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Abstract: The aim of this paper is to introduce a two-step trading algorithm, named TI-SiSS. In
the first step, using some technical analysis indicators and the two NLP-based metrics (namely
Sentiment and Popularity) provided by FinScience and based on relevant news spread on social
media, we construct a new index, named Trend Indicator. We exploit two well-known supervised
machine learning methods for the newly introduced index: Extreme Gradient Boosting and Light
Gradient Boosting Machine. The Trend Indicator, computed for each stock in our dataset, is able to
distinguish three trend directions (upward/neutral/downward). Combining the Trend Indicator
with other technical analysis indexes, we determine automated rules for buy/sell signals. We test
our procedure on a dataset composed of 527 stocks belonging to American and European markets
adequately discussed in the news.

Keywords: trading strategy; XGBoost; LightGBM

1. Introduction

The automated stock picking/trading algorithms have recently gained an increasing
relevance in the financial industry. The possibility of processing information from different
conventional and unconventional sources gives to economic agents the opportunity to
make great profits combining such information with classical financial indicators. After
the advent of Big Data, new powerful computers and technologies, artificial intelligence
(AI), and data science (DS) have not only increased their roles in finance but also in many
different disciplines, such as cybersecurity, marketing, economics, and many others.

Frequently used algorithms for trading strategies privilege the usage of historical
prices from stock markets as a tool to make decisions (buy and sell) in financial markets.
Among these studies, we mention academic papers that combine supervised/unsupervised
machine learning methods with information inferred directly from financial time series.
For instance, Allen and Karjalainen (1999) proposed a genetic algorithm to learn technical
trading rules that are strictly connected to the level of returns and volatility. More precisely,
according to this work, the investor should take a long position when positive returns and
low daily volatility occur and stay out of the market in the presence of negative returns
and high volatility. Although Allen and Karjalainen (1999) suggested the possibility of
extending their approach by including other types of information such as fundamental
and macro-economic data, the main ingredients for obtaining a trading signal are the
volatility and the returns. Applying the support vector machine, Lee (2009) proposed an
algorithm for the identification of the direction of change in the daily NASDAQ index
based on a set composed of closing prices of 20 futures contracts and nine spot indexes.
Moreover, Chong et al. (2017) analyzed three unsupervised feature extraction methods
(i.e., principal component analysis, autoencoder, and the restricted Boltzmann machine) to
predict future market behavior using exclusively high-frequency intraday stock returns as
input data. Starting from the hypothesis that financial time series contain all private/public
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information, Barucci et al. (2021) recently developed a trading algorithm based on financial
indicators that are identified as outliers of the following series: returns, trading volume
growth, bid–ask spread, volatility, and serial correlation between returns and trading
volumes. These indicators have been used to identify a market signal (buy, neutral, or
sell) for each security and a corresponding trading strategy (for completeness we suggest
Ballings et al. 2015, for a comparison among different machine learning methods widely
applied in finance for the stock price direction prediction).

However, due to the presence of different sources, a challenge for an automated trading
algorithm is to take into account the investors’ opinions that some funds’ managers could
underestimate by following strategies based exclusively on financial market data. For this
reason, a new paradigm for constructing a trading algorithm is rising among academics
and practitioners. Indeed, despite the market efficient hypothesis Fama (1970), many
authors documented not only the possibility to predict future movements based on the past
financial prices but also to identify a market trend using the amount of data available in
unconventional sources such as social networks, blogs, thematic forum, online newspapers,
and many others. These data, named hereafter Alternative Data, refer to qualitative and
quantitative information and represent how a particular company (or financial instruments)
is perceived by the market and how popular it is among investors. For instance, Jaquart et al.
(2020) analyzed the literature on Bitcoin prediction through machine learning and identified
four groups of predictors: technical (e.g., returns, volatility, volume, etc.), blockchain-
based (e.g., number of bitcoin transactions), sentiment-/interest-based (e.g., bitcoin Twitter
sentiment), and asset-based (e.g., returns of a connected market index) features. Among
many authors, we mention, for example, Bollen et al. (2011), who investigated whether the
public mood, assessed through daily Twitter posts, predicts the Bitcoin market. Starting
from the observation that the increasing digitization of textual information, news, and
social media have become major resources for gathering information on important financial
events, Yang et al. (2017) developed a trading strategy using tweets sentiment and genetic
programming optimization. Recently, Duz and Tas (2021) confirmed that firm-specific
Twitter sentiment contains information for predicting stock returns and this predictive
power remains significant after controlling news sentiment. Their research leads to the
possibility of exploiting the social media sentiment in a trading strategy.

The aim of our work is twofold. Firstly, we contribute to the literature that studies the
possibility of identifying a trend for a stock using Alternative Data and standard financial
indicators. Indeed, similarly to Barucci et al. (2021), we propose a procedure based on
the identification of the market trend for a specific stock. However, our classification
(upward/neutral/downward) includes financial indicators and two metrics that quantify
all information contained in Alternative Data. Secondly, we develop a stock picking/trading
algorithm based on the results of the classification procedure.

The main instruments for our two-step trading (classification) strategy are Sentiment
and Popularity metrics. These two quantities, published daily by FinScience1, are obtained
by searching over 1.5 million web pages, extrapolating, interpreting, and analyzing their
contents in order to identify valuable information. Sentiment, which takes values from −1
to 1, assesses the perception of the company, while Popularity, which assumes only positive
values, measures investors’ interest in a topic.

The remainder of the paper is organized as follows. Section 2 reviews technical analysis
market indicators used as inputs for our analysis with a discussion of the extreme gradient
boosting and light gradient boosted machine used in the classification step. Section 3
introduces the Sentiment and Popularity metrics developed in FinScience; then, we discuss a
supervised classification problem with the explanation of the solution for the creation of
labels. Afterwards, we create a new, reliable, FinScience-metrics-based financial technical
indicator that has the aim of predicting the price trend one day forward in the future. Finally,
we conduct a comparison with an alternative trading strategy developed by FinScience and
we also provide the gross/net performances for the most/least capitalized companies in a
dataset. Section 4 concludes.
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2. Technical Analysis Indicators and Machine Learning Algorithms

In this section, we describe the technical analysis indicators that will be used in the
empirical part of this paper. We also briefly review the mathematical aspects of the two
machine learning algorithms that we consider in our analysis: extreme gradient boosting
(XGBoost) and light gradient boosted machine (LightGBM).

2.1. Technical Analysis Indicators

We classify the technical analysis indicators into two groups. The first one contains
such indicators that, combined with the Sentiment and Popularity metrics, construct the
Trend Indicator for each company in our dataset. By means of the XGBoost or LightGBM
algorithms, the aim of the Trend Indicator is to recognize the future trend of market prices.
More precisely, it returns three labels (“0”, ”1”, and “2”) where the labels “2”, “1”, and “0”
denote upward, neutral, and downward trends, respectively. These technical indicators are:

1. The Simple Moving Average (SMA), which is the sample mean of the close daily prices
over a specific time interval (see Ellis and Parbery 2005, for more details). Therefore, to
assess the short-, medium-, and long-term price directions, we include in our analysis
SMA for 7, 80, and 160 days, respectively.

2. The Average True Range (ATR) measures the price variation over a specified time
interval. We refer to Achelis (2001) for its formal definition. In the empirical analysis,
we focus on the effect of the variability in a short time interval, i.e., 7 days.

3. The Relative Strength Index (RSI) measures the magnitude of the price changes Levy
(1967). This indicator ranges from 0 to 100, with two thresholds indicating the oversold
at level 30 and overbought at level 70. In our analysis, we include this index with a
7-day time-horizon.

4. The Donchian Channel (DC) is used to detect strong price movements, looking for
either a candlestick breaking the upper ceiling (for bullish movements) or the lower
floor (for bearish ones).

