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Abstract: This paper proposes a generalized deep learning approach for predicting claims develop-
ments for non-life insurance reserving. The generalized approach offers more flexibility and accuracy
in solving actuarial reserving problems. It predicts claims outstanding weighted by exposure instead
of loss ratio to remove subjectivity associated with premium weighting. Chain-ladder predicted
outstanding claims are used as part of the multi-task learning to remove the dependence on case
estimates. Grid-search is introduced for hyperparameter tuning to improve model performance.
Performance-wise, the Generalized DeepTriangle outperforms both traditional chain-ladder method-
ology, the automated machine learning approaches (AutoML), and the original DeepTriangle model.

Keywords: loss reserving; actuarial reserving techniques; machine learning; deep learning; DeepTri-
angle; artificial neural networks

1. Introduction

Loss reserving is the process of estimating the reserve an insurer should hold to meet
the future claims payments arising from policies which it has under-written. Insurers
underwrite risks and receive premiums to cover claims arising over a specified period. The
amount and timing of claim payments are uncertain, and so the insurer is required to set
aside sufficient reserves to meet these obligations as and when they fall due. An insurer
mitigates the risks to an extent by pooling similar risks. However, there is still uncertainty
regarding the timing and quantum of payments, which may cause liquidity strain for the
insurer. The failure to generate sufficient liquid assets to meet liabilities in a timely manner
will affect business continuity. Therefore, it is crucial for insurers to project future claims
payments and estimate the associated volatility in an accurate manner.

The accurate projection of future claims liabilities is important for numerous aspects
of an insurer’s operations. From a pricing perspective, an understanding of the expected
amount and timing of future claims liabilities enables more precise technical pricing. This
allows an insurer to price risks more appropriately and improves its competitiveness within
the market. From a reserving perspective, being able to more accurately project future
claims will reduce uncertainty and risk margin, which is an amount or margin reflecting
an assessment of uncertainty associated with insurance risk (Risk Margin Working Group
2009). From a capital perspective, greater accuracy in claims projections will enable better
allocation of capital to its most appropriate use. Therefore, loss reserving is critical for an
insurer as it plays a vital role in informing underwriting, pricing, capital, and planning deci-
sions. For shareholders, reserving and related items form a material portion of an insurer’s
financial statements. Mis-reserving constitutes insurance/actuarial risk, which leads to
increased capital requirements (for example, in the Solvency II regime in the European
Union). Under-reserving will have a direct impact on an insurer’s profitability. However,
over-reserving is also problematic, as capital is not directed to its most appropriate use to
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generate returns. The regulators are also very interested in the sufficiency of reserves to
ensure business continuity and the protection of policyholders.

The amount and timing of a claim are highly uncertain for several reasons. Firstly,
there is a delay between when an event leading to a loss occurs and the notification of the
event to the insurer. The claim may also develops over time, leading to multiple losses being
generated. Further delay exists between claim notification, assessment, and settlement. The
amount of payment varies depending on the development of the claim over time.

Traditional reserving approaches developed to estimate future claims liabilities are
largely deterministic, including the chain-ladder and Bornhuetter–Ferguson techniques
(Bornhuetter and Ferguson 1972). Stochastic methodologies linked to the chain-ladder
technique have also been developed to better estimate loss reserve variability. These include
the chain-ladder approach in Mack (1993) and the bootstrap method in England and Verrall
(1999).

With advancements in computer processing, machine learning approaches are increas-
ingly adopted to solve problems for which large quantities of data are available. Predictive
modeling from generalized linear models (Haberman and Renshaw 1996) to machine learn-
ing techniques (Gao et al. 2019) have been widely explored and applied in insurance. For
insurance reserving, non-parametric individual claim reserving using decision trees is first
explored in Baudry and Robert (2017). Wüthrich refines Mack’s chain-ladder method using
neural networks (2018). More recently, Kuo (2019) proposes a novel approach to loss reserv-
ing based on deep neural networks in the form of DeepTriangle. The deep neural network
approach in Kuo (2019) jointly models reserving paid losses and outstanding claims with
minimal feature engineering. The model has shown improvements in predictive accuracy
(as measured by the root mean squared percentage error and mean absolute percentage
error) compared to existing stochastic methods across multiple lines of business.

