fourier parameters instead of
modelling it as a whole. For each of the two regions, we employed only one harmonic
wave (N = 1) to depict the shape of age sensitivity factors to avoid over-parameterisation8.
The adjusted Fourier series with a split can be expressed as follows,

βx,t = a0,t + A(1)
t sin

(
2π f (1) × x + P(1)

t

)
I(x ≤ xk)

+A(2)
t sin

[
2π f (2) × (x− xk) + P(2)

t

]
I(x > xk) + ex,t

= a0,t +
[
b(1)1,t sin

(
2π f (1) × x

)
+ b(1)2,t cos

(
2π f (1) × x

)]
I(x ≤ xk)

+
[
b(2)1,t sin

(
2π f (2) × (x− xk)

)
+ b(2)2,t cos

(
2π f (2) × (x− xk)

)]
I(x > xk) + ex,t,

(3)

where a0,t is the common intercept shared by the two piecewise functions, xk is the splitting
age at which a wave for the older population starts, f (i), A(i)

t and P(i)
t are the frequency,

amplitude and phase parameters of the ith wave, b(i)1,t and b(i)2,t are the coefficients of the ith

regression, i = 1, 2. The two peak values were observed at age x(1)peak and x(2)peak, respectively.
The frequency values that controlled the lengths of harmonic waves are determined to
maintain the observed features of human age sensitivity. As mentioned above, the first
wave displayed about one quarter of a complete cycle, suggesting that the length of the
wave was approximately 4(xk − x(1)peak). Similarly, the second wave corresponded to a
half cycle, so the length of the second wave could be estimated by 2(xmax − xk), where
xmax was the maximum age in the sample data. Accordingly, the two frequency values
f (1) = 1/[4(xk − x(1)peak)] and f (2) = 1/[2(xmax − xk)] were employed. Thereinto, x(1)peak was

chosen as age 0 arbitrarily for all the countries, although the locations of xk and x(2)peak were
not deduced directly from the graph. They were estimated using the ages at which the
minimum and maximum (excluding the first peak) βx,t were achieved, averaged over all
subperiods. Note that x(2)peak did not affect the choice of frequencies and could have been
captured by the second phase parameter. For the six countries considered, the splitting
age xk occurred at around age 30, and the second peak x(2)peak generally fell within ages
50–60. Specifically, we set a0,t as the age-specific sensitivity value at the linking age which
approximated the average level of the first and second waves.

After specifying the frequency values, the amplitude and phase parameters could be es-
timated via the linear regression method, specifically, for the ith wave, b(i)1,t = A(i)

t cos
(

P(i)
t

)
,

b(i)2,t = A(i)
t sin

(
P(i)

t

)
. Rearranging the expressions, we could calculate the A(i)

t and P(i)
t as:

A(i)
t =

((
b(i)1,t

)2
+
(

b(i)2,t

)2
)1/2

and P(i)
t = arc tan

(
b(i)2,t /b(i)1,t

)
.

However, the identification problem existed in estimating the phase parameter due
to the periodicity of trigonometric functions. For instance, arc tan(0) could be either 0 or
π, as P0 and P0 + π always resulted in equivalent tangent values. Therefore, we imposed
restrictions on the range of the two phase parameters according to the general shape of age
sensitivity factors. Since one would have expected a peak followed by a decreasing pattern
at young ages, the range of P(1)

t was set to (π/4, 5π/4). Similarly, the range of P(2)
t was

restricted to (−π/2, π/2), so that a bell-shaped curve could be observed for ages after the
knot xk. Next, we explained the rationale of these two constraints.
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Several features can be preserved when fitting a Fourier series to the age sensitivity
factor based on the historical shape. On the one hand, the curve went downward before
the splitting age, although such a pattern is not necessarily monotonic from age 0. On the
other hand, the age response at ages older than the knot xk generally showed a bell shape
for the six countries considered. Based on these observations, Figure 4 illustrated possible
shapes of sin

(
x + P(i)

t

)
over the domain x ∈ (0, π/2) and x ∈ (0, 3π/2) for i = 1 and 2,

respectively. Since the two frequency parameters were determined such that the first
(second) wave corresponded to a quarter (half) of a complete wave, we focused on the
curves for x < π/2 (x < π) on the left (right) graph. As shown in the left column of
Figure 4, when the first phase parameter P(1)

t took values between π/4 (red curve) and
5π/4 (green curve), the first quarter of the waves were mainly downward, matching with
the historical characteristics of βx,t at younger ages. For possible shapes of βx,t at older
ages (right column), the first half of the waves sin

(
x + P(2)

t

)
demonstrated a bell shape

when P(2)
t ranged from −π/2 to π/2.