All the aforementioned indicators were used as inputs in the machine learning supervised
models, except the DC indicator, whose variations represent the output of the models. If the DC
predicted variation is positive, then Trend Indicator assumes label “2”, label “0” if DC variation is
negative, and label “1” if DC’s line is flat. For DC, we consider a 5-day time horizon.

The second family contains the indicators that, combined with the Trend Indicator, will
be used in a signal buying/selling strategy. More precisely, they are used as inputs in our
stock picking/trading algorithm. In this second group, we include the SMA indicator and
the technical analysis indicators reported below:

1. The Average Directional Index (ADI) measures the trend’s strength but without telling
us whether the movement is up or down. The ADI ranges from 0 to 100, and a value
above 25 points out the fact that the trend of the price company is strong enough for
being traded.

2. The Momentum Indicator (MOM) is an anticipatory indicator that measures the rate of
the rise or fall of stock prices (see Thomsett 2019, and references therein).

In the empirical analysis, we use these indexes with a 7-day time-horizon. Our
classification is motivated by the fact that SMA, ATR, RSI, and DC are widely used for
capturing the price movements while the remaining indicators are able to capture the
buying/selling time. In fact, the ADI indicates the existence of a trend movement while
MOM tells us the direction of such movement; therefore, a change of MOM sign could be
translated in a buying/selling signal.

2.2. Extreme Gradient Boosting and Light Gradient Boosted Machine Algorithms

In this section we present the basic theory behind the selected models: the XGBoost and
the LightGBM algoritms. Both numerical procedures come from the same macro-family of
decision-tree-based procedures, but they are the most complicated and performant models
since they represent the most advanced level of boosting.
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The XGBoost algorithm, developed by Chen and Guestrin (2016), is characterized by
the following steps:

• It computes second-order gradients to understand the direction of gradients them-
selves.

• It uses L1, L2 regularizations and tree pruning to prevent overfitting.
• It parallelizes on your own machine for improving the velocity of the computations.

Letting x1, . . . , xn be the vector inputs containing n features and y1, . . . , yn the corre-
sponding observed outputs, a tree ensemble model combines K trees to obtain the estimated
outputs, that is:

ŷi =
K

∑
k=1

fk(xi) (1)

where each fk is a prediction from the k-th decision tree. With this model construction, the
train phase is carried out by minimizing a regularized loss function between the observed
and predicted outputs. For a multiclassification problem, that is our case, the multiclass
logistic loss function (mlogloss) can be used. Let the true labels for a set of samples be
encoded as a 1-of-J binary indicator matrix Y, i.e., yi,j = 1 if sample i has label j taken from a
set of J labels. Let P be a matrix of probability estimates, with pi,j = Pr(yi,j = 1). Then, the
mlogloss L is defined as:

L = − 1
N

N

∑
i=1

M

∑
j=1

yi,jlog(pi,j). (2)

Moreover, another important aspect is the regularization phase, in which the model con-
trols its complexity, preventing the overfitting problem. The XGBoost algorithm uses the
following regularizing function:

Ω = γT +
1
2

λ
T

∑
j=1

ωj
2 (3)

where T is the number of leaves on a tree, ωj ∈ RT is the score on the j-th leaf of that tree, γ
and λ are, instead, the parameters used for controlling the overfitting, respectively, setting
the minimum gain split threshold and degree of regularization for L1 or L2. Combining (2)
and (3), we have the objective function used in the minimization problem:

Obj = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (4)

where the first sum is used for controlling the predictive power; indeed, l(ŷi, yi) is a
differentiable convex loss function that measures the difference between the prediction ŷi
and the target yi, while the remaining term in (4) is used for controlling the complexity
of the model itself. The XGBoost procedure exploits the gradient descent algorithm to
minimize the quantity in (4): it is an iterative technique that computes the following
equation at each iteration (given an objective function).

∂Obj(y, ŷ)
∂ŷ

Then, the prediction ŷ is improved along with the direction of the gradient, to minimize
the objective (actually, in order to make XGBoost convert faster, it also takes into considera-
tion the second-order gradient using the Taylor approximation since not all the objective
functions have derivatives). Therefore, in the end, removing all the constant terms, the
resulting objective function is

Obj(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) (5)
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where gi =
∂l(yi, ŷ(t−1))

∂ŷ(t−1)
and hi =

∂2l(yi, ŷ(t−1))

∂ŷ(t−1)
.

Therefore, (5) is the objective function at the t-th step and the goal of the model is to
find an ft that optimizes this quantity.

The main problem is to obtain a tree that improves predictions along with the gradient.
To find such a tree it is necessary to answer to two further questions:

1. How can we find a good tree structure?
2. How can we assign prediction scores?

First, let us assume we already have the answer to the first question and let us try to
answer the second question. It is possible to define a tree as

ft(x) = ωq(x) (6)

where (q : Rm → T) is a "directing” function which assigns every data point to the q(x)-th
leaf, such as F = { f (X) = ωq(x)}. Therefore, it is possible to describe the prediction
process as follows:

• Assign the data point x to a leaf by q.
• Assign the corresponding score ωq(x) on the q(x)-th leaf to the data point.

Then, it is necessary to define the set that contains the indices of the data points that
are assigned to the j-th leaf as follows:

Ij = {i|q(xi) = j}

Thus, now it is possible to rewrite the objective function as

Obj(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + γT +

1
2

λ
t

∑
j=1

ω2
j

=
T

∑
j=1

[(∑
i∈Ij

gi)ωj +
1
2
(∑

i∈Ij

hi + λ)ω2
j ] + γT (7)

In (7), the first part has a summation over the data points, but in the second one the
summation is performed leaf by leaf for all the T leaves. Since it is a quadratic problem of
ωj, for a fixed structure q(x), the optimal value is

ω∗j =
∑i∈Ij

gi

∑i∈Ij
hi + λ

and, therefore, simply substituting, the corresponding value of the objective function is

Obj(t) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (8)

where the leaf score ωj is always related to the first and second order of the loss function
g and h and the regularization parameter λ. This is how it is possible to find the score
associated with a leaf assuming to know the structure of a tree.

Now, we move back to the first question: how can we find a good tree structure? Since
this is a difficult question to answer, a good strategy is to split it into two sub-questions:

1. How do we choose the feature split?
2. When do we stop the split?

Starting from question number one, the first thing to say is that in any split the goal is,
of course, to find the best split-point that will optimize the objective function; therefore, for
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each feature it is crucial to first sort the numbers, then scan the best split-point and finally
choose the best feature.

Every time that a split is performed, a leaf is transformed into an internal node having
leaves with different scores than the initial one.

Clearly, the principal aim is to calculate the gain (or the eventual loss) obtained
from such a split. Usually, in other tree-based algorithms, the computation of this gain
is generally made through the Gini index or entropy metric, but in the XGBoost this
calculation is based on the objective function. In particular, XGBoost exploits the set of
indices I of data points assigned to the node, where IL and IR are the subsets of indices
of data points assigned to the two new leaves. Now, recalling that the best value of the
objective function on the j-th leaf is (8) without the first summation and the T value in the
last term, the gain of the split is:

gain =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ

where:

•
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

is the value of the left leaf;

•
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

is the value of the right leaf;

•
(∑i∈I gi)

2

∑i∈I hi + λ
is the objective of the previous leaf;

• γ is the parameter which controls the number of leaves (i.e., the complexity of
the algorithm).

To understand whether when transforming one leaf into two new leaves there is an
improvement of the objective or not, it is enough to look at the value (positive or negative)
of this gain. Therefore, in conclusion, the XGBoost algorithm, to build a tree, first finds the
best split-point recursively until the maximum depth (specifiable by the user) is reached
and then it prunes out the nodes with negative gains with a bottom-up order.