This paper builds on the loss reserving approach in Kuo (2019) and generalizes the
DeepTriangle for non-life insurance reserving. The generalized approach offers more flex-
ibility and accuracy in solving actuarial reserving problems than existing techniques. It
predicts claims outstanding weighted by exposure instead of loss ratio to remove subjec-
tivity associated with premium weighting. Chain-ladder predicted outstanding claims
are used as part of the multi-task learning to remove the dependence on case estimates.
Enhancements to the categorical embedding component of the model architecture may
further enhance model accuracy. Grid-search is introduced for hyperparameter tuning to
improve model performance. The performance of the generalized approach is compared
to traditional Chain-ladder, AutoML, and the original DeepTriangle. Results show that
the Generalized DeepTriangle approach outperforms the traditional and existing machine
learning methods.

The rest of the paper is organized as follows: Section 2 describes the evolution of
actuarial reserving methods over time leading up to this paper, and Section 3 describes our
generalized model architecture. Section 4 describes the dataset used, details the evaluation
metrics for assessing model performance, and discusses results. Lastly, Section 5 concludes
this paper and suggests potential future developments.

2. Related Work, Notation, and Terminologies

This section describes the evolution of reserving methods leading up to our paper. It
also introduces the notation and terminology associated with actuarial reserving. Note that
only a high-level description of reserving methods relevant to this paper is provided. For a
comprehensive overview of the development of reserving approaches over time, refer to
Carrato and Visintin (2019).

2.1. The Chain-Ladder Method on Cumulative Data

The most common reserving approach for estimating the ultimate cost in non-life
insurance is the chain-ladder approach. The chain-ladder method in Mack (1993) is often
considered as a fundamental form of the approach. It forecasts future claims development
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based on historical cumulative claims development aggregated by accident and develop-
ment periods. A distribution-free formula for evaluating the standard error of chain-ladder
reserve estimates is also derived.

Let Pi,j be the incremental claim paid for accident year i and development year j, for
0 ≤ i ≤ I and 0 ≤ j ≤ I and let Ci,j be the cumulative claim of accident year i and up to
development year j. Then Ci,t = ∑t

j=0 Pi,j. It is assumed that there exists:

• developing factors f0, f1, . . . f I−1 such that

E
(
Ci,j|Ci,0, Ci,1, . . . , Ci,j−1

)
= E

(
Ci,j|Ci,j−1

)
= Ci,j−1 f j−1, (1)

• and σ2
0 , σ2

1 , . . . σ2
I−1 such that

Var
(
Cij|Ci,0, Ci,1, . . . , Ci,j−1

)
= Var

(
Ci,j|Ci,j−1

)
= Ci,j−1σ2

j−1. (2)

Mack (1993) proposes the following estimators:

Ĉi,I = Ci,I−i

I−i

∏
j=I−1

f̂ j−1, (3)

f̂ j−1 =
∑

I−j
i=0 Ci,j

∑
I−j
i=0 Ci,j−1

, j = 1, 2, . . . , I, (4)

σ̂2
j−1 =

1
I − j

I−j

∑
i=0

Ci,j−1

(
Ci,j

Ci,j−1
− f̂ j−1

)2

, j = 1, 2, . . . , I − 1, (5)

where an estimator for σ2
I−1 may be obtained by means of extrapolation.

2.2. Regression on Individual Loss Data

The chain-ladder approach is a reserving method based on aggregated claims experi-
ence by accident and development periods. Regression based on individual loss data first
proposed by Norberg (1993) and Hesselager (1994) enables more granular data to be used
for predicting future claims developments.

Let ni be the number of claims for accident year i. Denote Ch
i,j, h = 1, 2, . . . , ni, the

cumulative payment up to time i+ j of the h-th claim of accident year i. The total cumulative
payment up to time i + j for the accident year i is:

Ci,j =
ni

∑
h=1

Ch
i,j . (6)

Therefore, for an individual claim, the following equation holds true:

E
(

Ch
i,j|Ch

i,j−1

)
= f j−1Ch

i,j−1 . (7)

Then, the following estimator can be used to predict the ultimate loss:

Ĉh
i,j = Ch

i,j−1 f̂ j−1 . (8)