Risks 2022, 10, x FOR PEER REVIEW 8 of 24 
 

 

Several features can be preserved when fitting a Fourier series to the age sensitivity 
factor based on the historical shape. On the one hand, the curve went downward before 
the splitting age, although such a pattern is not necessarily monotonic from age 0. On the 
other hand, the age response at ages older than the knot 𝑥 generally showed a bell shape 
for the six countries considered. Based on these observations, Figure 4 illustrated possible 
shapes of sin൫𝑥 + 𝑃௧()൯ over the domain 𝑥 ∈ (0, 𝜋/2) and 𝑥 ∈ (0,3𝜋/2) for 𝑖 = 1 𝑎𝑛𝑑 2, re-
spectively. Since the two frequency parameters were determined such that the first (sec-
ond) wave corresponded to a quarter (half) of a complete wave, we focused on the curves 
for 𝑥 ൏ 𝜋/2 (𝑥 ൏ 𝜋) on the left (right) graph. As shown in the left column of Figure 4, when 
the first phase parameter 𝑃௧(ଵ)  took values between 𝜋/4  (red curve) and 5𝜋/4  (green 
curve), the first quarter of the waves were mainly downward, matching with the historical 
characteristics of 𝛽௫,௧ at younger ages. For possible shapes of 𝛽௫,௧ at older ages (right col-
umn), the first half of the waves sin൫𝑥 + 𝑃௧(ଶ)൯ demonstrated a bell shape when 𝑃௧(ଶ) ranged 
from −𝜋/2 to 𝜋/2. 

Overall, for each t we fitted the Fourier series with two waves to 𝛽௫,௧ and estimated 
the Fourier parameters 𝑎,௧ , 𝐴௧()  and 𝑃௧() , 𝑖 = 1,2 . Accordingly, the dimension was re-
duced from 90 (ages) to 5 (one intercept, two amplitude, and two phase parameters). The 
intercepts, amplitudes and phases were time-varying, the future values of which were 
predicted via time series models. Forecasts of the age response could then be computed 
from the predictions of its Fourier parameters. 

 

Figure 4. Curves of sin ቀ𝑥 + 𝑃௧()ቁ for different phase values. The left (right) column indicates possi-
ble shapes for the Fourier series before (after) the splitting age. The parts on the left of the two black 
dashed (vertical) lines in the left and right plots denote the shape of a quarter and half of a complete 
cycle, respectively. 

The above specification of the Fourier Lee-Carter model is similar to the cubic spline 
technique which has been widely applied in smoothing mortality rates (e.g., Currie et al. 
2004; Armstrong 2006; De Jong and Tickle 2006; Debón et al. 2006). A function 𝑓(𝑥) de-
fined on [𝑎, 𝑏] with 𝑚 interior knots 𝜉 (𝑖 = 1,2, … , 𝑚) is a cubic spline if it is a cubic poly-
nomial in each of the intervals and 𝑓(𝑥) is continuous up to the second derivative. There-
into, one sub-category that solves the potential problem of erratic fitting at boundary val-
ues is referred to as natural cubic splines. It imposes additional constraints on the second 
and third derivatives at the two limits 𝑎 and 𝑏 such that 𝑓(𝑥) is linear in the two boundary 
intervals [𝑎, 𝜉ଵ] and [𝜉, 𝑏]. We borrowed this concept and considered a so-called cubic 
Lee-Carter model whose age sensitivity factor 𝛽௫,௧ was modelled as natural cubic splines. 
The idea was to interpolate a curve using segments of cubic polynomials connected by 
knots that were placed at turning points. As analyzed above, there were two peaks at ages 𝑥(ଵ)  and 𝑥(ଶ)  and one trough at age 𝑥. The three internal knots were selected for our 
cubic Lee-Carter model and located at (0, 𝑥, 𝑥(ଶ) ). The chosen knots would result in a 

Figure 4. Curves of sin
(

x + P(i)
t

)
for different phase values. The left (right) column indicates possible

shapes for the Fourier series before (after) the splitting age. The parts on the left of the two black
dashed (vertical) lines in the left and right plots denote the shape of a quarter and half of a complete
cycle, respectively.

Overall, for each t we fitted the Fourier series with two waves to βx,t and estimated
the Fourier parameters a0,t, A(i)

t and P(i)
t , i = 1, 2. Accordingly, the dimension was reduced

from 90 (ages) to 5 (one intercept, two amplitude, and two phase parameters). The inter-
cepts, amplitudes and phases were time-varying, the future values of which were predicted
via time series models. Forecasts of the age response could then be computed from the
predictions of its Fourier parameters.

The above specification of the Fourier Lee-Carter model is similar to the cubic spline
technique which has been widely applied in smoothing mortality rates (e.g., Currie et al.
2004; Armstrong 2006; De Jong and Tickle 2006; Debón et al. 2006). A function f (x) defined
on [a, b] with m interior knots ξi (i = 1, 2, . . . , m) is a cubic spline if it is a cubic polynomial
in each of the intervals and f (x) is continuous up to the second derivative. Thereinto,
one sub-category that solves the potential problem of erratic fitting at boundary values is
referred to as natural cubic splines. It imposes additional constraints on the second and
third derivatives at the two limits a and b such that f (x) is linear in the two boundary
intervals [a, ξ1] and [ξm, b]. We borrowed this concept and considered a so-called cubic
Lee-Carter model whose age sensitivity factor βx,t was modelled as natural cubic splines.
The idea was to interpolate a curve using segments of cubic polynomials connected by
knots that were placed at turning points. As analyzed above, there were two peaks at ages
x(1)peak and x(2)peak and one trough at age xk. The three internal knots were selected for our

cubic Lee-Carter model and located at (0, xk, x(2)peak). The chosen knots would result in a
decreasing trend from age 0 to the trough age xk, followed by a bell-shaped curve peaked
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at x(2)peak. The piecewise polynomial could be estimated using linear regression and the R
package “splines”. Again, we modeled the cubic-spline parameters as time series processes
to predict future age sensitivity. In matrix notation, the age sensitivity factor under the
cubic Lee-Carter model could be written as follows,

