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Abstract: Autonomous Simultaneous Localization and Mapping (SLAM) is an important 

topic in many engineering fields. Since stop-and-go systems are typically slow and  

full-kinematic systems may lack accuracy and integrity, this paper presents a novel hybrid 

“continuous stop-and-go” mobile mapping system called Scannect. A 3D terrestrial LiDAR 

system is integrated with a MEMS IMU and two Microsoft Kinect sensors to map indoor 

urban environments. The Kinects’ depth maps were processed using a new point-to-plane 

ICP that minimizes the reprojection error of the infrared camera and projector pair in an 

implicit iterative extended Kalman filter (IEKF). A new formulation of the 5-point visual 

odometry method is tightly coupled in the implicit IEKF without increasing the dimensions 

of the state space. The Scannect can map and navigate in areas with textureless walls and 

provides an effective means for mapping large areas with lots of occlusions. Mapping long 

corridors (total travel distance of 120 m) took approximately 30 minutes and achieved a 

Mean Radial Spherical Error of 17 cm before smoothing or global optimization. 

Keywords: SLAM; Kinect; IMU; LiDAR; ICP; Kalman filter; visual odometry; monocular 

vision; tightly-coupled; navigation 
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1. Introduction 

Visual Simultaneous Localization and Mapping (V-SLAM) is an important topic for autonomous 

robot navigation. It is often branded as Structure from Motion (SFM) in computer vision and 

photogrammetric bundle adjustment in photogrammetry; two disciplines that also study the 3D 

reconstruction of an object/scene while inferring the 6 degrees-of-freedom movement of the optical 

system, albeit for different purposes. Traditionally the robotics community had been adopting 

computer vision techniques to address the SLAM problem; this research followed the photogrammetry 

methods. As part of the SLAM process, a 3D point cloud is generated, which is a valuable asset not 

just to robotics but also for cultural heritage documentation, infrastructure inspection, urban design, 

search and rescue operations, surveying, etc. The inferred pose can aid pedestrians/robots in navigating 

through unfamiliar indoor labyrinths and aid location-based services [1].  

The term SLAM was first coined in 1995, but its concept and probability basis dates back to  

the 1980s [2]. The theoretical concept of SLAM is a matured subject [3] and over the years many 

SLAM systems have been developed. These systems target specific environments (e.g., aerial [4], 

underwater [5], indoors [6], and outdoors [7]) because a generic system architecture and SLAM 

algorithm has yet to emerge. According to [8], assembling a mobile mapping and navigation system 

involves three main aspects: System Design, Choice of Sensors, and Methods for Localization and 

Mapping. In this paper, an innovative indoor 3D mapping system with novel solutions to all three 

aspects, called the Scannect, is presented. The objective is to improve the efficiency of data acquisition 

(when using 3D terrestrial laser scanners) in large indoor environments with lots of occlusions through 

sensor fusion. The main contributions of this paper are: 

 A novel design for a “continuous stop-and-go” indoor mapping system by fusing a low-cost 3D 

terrestrial laser scanner with two Microsoft Kinect sensors and a micro-electro-mechanical 

systems (MEMS) inertial measurement unit (IMU); 

 A solution to the 5-point monocular visual odometry (VO) problem using a tightly-coupled 

implicit iterative extended Kalman filter (IEKF) without introducing additional states; and 

 A new point-to-plane iterative closest point (ICP) algorithm suitable for triangulation-based 3D 

cameras solved in a tightly coupled implicit IEKF framework. 

Before describing the proposed system, recent scientific advancements in the three key topics are 

first highlighted. The advantages of the proposed indoor mapping system in the same three aspects 

relative to existing systems are then presented. The proposed mathematical model for separately 

updating the IEKF-SLAM using the RGB and depth information is explained. This is followed by 

results from real data captured with the Scannect. 

1.1. System Design 

For a lot of mobile robotic operations, efficient perception and pose estimation are critical. This 

motivated the design for most systems to function in full-kinematic mode, where the mapping 

operation is performed while the robot is moving [9]. More often than not, the robot’s along-track 

movement extends the imaging sensor’s coverage beyond its field of view [10]. However, because of 

imperfections in synchronization, pose estimation, control, and other sources, the resulting map 
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accuracy and resolution can be rather poor. To quantify the mapping errors, a reference map is often 

captured in stop-and-go mode where the imaging sensor is only activated when the platform has halted 

its movements [11]. It is agreed for terrestrial applications that perception data captured while the 

platform is stationary can yield higher quality data because motion blur and any other robot motion 

induced errors are avoided [12]. Based on a recent survey done by [12] existing mobile mapping 

systems either solely operates in stop-and-go or in full-kinematic mode. The former approach is 

hindered by the slow data acquisition and the latter may lack accuracy. This survey further indicated a 

system that can operate in both modes has not yet been developed; specifically one that can capture 

higher density, stability and accuracy data when it is parked and lower quality but continuous data 

while it is moving.  

1.2. Choice of Sensors 

Indoor SLAM can be performed using many different sensors, for example it can be applied to  

Wi-Fi positioning [13]. However, due to the effectiveness and wide success of optical systems for 

mapping, vision-based SLAM is by far the most common scheme [14]. Popular sensors used for visual 

SLAM include monocular/stereo cameras [15,16], 2D/3D Light Detection and Ranging (LiDAR) 

systems [11,17], and 3D cameras [18], all of which have their own advantages and disadvantages.  

Monocular cameras are passive sensors that can capture a 2D array of light intensity information 

instantaneously. Although they are sensitive to the ambient illumination and the information they 

encapsulate for SLAM is dependent on the scene’s texture, being a bearing-only sensor [19] it is 

largely independent of the object’s reflectance properties and can observe details as far as their pixel 

resolution allows. Stereo cameras can further perceive depth from a single exposure station based on 

triangulation, a process similar to how human vision operates [20]. LiDAR systems on the other hand 

are active sensors that acquire 2D scan lines by measuring distance (based on the time-of-flight 

principle) and bearing information point-by-point at high speed. The third dimension is obtained either 

by the platform’s trajectory (for 2D scanners) or by a rotating head/mirror (for 3D scanners). They can 

observe dense geometric information over homogeneous surfaces under any illumination conditions. 

However, their observable range is hindered by the amount of energy they can emit and receive after 

the laser signal has been reflected and absorbed along its path. In addition, since 2D scan lines are 

acquired sequentially, the time it takes to sweep the laser over the object of interest is typically long, 

making them slower than cameras [10]. 

These complementary characteristics of LiDAR and imagery have been detailed and harvested for 

airborne and terrestrial mapping by many [21,22]. In recent years, 3D cameras have emerged 

integrating the benefits of time-of-flight (ToF) measurements with the fast acquisition and gridded 

structure of digital images at the hardware level. Despite the fact that many commercial 3D cameras 

are based upon the ToF principle, currently the most widely used 3D camera on the market is the 

structured-light RGB-D camera known as the Microsoft Kinect. The per pixel metric depth data 

enhances the information content of the RGB image significantly and can make tasks like obstacle 

avoidance, object tracking and recognition more robust and accurate [23]. While it appears that  

RGB-D cameras may have eliminated the need for LiDAR in robotic applications, LiDAR has retained 

its place in the robotics community [24], and among others, due to the limited range, resolution, 
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accuracy, and field of view of modern RGB-D cameras. Instead, RGB-D cameras might be more 

suitable for filling in gaps in the LiDAR point cloud at close-range as it can be more efficient for 

covering occluded areas [25]. In addition, even though the cost of a Kinect is lower than most 3D ToF 

cameras, [26–28] have shown that the Kinect can produce more accurate results and are suitable for 

mapping; at close-range (less than 3.5 m) its accuracy can be similar to LiDAR and medium-resolution 

stereo cameras [26,27].  

Existing indoor mapping systems based on the Kinect have so far been limited to a single system.  

In addition, they are often treated as substitutes for more expensive scanners, rather than being used as 

an aiding sensor to laser scanners. Furthermore, the integration of geometrically accurate LiDAR, 

semantic RGB, and efficient depth map for more informed mapping and pose estimation has not been 

thoroughly investigated, despite their known complementary characteristics. 