2.3. Clustering on Individual Loss Data

The chain-ladder model in Mack (1993) assumes that claims are homogeneous, which
does not always hold for an entire population in practice. To address this, clustering of
claims into homogeneous groups is proposed, assuming that a linear model is applicable



Risks 2024, 12, 4 4 of 14

for each group of claims. Let K be the total number of clusters for a portfolio, the total
cumulative claim payment up to time i + j for accident year i and cluster k is:

Ck
i,j =

ni

∑
h=1

Ckh
i,j , (9)

where kh represents the h-th claim which belongs to the k-th cluster in calendar year i + j,
and the total cumulative payment up to time i + j for accident year i is:

Ci,j =
K

∑
k=1

Ck
i,j . (10)

Therefore, for each cluster, the following equation holds true:

E
(

Ckh
i,j |C

kh
i,j−1

)
= f k

j−1Ckh
i,j−1 . (11)

The following estimator can be used to predict the ultimate loss:

Ĉkh
i,j = f̂ k

j−1Ckh
i,j−1 , (12)

where f̂ k
j−1 has the similar definition for f̂ j in (4), but with Cij being replaced by Ck

ij.
Individual claim reserving models using large amount of granular information sit

on the opposite end of the spectrum of loss reserving approaches to aggregate reserving
methods like the chain-ladder, which uses relatively limited data. Clustering enables the
forecasting of claims reserves at a segment level, balancing the granularity of reserving at
an individual level with the reduced volatility of aggregate reserving approaches.

2.4. Dual Input Paid-Incurred Model on Individual Loss Data

Incurred claims cost is the sum of the paid, to-date amount and case estimates on open
claims. The inclusion of case estimates in future claims prediction is often beneficial as it
allows for situations where few payments have been made but are expected in the future.
Hence, joint models accounting for both paid-to-date and incurred costs increase accuracy.

In addition to cumulative claims paid, incurred claim amounts can also be included as
an input to the modeling. Let K be the total number of clusters of the portfolio. The total
incurred claim payment Ik

i,j, for accident year i, in calendar year i + j for cluster k is:

Ik
i,j =

ni

∑
h=1

Ikh
i,j , (13)

where kh indicates the h-th incurred claim for the k-th cluster in calendar year i + j.
The following estimator can be used to predict incurred loss:

Îkh
i,j = f̂ k

j−1 Ikh
i,j−1 . (14)

However, not all lines of business have case reserves, so the approach is not universally
applicable.

2.5. Artificial Neural Networks (ANN)

Advancements in artificial intelligence and machine learning have led to novel and
modern approaches of solving actuarial problems through big data. Wüthrich (2018)
proposes the application of neural networks to the chain-ladder reserving.

The DeepTriangle architecture in Kuo (2019) uses a feed-forward network with fully
connected layers; see the illustration in Figure 1. Output y is predicted from the input
vector x. Hidden layers, as represented by h[l]j transform the input into representations
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which gradually increase in the predictive power of the output as we move across each
layer l ∈ {1, . . . , L}. Each node h[l]j is computed iteratively as:

h[l]j = g[l]
(

w[l]⊤
j h[l−1] + b[l]j

)
, l = 1, 2, . . . , L, j = 1, 2, . . . , n[l],

where L represents the total number of layers, n[l] represents the total components of the l-th
layer, g[l] is the activation function which is chosen to be nonlinear, h[l] = (h[l]1 , h[l]2 , . . . , h[l]

n[l])
⊤

is the activation column vector, w[l]⊤
j is the row weights vector, and b[l]j is the biases scalar.

Figure 1. Feedforward neural network.

Conventionally, h[0] = x and ŷ = h[L]. The weights and biases are the parameters of
the neural network learned during training. They are selected by the neural network to
maximize prediction accuracy.

The chain-ladder factors for artificial neural networks are found by minimizing a
given appropriate loss function. Each development period j has its own neural network
architecture to be optimized with respect to the loss function. The loss function is used to
measure how close the model predictions are to the actual values.

2.6. DeepTriangle

Kuo (2019) proposed the DeepTriangle as a novel approach for loss reserving based on
the deep neural network described in Section 2.5. It jointly models paid losses and claims
outstanding stated in Section 2.3 and incorporates heterogeneous inputs in Section 2.2. The
key components of the model architecture are described below.