βt = Htct + et, (4)

where the (xmax × 1) vector βt = (β0,t, β1,t, . . . , βxmax ,t)
′ referred to the age response at

all ages at time t, vector et comprised the constants and error terms for each regres-
sion of βx,t. Ht was the (xmax × 4) basis matrix defining the vector space of the spline
function, which could be obtained by the command “ns” in R. Then the (4× 1) vector
ct = (c1,t, c2,t, c3,t, c4,t)

′ containing the time-varying cubic-spline coefficients was estimated
via linear regression.

Figure 5 displays the estimated and fitted values of the age sensitivity parameter using
the Fourier and cubic-spline approaches based on the mortality data of the latest 24-year
subperiod. Both methods can capture the general shape of the age response. Unlike the
Fourier approach, however, no meaningful interpretation was available for the coefficients
of the cubic splines.
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The primary purpose of introducing a time-varying age sensitivity parameter is to
discover whether the age effects of structural changes in mortality can be modelled and
predicted over time. We now examine and compare performances of the original Lee-Carter
model, Fourier Lee-Carter model and cubic Lee-Carter model in the following sections.

3. Projections

We could now use the specified model to produce projections of future mortality rates.
The original Lee-Carter model is calibrated on the entire sample period to estimate the
age-specific parameter αx and the mortality index kt. These two parameters were then
treated as given to find the values of a set of age sensitivity factors and their corresponding
Fourier and cubic-spline parameter estimates. Future mortality scenarios under the Fourier
model and cubic model were generated by forecasting the time-varying parameters and
the mortality index.

Since the shape of the fitted Fourier functions is controlled by interpretable Fourier
parameters, their time series choices are made to project the age effects that are in accordance
with the past patterns. As illustrated in Figure 3, which plots the estimated age responses
from different subperiods, the waves after the splitting age have been shifting over time,
although the extent of movements has not been as evident at younger ages. Accordingly,
we modelled the intercepts, amplitudes, the first phase parameter, and the first difference
of the second phase parameter as stationary autoregressive processes with order 1 (AR(1)).
Such specification implied that the height (the vertical distance from peak to trough) of
βx,t would converge to a constant, and the second wave would shift over time9. As noted
above, the cubic-spline parameters did not have meaningful interpretations, and it was not
quite straightforward to select appropriate time series models. Thus, we modelled them
by stationary AR(1) processes to obtain a convergent age response. The mortality index
was fitted with an RWD. In a case where the estimated AR(1) model was not stationary, we
replaced it with a random walk (RW) without drift. These time series models were adopted
for the rest of the paper.

Figure 6 illustrates the predicted life expectancy10 at birth (e0) under the original
Lee-Carter model and the two variations proposed here. We can see from these plots that
allowing for a time-varying age sensitivity factor generally results in higher projections for
all six datasets. The Fourier assumption tended to predict the highest life expectancy at
birth (about 1 year greater than that under the Lee-Carter baseline model in 2050) among the
three candidates based on the male mortality data of Canada, New Zealand and Sweden,
though the cubic Lee-Carter model did not show much difference from the baseline results
for New Zealand. For Australia, the United Kingdom and United States, the two modelling
methods of the age response showed little difference in their forecast life expectancy values:
the curves produced under the cubic approach were only marginally higher (lower) than
that under the Fourier approach for Australia and the United Kingdom (the United States).
Besides, the two proposed models generated predictions higher than those under the
original Lee-Carter model, though to a lesser extent than for Canada, New Zealand and
Sweden under the Fourier approach. Next, we compared the forecast accuracy of the three
models via out-of-sample testing on a rolling-window basis.
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4. Backtesting
4.1. Rolling-Window Backtesting

The primary objective of the newly proposed models was to capture features of the
evolution of the age response over time. We could examine the forecasting performance of
the Fourier and cubic Lee-Carter models against the observed data via backtesting (also
known as out-of-sample testing). The original Lee-Carter model was selected as the baseline
model for comparison purposes. The entire sample was split into two periods, where the
first (in-sample) part was used for fitting, and the second (out-of-sample) part was used to
examine the predictive power of the mortality models. The forecast accuracy was assessed
by the mean absolute percentage error (MAPE) of predicted log central death rates and
period life expectancies. It was calculated as MAPE = 1

nd
∑x,t

∣∣∣Ox,t−Fx,t
Ox,t

∣∣∣, where nd was the
number of data points, and Ox,t (Fx,t) was the observed (forecasted) value of the measure
under consideration. However, the results of usual backtesting could have been sensitive to
the sample split. Therefore, we conducted the backtesting on a rolling-window basis. The
first in-sample period was from 1950 to 1989 (the first 40 years), and the remaining 27 years
(from 1990 to 2016) constituted the corresponding out-of-sample period. Then we fitted the
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mortality models using the first 41 years of data and ed them over the next 26 years, and
so on until the prediction period reduced to 5 years. The averaged MAPE value of the 23
splits was calculated to compare the overall performance of the three models.