LightGBM is a fast, distributed, high-performance tree-based gradient boosting frame-
work developed in Ke et al. (2017). The most important features of this algorithm that
differentiate it from XGBoost are the faster training speed and the fact that it supports
parallel, distributed, and GPU learning and that it is capable of handling large-scale data.
Another main difference between LightGBM and XGBoost is the way in which they grow
a tree: the first one uses leaf-wise tree growth, expanding those leaves that bring a real
benefit to the model, while the second uses level-wise tree growth, expanding the tree one
level at a time and then cutting off the unnecessary branches at the end of the process.

The first thing that makes LightGBM faster in the training phase is the way it sorts the
numbers: this algorithm takes the inputs and divides them into bins, reducing a lot of the
computation effort needed to test all the possible combinations of splits. This process, called
histogram or bin way of splitting, clearly makes computations much faster than the ones of
XGBoost. The second improving characteristic of this algorithm is called exclusive feature
bundling (EFB), which reduces the dimension of the features that are mutually exclusive.
For example, if there are two features, green and red, which correspond to the color of a
financial candle, taking either value 1 or 0 based on the corresponding candlestick’s color,
then these features are mutually exclusive since a candle cannot be green and red at the
same time. Thus, this process creates a new bundled feature with a lower dimension, using
new values for identifying the two cases, which in this situation are number 11 for the
green candle and number 10 for the red one. Therefore, by reducing the dimensionality of
some of the input features, the algorithm is able to run faster, since it has fewer features
to evaluate. The third characteristic that differentiates LightLGBM from XGBoost is the
so-called gradient-based one side sampling (GOSS), which helps the LightLGBM algorithm
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to iteratively choose the sample to use for the computations. Suppose that the dataset
used has 100 features, then the algorithm computes 100 gradients G1, G2, . . . , G100 and sorts
them in descending order, for example, G73, G24, . . . , G8. Then, the first 20% of these records
are taken out and an additional 10% is also randomly taken from the remaining 80% of
gradient records. Therefore, since the gradients are descendingly ordered, the algorithm
takes only the 10% of the features on which it performs well and the 20% of those features
on which it performs poorly (high gradient means high error), thus, on which it still has a
lot to learn. Afterwards, these two percentages of features are combined together, creating
the sample on which the LGBM trains, calculates the gradients again, and again applies the
GOSS in an iterative way.

3. Materials and Methods

In this section, we present our two-step trading algorithm. First of all, we describe
the main features of the dataset. We discuss the construction and the characteristics
of Popularity and Sentiment metrics that have been published daily since 2019 for each
company in the dataset. Using these two metrics, we show the Python implementation
for the construction of the Trend Indicator and we report some results about its ability in
market phase prediction. Further, we present our strategy, named Techincal Indicator—Signal
Screener Strategy (TI-SiSS), for the identification of buying/selling signals. A component
of TI-SiSS is the Trend Indicator that, combined with SMA, gives us trend-increasing stocks
suitable for our strategy (filtering phase). For completeness, the timing phase is composed
of Popularity variation and Sentiment level and provides us with buying/selling time
instants. Then, we compare TI-SiSS with a similar strategy that does not include the Trend
Indicator. Finally, we analyze gross and net performances of TI-SiSS for the five most/least
capitalized companies in the dataset. Figure 1 shows a flow diagram that describes our
new two-step algorithm.

Figure 1. Description of the two-step trading algorithm.

3.1. Dataset

In our analysis, we consider a dataset containing the daily market closing prices for
527 companies. The period of observation ranges from 25 September 2019 to 18 February
20222. Figure 2 shows the distribution of companies for industrial sectors and geographical
areas. The most represented sector is the Information Technology, with 117 companies while
the USA companies are 91% of the dataset.
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Figure 2. Classification of the companies that comprise the dataset based on geographical areas
(upper) and industrial sectors (lower).

Table 1 reports the main statistics for the five most/least market capitalized stocks
and we observe that the daily log-returns show generally a negative skewness with a high
kurtosis, denoting a departure from the normality assumption.

Table 1. Main information about the top 5 most/least capitalized stocks in the dataset. MDD stands
for maximum drawdown.

Stock Mrk. Cap.
(bn) Max/Min Pop. Max/Min

Sent. Mean S.D. Skew. Kurt. MDD

Apple 2260 1.91× 107/9.87× 106 0.32/−0.25 1.98× 10−3 0.022 −0.246 6.000 −70.5%
Microsoft 1710 9.87× 106/3.45× 105 0.30/−0.21 1.25× 10−3 0.021 −0.465 10.662 −61.6%
UnitedHealth 467 4.99× 105/8.650 0.64/−0.64 5.18× 10−4 0.021 −0.653 15.298 −62.4 %
J&J 422 8.19× 105/196 0.52/−0.49 5.18× 10−4 0.014 −0.017 8.343 −40.0%
Exxon 412 9.94× 105/432 0.49/−0.59 4.25× 10−4 0.025 −0.098 4.286 −66.2%

Tejon Ranch 3.844 9304/0 0.72/−0.69 −4.5× 10−6 0.027 0.529 6.924 −37.1%
Entravision 3.482 1808/0 0.85/−0.66 1.6× 10−3 0.044 −2.8× 10−3 2.974 −87.6%
Community Health 2.802 1.48× 104/0 0.76/−0.66 2.6× 10−3 0.057 0.469 4.039 −85.5%
Provident Financial 1.035 1.05× 104/0 0.96/−0.66 −2.5× 10−4 0.029 −0.364 10.233 −48.2%
Jones Soda 0.286 3244/0 0.67/−0.64 8.9× 10−4 0.070 0.584 6.887 −90.9%

3.2. Popularity and Sentiment Metrics

FinScience retrieves content from the web: about 1.5 million web pages are visited
every day on 35,000 different domains. The content of these pages is extracted, interpreted,
and analyzed to identify valuable information and sources. The advantage of this approach
in web analysis is that it can intercept any kind of topic: it gathers data and information
spread by companies, news sources, and through social media.

The data gathering phase involves the collection of data from different web sources:
websites, social network pages, news, and blogs. Web urls are conveyed in the database
through social media networks such as Twitter, Reddit, Stocktwits, etc. Through the use
of blacklists that are constantly kept up to date, data sources that are considered spam
or unreliable are removed. After this first phase of data collection, contents are extracted
from web pages and preprocessed via a first level of data cleansing to remove “noise”
(nonrelevant information) and via the extraction of the main body: this is the input to the
next phase of data processing.

At this stage, natural language processing (NLP) methods are carried out. Contents
collected during the data gathering phase are subjected to an NLP analysis that allows to
identify objects (companies, people, locations, topics, etc.) disseminated and discussed
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on the web. The DBPedia ontology is used and its named entity recognition (NER)—
automatic annotation of entities in a text—is able to associate pieces of text to members of
the abovementioned ontology. The ontology is based on the DBpedia Knowledge Graph,
which encompasses cleansed data from Wikipedia in all languages. Over the years, such
ontology evolved into a successful crowd-sourcing effort with the DBpedia community
continuously contributing to the ontology schema. It now contains about 800 classes,
numerous properties, and is cross-domain. Based on this ontology, the entities mentioned
are identified in the online content and create the structured data that are used as building
blocks of the time series associated with what they call “signals” (which can be companies,
people, locations, topics, or a combination of them), which enables to identify companies
and trends that are spreading in the digital ecosystem as well as analyze how they are
related one to each other.

In particular, what is possible to learn from Alternative Data is conveyed and summa-
rized into several metrics, but for the purposes of this research, only the following are taken
into consideration:

• Company Digital Popularity measures the level of diffusion of a digital signal on the
web. It is obtained by aggregating the diffusion metrics of the news mentioning the
company and can take only positive values. The diffusion metric of a news article
is quantified by taking into account the number of times the link is shared on social
media and also the relevance of the company inside the text. It basically measures
how popular a company/stock is among investors.