2.6.1. Sequence-to-Sequence Architecture

The architecture uses a class of algorithms called sequence-to-sequence learning
(Sutskever et al. 2014). Instead of relying on single data points, the model takes a se-
quence of ordered events as input and predicts a sequence into the future, making it
suitable for reserving claim development predictions.

We have previously defined Pi,j to be the incremental claims paid. Here we define
OSi,j to be the total claims outstanding for accident year i and development year j where
1 ≤ i ≤ I and 1 ≤ j ≤ I. Then, at the end of calendar year I, we have access to the
observed data {

Pi,j : i = 1, . . . , I, j = 1, . . . , I − i + 1
}

,{
OSi,j : i = 1, . . . , I, j = 1, . . . , I − i + 1

}
.
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Then

ULi =
I−i+1

∑
j=1

Pi,j +
I

∑
j=I−i+2

OSi,j (15)

is the ultimate loss for accident year i = 1, 2, . . . , I, which can be estimated by

ÛLi =
I−i+1

∑
j=1

Pi,j +
I

∑
j=I−i+2

ÔSi,j . (16)

The gated recurrent unit (GRU) in Chung et al. (2014) is used to process the paid losses
and claims outstanding sequences. Here, we use the notation as in Kuo (2019) and define
the activation function h<t> at time t as follows:

h<t> = Γ<t>
u h̃<t> +

(
1 − Γ<t>

u
)
h<t−1> , (17)

where:

• h̃<t> = tanh(Wh
[
Γ<t>

u h<t−1>, x<t>]+ bh) ,
• x<t> represents the input values,
• Γ<t>

u = σ
(
Wu
[
h<t−1>, x<t>]+ bu

)
,

• Γ<t>
r = σ

(
Wr
[
h<t−1>, x<t>]+ br

)
,

• σ(x) = 1
1+exp(−x) represents the logistic sigmoid function,

• Wr, Wu, Wh represent weight matrices,
• and br, bu, bh represent biases to be learnt.

Each activation function h<t> retains values from earlier values of the input sequence
and gives a certain weight Γ<t>

u to the estimated current state h̃<t> and the previous state
h<t−1>.

2.6.2. Multi-Task Learning

DeepTriangle simultaneously models two sequences as input and two as output. This
means that one task can reuse insights derived from the other. Kuo (2019) proposes the
use of paid losses and case reserve by accident and development year as the dual input
sequences. Kuo (2019) defines the two sequences of inputs and outputs as:

Yi,j, Yi,j+1, . . . , Yi,I−i+1 ,

where Yi,j = (Pi,j/NPEi, OSi,j/NPEi) and NPEi represents the net earned premium for
accident year i. Note that the model takes in and predicts loss ratios to normalize the inputs
and outputs.

2.6.3. Categorical Embedding

Company codes are passed to an embedding layer, with each company represented
by a vector in R49 as in Guo and Berkhahn (2016). Company codes are mapped onto a
multi-dimensional vector space, where segments with similar implicit behaviors are placed
closer together. In other words, it implicitly finds the relationships between segments,
serving as a proxy for company characteristics.

3. Model Architecture

Extensions to the existing DeepTriangle model architecture in Section 2.6 are intro-
duced in this section to address current shortcomings and generalize the approach.

3.1. The Generalized DeepTriangle Approach

In this section, several components of the DeepTriangle model architecture in Kuo
(2019) are modified to enable the generalization of the methodology for reserving problems
and improve prediction accuracy. A comparison of results with five alternative methods,
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including the chain-ladder and the AutoML, shows that the generalized DeepTriangle
method outperforms existing reserving methodologies.

3.1.1. Chain-Ladder Predicted Claims Outstanding Sequences for Multi-Task Learning

DeepTriangle uses incremental paid and total claims outstanding as input and output
sequences. Claims outstanding is determined based on individual case reserves. This is
only possible for portfolios where case estimates exist.

For lines of business with no case estimates, we propose the use of the chain-ladder
approach to generate total claims outstanding sequences, thereby generalizing the approach.
As the model does not pre-suppose a model structure, the use of chain-ladder estimates as
part of the input sequence is useful in guiding the claims predictions, essentially giving
weight to the importance of development factors.