The backtesting results for the six countries are given in Table 1, which displays the
MAPEs of projected log central death rates for different age groups. Columns named ‘LC’,
‘Fourier’ and ‘Cubic’ refer to results generated from the original Lee-Carter model, Fourier
Lee-Carter model and cubic Lee-Carter model, respectively. Considering the entire age
interval, the two newly proposed mortality models outperformed the original Lee-Carter
model in all cases. Specifically, the Fourier approach beat the others when Canadian,
Swedish, British and American data were considered, although the cubic-spline method
was preferred for Australia and New Zealand. The most significant improvements were
observed under the Fourier Lee-Carter model for Canada and Sweden, with a reduction of
0.35% or more in MAPE value. The extent of reductions from adopting a time-varying age
response was satisfactory, considering that the baseline errors were mostly between 2–3%.

Table 1. MAPE values (%) of projected log central death rates of all ages and 30-year age groups
(rolling-window basis). The minimum MAPE values for each age group and each country are given
in bold.

Age Group Overall 0–29 30–59 60–89

Population LC Fourier Cubic LC Fourier Cubic LC Fourier Cubic LC Fourier Cubic

Australia 3.02 2.92 2.88 3.23 3.34 3.24 1.82 1.74 1.70 4.01 3.67 3.70
Canada 2.66 2.31 2.53 2.54 2.33 2.31 1.39 1.36 1.32 4.05 3.23 3.95

New Zealand 4.50 4.36 4.35 5.21 5.29 5.17 2.98 2.95 2.91 5.31 4.85 4.97
Sweden 3.64 3.29 3.52 4.38 4.67 4.30 2.96 2.80 2.86 3.58 2.40 3.39

United Kingdom 2.71 2.51 2.57 2.25 2.25 2.21 1.26 1.23 1.13 4.62 4.06 4.38
United States 2.03 1.92 1.96 1.59 1.62 1.58 1.58 1.64 1.49 2.93 2.48 2.80

When examining 30-year age groups, the two newly proposed models still produced
more accurate projections than the original Lee-Carter model, except for the youngest age
group in Australia. The best choice among the three candidates and the significance of
improvements in forecast accuracy demonstrated some variations across age groups. In
more detail, the cubic Lee-Carter model gave the lowest MAPE value for five out of the six
countries over ages 30–59, and the Fourier approach was preferred for older populations in
all of the six countries. In addition, the improvements from assuming a time-varying age
response for the oldest age group were generally more notable than those for the other two
age ranges. In the case where the Fourier Lee-Carter model was the optimal choice over all
ages, the main contribution came from the accurate forecasts for the age range 60–89. For
instance, under the Fourier assumption, the MAPEs for the elderly in Canada and Sweden
decreased respectively by 0.82% and 1.17%, although these numbers under the cubic-spline
assumption were only 0.10% and 0.19%. On the other hand, the prediction errors in the
two countries between the two methods were more or less the same over ages 0–29 and
30–59. So, the overall performance of the Fourier Lee-Carter model was mainly driven
by the improvements for the oldest population. All these results suggested that the age
sensitivity parameter in the Lee-Carter model did not remain the same over time, and an
allowance for the evolution at different ages could improve the forecasting performance. In
particular, the oldest age group had experienced more noticeable changes than the other
two. The outperformance under the Fourier Lee-Carter model was largely attributable to
the nonstationary time series choice of the second phase parameter. Following historical
patterns, the second peak age x(2)peak of the projected age sensitivity tended to move towards
higher ages over time, leading to higher sensitivity for those aged 60–89. Although the
cubic parameters were also time-varying, it was not clear what time series choices would
lead to faster mortality reductions at higher ages. Since they were predicted by stationary
AR(1) models that converged quickly, the evolution of age patterns was less evident. Given
the same changes in the mortality index, the Fourier model suggested faster mortality
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improvements for the elderly than the other two models, which was more in line with
historical data.

As an additional measure of forecast accuracy, we also presented the MAPE values of
projected life expectancies at ages 0 (e0) and 60 (e60) under the original Lee-Carter model,
the Fourier Lee-Carter model and the cubic Lee-Carter model in Table 2. Similar to the
observations on the log central death rates, incorporating time-varying age patterns in
the Lee-Carter model tends to predict future life expectancies more accurately for the six
countries. The prediction errors of life expectancies at ages 0 and 60 under the Fourier (cubic)
Lee-Carter model decreased by about 0.1–0.4% (around 0.1%) and 0.5–1.9% (0.3–0.5%),
respectively. Again, the assumption of Fourier age patterns tended to work well at higher
ages. In fact, the results of all datasets suggested that the Fourier age sensitivity factor
brought the most noticeable reductions in forecast error for the higher-age life expectancy.
In particular, the forecast accuracy of life expectancy at age 60 improved by over 0.7%
for the male populations in three countries—Canada, Sweden and the United Kingdom.
Although the Fourier Lee-Carter model tended to outperform the original Lee-Carter model
for both measures, applying cubic-spline assumptions on the patterns of the age response
also generated some good performances. For life expectancy at birth, the Fourier Lee-Carter
model had the best fit to the male mortality data of Canada, New Zealand, Sweden and the
United Kingdom, although the cubic-spline assumption was preferred for Australia and the
United States. However, we emphasize that the difference in prediction errors between the
two proposed approaches was less than 0.1% when the cubic-spline method was optimal.
In the other cases, the Fourier assumption tended to beat its rival more evidently.