• Company Sentiment measures the user’s perception concerning the company and can
take values in the interval [−1, 1], boundaries included. The sentiment metric of the
company on a specific date is represented by a weighted average of the sentiment
scores of all news mentioning the company, where the weight is the popularity of
the articles.

It is through the use of these two metrics that an attempt will be made to construct a
new technical financial indicator.

Popularity and Sentiment Analysis for the Most and the Least Capitalized Companies

In this section, we analyze some features of Sentiment and Popularity metrics for Apple
and Jones Soda (simply Jones from here on). These two stocks are the most and the least
capitalized companies in the dataset. Our aim is to provide a brief statistical analysis for the
time series of these two metrics. Similar results were obtained for each stock in the dataset
and are available upon request. As expected, Table 2 confirms that an more capitalized
company is more popular than a less capitalized one among market operators (i.e., the
agents talk more about Apple than Jones). Moreover, the higher Sentiment expected value
for Apple denotes that the most capitalized has a good reputation in the considered period
(i.e., the Apple news generally improves its public image). It is worth noting that the
negative sign of the skewness for Sentiment denotes a low number of strongly negative
news even though the majority of them have been positive, leading to a positive mean.

Table 2. Main statistics for Popularity and Sentiment for Apple and Jones.

Stat. Apple Jones

Pop. Sent. Pop. Sent.

Mean 0.259× 106 0.072 96.844 0.010
St.Dev. 0.173× 106 0.095 267.536 0.242
Skew. 3.437 −0.579 6.765 −0.447
Kurt. 20.309 0.852 66.113 0.002

From Figures 3 and 4, the paths of Sentiment and Popularity seem to suggest a stationary
behavior in all cases. To further investigate this fact, we consider an augmented Dickey–Fuller
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test. The null hypothesis is the unit-root against a trend-stationary alternative hypothesis. The
p-value for both metrics and both stocks is strictly smaller than 5%, suggesting a stationary
behavior. The highest p-value (0.000485) is obtained for the Jones Sentiment.

Figure 3. Sentiment and Popularity indexes of Apple ranging from 25 September 2019 to 18 February
2022 (upper part) and the corresponding autocorrelation function (lower part).

Figure 4. Popularity and Sentiment indexes of Jones ranging from 25 September 2019 to 18 February
2022 (upper part) and the corresponding autocorrelation function (lower part).

Both figures report also the autocorrelation functions. At least one lag is statistically
significant, denoting an autoregressive dependence structure for these two metrics. In
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all cases, the first lag is always significant, except for the Jones Popularity that shows a
significant nonzero second lag.

3.3. Trend Indicator

The issue that this research has to face is a classification problem that can be solved
through a supervised approach since price directions (creating trends) can be categorized
into bullish, bearish, and sideways movements.

3.3.1. Preprocessing Phase

Generally, a common and widely used technique to detect the trend of prices is to
calculate simple returns and then investigate the sign of each daily return to asses the price
movement. However, this procedure would be too granular, making the labels too sensitive
and therefore losing sight of a slightly longer-term trend (weekly), which is quite useful
information in trading.

Therefore, in order to better catch the weekly trend of prices, we decided to use a
traditional financial indicator in a new, unusual way: the Donchian Channel. However, not
all the three lines of this indicator are necessary for detecting a trend and therefore we use
only the Upper Channel (UC): it is shifted back in time for the number of input periods to
perfectly overlap to the prices, and then its daily variations are taken and saved in a new
dataset column. In this way, since the top line of the Donchian Channel is a broken line, it
makes it possible to detect the sideways phases that will have a daily variation equal to
zero. Therefore, by exploiting the signs of the returns of the UC, it is possible to assign to
each day a label describing the kind of movement made by the price, and the result is as in
Figure 5, where green dots represent upward price movements, red dots are downward
ones, and gray dots represent the lateral phases.

Figure 5. Example of the resulting labeling for Apple.

However, our goal is to create predictive models and, therefore, the data we are really
interested in are not the label at time t, but rather the label at time t + 1. For this reason, we
create a new column, called Target: this column is nothing more than the result of moving
back one period in the column containing the labels. In this way, at each time instant we
will have all the data corresponding to that day (which will make up the set of explanatory
variables) and the label data of the next day (which will be our response variable, i.e., the
output). Thus, in the training phase, the model will take as input the set of explanatory
variables, and with them it will try to predict tomorrow’s label, it will check the result, and,
in case of discrepancy, it will adjust the parameters.

3.3.2. Trend Indicator Creation through Python

First of all, using the Python package XGBoost (2022) it is necessary to tune the
hyperparameters to find the best possible combination and therefore to fit to the data the
best possible model. The first parameters to be set among the following possible values are
the number of boosting rounds, boosting learning rate, and the learning objective:

• n_estimators: (50, 100, 200, 300, 500, 1000, 2000).
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• learning_rate: (0.05, 0.10, 0.15, 0.2, 0.25, 0.3).
• objective: (multi:softprob, ’multi:softmax).

Once these primary hyperparameters are chosen, we also need to set the ones control-
ling the overfitting of the model, namely, gamma (that encourages the tree pruning if the
gain of the branch taken into consideration is lower than the prespecified values of γ) and
the maximum depth of each base learner:

• γ: (0, 0.1, 0.2, 0.3, 0.5, 1).
• max_depth: (5, 10, 15, 20, 25, 30, 50, 100).

Therefore, after this hyperparameters tuning, the resulting XGBoost model is

XGBClassifier(objective = ’multi:softprob’, n_estimators = 100,
learning_rate = 0.15, gamma = 0, max_depth = 10, random state = 0)

Regarding the LightGBM model, run through the Python package LightGBm (2022),
the reasoning is pretty much the same as the one just made for XGBoost, and the hyperpa-
rameters to tune with the corresponding possible values are:

• n_estimators: (50, 100, 200, 300, 500, 1000, 2000).
• learning_rate: (0.05, 0.10, 0.15, 0.2, 0.25, 0.3).
• max_depth: (5, 10, 15, 20, 50, 100).
• subsample_for_bin: (5.000, 10.000, 100.000, 200.000, 300.000, 500.000).
• min_split_gain: (0, 0.1, 0.3, 0.5, 1).

Hence, the final best LightGBM model is the following one:

LGBMClassifier(objective = ’softmax’, n_estimators = 300, learning_rate =
0.3, max_depth = 15, subsample_for_bin = 200,000, min_split_gain = 0, random

state = 123)

Now that the best models are defined, we need to place our attention on the kind of
data that will be the input of these models. All the most important features upon which all
the others are constructed (i.e., adjusted close prices, popularity, and sentiment) are time
series: this means that the order of the data is fundamental. Therefore, it is not possible
to split them randomly into training and test set because, in this way, you would lose the
original order and consequently also the very meaning of the data themselves. Therefore,
for each title we take the first 90% of the series as training set and the remaining 10% as test
set (these extreme percentages are chosen due to a limited length of the time series data,
approximately 3 years): in this way, the intrinsic meaning of the series is maintained for
both sets.

However, both XGBoost and LightGBM, when taking an input, return the predictions
for the whole test set at once but we know that the further we move into the future with
predictions, the less accurate they will be. For this reason, both models are implemented
with the so-called rolling technique. This procedure consists of starting with the entire
dataset, dividing it, as previously specified, into training and test sets, defining a number
of days in the future for which we want the predictions (just one day, i.e., the prediction of
tomorrow), and then iteratively performing the following steps:

1. Use the entire training set for train the model.
2. Use the trained model to make predictions for the entire test set.
3. Extract and save the first prediction (i.e., the prediction of tomorrow).
4. Add the first data point of the test set to the training set.
5. Go back to step 1 and continue until there are no more data points in the test set.