1.3. Methods for Localization and Mapping 

Indoor localization-only solutions exist, for example pedestrian navigation devices [29]. Often 

IMUs are used in conjunction with a spatial resection based on bearings, distances, or a combination of 

both from primitives [30]. The primitives can be points, higher-dimensional 2D/3D geometric features 

(e.g., lines, planes, cylinders, and spheres), or more complex surfaces (e.g., a sofa and statue of a lion). 

The main assumption is that the positions of the primitives are known, either from a computer-aided 

design (CAD) model, surveying, or other means. 

On the contrary, mapping-only solutions are also common, and are typically based on bearings, 

distances, or both measurements from one or more locations. In this scenario, the location of the sensor 

needs to be known, and often in combination with orientation information [10]. 

Localization and mapping are highly correlated and are often described as the “chicken and egg” 

problem [31]. Naively performing mapping operations after localization without any accounts for  

their correlation can lead to poorer accuracy, or even divergence in the solution [3]. Therefore,  

state-of-the-art methods usually solve the two problems simultaneously using optimizers such as  

least-squares, Kalman filters (KF), information filters, and particle filters [32]. The measurement 

models used by these optimizers depend on the data source and the features being matched.  

For 2D camera images, popular matching methods include area-based matching (e.g., normalized 

cross-correlation), point-based matching (e.g., blob detectors like scale-invariant feature transform 

(SIFT) or corner detectors like Harris), and line-based matching. Keypoint matching is usually more 

accurate than area-based methods [33], and these points can be tracked over consecutive frames (e.g., 

by the Kanade–Lucas–Tomasi (KLT) feature tracker) for efficiency and reliability at the risk of 

experiencing tracking drift. Usually a pin-hole camera model is used to relate pixel observations to 

their homologous point in the world coordinate system using the collinearity condition [20]. For 

cameras the matching in general can be formulated as 3D-to-3D, 3D-to-2D, or 2D-to-2D matching, 

with the accuracy and complexity generally increasing in the order presented [33]. 

To match point clouds from 3D cameras or laser scanners, point-based, feature-based (e.g., lines, 

planes, and tori), and freeform matching (e.g., ICP) are possible. Since dense point clouds are usually 

available and the nature of objects/shapes in the scene can be unpredictable, freeform matching is one 

of the most popular choices in robotics. It is very flexible but is less robust than matching signalized 
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markers, and can be computationally intensive. The two original ICP implementations that are  

still widely used today are the point-to-point ICP by Besl and McKay [34] (conventionally solved 

using Horn’s method [35]) and the point-to-plane ICP by Chen and Medioni [36] (formulated as a 

least-squares minimization problem). To improve the algorithm, over the years many variations of ICP 

have been proposed and tested. For more details, the reader can refer to taxonomy of ICP in [37]. As 

no ICP algorithm is superior in all situations, the designer is responsible for selecting and/or modifying 

the ICP algorithm to fit their needs. 

Many different VO/SLAM algorithms based on the above concepts exist and a review of all of them 

is beyond the scope of this paper. Instead, a few popular state-of-the-art methods relevant to this 

project are explained with their pros and cons highlighted.  

Typical VO operates like Parallel Tracking and Mapping (PTAM) [38]. A pair of 2D images is used 

to intersect points in the scene with the scale being arbitrary or introduced based on a priori 

information. Then consecutive images that are captured use these intersected 3D points to perform a 

resection to solve for their egomotion. Once this transformation is known, they are once again used in 

the intersection process to create more points in the scene. The end result is usually a sparse map of the 

environment that carries little value for most mapping operations compared to dense point clouds from 

LiDAR or 3D cameras. Furthermore, three drawbacks arise with PTAM: (1) the “catch 22 problem” 

where more reconstructed 3D points give a better camera tracking solution, but cause the state vector 

to grow rapidly; (2) the same 3D point needs to be observable in at least three images before it can be 

used for tracking the camera’s motion; (3) an initial metric scale is difficult to obtain. The last two 

statements are less of a problem because through fusion with an IMU the scale can be estimated as 

quickly as 15 s [39]. Or if depth data are available it can be solved instantaneously from a single 

exposure and camera tracking can begin immediately following the first camera exposure [40].  

Henry et al. [41] had a single PrimeSense RGB-D camera carried by a human in a forward-facing 

configuration for indoor mapping. They explained that the depth data ignores valuable cues in the 

RGB images and RGB images alone do not perform well in dark and sparsely textured areas. 

Therefore they presented 1-step and 2-step matching methods that exploit both pieces of information. 

In the 1-step case, a joint optimization was performed that minimized the point-to-point distances for 

the detected 3D keypoints and point-to-plane distances for the depth maps using ICP. To improve the 

speed of the algorithm, they suggested splitting this into two steps: running the keypoint matching first 

and only performing ICP after if the match was poor (e.g., insufficient keypoints were matched). This 

resulted in only minor compromise in terms of accuracy. In both cases, they performed RANSAC on 

the 3D keypoints for the initial alignment step. Compared to their previous work [42], they have 

replaced SIFT with the Features from Accelerated Segment Test (FAST) detector, minimized the 

reprojection errors of the matched 3D keypoints instead of Euclidean distances, and did a global 

optimization using sparse bundle adjustment (SBA) instead of the Tree-based netwORk Optimizer 

(TORO) [31]. In their indoor mapping experiment, they travelled over 71 m in an office space and 

their ICP-only solution showed 15 cm error, while their proposed RGB-D ICP method showed 10–11 cm 

error (i.e., 0.15% error over the travelled distance). Their proposed RGB-D ICP scheme eliminated the 

need to weight the color space relative to the Euclidean space [43], but created the new problem of 

having to weight 3D keypoints against the point-to-plane ICP. In this paper they give the two different 

point matches the same weight in their joint-optimization. Moreover, they only mention the possibility 
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of weighting the points in ICP based on distances, normal angle, etc. to improve the matching but the 

same weight was assigned to all points. The authors acknowledge and stress the importance of 

minimizing reprojection errors, but their point-to-plane ICP did not adopt this scheme, only the 3D 

keypoints used this cost function. They also mention that because they tightly-coupled depth and color 

information, whenever the depth sensor is out of range they do not have 3D keypoints for RANSAC 

matching even though they were detectable in 2D. This can be rather common with their single 

forward facing sensor configuration. For example, when looking down a hallway, the majority of the 

center pixels will likely be out of range. 

The Kinect is capable of delivering 9.2 million points per second, a rate that far exceeds any 

terrestrial laser scanners. A popular method for handling this vast amount of data in real-time is the 

KinectFusion solution [44]. They parallelized the point-to-plane ICP algorithm to be executed on the 

graphics processing unit (GPU) for speed and fused the dense point clouds using the Truncated Signed 

Distance Function (TSDF) [45]. This novel implementation was considered for this project but at the 

time its measurement volume was restricted by the memory of the GPU. Even with a lower resolution 

for the TSDF, mapping over hundreds of meters in distances was not possible. This method can map in 

the dark because only the depth images were considered and all the semantic RGB data were ignored. 

Although it was designed for handheld sequences, slow and steady egomotion was assumed, as sudden 

jerks and insufficient overlap can cause the ICP to fail. In addition, a lack of geometry in the scene  

(a well-known problem with ICP) makes it difficult for the KinectFusion method to converge to the 

global minimum. 

More recently [46] has lifted this limitation of measurement volume by downloading the old data 

onto the central processing unit (CPU) and using a moving TSDF to only map the most recent and 

immediate point clouds. In their later paper they even took advantage of the RGB information [47], 

and added loop-closure [48]. Keller et al. [49] improved upon KinectFusion by replacing the 

volumetric representation by a point-based representation of the scene. This eliminated many 

computational overheads and conversions between different scene representations, making it more 

scalable and faster. Each point in the depth map is projectively associated with the scene and reliable 

points are merged using a weighted average. Besides being able to map larger areas, the biggest 

improvement is the ability to handle a certain degree of dynamics in the scene. Even with these 

significant improvements, being a single Kinect system, its field of view (FOV) is limited to less than 

60° and their ICP algorithms will fail when the scene lacks features (e.g., only a single homogenous 

wall is in view). Also, the timing error between the color and depth information was usually neglected [50]. 

Leutenegger et al. [51] tightly-coupled a stereo-camera with an IMU using keyframe-based 

nonlinear optimization instead of filtering techniques. Keypoints were identified using the Harris 

detector and descriptions were computed using BRISK. Unlike the Kinect, only a sparse 3D map was 

obtained and landmarks were removed in the marginalization step to reduce the computation load. 