Table 2. MAPE values (%) of projected life expectancies at ages 0 and 60 (rolling-window basis). The
minimum MAPE values for each age and each country are given in bold.

Age Group e0 e60

Population LC Fourier Cubic LC Fourier Cubic

Australia 1.31 1.22 1.19 4.16 3.72 3.78
Canada 1.17 0.87 1.10 4.42 3.14 4.15

New Zealand 1.78 1.64 1.64 4.90 4.23 4.43
Sweden 1.30 0.90 1.18 3.98 2.07 3.67

United Kingdom 1.46 1.31 1.34 5.35 4.59 4.86
United States 0.87 0.83 0.82 3.08 2.45 2.81

Overall, the forecast accuracy of log central death rates and life expectancies coulkd
be improved when the age sensitivity parameter in the Lee-Carter model is modelled
with the Fourier series or cubic splines. Nevertheless, the extent of outperformance of the
two models may vary over different age groups. Our results indicated that the Fourier
(cubic) Lee-Carter model might be preferred for older (middle) age ranges, and that the
Fourier tended to outperform the cubic when the entire population was considered. Next,
we incorporated error terms into our projection results and examined the three mortality
models regarding their ability to capture potential structural changes.

4.2. Backtesting with Simulation

To further evaluate the predictive power of the proposed mortality models, we used
the Monte Carlo simulation to calculate the 95% prediction intervals for life expectancies at
key ages. The length of the forecasting (out-of-sample) period was set to 15 years, and the
previous years of data were employed as the fitting (in-sample) period. The proportions of
historical life expectancy values not captured by the 95% prediction intervals are displayed
in Table 3. It is shown that the proportion of outliers of life expectancy at birth (age
60) under the baseline model ranged from around 0% to 70% (60% to 90%) for the six
datasets. Under the Fourier and cubic-spline assumptions, this proportion reduced by up
to around 70%, the degree of which varied by country. For instance, when the Fourier age
sensitivity factor was adopted, the observed life expectancy values at both ages moved well
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within the prediction intervals for New Zealand and Sweden. Generally, the outliers of life
expectancy at birth were fewer than those at age 60. Overall, the two proposed methods
offered significant improvement in performance over the baseline model for most of the six
datasets, confirming the presence of time-varying age patterns.

Table 3. Proportions (%) of observed life expectancies at ages 0 and 60 falling outside 95% prediction
intervals, predicted over the last 15 years of the sample.

Age Group e0 e60

Population LC Fourier Cubic LC Fourier Cubic

Australia 0 0 0 60 20 20
Canada 73 47 73 87 87 87

New Zealand 17 0 0 75 0 50
Sweden 53 0 13 67 0 60

United Kingdom 40 13 20 87 53 67
United States 7 0 0 87 67 87

Figure 7 displays the historical and predicted life expectancies at birth and age 60 for
Australia and Sweden. The 95% prediction intervals generated from the original Lee-Carter
model (blue), Fourier Lee-Carter model (red) and cubic Lee-Carter model (grey) are plotted
on the same graph. The baseline model has the narrowest prediction intervals, followed
by the cubic Lee-Carter model and Fourier Lee-Carter model. This is in alignment with
our expectation since the original Lee-Carter model only considered the error term in the
mortality index, and the two proposed models also involved the error terms from the
time-varying age sensitivity. Besides the fundamental differences between the Fourier and
cubic-spline assumptions, the distinctions between the two newly proposed methods also
came from the time series processes employed. To make the predicted age patterns conform
with the observed developments, the second phase parameter in the Fourier Lee-Carter
model was fitted by a non-stationary process with increasing uncertainty over time. On
the other hand, no meaningful interpretations could be drawn from the coefficients of
cubic splines, so all the time-varying parameters of age response in the cubic Lee-Carter
model were fitted by stationary AR(1) with bounded variability. In line with the results in
Table 3, Swedish life expectancies at ages 0 and 60 were well captured by the prediction
intervals from the Fourier Lee-Carter model (red dashed lines). Moreover, Australian life
expectancy at birth did not fall outside of the 95% bounds under all the three candidates.
Nonetheless, the two proposed approaches had a tendency to result in closer projections
(red and grey dotted lines) to the observed values than the baseline model. The Fourier and
cubic projections were very close for Australia, although the former performed better for
Sweden. For Sweden, the predictions (red dotted lines) under the Fourier Lee-Carter model
were quite close to the realized values but this was not the case for the other two methods.