Hence, both models are embedded in such rolling algorithm to have, every day, the
best possible prediction (full code available in Appendix A: Algorithms A1 and A2).

3.3.3. Model Selection and Results

It is probable that not all features have the same relevance and importance within
models: some may be irrelevant and may not add valuable information to how much there
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already is. Therefore, it is also important to perform another kind of tuning, which is also
referred to as feature selection. In fact, for improving the capability of XGB or LGBM to
make predictions, to speed up their running time and to avoid overfitting, it is crucial to
give them as input only those attributes that actually give them gain, excluding the others,
to prevent the models from “wasting time” evaluating unnecessary and useless features.

Therefore, the attributes used for creating technical indicators (e.g., adjusted high, low,
and open prices) are excluded a priori, and then several combinations of inputs are tested
for both XGB and LGBM over the sample dataset, namely:

• Model 1: model with all the inputs; closing price, sentiment and its variations, popu-
larity and its variations, SMA(7) and its slope, SMA(80) and its slope, SMA(160) and
its slope, ART(7) and its slope, RSI(7) and its slope, Labelst.

• Model 2: model with all the inputs except for the point value of the simple moving
averages (but maintaining their slopes); closing price, sentiment and its variations,
popularity and its variations, SMA(7)’s slope, SMA(80)’s slope, SMA(160)’s slope,
ART(7) and its slope, RSI(7) and its slope, Labelst.

• Model 3: model with all the inputs except for the point value of the simple moving
averages (but maintaining their slopes) and the variations of sentiment and popularity;
closing price, sentiment, popularity, SMA(7)’s slope, SMA(80)’s slope, SMA(160)’s
slope, ART(7) and its slope, RSI(7) and its slope, Labelst.

• Model 4: model with all the inputs except for the variations of sentiment/popularity;
closing price, sentiment, popularity, SMA(7) and its slope, SMA(80) and its slope,
SMA(160) and its slope, ART(7) and its slope, RSI(7) and its slope, Labelst.

• Model 5: model with all the inputs except for any value related to the metrics; closing
price, SMA(7) and its slope, SMA(80) and its slope, SMA(160) and its slope, ART(7)
and its slope, RSI(7) and its slope, Labelst.

Looking at the average accuracies obtained by each model over the test sets, the best
input combination turned out to be the one represented by Model 4, namely, the one with
all inputs but with the sentiment and popularity daily variations (but with their point
values). Therefore, both XGBoost and LightGBM with this specific input combination are
tested over the entire dataset through a powerful virtual machine provided by Google
Cloud Platform (GCP), obtaining the following results.

As can be assessed from Table 3, both models performed better than a random gambler
(who has a 33% of probability of guessing price trends, since the three possible scenarios are
upward movement, downward movement, or sideways phase) in about 518 stocks over 527.
Moreover, both XGBoost and LightGBM have an average accuracy well above the minimum
threshold of 33%, both being between 53.5% and the 54%. Therefore, our two models have
similar performances in terms of accuracy, but not in terms of speed: in fact, the LightGBM
took almost the half of XGBoost’s time for making the same computations and maintaining
the same accuracy. Moreover, looking at the following explanatory examples, we can also
make further considerations over the prediction capability of these models.

Table 3. Results of XGBoost and LightGBM over the entire dataset.

XGBoost LightGBM

Tot. Stocks 527 527
N. Stocks < 33% 8 10
N. Stocks > 33% 519 517
Average accuracy 53.95% 53.64%
Running time 6:15 h 3:30 h

Figures 6 and 7 represent the predicted outcome (green) versus the real one (blue):
the bullish price trend has label 2, the sideways phase has label 1, while the downwards
movement is labeled as 0. In this way, the graph is least confusing as possible: when the line
is down prices are falling, when it is in the middle then prices are lateralizing, and when it
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is up the prices are also up. However, we know that, when using a predictive model, there
always are errors, but it is also true that not all the errors have the same severity. In this
situation, there are two main types of error:

1. One, representing the case in which the model predicts an ongoing price trend (either
positive or negative) and the actual value is a sideways phase (and vice versa);

2. Another, in which the model predicts an ongoing price trend (either positive or
negative) and the actual value is the exact opposite situation.

Moreover, another parameter should also be taken into account: how long a model
persists in the error. Unfortunately, the XGBoost, when it makes errors, persists more than
LightGBM, as can be seen from Figures 6 and 7: looking at the period between time step
35 and 45 of both, it is shown how the XGBoost predicts the wrong situation for a longer
time than the LightGBM, while the latter immediately corrects the prediction and then
anticipates the next bullish trend. The XGBoost corrects its errors slower than LightGBM in
the entire dataset.

Figure 6. XGBoost predictions for Apple.

Figure 7. LGBM predictions for Apple.

Therefore, combining all the considerations made so far, we can decree the LightGBM
as the best model between the two.

However, what about the metrics? Did they really have an impact within the models?
First of all, let us focus only on the best selected model and, to answer to these questions, let
us see how the inputs affected the model. Indeed, Figure 8 represents the ranked variables
of six different stocks.

Again, these examples of feature importance plots are extendable to the entire dataset
and, more in general, at least one metric between Sentiment and Popularity is always in the
first half of attributes by utility in the model. Therefore, the digital metrics actually played
an important role in the construction of our predictive model.

Summarizing, now we have a new financial technical indicator, called Trend Indicator,
that has the following characteristics:

• Created through the machine learning model LightGBM;
• Embedded within a rolling algorithm;
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• Capable of reaching an average accuracy of 53.64% (much greater than the threshold
of 33%);

• Alternative-data strongly dependent.

Now it is necessary to understand how to use this indicator in a trading strategy.

Figure 8. Feature importance plots of LightGBM for six stocks.

3.4. Algorithmic Trading Strategy: TI-SiSS

To understand whether the Trend Indicator works in a real-world scenario or not, it
is necessary to use it in a trading strategy and then evaluate the corresponding results.
Therefore, we created two algorithmic trading strategies based on the Signal Screener: this is
a feature of the FinScience platform that allows you to view, monitor, and filter sentiment,
popularity, and their changes for each security. In addition, so-called alerts can be set up,
which are customized notifications based on what the user wants to monitor that make
these strategies easily applicable and timely.

The first strategy is called TI-SiSS (Trend Indicator—Signal Screener Strategy, full code
available at the end of the paper: Algorithm A3) and, as the name states, it is the one that
exploits the information provided by our indicator, while the second strategy is simply the
SiSS (Signal Screener Strategy, full code available at the end of the paper: Algorithm A4) to
emphasize the fact that it does not use the Trend Indicator.

As shown in Table 4, both strategies are composed of two macro-components, namely,
the Filtering component, which identifies among all the possible stocks those that are
suitable for our strategies, and the Timing component, which provides some objective rules
for opening and closing positions. The filtering component, which is what differs between
the two strategies, is composed as follows:

Table 4. Filtering component for both TI-SiSS and SiSS.

SiSS TI-SiSS

Slope SMA(160) > 0 Slope SMA(160) > 0
Slope ADX Line > 0 Trend Indicator ≥ 1
Momentum > 0
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Both strategies require an upward sloping moving average at 160 periods because
both of them want to trade in the same direction of the long term and, since the strategies
only perform long operations, such long-term must be bullish. Then, the TI-SiSS exploits
the Trend Indicator while the SiSS uses ADX and momentum together, since the combination
of these two indicators provides the same information as the Trend Indicator, even if our
indicator should provide this information a day in advance.

As shown in Table 5, the timing component, instead, is equal for both the strategies
and provides objective rules for buying and selling a stock.