Unlike the above papers, another stream of research used Kalman filtering to solve the SLAM 

problem. Li et al. [52] demonstrated that the performance and convergence of SLAM is affected by 

landmark initialization uncertainty and linearization error. The former can be addressed by using the 

depth information provided by the Kinect to better initialize the 3D landmarks. The latter can be 

improved by replacing the extended Kalman filter (EKF) with the IEKF, which re-linearizes the 

measurement model by iterating an approximate maximum a posteriori estimate around the updated 
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states rather than relying on the dynamics model. They showed using real data from their keypoint 

based SLAM that in some situations where EKF will fail, the IEKF would not. They also proposed a 

way to add and remove landmarks from the state vector to avoid memory overload. The IEKF can  

help reduce the effect of non-linearities in the measurement model; however just like the EKF they are 

still based on a measurement model where a single observation is expressed as a function of the 

unknown states. 

Aghili et al. [53] realized the importance of initial alignment for the ICP and attempts to keep track 

of the pose when good measurement updates were unavailable. They solved this by fusing the ICP 

pose in a KF under a closed-loop configuration. In this case, the measurements were loosely-coupled 

and the EKF only provided an initial guess for the ICP method. With a similar motivation,  

Hervier et al. [54] fused the Kinect with a three axes gyroscope for improved mapping and localization 

accuracy. They used the ICP algorithm in the Visualization Toolkit (VTK) to first solve for the pose, 

and then fuse it in the KF in a loosely-coupled manner. In their current system, they mentioned it is 

difficult to evaluate movements parallel to a flat wall.  

In the navigation domain, vision-assisted IMU is popular for localization in GNSS-denied 

environments, but the reconstructed scene is often viewed as a nuisance parameter. Kottas and 

Roumeliotis [55] presented results from monocular camera and IMU fusion that used both point and 

line features. Their proposed Observability-Constraint Multi-State Constraint Kalman Filter improved 

the consistency of the EKF results by ensuring rotational information about line, which is unobservable 

by vision, does not enter the filter. Using this method for a handheld sequence, they estimated sparse 

feature parameters and reported a localization error of 0.31 m over a 144 m trajectory (i.e., 0.22% error 

of the distance travelled). Li et al. [56] fused the IMU and rolling-shutter camera onboard the Samsung 

Galaxy S2 for pose estimation. Using their modified Multi-State-Constraint Kalman Filter a sliding 

window of camera states was processed and an approximate positioning error of 0.8% over the 

travelled distance was reported. 

All these SLAM solutions will fail in cases when a single homogenous plane is imaged. Often when 

the ICP method is used with a KF, they are loosely-coupled rather than tightly-coupled. Most of the 

work either ignores the RGB information or if included they require the depth and RGB information to 

be available simultaneously and assumed no synchronization errors.  

In Grisetti et al. [31] they distinguished SLAM into the filtering approach and smoothing approach. 

Filtering approaches are incremental by nature and often use KF (also referred to as online SLAM), 

whereas smoothing approaches estimate the complete trajectory from all the measurements (a.k.a the 

full SLAM problem). This paper focuses on the forward filtering part of SLAM and proposes new 

ways to solve monocular VO and ICP in a tightly-coupled KF. 

2. The Scannect Mobile Mapping System 

The Scannect is an indoor mapping system that is unique in its System Design, Choice of Sensors, 

and Methods for Localization and Mapping. Each of these aspects of the Scannect is explained in the 

following sections. 
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2.1. Proposed System Design 

The proposed system attempts to harvest the accuracy and stability of stop-and-go systems while 

maintaining a degree of speed from full-kinematic systems. High quality 3D scans are captured when 

the robot has “stopped”, and lower quality data is captured while it is “going” for mapping and keeping 

track of the relative change in pose. For this reason, the system design can be seen as a hybrid between 

static and kinematic mapping, termed continuous stop-and-go mode in this paper. According to a 

recent review by [12], systems operating in continuous stop-and-go mode have not yet been released. 

If higher quality data are desired the robot can make more frequent stops, hence approaching the  

stop-and-go solution’s quality or if speed and time is of the essence, it can make zero stops 

(approaching the full-kinematic solution). This trade-off between speed and accuracy does not affect 

other components of the Scannect, and can therefore be easily adapted to the project at hand.  

Designed Robot Behavior 

The robot’s behavior during the mission is described in the following stages with the desirable trait 

of the system highlighted: 

 Stage 1: The robot enters an unfamiliar environment without prior knowledge about the map or 

its current position. 

o The absolute position may never be known, but an absolute orientation based on the 

Earth’s gravity and magnetic fields is determinable. 

o The system should “look” in every direction to its maximum range possible before 

moving around to establish a map at this arbitrary origin. 

 Stage 2: Due to occlusions and limited perceptible range, the robot needs to move and explore 

the area concurrently. 

o When exploring new areas the map should be expanded while maintaining the 

localization solution based on the initial map. 

 Stage 3: Occasionally when more detail is desired or the pose estimation is uncertain, the 

system can stop and look around again. 

o As the system is for autonomous robots with no assumptions about existing localization 

infrastructure (e.g., LED position systems), every movement based on the dead-reckoning 

principle will increase the position uncertainty. Typically it is more accurate to create a 

map using long-range static remote sensing techniques because they are typically less 

than the dead-reckoning errors. 

o Looking forward and backward over long ranges from the same position can possibly 

introduce loop-closure. 

o One of the Kinects and the IMU are rigidly mounted together and force centered on the 

mobile platform. Through a robotic arm, quadcopter or by other means the Kinect and 

IMU can be dismounted from the platform during “stop” mode for mapping, making it 



Robotics 2014, 3 255 

 

 

more flexible/portable for occlusion filling. Afterwards it can return and dock at the same 

position and orientation and normal operations is resumed. 

2.2. Proposed Choice of Sensors 

The starting point of the Scannect is the FARO Focus3D S terrestrial laser scanning (TLS) 

instrument. This is motivated by the accuracy, stability, speed, range, and field of view of this modern 

static 3D TLS instrument, (e.g., millimeter-level range accuracy and 360°/310° horizontal/vertical 

FOV, respectively). This sensor is very suitable for indoor mapping applications, especially with the 

recent upgrades (i.e., digital compass and tilt sensors), and reductions in cost, size, and weight. Its 

success for indoor mapping can be seen in the papers published using this system for as-built surveys 

and cultural heritage documentation [57,58]. 

The Microsoft Kinect is a trinocular vision system capable of capturing dense RGB-D information 

at up to 30 Hz. The RGB information comes from an onboard VGA resolution camera while the depth 

information is determined using the coded-light principle: a pattern is emitted by the projector and 

simultaneously imaged by the infrared (IR) camera to perform photogrammetric intersection. More 

details about the Kinect can be found in many articles, e.g., [59,60]. 

In large open spaces (e.g., a gymnasium, shopping malls, and airports) TLS can be more efficient 

and effective at mapping than 3D cameras like the Kinect. However, TLS falls short when many 

occlusions exist in the scene because so many static scans are needed for complete coverage, which is  

very time-consuming. When setup on a mobile platform (e.g., trolley) the setup-move-setup time is 

reduced [12]. A selective FOV in theory can shorten the scan time when compared to a full 360° scan, 

however because of the rapid scan speed of modern scanners, the process of capturing a preview scan 

followed by the manual FOV selection and doing a dense scan can actually result in longer overall 

acquisition time. In cases where small occlusions needed to be filled, the Kinect is perhaps more 

efficient. Unlike 2D profile scanners which essentially have no overlap in kinematic mode, the Kinect 

provides a 3D point cloud within its FOV instantaneously at 30 Hz. Consequently, a high-degree of 

overlap exists between consecutive frames, which facilitate continuous point cloud stitching for higher 

quality mapping while maintaining the robot’s pose. Because the Kinect, as well as other 3D cameras 

currently on the market, all have a relatively small FOV (the largest being 90°), a simple and  

cost-effective solution is to add extra Kinects [61].  