For the purpose of our modeling, we have evaluated development factors based on
the notation developed in Section 2.1. The chain-ladder factors for each development year
j is determined as the sum of the cumulative payment for development year j over the
sum of the cumulative payment for development year j − 1, across the most recent three
accident years up to the evaluation date.

3.1.2. Exposure-Weighted Inputs and Targets

In Section 2.6, we noted that the model takes loss ratios (total claims paid over premium
earned) as inputs and outputs for normalization purposes. However, loss ratio prediction
is less desirable compared to modeling claims paid. Werner and Guven (2007) demonstrate
the need to use exposure (sum in years of in-force policies) as the weight for claims
projections instead of premium. A summary is provided below:

• Loss ratio needs to be calculated on the current rate level and re-calculated every
time underwriting rules are changed. This is likely to be extremely difficult for
many companies.

• The distribution of the loss ratio varies depending on the rating structure of each
company and does not follow a typical error structure, making it difficult to model
accurately.

• The exercise of judgement is possible when using exposure-weight, e.g., trends by age
curve. Loss ratios are expected to be the same if and only if the rates are perfect.

• Loss ratio models become obsolete once changes to the rating structure are imple-
mented, meaning that prior experience cannot be used as a starting point for later
reviews.

3.1.3. Feature Selection and Optimization for Categorical Embedding

The original DeepTriangle architecture utilizes company code as input for categorical
embedding. We examine the result of passing claim code as an alternative categorical input
into the embedding layer. We then compare the output against a portfolio-level prediction,
i.e., one without categorical embedding, to assess the benefit of the embedding layer.

We note that as a further extension, principal component analysis can be used on key
categorical variables to determine the optimal segmentation to feed into the embedding
layer. Alternatively, the model architecture can be modified to embed multiple categorical
variables.

3.1.4. Grid Search for Hyperparameter Optimization

A model’s parameter is an internal characteristic of the model. Its value can be esti-
mated from the data. In contrast, a model’s hyperparameter is an external characteristic
whose value cannot be estimated based on the data. Therefore, the value of the hyperpa-
rameter needs to be pre-set prior to the model setup (Joseph 2018).

Grid search is a traditional method of hyperparameter optimization. It completes a full
search over a given subset of the hyperparameters’ pace on the training set to find the most
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appropriate hyperparameters for the model build, see Liashchynskyi and Liashchynskyi
(2019).

Grid search can improve model performance on several hyperparameters within the
ANN model architecture. We specifically focus on optimizing the batch size. In the original
DeepTriangle model architecture, the batch size is set to 250. However, depending on the
categorical embedding adopted, the optimal batch size parameter differs. We aim to better
understand the impact of batch size on model performance.

Due to computer processing power and computation time limitations, we have only
conducted hyperparameter optimization on the batch size. Expanding the grid-search
process to other hyperparameters is recommended for future iterations, including, for
example, the ANN’s hyperparameters, the encoder’s hyperparameters, and the activation
function used.

3.2. The Generalized DeepTriangle Model Architecture

Figure 2 outlines the generalized DeepTriangle model architecture. The generalized
approach adopts a sequence-to-sequence architecture, taking in sequences of ordered input
variables and predicting sequences of outputs across time steps. The architecture uses
multi-task learning as explained in Section 3.1.

Figure 2. Generalized DeepTriangle model architecture.

The input and output sequences are the incremental claims paid Pi,j and total chain-
ladder predicted claims outstanding OSi,j, for accident year i (1 ≤ i ≤ I ) and development
year j (1 ≤ j ≤ I).

The input sequence can be represented by:{
Yi,j : i = 1, . . . , I, j = 1, . . . , I − i + 1

}
,

where Yi,j = (Pi,j/Ei, OSi,j/Ei) and Ei represents the total exposure in accident year i. The
response sequence can be represented by:{

Yi,j : i = 1, . . . , I, j = I − i + 2, . . . , I
}

.

A categorical variable is separately fed into the embedding layer, enabling segmenta-
tion. The implicit relationships between the categorical segments are then modeled. For
our dataset, we examine the use of claim code as input into the categorical embedding layer.
Separately, we have also examined the impact of no segmentation on the model’s prediction
accuracy. A grid search is performed on the batch size to optimize the hyperparameter for
different levels of granularity for the embedded categorical variables.