Table 5. Timing component for both TI-SiSS and SiSS. DPVt is the value of Popularity at time t;
MA_DPVt(7) denotes the sample mean of the Popularity over the interval [t− 6, t].

Buy Sell

DPVt > MA_DPVt(7) DPVt > MA_DPVt(7)
DPVt

DPVt−1
− 1 ≥ 100%

DPVt

DPVt−1
− 1 ≥ 100%

Sentimentt > 0.05 Sentimentt < −0.05

Therefore, both strategies buy when the current value of Popularity is greater than its
moving average at seven periods, the change in popularity with respect to the previous
available data is at least 100%, and the sentiment is positive. On the other hand, they sell
when the same conditions occur, but with a negative sentiment.

Hence, both strategies have the same aim: exploit bullish price movements through
long positions. Moreover, by construction, the TI-SiSS and SiSS are easy to compare with
each other since they act in the same way and the only difference between them is the way
they select the stocks over which they trade on.

Unfortunately, comparing these two strategies is not as straightforward as it could
seem. Indeed, while the SiSS has only static computations, making it easily testable in back-
test, the TI-SiSS has a structural problem: since the Trend Indicator is based on a machine
learning model, it needs as large a history as possible to produce accurate predictions. As
a result, TI-SiSS in the first part of the back-test will be neither reliable nor truthful due
to the limited training set, while it will perform with the accuracy previously described
once the training set is about 80% of the history of each stock. For this reason, it was
decided to compare the two strategies by looking only at the returns of the last 20% of
observation dates for each stock in our dataset. Clearly, considering only 20 percent of a
stock is equivalent to considering just a part for the whole, which is not, and does not claim
to be, a complete yardstick, even though it provides a good starting point for making some
general assessments on TI-SiSS and SiSS.

Hence, testing the strategies only on the last 20% of observing dates for each stock
(test set), we obtain the results in Table 6.

Table 6. TI-SiSS and SiSS results over the last 20%.

SiSS TI-SiSS
Tot. stocks 527 527
N. stocks with trades 134 309
N. stocks with positive returns 104 207
N. stocks with negative returns 30 102
Variance of returns 55.3% 84.02%
Average return 1.98% 3.12%

Therefore, for 527 stocks, 134 and 309 stocks trades applied SiSS and TI-SiSS, respec-
tively. Looking at the results, the SiSS had 104 (30) positive (negative) returns, while TI-SiSS
had 207 positive and 102 negative results. Therefore, we assess that the TI-SiSS is riskier
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than the SiSS, as also confirmed by a higher variance of the returns, but this risk is repaid
by a higher average gain, rebalancing the whole scenario.

Finally, it is interesting to analyze how the two strategies behave on the same stock see
Figures 9 and 10. For this comparison, we cannot use the aforementioned five most/least
capitalized stocks since there were no operations of the SiSS in the last 20% of the time
period. For this reason, we conduct this comparison on Pioneer Natural Resources Co.,
(Irving, TX, UAS) which has an average value of market capitalization (56 billion)among
the 527 companies in the considered dataset. Then, in this case, TI-SiSS performed better,
anticipating the market with the opening of the first trade (the first green triangle) and then
achieving a better final return.

Figure 9. Operations of SiSS over the test period of Pioneer Natural Resources Co.

Figure 10. Operations of TI-SiSS over the test period of Pioneer Natural Resources Co.

Gross and Net Profit Analysis for a TI-SiSS Strategy

We conclude this part by discussing the performances of the TI-SiSS strategy applied
to the five most and least capitalized companies. As also remarked above, for this analysis
we consider the test set period that is composed of the 20% of observed days of each stock.
Therefore, the first date of the test set is around 1 September 2021 for all 527 companies3. In
general, for the five most/least capitalized assets we have no more than four trade signals.
For example, as shown in Figure 11, we observe only two signals for Apple and Jones,
which gives us an overall positive gain.
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Figure 11. TI-SiSS results for Apple (upper part) and for Jones (lower part).

Using the buying/selling signals for each stock in Table 7, we construct the corre-
sponding TI-SiSS strategy with EUR 100 as initial wealth. If we consider the five most
capitalized companies, the TI-SiSS strategy returns a positive performance in all cases
except for United Health asset. The highest gain is achieved for Microsoft (more than 10%
of the initial wealth). Table 7 reports the maximum drawdown (MDD) for the performances
and we note that the TI-SiSS is able to provide a gain even when there are some strong
downward movements in the stock price behavior (for instance, see Microsoft among the
most capitalized). For the five least capitalized companies, we have a loss only in two cases,
with the highest gain for Community Health, and when comparing the performances with
the MDD we observe that, in all cases, our strategy gives much better results.

Table 8 analyzes the performances of the TI-SiSS strategy, introducing a multiplicative
transaction cost that is 1% of wealth. The transaction cost is applied for each buying/selling
signal. The conclusions in Table 7 are confirmed.

Table 7. Gross performances for a TI-SiSS trading strategy for the most/least capitalized companies.

Operations Apple Microsoft United Health J&J Exxon

1st Buying 100 100 100 100 100
2nd Selling 105.160 110.076 99.799 104.850 104.717
3rd Buying - - - 104.850 -
4th Selling - - - 106.886 -
MDD 0 −7.500% −0.201% −3.791% −0.488%

Tejon Entravision Community Health Provident Jones

1st Buying 100 100 100 100 100
2nd Selling 99.406 109.144 85.868 97.844 106.316
3rd Buying 99.406 109.144 85.868 97.844 -
4th Selling 99.138 104.626 116.883 99.668 -
MDD −9.302% −25.926% −25% −5.392% −13.333%
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Table 8. Net performances for a TI-SiSS trading strategy for the most/least capitalized companies.
To determine the net performance, we consider 1% of wealth as a multiplicative transaction cost for
each buying/selling operation.

Operations Apple Microsoft United Health J&J Exxon

1st Buying 100 100 100 100 100
2nd Selling 104.108 108.975 98.802 103.801 103.670
3rd Buying - - - 102.763 -
4th Selling - - - 103.708 -

Tejon Entravision Community Health Provident Jones

1st Buying 100 100 100 100 100
2nd Selling 98.412 108.053 85.009 96.865 105.253
3rd Buying 97.428 106.972 84.159 95.897 -
4th Selling 96.193 101.518 114.411 96.798 -

4. Conclusions

Using Alternative Data, we were able to construct a new financial technical indicator,
named Trend Indicator, for each stock in the dataset. Alternative Data refers to unique
information content not previously known to financial markets in the investment process.
Investors, vendors, and research firms use the term to refer to information that is different
from the usual government- or company-provided data on the economy, earnings, and
other traditional metrics. Alternative Data are big and often unstructured data coming
from different sources, mainly digital (i.e., blogs, forums, social or e-commerce platforms,
maps, etc.), and whose analysis implies an algorithmic approach, unique expertise, and
cutting-edge technology.

Using Alternative Data, FinScience daily publishes two alternative data metrics ob-
tained by applying NLP algorithms such as entity extraction and classification: Sentiment
and Popularity. These two quantities were used for the construction of our “Trend Indicator”
(for each stock) that leads to the TI-SiSS strategy. To check the profitability of the TI-SiSS,
we compared it to the SiSS strategy. The latter provided positive results and is the natural
competitor of our strategy. Moreover, we conducted a gross/net performance analysis
of the TI-SiSS for the five most/least capitalized companies in the dataset. It is worth
noting that TI-SiSS is able to provide a gain even though there are some strong downward
movements in the stock price behavior (see, for instance, Microsoft, for which we observed
the lowest value of the maximum drawdown while the corresponding TI-SiSS’s gain was
the largest one among the five most capitalized stocks). A possible drawback of our trading
strategy may be given by the choice of the underlying news: in some cases, it could not
necessarily be related to financial topics. Moreover, a possible bias comes from the presence
of fake news which might be present on social media.