Theoretically, the percentage of values falling outside the 95% prediction intervals was
5%, but even with time-varying age patterns, the outliers of e0 in Canada and the United
Kingdom were still greater than 5%. When considering mortality at higher ages, only the
results of New Zealand and Sweden under the Fourier Lee-Carter model satisfied this
condition. The underlying reason may have been that the proposed models only took into
account the time-varying age patterns of structural changes but not the period effects. In
the subsequent section, we demonstrate through a case study that our newly proposed
models could readily incorporate these two sources of structural changes simultaneously,
addressing this issue.
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5. Integrating the Age and Period Effects of Structural Changes

In this section, we examined the impact of incorporating the age and period effects
of structural changes, either separately or simultaneously. Under the original Lee-Carter
model, structural changes are often analyzed in the literature through the period effects.
One needs to determine the dates of structural changes (breakpoints in the mortality
index), then apply extended models such as the regime-switching model, broken-trend
stationary model (time series process with piecewise-linear deterministic trends) and
difference stationary model with breakpoints. Coelho and Nunes (2011) argued that the
regime-switching model might not be appropriate because mortality reductions caused
by medical advancement and healthcare improvements are unlikely to be reversed. They
fitted the Lee-Carter model to each gender of eighteen populations with the mortality
index modelled by a trend or difference stationary time series process and concluded that a
difference stationary model was more suitable in the event of structural shifts. The main
purpose of this section is to illustrate that the Lee-Carter model with time-varying age
patterns can integrate both the age and period effects of structural changes. The impact
of incorporating the period effects of structural changes is explored using the difference
stationary model with one breakpoint in this paper11. For demonstration purposes, we
present our analysis based on male mortality data from the United Kingdom with the same
fitting (1950–2001) and testing (2002–2016) periods as above.

Without considering potential breakpoints, the mortality index kt can be modelled by
a random walk with drift (RWD) as follows:

kt = kt−1 + µ + ωt, (5)
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where µ is the drift term, and ωt is the Gaussian error term with zero mean. The drift term
is estimated by

µ̂ =
kperiodend − kperiodstart

periodend− periodstart
, (6)

which only depends on the starting and ending values of kt over the fitting period. However,
as shown by the dashed lines in Figure 8, the slope of the estimated mortality index actually
became steeper since the middle of the fitting period. The estimate of the drift term
over the whole period would then be too small to capture the future declining trend and
underestimate future mortality improvements. In this case, a piecewise RWD might provide
a better fit than a straight line (van Berkum et al. 2013). The formula is expressed as follows:

kt = kt−1 + µi + ωt, (7)

where µi =

{
µ1, t < tbp
µ2, t ≥ tbp

, tbp is the date of the detected structural shift. Given the location

of the breakpoint, we fit two RWD processes to the calibrated kt values before and after
the break date. Then the latter set of parameter estimates were employed to project future
mortality scenarios. We used the R package ‘strucchange’ to identify the potential structural
change for male mortality in the United Kingdom between 1950 and 2001. The structural
change is detected in 1979, which is in accordance with the graphical observation. For more
details of this modelling strategy, one may refer to Section 3 of van van Berkum et al. (2013)
who investigated the period effects under various mortality models. The estimated value
of µ̂ based on the whole fitting period is −1.35, and the µ̂2 calculated using the latest period
is −2.25.
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Figure 8. Parameter estimates of mortality index kt under the original Lee-Carter model for the
United Kingdom, calibrated on years 1950–2001. The red dashed line is based on two random walk
processes connected at a breakpoint. The blue dashed line is based on a single random walk process
over the whole fitting period.

In addition to the inclusion of a breakpoint, we applied the Fourier and cubic Lee-
Carter models to incorporate time-varying age patterns. Then we followed the same
strategies described in Section 4.2 to simulate future mortality scenarios over the testing
period 2002–2016. We compared six sets of mortality forecasts simulated from (1) the
Lee-Carter model with RWD, (2) the Fourier Lee-Carter model with RWD, (3) the cubic
Lee-Carter model with RWD, (4) the Lee-Carter model with piecewise RWD, (5) the Fourier
Lee-Carter model with piecewise RWD and (6) the cubic Lee-Carter model with piecewise
RWD. The observed and projected life expectancies at birth and age 60 with 95% prediction
intervals are displayed in Figure 9.
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Figure 9. Observed values (solid lines), projected values (dotted lines), and 95% prediction intervals
(dashed lines) of life expectancies at ages 0 (panel (a)) and 60 (panel (b)) for the United Kingdom,
calibrated on years 1950–2001.

There are some interesting observations to make on these diagrams. Comparing the
graphs in each row, allowing for time-varying age effects with a Fourier pattern (middle
column) tended to give the widest prediction intervals because the model had increasing
uncertainty over time on both the mortality index and phase parameters. The projected
life expectancy values under the original Lee-Carter model with RWD (the top left graph)
showed an apparent deviation from historical data. The gap can be narrowed slightly by
introducing a time-varying age effect. Comparing the graphs in each column, we saw
that employing piecewise random walk processes could redirect the RWD projection to
the ‘right’ trend, with the bottommost panels showing more accurate predictions of life
expectancies at both ages 0 and 60 regarding the projected values and prediction intervals
when the period effects of structural changes were incorporated. Considering the age effects
(the top middle and top right figures) or time effects (the bottom left figure) of structural
changes alone yielded better performance than the original Lee-Carter model (the top left
figure) did. Furthermore, the integration of the two sources of structural changes (the
bottom middle and bottom right figures) produced the best performance among these
six models. The above observations held for life expectancies at both ages, although the
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age effects of structural changes appear to be more influential for older ages. Although
employing a piecewise RWD was enough to properly predict e0 of British males (the bottom
left graph of Figure 9a), it failed to do so for e60. As illustrated by the bottom panel of
Figure 9b, the prediction intervals could capture the realized trend of e60 only when both
the age and period effects of structural changes were taken into account.