The input sequence is encoded with a GRU such that a summary encoding is obtained.
This is repeated I − 1 times with the output of the initial encoding before it is decoded via
a decoder GRU, where I − 1 represents the timesteps into the future for which the forecast
is required. As in Kuo (2019), we define the following hyperparameters for the encoder:
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128 hidden units and a dropout rate of 0.2, and the following for the decoder: 64 hidden
units and a dropout rate of 0.2. For both, the rectified linear unit (ReLU) activation in Nair
and Hinton (2010) is used, defined by g(x) = max(0, x). Recoveries are removed from the
claims dataset as the activation function used results in non-negative predictions.

4. Data, Experiments, and Results

This section first details the data source and data pre-processing and then describes the
evaluation metrics used to assess the model performance against the benchmark models
before illustrating the results.

4.1. Data

Kuo (2019) uses the National Association of Insurance Commissioners (NAIC) Sched-
ule P dataset (Meyers and Peng 2019). The dataset includes claims over accident years
1988–1997 and 10 development years for each accident year. Schedule P data are aggregated
by accident year, development year by line of business, and group code. It includes both
aggregated premium and claims information. However, Schedule P data have the following
two limitations:

• The dataset does not include information on the number of lives or policy start and
end dates, meaning that it is not possible to use exposure years as a weight

• The dataset is aggregated with only line of business and company code segmentations,
making it difficult to conduct modeling and analysis at a more granular level. This
also limits our ability to understand the drivers of the experience

Extensive research has been conducted into publicly available insurance data sources
for the most suitable dataset. The individual claims history simulation machine in Gabrielli
and Wüthrich (2018) produces insurance datasets that are more suitable and addresses the
limitations of Schedule P data. Gabrielli and Wüthrich (2018) developed a stochastic simu-
lation machine that generates individual claims histories of non-life insurance claims. The
simulation machine enables users to simulate a synthetic insurance portfolio of individual
claims histories based on real non-life insurance data.

The final dataset is a simulated dataset that corresponds to claims over accident
years 1994 to 2005, with over 12 development years of experience. It contains the feature
information for each claim in Table 1.

Table 1. Feature information on individual claims history simulation machine.

Field Label Description

Claim Number ClNr Unique claim identifier

Line of Business LoB Categorical with labels in {1, 2, 3, 4}

Claim Code CC Categorical with labels in {1, 2, . . . , 53}
denoting the claimant’s labor sector

Accident Year AY Numeric set in {1994, 1995, . . . , 2005}

Accident Quarter AQ Numeric set in {1, 2, 3, 4}

Age age Age of the claimant in 5 year buckets: {15, 20, . . . , 70}

Injured Part IP Categorical with labels in {10, 11, . . . , 99}
denoting the injured body part

Reporting Year RY Numeric set in {1994, 1995, . . . , 2016}

The benefits of the simulation machine dataset include:

• The dataset is at an individual claim line level, enabling exposure-weighting. It also
offers more flexibility in the level of granularity used for modeling
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• The existence of multiple feature information (line of business, claims code, age,
and injury part) offers more information on the claims and enables more granular
segmentation

4.2. Data Processing

Table 2 outlines the parameters adopted to simulate the individual claims dataset for
our analysis. The only potential limitation for such parameter adoptions is not varying the
claims volatility, but this was a deliberate decision so as not to add further complexity when
interpreting model results, given that each LOB already has its intrinsic characteristics
within its data.

Table 2. Parameters adopted for simulating the non-life individual claims history dataset.

Parameter Value Description

Claim number 100,000 Expected total number of claims
(num_claims) in the simulation output

Distribution for LOB (0.25, 0.25, 0.25, 0.25) Simulated claims evenly distributed
(lob_distribution) across the four lines of business

Inflation (0.03, 0.01, 0.01, 0.01) A different inflation parameter is adopted
for LOB 1 to enable assessment of inflation
impact on predicted outputs

Claim volatility 0.5 Volatility of claim amount
(sd_claim) (default parameter adopted)

Recovery payments have been excluded from the input dataset as the model adopts
an activation function that predicts nonnegative cash flows.