The Scannect was equipped with two sideward facing Kinects (Figure 1); this architecture was 

chosen to maximize the overall FOV for indoor SLAM and to prevent possible interference between 

the two Kinects. If desired, additional Kinects are possible and the interference issue can be mitigated 

by introducing small vibrations to each Kinect [62]. Although a forward facing and skyward facing 

Kinect design has also been considered, it was not implemented because (1) a forward facing Kinect 

usually does not have sufficient range to reach the end of a long corridor to provide any useful 

information; (2) the considered situations in this paper assume a flat horizontal floor for the building, 

which is often the case, so a non-holonomic constraint was used for constraining the height of the 

robot instead since a sideward facing Kinect is more valuable for mapping.  

Nonetheless, all the sensors discussed thus far require a direct line-of-sight to conjugate features in 

the overlapping regions. If the overlap between two visual datasets is small or lacking in features/texture, 



Robotics 2014, 3 256 

 

 

optical-based matching techniques may be inaccurate or even fail in some cases. A suitable aiding 

device is an inertial measurement unit, which operates well regardless of its environment. A MEMS-based 

IMU from Xsens, the MTi, was adopted for the task at hand. When the robot enters a dark corridor 

with walls too far for the Kinect, the integrated rotation rate will keep track of the orientation, and the 

rotated acceleration after double integration will keep track of the position of the platform. 

Figure 1. Sensor configuration of the Scannect. 

 

All data were logged and processed on a Windows 7 desktop computer equipped with an Intel® 

Core™ i7 processor (up to 3.07 GHz) and 12.0 GB of RAM. In this prototype, the processing was 

performed offline, which is not unreasonable as most stop-and-go mobile scanning systems process 

their data post-mission. 

Overall, the Focus3D S is envisioned for mapping large open areas in static mode. When the robot is 

moving the Kinects are used for localization and filling in the shadowed areas until the system stops to 

perform Zero velocity UPdaTes (ZUPT) and capture another laser scan. The IMU continuously assists 

the Kinect matching and bridges the gaps when vision-based localization fails due to lack of details in 

the scene. To the authors’ best knowledge this is the first paper using more than one Kinect for an 

inside-out type system. Popular multi-Kinect systems are designed for body scanning or motion 

capture with an outside-in design [61]. Furthermore, the Kinect is usually used as the sole mapping 

sensor, instead of playing a more assistive role to a more accurate laser scanner, as in this paper. 

System Calibration 

Systematic errors are prevalent in all man-made instruments, for instance due to manufacturing 

flaws. Before integrating the four proposed sensors for SLAM, they were first individually calibrated 

for their intrinsic parameters. Afterwards, the relative rotation (boresight) and relative translation 

(leverarm) between all the sensors were determined through an extrinsic calibration process. Only the 

intrinsic calibrations of the optical sensors are considered in this paper. The calibration procedure for 

MEMS-based IMUs has reached a level of maturity that is widely accepted [63]. The commonly 
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adopted methods solve for biases, scale factor errors, and axes non-othogonalities for the triad of 

accelerometers and gyroscopes, and misalignments between them. For the accelerometer calibration, 

the sensor can be placed in various orientations and capturing a sequence of static data. These 

measurements are related to the local gravity vector, which is used as the reference signal. For the 

gyroscopes, a rotation rate table can be used to establish the reference signal. Since such a calibration 

requires specialized equipment that is not easily accessible, the manufacturer’s calibration was relied 

upon. Furthermore, MEMS IMUs are known to have a poor bias stability, so the residual systematic 

errors need to be modeled stochastically in every operation. 

Microsoft Kinect RGB-D Camera Calibration 

The Kinect is originally intended for gaming applications, where metric measurements are not 

critical. In order to integrate the Kinect with a laser scanner for mapping, the sensor needs to be 

individually calibrated to ensure the residual systematic errors from the manufacturer’s calibration are 

minimized. Distortions in the Kinect’s depth map have previously been reported and various 

calibration approaches have been proposed [59,64]. As the Kinect is a relatively new sensor, a 

commonly accepted calibration procedure has not yet been established, which is in contrast to MEMS 

IMU calibration. For convenience, a user-self calibration approach that requires only a planar 

checkerboard pattern for performing a total system calibration was selected. 

The Kinect consists of three optical sensors, all of which can be modeled using the pin-hole camera 

model. The well-established bundle adjustment with self-calibration method was modified in [65] to 

solve for all the intrinsic and extrinsic parameters of all the optical sensors in the Kinect simultaneously. 

This method was adopted in this paper and was responsible for independently calibrating the two 

Kinects installed onboard the Scannect. The results from the calibration are published in [65]. 

FARO Focus3D S 120 3D Terrestrial Laser Scanner Calibration 

The Focus3D S is the lowest-cost sensor in its category of laser scanners. Compared to more 

expensive scanners within the same class, it has been found to exhibit more significant systematic 

distortions, in particular angular errors. The multi-station self-calibration approach is a popular and 

effective means for reducing the systematic errors internal to TLS instruments without the need of 

specialized tools [66,67]. Analogous to camera calibration, by observing the same targets from 

different stations a least-squares adjustment can be performed for solving the biases in its distance and 

bearing measurements and various axes misalignments, eccentricities, and wobbling. Recently, [68] 

showed that signalized targets can be replaced by planar features to achieve similar calibration results 

with reduced manual labor. The Focus3D S on the Scannect was calibrated using this plane-based  

self-calibration method, and the calibration results can be found in [69]. 

Boresight and Leverarm Calibration between the Kinect and Laser Scanner 

Both the Kinect and laser scanner are visual sensors, therefore target fields such as a planar 

checkerboard pattern is visible to both. These common targets can be independently extracted in their 

corresponding point clouds and then related through a 3D rigid-body transformation [70]. This 
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approached was adopted to simultaneously solve for their boresight and leverarm parameters. Since the 

Kinects point away from each other, they were related through the intermediate laser scanner. 

Boresight and Leverarm Calibration between the Kinect and IMU 

The problem of solving for the 3D rigid body transformation parameters between an IMU and 

camera is often encountered in multi-sensor mapping systems [10]. Some common methods include 

simple surveying techniques via a total station, solving it as a state estimation problem in an EKF, or 

formulating it as an offline global optimization problem. The first method is most suitable for  

higher-end IMUs and metric cameras with clear markers on the exterior casing, for instance in  

airborne mapping systems. The locations of the Kinect’s perspective centres are unknown and CAD 

models are not published by Microsoft. Therefore, the other two algebraic calibration methods are 

perhaps more suitable.  

Lobo and Dias [71] proposed a popular two-step calibration procedure that first estimates the 

boresight parameters and then uses a turntable that spins about the IMU’s origin to solve for the 

leverarm parameters. Not only does this require specialized tools and careful placement of the system 

on the turntable, correlations between the rotational and translational parameters are ignored in this 

method. Hol et al. [72] formulated the calibration as a gray-box model where the navigation states 

were solved in the EKF using their current best estimate of the unknown parameters (boresight, 

leverarm, gyro bias, accelerometer bias, and gravity vector). A post-filtering adjustment was then used 

to improve their estimate of the unknown parameters simultaneously by minimizing the differences 

between the predicted and measured target positions in image space. This online filtering and offline 

adjustment is then repeated until convergence. This type of calibration is preferred in this project 

because it is more user-friendly and can account for the correlations between the boresight and 

leverarm parameters. Based on the approach in [72], the measurement model shown in Equation (1) 

was used for calibration in this project. Two subtle differences exist in the implementation presented 

herein: first, the slowly time-varying biases are solved in the IEKF like [73]; second, the gravity vector 

in the navigation frame has been replaced by the rotation angles between the navigation frame and 

world frame of the checkerboard. The rotation matrix notation was used here and in other equations for 

convenience in representation; in the actual adjustment, quaternions were used to give the system full 

rotational freedom without encountering gimbal lock. 