The proportions of observed life expectancies at ages 0 and 60 falling outside the
prediction intervals under models (4)–(6) for the six countries are displayed in Table 4.
Comparing with the figures in Table 3, incorporating the period effects of structural changes
reduced the outliers of life expectancies at both ages by up to 75% and up to 67% under the
Lee-Carter model with and without time-varying age patterns, respectively. One exception
was the Canadian male life expectancy at age 60 under the original Lee-Carter model and
the cubic Lee-Carter model whose forecasting errors reduced by 0%. The current results
were mostly acceptable under the Fourier Lee-Carter model, especially for life expectancy
at birth. With the integration of the two sources of structural changes, significant outliers of
e60 were still observed in two out of the six cases. Among the two proposed approaches,
the Fourier assumption generated better prediction intervals for e60, with an improvement
over the baseline model of 60% and 67% for Canada and the United States, respectively.
This outperformance of the Fourier Lee-Carter model with piecewise RWD was possibly
attributable to the unbounded variability assumed for the second phase parameter that
was related to the age response at higher ages. Although one may adopt similar time
series processes for the cubic-spline parameters, there is no practical interpretation of the
cubic-spline coefficients and the choice of time series was hard to justify.

Table 4. Proportions (%) of observed life expectancies at ages 0 and 60 falling outside 95% prediction
intervals, predicted over the last 15 years of the sample. The mortality index is modelled by a
piecewise RWD with one breakpoint.

Age Group e0 e60

Population LC Fourier Cubic LC Fourier Cubic

Australia 0 0 0 0 0 0
Canada 20 0 7 87 27 87

New Zealand 0 0 0 0 0 0
Sweden 0 0 0 0 0 0

United Kingdom 0 0 0 33 0 0
United States 0 0 0 80 13 40

Recalling that Figure 7 depicts two representative examples, Australia and Sweden,
the three sets of projections for the former presented an evident deviation from the observed
trend, although the Fourier method seemed to capture the trend of the latter. We plot in
Figure 10 the predicted life expectancies at age 0 and 60 of these two countries under
the three mortality models with piecewise RWD. Interestingly, none of the historical e0
and e60 values of Swedish males fell outside the prediction intervals under the Fourier
Lee-Carter model, both before and after introducing a piecewise RWD. As illustrated in
the right column of Figure 10, arbitrarily introducing the time effects of structural changes
to the Fourier Lee-Carter model (red dotted lines) might make life expectancy projections
deviate from the observed trend. The results for Swedish male mortality data suggested
that incorporating the Fourier time-varying age patterns alone or using the piecewise RWD
alone was sufficient for generating the prediction intervals.
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Figure 10. Observed values (solid lines), projected values (dotted lines) and 95% prediction intervals
(dashed lines) of life expectancies at birth (top panel) and age 60 (bottom panel), calibrated on years
1950-2001. The blue lines correspond to the projections from the original Lee-Carter model, and the
red (grey) lines refer to the projections from the Fourier (cubic) Lee-Carter model. The mortality
index is modelled as piecewise RWD.

In summary, this section demonstrates that structural changes could not only be
reflected in the overall mortality reduction trends, but could also be in the sensitivity
to those changes at different ages. Two mortality models were proposed to capture the
time-varying patterns of the age effects by fitting a Fourier-like (cubic-spline) process to
the age sensitivity parameters in the original Lee-Carter model. For the six datasets tested,
allowing for either the time-varying age sensitivity or the mortality index with breakpoints
tends to improve backtesting results, and the integration of these two approaches was
superior for five out of the six countries in this case.

6. Concluding Remarks

The presence of structural changes has been an issue in forecasting future mortality
rates and life expectancies, especially when applying extrapolative mortality models. One
representative among this category is the Lee-Carter model defined by a mortality index
and two time-invariant age-specific parameters. Some analyses have been performed that
allow structural shifts in period effects, but little attention has been paid to time-varying
age effects whose potential existence has been identified by several authors (Lee and Miller
2000; van Berkum et al. 2016).

In this paper, we proposed modifications to the original Lee-Carter model to allow
the age sensitivity parameters to change over time. Specifically, the Fourier series with
time-varying amplitude and phase parameters was fitted to the age response to incorpo-
rate variations in these factors over time. For comparison, an alternative approach was
considered that models the age patterns by cubic splines with time-varying coefficients.
The forecasting performances of the Fourier Lee-Carter model, cubic Lee-Carter model
and baseline Lee-Carter model were evaluated on the male mortality data of six countries.
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Our backtesting results showed that, on average, allowing for a changing Fourier (cubic)
age response was likely to produce more accurate projections than using a constant age
response, especially for older (middle-aged) ages. Moreover, the newly proposed models
could generate wider prediction intervals by involving additional process error from the
evolving age sensitivity factor. The widths of prediction intervals would be further influ-
enced by the choice of time series processes fitted to the time-varying parameters of the
age response.