The individual claims dataset is aggregated for the purpose of this paper. Aggregation
is performed by accident year, development lag, line of business, and claims code, with
a number of claims, exposure years, and paid losses summarized for analysis. We have
separately repeated the model by lines of business only to understand the impact of
segmentation on model predictiveness. More details on the methodology are provided in
the following subsection.

We have split the data into the following segments for model prediction and validation:

• Training set: calendar years 1994–2002
• Validation set: 2003–2004
• Test set: 2005+

We assess the model predictiveness based on cumulative predicted payments for
development year 10.

4.3. Performance Evaluation Metrics

A range of validation methods have been proposed for evaluating the performance
of reserving models. This paper uses the Mean Absolute Percentage Error (MAPE) and
Root Mean Square Percentage Error (RMSPE) in the model evaluation process. MAPE and
RMSPE are adopted for consistency with Kuo (2019). Percentage errors enable unit-free
measurement over each segment. In this case, the segment is defined by the categorical
variable passed through the embedding layer. The actual and predicted cumulative ultimate
losses as at development year 10 by segment are compared to evaluate model performance.

For line of business l,

MAPEl =
1

|Cl |

Cl

∑
c=1

∣∣∣∣∣ ÛLc − ULc

ULc

∣∣∣∣∣ , (18)
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and

RMSPEl =

√√√√ 1
|Cl |

Cl

∑
c=1

(
ÛLc − ULc

ULc

)2

, (19)

where

• {c : 1 ≤ c ≤ Cl}, represents the count of all possible values that the categorical
variable can take and, Cl is the set of possible levels which the categorical input can
take, |Cl | is the number of elements in Cl , and

• ULc and ÛLc are the actual and predicted cumulative ultimate loss for the cth categor-
ical variable as at development year 10.

4.4. Benchmark Models

To assess the performance of the generalized DeepTriangle approach, the model’s
MAPE and RMSPE are compared against that for the chain-ladder method in Mack (1993)
and the AutoML model adopted in the original DeepTriangle approach in Kuo (2019).

The chain-ladder method in Mack (1993) enables a comparison to traditional, judgement-
free reserving technique. The AutoML model enables a comparison of model performance
against alternative machine learning techniques, which is developed through automated
searches over common machine learning techniques. It is trained over an ensemble in-
volving a random forest, an extremely randomized forest, and a random grid of gradient
boosting machines, a random grid of deep feedforward neural networks (H2O.ai 2018). An
iterative forecasting scheme is used to predict each timestep.

4.5. Parameterization and Implementation

Table 3 below details the key model parameters used for training the model.

Table 3. Model parameters.

Parameter\Segmentation Portfolio Level By Claim Code

Batch-size for grid-search 2i, where i = 1, . . . , 6 2i, where i = 5, . . . , 10

Learn rate 0.0005 0.0005

Maximum epoch 1000 1000

Early stopping 200 200

We use the average mean squared error over the forecasted time steps as the loss
function of the prediction. For each accident and development year set (i, j), the per-sample
loss function is defined as:

1
I − i + 1 − (j − 1)

I−i+1

∑
k=j

(
P̂i,k − Pi,k

)2
+
(

ÔSi,k − OSi,k

)2

2
. (20)

The model is implemented using the following open source keras R packages (Chollet
and Allaire 2017) and TensorFlow (Abadi et al. 2015).

We create an ensemble of 10 models trained with the same model architecture but
different initial seeds. We take the average predicted ultimate claims at development year
10 for performance evaluation. This is accomplished to reduce the variation in predicted
targets associated with neural network models. Note that increasing the number of models
will lead to further variance reductions but requires a longer training time.

4.6. Results and Discussions

We have applied the benchmark models and the generalized DeepTriangle architecture
to predict ultimate claims payment.



Risks 2024, 12, 4 12 of 14

Table 4 provides a comparison of model performance here DeepTriangle (Kuo 2019) is
the ultimate claims prediction using the original DeepTriangle methodology, Generalized
DeepTriangle (aggregated) is the prediction at an aggregate level, meaning without claim
code segmentation; generalized DeepTriangle is the prediction using claim code categories
as categorical embedding. It can be seen that the generalized DeepTriangle outperforms
the benchmark models both at a portfolio level and across each line of business.

Table 4. Performance comparison by batch sizes using MAPE - claim code as categorical embedding.