Further investigation is needed to improve the strategy by including other sources or
by testing our strategy on intraday stock data and considering different markets.
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Appendix A

Algorithm A1 Trend indicator for a single security.
Input: adjusted close price, adjusted high price, adjusted low price, sentiment, popularity
Output: Dataframe with the security names and the corresponding returns
Required Packages: pandas, pandas_ta, lightgbm

1: import pandas as pd
2: import pandas_ta as ta
3: from lightgbm import LGBMClassifier
4:
5: MANDATORY_COLUMNS = [’adj_close’, ’adj_high’, ’adj_low’]
6:
7: function LABELING(x):
8: out = None
9: if ((x is not None) and (x > 0)) then:

10: out = 2
11: else if ((x is not None) and (x < 0)) then:
12: out = 0
13: else if ((x is not None) and (x == 0)) then:
14: out = 1
15: end if
16: return out
17: end function
18:
19: function CHECK_COLUMNS_NAME(dataset:pd.DataFrame)→ bool:
20: list_cols = dataset.columns
21: return set(SISS_MANDATORY_COLUMNS).issubset(list_cols)
22: end function
23:
24: function TREND_INDICATOR(dataset:pd.DataFrame, Donchian_periods:int, test_percentage:float):
25: dataset = dataset.copy()
26: check = check_columns_name(dataset=dataset)
27: if not check then :
28: raise Exception(f"Dataset is not correct! It must contain the columns called as follows: SISS_MANDATORY_COLUMNS ")
29: else:
30: donchian = ta.donchian(dataset[’adj_low’], dataset[’adj_high’], lower_length=Donchian_periods, up-

per_length= Donchian_periods).dropna()
31: donchian_up = donchian[f’DCU_Donchian_periods_Donchian_periods’]
32: donchian_pct = donchian_up.pct_change()
33: donchian_right_size = donchian_up.tolist()
34: [donchian_right_size.append(None) for _ in range(Donchian_periods-1)]
35: dataset[’Donchian channel’] = donchian_right_size
36: donchian_pct_right_size = donchian_pct.tolist()
37: [donchian_pct_right_size.append(None) for _ in range(Donchian_periods-1)]
38: dataset[’Donchian change’] = donchian_pct_right_size
39:
40: Labels = dataset["Donchian change"].apply(labeling).dropna()
41:
42: dataset =dataset.dropna()
43: del dataset["adj_high"]
44: del dataset["adj_low"]
45: del dataset["Donchian channel"]
46: del dataset["Donchian change"]
47:
48: LGBM_model = LGBMClassifier(objective=’softmax’, n_estimators=300, learning_rate=0.3, max_depth = 15, subsam-

ple_for_bin= 200,000, min_split_gain= 0, random_state=123)
49: test_size = int(len(dataset[’adj_close’])*test_percentage)
50: Target = Labels.shift(-1)
51: Y = Target
52: X = dataset
53: test_predictions = []
54:
55: for i in range(test_size) do:
56: x_train = X[:(-test_size+i)]
57: y_train = Y[:(-test_size+i)]
58: x_test = X[(-test_size+i):]
59: LGBM_model.fit(x_train, y_train)
60: pred_test = LGBM_model.predict(x_test)
61: test_predictions.append(pred_test[0])
62: end for
63: array_of_predictions = []
64: [array_of_predictions.append(None) for _ in range(len(X[:(-test_size)]))]
65: array_of_predictions.extend(test_predictions)
66: dataset[’Trend_Predictions’] = array_of_predictions
67: end if
68: return dataset, LGBM_model
69: end function
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Algorithm A2 Trend indicator for multiple securities into a MultiIndex DataFrame.
Input: adjusted close price, adjusted high price, adjusted low price, sentiment, popularity
Output: Dataframe with the security names and the corresponding returns
Required Packages: pandas, pandas_ta, lightgbm
Other requirements: the identifier (here called FIGI) of each security must be the first
index, while the time series of dates must be the second index

import pandas as pd
2: import pandas_ta as ta

from lightgbm import LGBMClassifier
4:

MANDATORY_COLUMNS = [’adj_close’, ’adj_high’, ’adj_low’]
6: function LABELING(x):

out = None
8: if ((x is not None) and (x > 0)) then:

out = 2
10: else if ((x is not None) and (x < 0)) then:

out = 0
12: else if ((x is not None) and (x == 0)) then:

out = 1
14: end if

return out
16: end function

18: function CHECK_COLUMNS_NAME(dataset:pd.DataFrame)→ bool:
list_cols = dataset.columns

20: return set(SISS_MANDATORY_COLUMNS).issubset(list_cols)
end function

22: function TREND_INDICATOR_FOR_MULTINDEX(dataset:pd.DataFrame, Donchian_periods:int, test_percentage:float):
dataset = dataset.copy()

24: check = check_columns_name(dataset=dataset)
if not check then:

26: raise Exception(f"Dataset is not correct! It must contain the columns called as follows: MANDATORY_COLUMNS ")
else:

28: for figi in dataset.index.get_level_values(0).unique() do:
donchian = ta.donchian(dataset.loc[(figi, slice(None)), ’adj_low’], dataset.loc[(figi, slice(None)), ’adj_high’],

lower_length=Donchian_periods, upper_length= Donchian_periods).dropna()
30: donchian_up = donchian[f’DCU_Donchian_periods_Donchian_periods’]

donchian_pct = donchian_up.pct_change()
32: donchian_right_size = donchian_up.tolist()

[donchian_right_size.append(None) for _ in range(Donchian_periods-1)]
34: dataset.loc[(figi, slice(None)), ’Donchian channel’] = donchian_right_size

donchian_pct_right_size = donchian_pct.tolist()
36: [donchian_pct_right_size.append(None) for _ in range(Donchian_periods-1)]

dataset.loc[(figi, slice(None)), ’Donchian change’] = donchian_pct_right_size
38: dataset.loc[(figi, slice(None)), "Labels"] = dataset.loc[(figi, slice(None)), "Donchian

change"].apply(labeling).dropna()
end for

40: dataset = dataset.dropna()
del dataset["adj_high"]

42: del dataset["adj_low"]
del dataset["Donchian channel"]

44: del dataset["Donchian change"]
LGBM_model = LGBMClassifier(objective=’softmax’, n_estimators=300, learning_rate=0.3, max_depth = 15, subsam-

ple_for_bin= 200,000, min_split_gain= 0, random_state=123)
46: for num, figii in enumerate(dataset.index.get_level_values(0).unique()) do:

test_size = int(len(dataset.loc[(figii,slice(None)), ’adj_close’])*0.2)
48: Y = dataset.loc[(figii,slice(None)), ’Labels’].shift(-1)

X = dataset.loc[(figii,slice(None))]
50: test_predictions = []

for i in range(test_size): do:
52: x_train = X[:(-test_size+i)]

y_train = Y[:(-test_size+i)]
54: x_test = X[(-test_size+i):]

LGBM_model.fit(x_train, y_train)
56: pred_test = LGBM_model.predict(x_test)

test_predictions.append(pred_test[0])
58: end for

array_of_predictions = []
60: [array_of_predictions.append(None) for _ in range(len(X[:(-test_size)]))]

array_of_predictions.extend(test_predictions)
62: dataset.loc[(figii,slice(None)), ’Trend_Predictions’] = array_of_predictions

end for
64: end if

return dataset, LGBM_model
66: end function



Risks 2022, 10, 225 22 of 24

Algorithm A3 TI-SiSS.
Input: adjusted close price, sentiment, popularity, company names and Trend Indicator’s
predictions
Output: Dataframe with the security names and the corresponding returns
Required Packages: pandas, numpy, talib, linregress

import pandas as pd
import numpy as np

3: import talib
from scipy.stats import linregress

6: TI_SISS_MANDATORY_COLUMNS = [’adj_close’, ’popularity’, ’sentiment’, ’company_name’, ’Trend_Predictions’]
function TI_SISS_CHECK_COLUMNS_NAME(dataset:pd.DataFrame)→ bool:

list_cols = dataset.columns
9: return set(SISS_MANDATORY_COLUMNS).issubset(list_cols)

end function

12: function GET_SLOPE(array):
y = np.array(array)
x = np.arange(len(y))