 (1)

where 
ோீሺݐሻ is the observation vector for point i expressed in the RGB image space at time t; 

ߤ
ோீሺݐሻ is the scale factor for point i at time t (which can be eliminated by dividing the image 

measurements model by the principal distance model [20]); ܴூோ
ோீ is the relative rotation between the 

IR and RGB cameras; ܴ௦ூோ is the relative rotation between the IMU sensor and IR camera; ܴ௦ሺݐሻ is the 

orientation of the IMU sensor relative to the navigation frame at time t; ܴௐ
  is the relative rotation 

between the world frame defined by the checkerboard and the navigation frame; ܱ
௪  is the 3D 

coordinates of point i in the world frame; ܶሺݐሻ is the position of the IR camera in the navigation 

frame at time t; ∆ܾ௦  is the leverarm between the IMU sensor and IR camera; ∆ܾூோ  is the relative 

translation between the IR and RGB cameras. 
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2.3. Proposed Methods for Localization and Mapping 

Figure 2 shows the interaction between the sensors onboard the Scannect. The different colors 

separate the various components of the Scannect (e.g., cyan highlights the egomotion estimation using 

RGB images and purple highlights the 3D image processing). The IMU observations after correction 

(Equation (2)) were integrated to provide changes in orientation and position (Equation (3)), which 

were useful for initializing the 2D/3D matching and keep track of the states between measurement 

updates. The accelerometer and gyroscope biases were solved in the KF as a first order Gauss-Markov 

process (Equation (4)). The Gauss-Markov parameters were determined from autocorrelation analysis [74]. 

The TLS point clouds were matched using the conventional point-to-plane ICP [36] with the first point 

cloud oriented relative to magnetic north in the local level frame. The proposed RGB-D localization 

and mapping method is based on a novel ICP implementation suitable for triangulation-based 3D 

cameras such as the Kinect. The new cloud was always registered with the global scene to partially 

address the loop-closure problem. The localization was separated into depth-only and RGB-only for 

two reasons: (1) the depth and RGB streams are not perfectly synchronized; and (2) the depth 

measurements have a limited range—by processing the RGB data separately, localization of the robot 

is still possible when depth data are unavailable. Both depth-only and RGB-only processing used a 

tightly-coupled implicit iterative extended Kalman filter to estimate the states. 

Figure 2. The overall workflow of performing Simultaneous Localization and Mapping 

(SLAM) using the Scannect. 
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where ݔ, ሶݔ , ሷݔ	݀݊ܽ   are the position, velocity, and acceleration of the IMU sensor in navigation 

frame, respectively; ݂௦(t) and ߱௦௦→ሺݐሻ	are the accelerometer and gyroscope measurements at time t, 

respectively; ߝሺݐሻ and ߝఠሺݐሻ are their corresponding measurement noises; ߱→ is the rotation rate of 

the earth as seen in the navigation frame; ݃ is the local gravity in the navigation frame; ݍ௦→ is the 

rotation from IMU sensor frame to navigation frame expressed using quaternions; ߜሺݐሻ and ߜఠሺݐሻ are 

the slowly time-varying accelerometer and gyroscope biases, respectively, which are modelled as a 

first order Gauss-Markov process; ሻݐሺߟ	  and ߟఠሺݐሻ  are the corresponding Gauss-Markov process 

driving noises; and Δt is the time interval between the current and previous measurement. 

2.3.1. Tightly-Coupled Implicit Iterative Extended Kalman Filter 

The Kalman filter has been a popular choice for sensor fusion and navigation for decades. The 

Kalman filter assumes a linear relationship between the measurements and the states. Non-linearities 

can be approximated by using a first order Taylor series expansion. If the non-linearities are severe, 

higher order terms of the Taylor series can be included, and/or an iterative approach can be taken.  

All the filtering in this paper was done following the latter approach where an IEKF is used for 

updating the states [75]. A total of 16 states were used by the system (namely 3 for position, 3 for 

velocity, 4 for attitude in the quaternion, 3 for gyro bias, and 3 for accelerometer bias) and the size of 

this vector remains constant throughout the entire large-scale mapping project. This is desired and 

done to reduce the likelihood of divergence with a large state vector, and the reduction of system 

performance over time as more states are added [75]. In addition, many geometrical formulas used in 

vision actually violate the parametric model assumed by the KF (i.e., a single observation is a function 

of the unknown states, as shown in Equation (5)); instead they are implicitly defined (i.e., the 

observations and unknown states are inseparable in the measurement update model, as shown in 

Equation (6)). The extension of the conventional IEKF for implicit math models are given in [76], and 

was used in all the matching processes described in this paper.  

)(Xhy   (5)

0),( YXh  (6)

where y represents a single observation; Y represents multiple observations; X represents the unknown 

states; and h denotes a functional model relating the observation(s) and unknowns. 

For outlier removal, the normalized residuals were used instead of testing the innovations [77]. This 

implicit IEKF formulation permits the Kinect measurements to update the state vector in a tightly-coupled 

manner, which allows for the system to be updated even if the matching is underdetermined (e.g., less 

than the minimum number of matches is found, or their distribution is collinear).  
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2.3.2. Dense 3D Point Cloud Matching for the Kinect 

Computer vision techniques for egomotion estimation and 3D reconstruction are very suitable for 

robotics SLAM applications because of their balance between speed, accuracy, and reliability. Often in 

freeform scan-matching, the ICP method is used. The ICP matching is usually first solved 

independently to reconstruct the scene, and then the relative translation and rotation between the point 

clouds are fused using a Kalman filter to update the pose. When the point clouds being matched are 

rich in geometric features, this method can provide high quality pose estimates. Typical indoor urban 

environments present additional challenges such as a single flat wall and sparse/poorly-distributed 

point clouds due to sensor saturation (the Kinect has difficulties producing a point cloud under direct 

sunlight, even through windows) and scene’s reflectivity (e.g., mirrors and glass). For the former case, 

point-to-point ICP can converge to an infinite number of solutions based on the initial alignment, and 

the point-to-plane ICP will have a singular matrix that would not invert due to lack of geometric 

constraints. If the wall exhibits a lot of texture, RGB information can be combined with the standard 

geometry-only ICP in a joint optimization to obtain a solution [43], however if the wall is homogenous 

(e.g., white walls without textures are common) this approach is not applicable. Furthermore, based on 

the OpenNI programmer’s guide [78] the depth and color streams of the Kinect are not perfectly 

synchronized. In some extreme cases, data captured using Kinect Studio from the Microsoft Kinect 

SDK even revealed significant lag between the two streams. Figure 3 shows the temporal availability 

of color and depth information while a Kinect was logging both simultaneously. The red and blue lines 

indicate when a RGB image and depth map was captured, respectively; lag up to 0.26 s can be 

observed. 

Figure 3. Recorded color and depth data using Kinect Studio with the red and blue lines 

showing the time when an image is acquired. 

 

A general overview of the depth matching methodology is summarized graphically in Figure 4.  

A calibrated point cloud augmented with RGB and normals was generated in near real-time using 

OpenMP, Point Cloud Library (PCL), and [65]. Despite the synchronization errors, the out-of-sync 

color information was included in the initial alignment step to improve the distinctiveness of the 

selected keypoints. The stable keypoints were then extracted from this new point cloud and matched to 

a previous keyframe. The estimated pose after outlier removal (using the uniqueness constraint, 

Signature of Histograms of OrienTations COLOR (SHOTColor) descriptor, IMU predicted image 

point locations, and RANSAC) was used as the initial alignment for the tightly-coupled ICP. During 

scan-matching, the input point cloud (without considering the RGB information) was iteratively 

matched with the reconstructed scene (i.e., the map) while incorporating the a priori information from 

the IMU. The synchronization problem was mitigated by using the measurement model described in 

the section Cost Function, which updates the KF using solely the geometry information. After a laser 
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scan, when mobile mode was resumed, this approach becomes comparable to a localization only 

solution in a known environment until reaching occluded areas. The output of this method includes the 

16 updated states and an extended map of the environment. The state parameters were estimated in the 

KF, while the map was obtained from averaging new points at the current pose with the scene using a 

voxel grid. The adopted model-to-scene scan-matching approach estimates the map by allowing the 

scene to be updated through a moving average instead of augmenting the state vector with the map, 

which is computationally demanding for the KF since every Kinect exposure contains up to 307,200 

points. 

Figure 4. SLAM using the Kinect’s depth information. 

 
The central concept of the proposed depth processing pipeline is the ICP algorithm. Numerous 

variations of ICP can be found in literature, each with their own advantages and disadvantages. 