MAPE Line of
Business

Model Batch Size 1 2 3 4 All

Chain-ladder - 6.49% 6.37% 6.83% 6.49% 6.54%
AutoML - 5.87% 8.22% 6.76% 5.55% 6.60%
DeepTriangle (Kuo 2019) 250 5.44% 7.22% 11.11% 3.61% 6.84%
Generalized DeepTriangle 2 7.23% 7.02% 8.44% 7.06% 7.44%
(aggregated)
Generalized DeepTriangle 32 2.23% 2.56% 4.88% 3.42% 3.27%

For the Generalized DeepTriangle (aggregated), the results using batch size 2 are used
as they yield the best overall performance at an aggregate level. The results under batch
size 32 are used for the generalized DeepTriangle for the same reason. It is worth noting
that line of business 3 has lower exposure and greater volatility than the other lines of
business. This has led to higher prediction uncertainties when using machine learning
approaches compared to traditional Mack’s chain ladder approach.

There is also an optimal range for batch size depending on the level of segmentation.
Tables 5 and 6 compare MAPE by batch sizes. The optimal batch size for the aggregate
prediction (between 2 and 8) is materially lower than for the more granular prediction
by claim code (between 32 and 256). This is intuitive as larger batch sizes group more
claim codes together, reducing the variance. Therefore, the addition of a grid search for
hyperparameter optimization enhances model performance.

Table 5. Performance comparison by batch sizes–prediction at an aggregate level (no categorical
embedding).

Batch size 2 4 8 16 32 64

MAPE 7.44% 7.47% 7.63% 10.37% 10.94% 7.44%

Table 6. Performance comparison by batch sizes–claim code as categorical embedding.

Batch size 16 32 64 128 256 512

MAPE 7.90% 3.27% 4.35% 4.19% 3.96% 5.47%

Analysis has also been performed on RMSPE on top of MAPE in Table 7, and it
also yields better overall performance. However, due to RMSPE being a square error, it
emphasizes uncertainty on more volatile portfolios and leads to better performance on less
volatile portfolios. As can be seen on the volatilities for AutoML, Kuo’s DeepTriangle, as
well as the generalized approach, the MAPE enables a better comparison of results.
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Table 7. Performance comparison by batch sizes using RMSPE- claim code as categorical embedding.

RMSPE Line of
Business

Model Batch Size 1 2 3 4 All

Chain-ladder - 9.09% 10.17% 9.85% 9.09% 9.55%
AutoML - 7.88% 10.96% 11.64% 5.55% 9.01%
DeepTriangle (Kuo 2019) 250 7.10% 10.39% 13.49% 4.84% 8.96%
Generalized DeepTriangle 2 9.47% 10.19% 9.71% 9.50% 9.72%
(aggregated)
Generalized DeepTriangle 32 4.16% 4.14% 10.18% 4.48% 5.74%

5. Conclusions and Potential Further Extensions

This paper proposes some extensions to the DeepTriangle methodology developed in
Kuo (2019) in several aspects as described in Section 3.

On a practical note, reserving requires significant regulatory oversight, making ap-
plications of machine learning techniques difficult. Not only does the result need to be
accurate, but it also needs to be explainable and stable. Improving model interpretability
and reducing volatility have been continued areas of research as we develop more advanced
machine learning techniques.

To best enable advancement in this field, we need to develop both short-term applica-
tions as well as ongoing model improvements to make it usable in a corporate context. In
the short term, the Generalized DeepTriangle can be used as a guide to supplement existing
reserving methodologies. The Generalized DeepTriangle picks up on the subtler changes in
claims behavior and claims profiles, which may be difficult to identify in a timely manner
under traditional aggregated reserving approaches. Compared to other machine learning
methods for predicting claims behaviors, the Generalized DeepTriangle is the closest in
structure and more comparable to traditional reserving methods as it predicts by accident
and development periods on historic claims experience. Therefore, it may supplement
existing reserving methodologies and inform on reserving trends in a rapidly changing
post-pandemic environment.

There is potential for further model enhancements. The first option is to conduct
principal component analysis on key categorical variables to determine the optimal seg-
mentation to feed into the embedding layer. Alternatively, the model architecture could be
modified to embed multiple categorical variables.
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