15: slope, intercept, r_value, p_value, std_err = linregress(x,y)
return slope

end function
18:

function TI_SISS(stock: pd.DataFrame, backrollingN: float)→ pd.DataFrame:
check = ti_siss_check_columns_name(dataset=stock)

21: if not check then :
raise Exception(f"Dataset is not correct! It must contain the columns called as follows: TI_SISS_MANDATORY_COLUMNS ")

else:
24: stock[’popularity_variation’] = stock[’popularity’].pct_change()

stock[’sentiment_variation’] = stock[’sentiment’].pct_change()
stock[’popularity_variation’] = stock[’popularity_variation’].replace(np.inf, 100000000)

27: stock[’sentiment_variation’] = stock[’sentiment_variation’].replace(np.inf, 100000000)
stock[’pop_SMA(7)’] = talib.SMA(stock[’popularity’], backrollingN)
stock[’SMA(160)’] = talib.SMA(stock[’adj_close’], 160)

30: stock[’slope_SMA(160)’] = stock[’SMA(160)’].rolling(window=backrollingN).apply(get_slope, raw=True)
stock = stock.dropna()
stock[’entry_long’] = 0

33: stock[’close_long’] = 0
stock[’positions’] = None

36: for i, date in enumerate(stock.index) do:
pop_day_before = stock[’popularity’][i-1]
if ((stock[’slope_SMA(160)’][i]>0) and (stock[’Trend_Predictions’][i] is not None) and (stock[’Trend_Predictions’][i]>=1)) then:

39: dpv = stock[’popularity’][i]
sma7 = stock[’pop_SMA(7)’][i]
pop_var = ((dpv - pop_day_before)/abs(pop_day_before))*100

42: sent = stock[’sentiment’][i]
if ((dpv>sma7) and (pop_var>100) and (sent>0.05)) then:

stock[’entry_long’][i] = 1
45: else if (dpv>sma7) and (pop_var>100) and (sent<(-0.05)) then:

stock[’close_long’][i] = 1
end if

48: end if
end for

end if
51: log_returns = []

close_index = -1
for g, val in enumerate(stock.index) do:

54: if ((g > 14) and (stock[’entry_long’][g] == 1) and (g > close_index)) then:
open_long_price = stock[’adj_close’][g]
flag_closed = False

57: for j, elem in enumerate(stock.index[(g+1):]) do:
if (stock[’close_long’][g+1+j] == 1) then:

close_index = g+1+j

60: close_long_price = stock[’adj_close’][close_index]
flag_closing = True
break

63: end if
end for
if flag_closing: then:

66: stock[’positions’][g] = 1
stock[’positions’][g+1+j] = 0
single_trade_log_ret = np.log(close_long_price/open_long_price)

69: log_returns.append(single_trade_log_ret)
end if

end if
72: end for

sum_all_log_ret = sum(log_returns)
performance = (np.exp(sum_all_log_ret) - 1)*100

75: return performance
end function
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Algorithm A4 SiSS.
Input: adjusted close price, adjusted high price, adjusted low price, sentiment, popularity
and company names
Output: Dataframe with the security names and the corresponding returns
Required Packages: pandas, numpy, talib, linregress

import pandas as pd
import numpy as np
import talib

4: from scipy.stats import linregress

SISS_MANDATORY_COLUMNS = [’adj_close’, ’adj_high’, ’adj_low’, ’popularity’, ’sentiment’]

8:
function SISS_CHECK_COLUMNS_NAME(dataset:pd.DataFrame)→ bool:

list_cols = dataset.columns
return set(SISS_MANDATORY_COLUMNS).issubset(list_cols)

12: end function

function GET_SLOPE(array):
y = np.array(array)

16: x = np.arange(len(y))
slope, intercept, r_value, p_value, std_err = linregress(x,y)
return slope

end function
20:

function SISS(stock:pd.Dataframe, backrollingN:float)→ pd.DataFrame:
check = siss_check_columns_name(dataset=stock)
if not check then :

24: raise Exception(f"Dataset is not correct! It must contain the columns called as follows: SISS_MANDATORY_COLUMNS ")
else:

stock[’popularity_variation’] = stock[’popularity’].pct_change()
stock[’sentiment_variation’] = stock[’sentiment’].pct_change()

28: stock[’popularity_variation’] = stock[’popularity_variation’].replace(np.inf, 100000000)
stock[’sentiment_variation’] = stock[’sentiment_variation’].replace(np.inf, 100000000)
stock[’pop_SMA(7)’] = talib.SMA(stock[’popularity’], backrollingN)
stock[’ADX’] = talib.ADX(stock[’adj_high’], stock[’adj_low’], stock[’adj_close’], timeperiod= backrollingN)

32: stock[’slope_ADX’] = stock[’ADX’].rolling(window=backrollingN).apply(get_slope, raw=True)
stock[’Momentum’] = talib.MOM(stock[’adj_close’], timeperiod=backrollingN)
stock[’SMA(160)’] = talib.SMA(stock[’adj_close’], 160)
stock[’slope_SMA(160)’] = stock[’SMA(160)’].rolling(window=backrollingN).apply(get_slope, raw=True)

36: stock = stock.dropna()
stock[’entry_long’] = 0
stock[’close_long’] = 0
stock[’positions’] = None

40: for i, date in enumerate(stock.index) do:
pop_previous_day = stock[’popularity’][i-1]
sum_momentum = stock[’Momentum’][i-7:i].sum()
if ((stock[’slope_SMA(160)’][i]>0) and (stock[’slope_ADX’][i]>0) and (sum_momentum > 3)) then:

44: dpv = stock[’popularity’][i]
sma7 = stock[’pop_SMA(7)’][i]
pop_var = ((dpv - pop_previous_day)/abs(pop_previous_day))*100
sent = stock[’sentiment’][i]

48: if ((dpv>sma7) and (pop_var>100) and (sent>0.05)) then:
stock[’entry_long’][i] = 1

else if ((dpv>sma7) and (pop_var>100) and (sent<(-0.05))) then:
stock[’close_long’][i] = 1

52: end if
end if

end for
end if

56: log_returns = []
close_long_index = -1
for g, val in enumerate(stock.index) do:

if ((g > 14) and (stock[’entry_long’][g] == 1) and (g > close_long_index)) then:

60: open_long_price = stock[’adj_close’][g]
flag_close = False
for j, elem in enumerate(stock.index[(g+1):]) do:

if (stock[’close_long’][g+1+j] == 1) then:

64: close_long_index = g+1+j
close_long_price = stock[’adj_close’][close_long_index]
flag_close = True
break

68: end if
end for
if flag_close then:

stock[’positions’][g] = 1

72: stock[’positions’][g+1+j] = 0
single_trade_log_ret = np.log(close_long_price/open_long_price)
log_returns.append(single_trade_log_ret)

end if
76: end if

end for
sum_all_log_ret = sum(log_returns)
performance = (np.exp(sum_all_log_ret) - 1)*100

80: return performance
end function
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Notes
1 Italian firm specialized in the usage of AI in financial world. Website: accessed on 1 January 2022 https://finscience.com/it/.
2 Sentiment and Popularity were first published on 25 September 2019 and, for this reason, we are not able to take into account

previous time-frames.
3 Some assets were included in the dataset after 25 September 2019.
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