Rusinkiewicz and Levoy [37] summarized five key components for tuning the ICP algorithm: the 

sampling method, searching, cost function, outlier rejection, and weighting. Following this guideline, a 
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new point-to-plane ICP solved in a tightly-coupled IEKF is proposed to account for the solo 

homogenous flat wall situation described above. Through the additional information provided by the 

dynamics model, not only does the initial alignment become trivial, it makes the single plane case 

solvable. The following sections explain the proposed ICP algorithm in relation to the five key 

components, initial alignment, and the loop closure problem.  

Sampling 

A single Kinect depth map is 640 by 480 pixels, which can result in a point cloud with a maximum 

size of 307,200 points. This is a lot of data, especially considering the Kinect simultaneously captures 

RGB images at 30 Hz. Since the corresponding points between the IR camera and projector are 

determined using a 9 × 9 kernel [59], depth values of adjacent pixels are highly correlated and do not 

carry as much information as pixels that are further away. Therefore, to reduce the computation time, 

the point clouds were downsampled. For this, the normal downsampling technique suggested by [37] 

was used, because it showed better performance than uniform and random downsampling. 

Searching 

The popular Fast Library for Approximate Nearest Neighbors (FLANN) [79], which is a fast  

KD-tree, was used for speeding up the query process, which is one of the most computationally 

intensive steps of the ICP algorithm. Instead of just finding a single nearest neighbor in the target 

cloud for every point in the source cloud, the k-nearest points in the target cloud based on the 

Euclidean distance to the query point were selected, and the point with the minimum orthogonal 

distance was chosen as the corresponding point. This was then repeated with every point in the target 

cloud as query points to find the correspondences. Only correspondences that pass this uniqueness 

constraint were considered as matches. 

Instead of building a KD-tree for a growing scene and querying a large amount of points, two steps 

were taken to reduce the memory and the processing load. First, every new ICP-registered point cloud 

was fused with the scene model using a voxel grid representation, where points within the same voxel 

were reduced to their centroid. The second step involves a fast segmentation of the scene to extract 

only regions that were overlapping with the new incoming point cloud using frustum culling [80] 

based on the FOV of the Kinect and IMU-predicted pose. This essentially sets a threshold on the 

maximum number of points to be queried, thus prevented certain iterations from running significantly 

longer than others. 

Cost Function 

The point-to-plane cost function minimizes the orthogonal distances instead of the Euclidean 

distances as in the point-to-point ICP; this is known to perform better in terms of accuracy and 

convergence speed for most cases [37]. More importantly, it is preferred in this application because it 

would not “anchor” the along-track translation of the robot when it is travelling down a corridor. The 

point-to-plane ICP will only minimize the 1D orthogonal distance, therefore for a side-looking Kinect 

it will not prevent it from sliding along the wall as desired. When solving it in a KF framework, 
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information from the dynamics model (i.e., IMU) can help push the solution forward in the along-track 

direction while the ICP corrects the across-track position and the two orientations that are not parallel 

to the normal of that wall. Furthermore, the proposed tightly-coupled point-to-plane ICP will not be 

singular even if only one plane is within view.  

As for all camera-based models, minimization of the reprojection errors yields higher quality results 

than simply minimizing the Euclidean distances because it better describes the physical measurement 

principle. Following the derivations from [65], for a rigidly attached stereo camera, its measurement 

model can be written as Equation (7) (for the master camera) and (9) (for the slave camera), where the 
projector is treated as a reverse camera. The projector’s observation vector ,

ோைሺݐሻ is derived by 

backprojecting the 3D points into the projector’s image space using its extrinsic and intrinsic 
parameters [65]. The inherent scale ambiguity for both the IR camera (ߤ,

ூோ ) and the projector (ߤ,
ோை), 

which are traditionally eliminated from the model by dividing the first and second components by the 

third component of Equations (7) and (8) in parametric form [20], are solved through spatial 

intersection with the point-to-plane constraint (realized by substituting Equations (7) and (8) into 

Equation (9), respectively). The depth camera measurement update model implemented in the 

proposed KF framework is then obtained by equating Equations (7) and (8). It is worth noting that the 

functional relationship between the observations (i.e., image coordinate measures for the IR camera 

and projector) and unknown states (i.e., the pose) are implicitly defined. The math model presented 

here minimizes the reprojection errors of the Kinect’s IR camera and projector pair implicitly to reduce 

the orthogonal distance of every point in the source point cloud relative to the target point cloud.  
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where, ܴ
ூோ is the relative rotation from the IR camera of Kinect k to the IR camera of the reference 

Kinect; ߤ,
ூோ ሺݐሻ and ߤ,

ோைሺݐሻ are the scale factors for point i observed by the IR camera and projector of 

Kinect k at time t, respectively; ,
ூோሺݐሻ	and ,

ோைሺݐሻ	are the image measurement vectors of point i 

observed by the IR camera and projector of Kinect k at time t, respectively; ሾܴோை
ூோ ሿ is the relative 

rotation between the IR camera and projector of Kinect k; ∆ܾ  is the relative translation between  

the IR camera of Kinect k and the reference Kinect; ∆ܿ  is the relative translation between the IR 

camera and projector of Kinect k; ai, bi, ci, and di are the best-fit plane parameters of point i in the 

navigation frame. 

Outlier Rejection 

The correspondence matching between two point clouds can only be seen as approximate because 

exact point matches cannot be assumed in dense point clouds captured by the Kinect or laser scanner. 

This causes the ICP algorithm to be highly sensitive to outliers in the approximated correspondences. 

To minimize the possibility of outliers, several precautions were taken, resulting in the following three 

outlier removal steps. 
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Rejection When Estimating Correspondences 

One of the benefits of including an IMU is that it can provide good initial alignment for the ICP. 

Using this prediction and a fixed radius around each query point, correspondences established during 

the searching step above that were outside of each sphere can be removed. The remaining 

correspondences were further compared using their normal vector determined in their local 

neighborhood using orthogonal regression. Only points with differences in spatial angle less than a 

threshold were retained. 

Rejection Using RANSAC 

When more than 3 non-collinear points were matched between the source and target clouds, 

RANSAC based on the point-to-point ICP from Besl and Mckay [34] can be used for finding the 

inliers efficiently. This approach is similar to the RANSAC approach explained in [41]. 

Rejection in the Kalman Filtering 

In case outliers still exist in the correspondences, standard outlier detection method based on the 

normalized residuals was adopted [77]. 

Weighting 

Assigning weights that are inversely proportional to the depth measurements when registering point 

clouds coming from the Kinect has shown to have significant improvements in terms of accuracy [50]. 

For the Scannect this was achieved based on the pin-hole camera model and collinearity equations with 

assumed additive Gaussian noise for the pixel measurements, which have been shown to be capable of 

describing the distance measurement uncertainty of the Kinect over its full range [28]. This weighting 

scheme simplifies the observation variance-covariance matrix to a diagonal matrix while properly 

describing uncertainties in the point cloud due to the baseline-to-range ratio and parallax angle over the 

Kinect’s full frame. In contrast to [50], which would assign the same weight to all the points when 

registering coplanar points between two point clouds while the Kinect is oriented orthogonal to the 

wall, the adopted method will assign slightly different weights based on the variation of the parallax 

angles in these coplanar points. The end result is similar to the empirical weighting scheme adopted in [50], 

but with the underlying physical measurement principles of the Kinect expressed mathematically.  

Initial Alignment 

Generally, consecutive Kinect depth maps are captured merely fractions of a second after another. 

This plus transporting the Kinect slowly and smoothly during the SLAM process results in the initial 

transformation of the ICP to be highly predictable by a suitable motion model, and sometimes can  

even be assumed to be the same as the previous pose. Nevertheless, the IMU predictions are  

usually sufficient to get the ICP to converge to the correct solution because of the relatively short time 

update. However, because the ICP tends to converge to a local minimum as oppose to the global 

minimum, whenever possible the initial alignment is derived via other means to keep the ICP updates 
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as independent from the IMU predictions as possible. This reduces the chance of a poor IMU 

prediction causing the ICP to converge to a local minimum and then using this distorted scene for 

camera localization. 

This alternative method for deriving the initial alignment is based on 3D keypoint matching [41]. 

Similar to the conventional 2D keypoint matching technique [81], 3D keypoint matching begins with 

keypoint detection, every keypoint is then associated with a description, and points with the most 

similar description are matched. Most of the papers directly solve for the egomotion in EKF using this 

keypoint method, indicating its fidelity. However, in this paper they are only treated as initial 

approximations for ICP because a reliable implementation typically requires texture information, 

which as mentioned, RGB images are not triggered simultaneously as the depth images in the Kinect.  