We conducted a case study using the mortality data of the United Kingdom to illus-
trate the integration of structural changes in both the age and period effects. Our analysis
suggested that taking full account of structural changes in mortality modelling tended
to capture future mortality trends more accurately. Nevertheless, there were some excep-
tions where including structural breaks in the mortality index worsened the forecasting
performance under the Lee-Carter model with time-varying age patterns. For Sweden, for
instance, incorporating the age effects or time effects of structural changes alone would be
sufficient to produce accurate forecasts of mortality rates, whereas the integration of both
had the effect of exaggerating the impact of structural changes in this case. If the structural
break in the mortality index was not significant, incorporating the age effects of structural
changes alone would be adequate.

There are some possible directions of future research. We determined the split (knot)
age and frequencies by considering the overall features of the age sensitivity factor over
different subperiods. Other split choices might be adopted to enhance the performance of
the proposed models. For instance, one might explore the optimal number and locations
of age splits (number and positions of knots) for the Fourier (cubic) approach, but further
investigation is needed. In addition, this paper evaluates model performances on male
populations, although structural changes might occur differently for females (Coelho and
Nunes 2011). It would be interesting to apply similar techniques as in the present paper to
examine the structural changes for each sex. To ensure the mortality coherence of mortality
projections between both sexes, one might modify the age sensitivity parameters in the
augmented common factor model developed by Li and Lee (2005). Comparisons can be
made between forecasts from the Fourier (cubic) Lee-Carter model with each sex modelled
separately and a common factor model with a similar Fourier (cubic) adjustment with both
sexes modelled jointly. Our study shows that a Fourier-like process can depict changes
in the Lee-Carter age sensitivity parameter across ages 0-89 for Australia, Canada, New
Zealand, Sweden, the United Kingdom and the United States. When different age groups
are under interest, the proposed models might not necessarily be optimal. In this case, one
might employ a Fourier series with functional coefficients without specifying the shape of
the age response. The resulting mortality model with the parametric age function would
offer more flexibility on modelling mortality age patterns. Ideally, it can accommodate
features from different age ranges, sample periods, and populations.
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Figure A1. Age sensitivity factors under the Lee-Carter model estimated from sequential subperiods
with different fixed lengths. The legend b[x, t] refers to the age response βx calibrated on a subperiod
ending in year t, t end refers to the ending year of the entire sample period.

Notes
1 The mortality data for New Zealand are available up to 2013 at the time of collection.
2 In the following, we use the terms age sensitivity and age response interchangeably.
3 The general Fourier series contains sinusoidal waves in the time dimension. We borrow the functional form and apply it to depict

the shape of the age sensitivity parameter in the Lee-Carter model.
4 Choosing overlapping subperiods is a common choice in modelling structural changes (e.g., Goyal and Welch 2003; Inoue et al. 2017).

We use overlapping rather than distinct subperiods, as the latter would not provide sufficient data points for reliable estimation and
prediction of the time-varying age sensitivity factors. For instance, the whole sample period of 67 years (1950–2016) can only be split
into fewer than 4 non-overlapping subsamples if the length of each subperiod is required to be at least 20 years. There are then at
most only 4 data points available to calibrate the time series models for the time-varying Fourier (cubic-spline) parameters.

5 The original Lee-Carter model (Lee and Carter 1992) was estimated via singular vector decomposition with an assumption that
the error terms are homoscedastic, which can be unrealistic (Alho 2000). Brouhns et al. (2002) improved the fitting approach by
assuming a Poisson distribution for the age-specific number of deaths in each year. The model parameters are then estimated
using maximum likelihood method. We use the Poisson assumption in this article, although other distributions can be employed
based on particular datasets (e.g., Pitt et al. 2018; Wong et al. 2018; Awad et al. 2022). To avoid the identification problem when
fitting the Lee-Carter model to the entire sample, the constraints ∑t kt = 0 and ∑x βx = 1 are adopted, where βx refers to the age
response estimated from the entire sample.

6 We also repeat the rolling-window backtesting using different lengths of 20 and 30 years. The results (not presented in the article)
are comparable to those presented in Section 4.1.

7 Although not presented here, the differences in heights between the waves for younger and older ages are rather significant
when a shorter sample period is employed.

8 As illustrated in Figure 5, one set of Fourier parameters for each region appears to be adequate in portraying the pattern of age
sensitivity factors.

9 Our purpose is to demonstrate one way of incorporating the time-varying age patterns of mortality development. Other
time series processes can be adopted if one sets different assumptions about the future age patterns or if the data exhibit
different trends.

10 We apply the Coale-Kisker method (Coale and Kisker 1990) to extend mortality predictions up to a predetermined maximum age
of 110 with an ultimate mortality rate of 0.7 (Gampe 2010).

11 For simplicity we consider the difference stationary model with one breakpoint. For a test of multiple breakpoints, one may refer
to van Berkum et al. (2016).
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