The Implicit Shape Signature (ISS) [82] was used for extracting keypoints with a unique and stable 

underlying surface. Many existing 3D keypoint detectors are just extensions of 2D image edge/corner 

detectors (e.g., Harris). While edges/corners are good for 2D images, in 3D their depth measurements 

are usually less reliable due to for example the mixed pixels effect. Therefore, the ISS, which was 

originally designed for 3D point clouds was favored. Also, it was chosen because [83] showed it has 

better overall performance than other 3D keypoint detectors that are publically available in PCL.  

To have a strong description for the detected keypoints, SHOTColor (a.k.a. Color Signature of 

Histograms of OrienTations (CSHOT)) in PCL was used [84]. This is one of the few descriptors that 

incorporates both shape and color information into their description, making its signature the most 

unique (i.e., highest dimension) in PCL. RANSAC was then used to select a group of inliers and 

estimate the initial alignment between the two clouds to be used in ICP. Since RANSAC is an 

expensive process, the IMU predictions were used to eliminate obvious false positives by setting a 

radius threshold around each keypoint. 

Loop-Closure 

The proposed method presented here focused only on the filtering solution, also known as the 

SLAM frontend. For a full SLAM solution, the global relaxation and optimization is crucial. To 

partially address the issue of loop closure in this paper, the ICP is carried out in a model-to-scene 

fashion like KinectFusion [44]. This way, every new cloud coming from the sensors was matched to 

the global scene. This approach can be even more effective when performing on laser scanner data 

because of their wide FOV and long-ranges.  

2.3.3. RGB Visual Odometry 

As mentioned, RGB data was processed without consideration of the depth information. This 

reduces errors in egomotion estimation introduced through time synchronization errors [50] and more 

importantly keeps track of the pose even when depth data is unavailable and/or unreliable (e.g., 

imaging glass) [40]. The basic assumption is that the scene is static and any changes in the appearance 

of the RGB image must be caused by the camera’s movement. For this task of identifying changes in 

consecutive images, the popular SIFT keypoints are detected along with descriptions computed by 

SURF using OpenCV. A blob detector is preferred over edge/corner detectors because such geometric 

information is already encapsulated in the depth data processing pipeline [85]. Correspondences were 
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established by searching for points in the two images with the most similar description. These potential 

matches were then filtered based on uniqueness constraint, the IMU predicted keypoint positions in the 

new image, 5-point RANSAC in OpenCV, and later via outlier rejection at the measurement update 

stage. When the pixel differences between conjugate image points are smaller than a threshold ZUPT 

is performed, otherwise the camera measurement update is executed. The proposed VO workflow is 

summarized in Figure 5. 

Figure 5. Visual odometry using monocular vision. 

 

Monocular camera trajectory estimation in general can be solved as a SLAM problem or using  

VO [33]. The former achieves better global consistency at the expense of higher complexity and being 

more computationally demanding. While the latter focuses on local consistency and has shown great 

success for example in the Mars Rover exploration. VO is preferred in this project because the 

mapping and localization are mainly achieved using ICP, while the RGB data is just an aid to improve 

localization when depth is not available or when traversing over highly texturized areas of the map. 

The proposed VO algorithm differs from PTAM in the sense that it implicitly solves for the 3D points 

from a pair of images. This simultaneous photogrammetric intersection and resection is mathematically 

realized through solving the set of linear equations in Equation (10) and obtaining an implicit 

functional model. This was the main motivation to choose the VO route because it is possible to 

formulate a 2D-to-2D matching VO so as to not increase the size of the state vector while 

incorporating all the camera geometry information, correlation between the pose and reconstructed 

points, and minimizing the reprojection errors.  

Its advantages over PTAM include egomotion estimation by matching across two images instead of  

thrree images, no need for a recovery routine in case camera tracking fails, and it is more scalable 

because of the fixed state vector dimension. A noticeable disadvantage arises from the fact that 

reconstructed points are not memorized; in other words they are immediately forgotten in the KF and 

later images cannot resect from continuously improving 3D object points, but only from selected key 

frames. 
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where ሾܴோீ
ூோ ሿ is the relative rotation between the RGB and IR camera of Kinect k; ∆݀ is the relative 

translation between the RGB and IR camera of Kinect k. 

3. Results and Discussion 

3.1. Boresight and Leverarm Calibration between the Kinect and Laser Scanner 

Once all the optical systems were independently calibrated their measurements need to be related in 

3D space before they can be tightly-coupled and fused in a KF. A standard checkerboard pattern was 

placed in 17 different static positions and orientations in front of one of the Kinects, where point 

clouds with the RGB texture overlaid were captured. At every setup, a laser scan of the checkerboard 

was also captured. The corners were extracted in 3D using a least-square cross-fitting [86]. The 

necessary boresight and leverarm parameters were then computed using the 3D rigid-body 

transformation equations solved in a least-squares adjustment. The same procedure was then repeated 

between the other Kinect and the Focus3D S. Although the two sets of boresight and leverarm 

parameters were defined with respect to the Focus3D S, for the convention adopted, they were 

redefined to use the left Kinect (mounted with the IMU) as the reference coordinate system. To assess 

the fit between the point clouds, 10 planes at various orientations and positions were extracted from 

both Kinects and compared with the Focus3D S as the reference. The RMSE computed using the 

orthogonal distances between the Kinect point clouds and the plane defined by the Focus3D S is 4.5 

mm and 6.2 mm for the left and right Kinects, respectively. These estimates were higher than 

anticipated based on the expected accuracy from [65,69] but can probably be attributed to the 

instability of the camera mounts relative to the trolley in this prototype.  

3.2. Boresight and Leverarm Calibration between the Kinect and IMU 

As all the optical sensors were already calibrated both internally and externally relative to each 

other, only the boresight and leveram parameters between the IMU and one of the optical sensors, in 

this case the left Kinect was necessary to complete the system calibration. A checkerboard pattern was 

placed horizontally on a leveled surface. The rigidly-attached Kinect and IMU were then moved in 

front of it to ensure sufficient excitations about all three axes. To remove any range restrictions, only a 

video sequence from the RGB camera was captured at 10 Hz along with the IMU data at 100 Hz.  

A photogrammetric resection was performed in a tightly-coupled IEKF to update the IMU predictions 

online. After filtering, a global adjustment was used to estimate the boresight and leverarm parameters 

simultaneously offline. The errors between the IMU predicted corner locations and the measured 

locations in the RGB images before and after calibration is given in Table 1.  

Table 1. Errors between the predicted and measured target positions in image space before 

and after calibration.  

 Before Calibration After Calibration Improvements 

RMSE x 29.1 pix 0.8 pix 97% 
RMSE y 23.1 pix 1.1 pix 95% 
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3.3. Point-to-Plane ICP for the Kinect 

To compare the proposed ICP algorithm to the widely accepted point-to-plane ICP from Chen and 

Medioni, the Kinect was mounted on a translation stage while imaging a complex scene between 0.9 m 

and 2.9 m away (Figure 6). A known translation of 5 cm was then introduced in the depth direction of 

the Kinect with a standard deviation of 0.05 mm and then a second point cloud was captured. The two 

point clouds were then registered using the two ICP algorithms. The RMSE of the fit between the two 

point clouds computed using the point-to-plane distances metric was 7 mm using either algorithm. 

Also, based on a qualitative analysis of the registered point clouds, no apparent differences between 

the two methods were identifiable. However, there is a slight difference between the recovered 

movements of the Kinect. The method by Chen and Medioni [36] underestimated the translation by  

1.1 mm and the proposed method underestimated the translation by 0.1 mm. This small improvement 

comes from the weights assigned to correspondences (based on the triangulation geometry) and a cost 

function which minimizes the reprojection error of the IR camera and projector pair. Differences of a 

millimeter may seem insignificant at first, but in the absence of additional information the errors can 

accumulate rather quickly in a Kinect-only dead-reckoning solution, especially when the Kinect is 

capturing with a frequency as high as 30 Hz. 

Figure 6. Calibrated RGB-D data from Kinect of the scene used for testing iterative closest 

point (ICP).  

 

To test the suitability of the devised ICP algorithm for mapping applications when assisted by an 

Xsens MTi-30 IMU, a sequence of handheld data was captured. This illustrates the mapping abilities 

when this module is removed from the main trolley platform for exploring inaccessible spaces like 

stairs before returning to its forced centered position. The Kinect and the MTi-30 were rigidly mounted 

together with the Kinect logging at 10 Hz and the MTi-30 logging at 100 Hz. A person carried the 

Kinect and IMU by hand, ascended a flight of stairs, turned around and then descended the same flight 

of stairs. A total of 315 RGB-D datasets were captured and processed. The final 3D point cloud of the 
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staircase is shown in Figure 7 where the colors are assigned based on the local normals. Considering 

that the distances travelled was short, the model-to-scene registration scheme was capable of partially 

handle the loop-closure problem and no apparent misfits can be identified near the bottom of the 

staircase. For a quantitative accuracy assessment, 20 horizontal and vertical planes were extracted and 

the overall RMSE from this check plane analysis was 7.0 mm.  

Figure 7. Stairs reconstructed using the Kinect and inertial measurement unit (IMU) in a 

human carried walking sequence. 

 

3.4. 2D-to-2D Visual Odometry for Monocular Vision 

A checkerboard pattern with known dimensions was imaged with the Kinect’s RGB camera.  

The Kinect was handheld and waved in front of the checkerboard for approximately 80 s.  

The reference solution was generated using photogrammetric resection solved in a least-squares 

adjustment frame-by-frame. This represents the best case scenario in camera navigation where known 

control points are always visible. VO was performed by solving for the camera’s pose using the 

mathematical model presented in Equation (10) with the first image held as the reference keyframe the 

entire time. The camera orientations converted from quaternion to Euler angles are shown in Figure 8. 

It can be observed that the VO solution follows the reference solution quite closely over certain 

sections of the plot (e.g., between 350 and 362 s). But in other sections a noticeable difference in their 

estimation can be observed, with errors reaching as high as 80°. The main cause for such a discrepancy 

is the intersection geometry. When the pair of images were captured near proximity of each other, the 

parallax angle is small, this results in a less accurate scene reconstruction, which translates into poor 

egomotion estimation. In fact, the proposed math model has a singularity when the light rays in the 

pair of images are all parallel with each other. However, this can easily be identified by checking the 

disparity of conjugate points. The case when the disparities are all below a threshold actually indicates 

the camera has not moved significantly, suggesting the possibility of the camera being static, therefore 

ZUPT was performed. For a MEMS-based IMU, integration of the gyroscope readings alone over a 

period of approximately 80 s would have introduced a noticeable rotation drift. But as witnessed in 

Figure 8, the fusion of VO with IMU prevented the estimated orientation from drifting. At the same 

time the IMU smoothed out the vision-based orientation estimates and provided a better orientation 

estimate when the uncertainty in VO is high, resulting in a final solution that follows the reference 
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solution quite closely over the full trial. This suggests that VO and gyroscope combined can provide a 

better orientation estimate than either method alone. 

Figure 8. Comparison between various ways of estimating monocular camera rotations. α, 

β, and γ represents the rotation about the x, y, and z axis, respectively. Res represents the 

photogrammetric resection solution. 

 

3.5. Scannect Testing at the University of Calgary 

The full Scannect system was tested by mapping a floor in the Math Science building located at the 

University of Calgary, Canada (Figure 9). The hallways are mainly composed of doors (some are 

recessed), posters, bulletin boards, and white homogenous flat walls. The Scannect travelled 120 m in 

continuous mode and only stopped at the four corners to capture a 7 minutes scan with the Focus3D S. 

While in continuous mode, both Kinects were capturing data at 10 Hz while the IMU was logging at 

200 Hz. Because the floor was relatively flat, a height constraint was applied. Also, ZUPTS were 

applied every time sufficiently small movements were detected by the RGB VO and when the Focus3D 

S was scanning. The total time it took to map the floor in the field was 35 minutes, significantly less 

than a typical laser scanner only project over such a large area. The processing time for both Kinects 

with the IMU was about two hours, however it should be stressed that the C++ code implemented has 

yet to be optimized. The map generated by the Kinect with RGB texture information added for visual 

appearance is shown in Figure 10. Although only the points measured by the Kinects are shown, these 

results were generated with the assistance of the Focus3D S. At the beginning a 360° scan was first 

captured by the scanner and added to the scene. Then the Kinects used this as the scene in the dense 

3D matching step. Meanwhile it filled in some occlusions and expands the map until it arrived at the 

next corner where another laser scan was captured and matched to the scene through the point-to-plane 

ICP with the IMU predicted pose as the initial alignment. This process was repeated until the floor had 

been explored (completely mapped). 

Throughout the floor, 30 checkpoints were also captured by the Kinects. A top view of the Kinects’ 

map along with the horizontal distribution of these signalized targets is shown in Figure 11. Due to the 

limited vertical FOV of the Kinects, all the checkpoints were approximately at the same height. The 

RMSE in the X, Y, and Z direction was 10.0 cm, 10.8 cm, and 9.0 cm, respectively. This is 
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approximately 0.14% error over the travelled distance. These error estimates only indicates the forward 

filtering solution and is already similar if not better than the existing methods described in Section 1.3 

(i.e., [42,56,57]). After backward smoothing or SBA, the results are expected to improve [41]. Note 

that the laser scanner only solution shown in Figure 12 (with the green stars indicating the static scan 

locations) missed a lot of the doorways (in particular the top corridor between targets A26 and A18) 

but the general shape of the floor is prevalent. This general shape from the laser scans aided the 

Kinects’ localization and provided some degree of loop-closure. From Figure 11 it can be perceived 

that the details such as doorways that were missed by the laser scanner were well localized in the same 

coordinate system by the Kinect. Some misalignments in the scanner data can be observed (e.g., the 

top corridor), this is likely a result of errors in the initial alignment provided by the Kinect and IMU 

filter and the accumulated mapping errors. 

Figure 9. Image of one of the hallways in the Math Science building at the University  

of Calgary. 

 

Figure 10. Oblique view of the Kinect point clouds from the 3D reconstructed scene. 
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Figure 11. Top view of the Kinect point clouds from the 3D reconstructed scene. The 

magenta labels indicate the location of the check points. 

 

Figure 12. Top view of the laser scanner point clouds from the 3D reconstructed scene 

with the ceiling and floor removed. The green stars indicate the scan stations. 

 

4. Conclusions and Future Work 

SLAM is a theoretically matured subject with many practical implementation challenges. A few of 

these challenges were addressed in this paper: the implicit iterative extended Kalman filter was 

responsible for fusing measurement updates from the Kinect’s RGB and depth stream separately to 

account for their timing errors and non-linearity of implicit photogrammetry equations; using only the 

RGB images, a 5-point visual odometry was performed in a tightly-coupled manner while eliminating 

the need to add or remove states in the filter; a new tightly-coupled ICP method for stereo-vision 

systems was used for processing the depth maps. The presented Scannect system is the first  

multi-Kinect mobile mapping system and the first to adopt the continuous stop-and-go design. This 

system can map an entire building floor efficiently with a Mean Radial Spherical Error of 17 cm. It 

was capable of navigating in areas with as little features as a single white wall. 

In the future, more Kinects will be added to further increase the field of view of the Scannect. For 

instance, to make the Scannect more flexible and account for sloped floors, a skyward facing Kinect 

can be added without any modifications to the algorithms and processing pipeline presented in this 

paper. Newer 3D cameras with a wider field of view (e.g., PMD CamBoard nano) or higher accuracy 

(e.g., Kinect 2) will be considered. The LiDAR system will be tightly-coupled to allow weighting in 

the spherical coordinate system. Adding other autonomous non-vision-based sensors such as wheel 
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odometers, magnetometers, and barometers will be beneficial for localization. Other non-holonomic 

constraints such as leveling updates can also be included if applicable. A more accurate scene 

representation such as surfels will be adopted [87]. To better handle loop-closures, methods like sparse 

bundle adjustment will be implemented to improve the global consistency. This was shown to be more 

accurate than TORO (a graph-based method) when using the Kinect [41]. For real-time online 

processing and visualization, general-purpose computing on graphics processing units (GPGPU) will 

be investigated to expedite the filtering process. 
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