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Abstract: A sliding mode observer is presented, which is rigorously proven to achieve finite-time state
estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum
system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer
design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system
state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed
observer design is demonstrated through numerical case studies using both sliding mode control (SMC)-
and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented
here is the rigorous analysis of the finite-time state estimator under input-multiplicative parametric
uncertainty in addition to a comparative numerical study that quantifies the performance improvement
that is achieved by formally incorporating the proposed compensator for input-multiplicative parametric
uncertainty in the observer. In summary, our results show performance improvements when applied
to both SMC- and LQR-based control systems, with results that include a reduction in the root-mean
square error of up to 39% in translational regulation control and a reduction of up to 29% in pendulum
angular control.

Keywords: observers for nonlinear systems; control applications; estimation

1. Introduction

Stabilization control of an inverted pendulum is a widely addressed problem in the field of control
system engineering. The dynamics of an inverted pendulum system have several inherent control
design challenges, including sensor limitations, a high degree of nonlinearity, parameter variations,
and unmodeled disturbances. Moreover, the inverted pendulum is a well-known example of an
underactuated (i.e., single-input multi-output (SIMO)) system, which presents additional non-trivial
theoretical challenges in the control design.

1.1. Motivation

A classical implementation example is the cart inverted pendulum shown in Figure 1, in which
a DC motor drives a cart supporting a pendant-type pendulum. Numerous techniques have been
proposed to control the cart inverted pendulum, including sliding mode control (SMC) [1–3], backstepping
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SMC [4,5], super-twisting control [6,7], higher-order SMC [8,9], adaptive control [10], passivity-based
control [11], energy-based control [12], linear quadratic regulator (LQR)-based control [13,14], fuzzy logic-,
and neural network-based control [15–17], model-predictive control [18], optimal control [19] and others.
A vibrational control strategy is presented in [20], where external vibrations are applied to optimize the
working conditions in an experimental electro-mechanical system with uncertain dynamics. While several
successful control methods have been presented in the research literature, there remain multiple open
challenges to be addressed in nonlinear estimation and control system design for the inverted pendulum
under model uncertainty. For reliable control of a cart inverted pendulum under realistic operating
conditions, model uncertainty and parameter variations must be formally incorporated in the control
design, especially for the case when the parametric uncertainty appears as multiplicative to the control
input term.

1.2. Literature Survey

System linearization is a popular approach that is utilized to recast the inverted pendulum dynamics
in a more tractable form [21–25]. In [22], a comparison study is provided between three linear control
strategies: PID, LQR, and model predictive control (MPC). The MPC strategy in [22] is formulated as a
constrained finite-time optimization problem, which is motivated by the desire to incorporate practical
constraints on the control action and the states. The performance comparison is presented via experimental
results in [22], which show similar pendulum rod angle stabilization performance between the three
control methods over a small range of angular excursions. The results further show that the optimal
LQR and MPC controllers were able to simultaneously stabilize the cart’s horizontal motion as well as
the pendulum angle. An optimal LQR strategy is also presented in [25], which employs particle swarm
optimization to stabilize an inverted pendulum system while simultaneously determining the optimal
LQR control under a finite-time duration of the cost function. To address the additional control challenges
of limited sensing and actuation, the case study in [24] shows an optimal stabilizing controller for an
inverted pendulum system with only one position sensor and one force actuator. The result in [24] is
achieved by first choosing a reasonable sensor location by analyzing the effect of the sensor location on the
system zeros. The controller is then designed, which is shown to effectively minimize the H∞ norm of the
Gang-of-Four transfer matrix.

The aforementioned linear approaches have clearly demonstrated promising performance in their
respective control objectives. Stabilization schemes based on linearization about the unstable equilibrium
point can limit the range of effectiveness of the control system, especially for highly nonlinear dynamic
systems such as the inverted pendulum. Moreover, parameter variations and unmodeled disturbances are
inevitable challenges that must be addressed for practical controller implementation.

To ensure reliable controller operation over a wide range of operating conditions, nonlinear estimation
and control methods are often applied to the inverted pendulum regulation problem [6,26–30]. In [26],
a continuous fixed-time convergent control algorithm is presented for regulation control of a cart inverted
pendulum subject to unbounded disturbances. The control method in [26] guarantees a pre-established
convergence time, which is insensitive to initial conditions and unbounded external disturbances. In [6],
a super-twisting algorithm is proposed to control a cart-pole inverted pendulum system. The control
strategy in [6] is motivated in part by the desire to improve chatter reduction above standard chatter
attenuation approaches. To eliminate the need for direct velocity measurements, the control system in [6]
employs a homogeneous sliding mode observer to estimate the velocities. The sliding mode observer is
shown to achieve input-to-state (ISS) stability of the estimation errors in the presence of model uncertainties
and external disturbances. The observer design in [6] assumes precise knowledge of the input gain matrix
in the plant model.
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The control of different variations of the inverted pendulum such as rotary inverted pendulum
and wheeled inverted pendulum can be found in [31–35]. The control of a rotary inverted pendulum
utilizing on–off-type cold gas thrusters as the actuators, which have high similarities with thruster actuated
spacecrafts with slosh dynamics is detailed in [31]. A full-state feedback controller is designed in [31] based
on a linear model of the rotary inverted pendulum. The result in [32] describes a time-optimal control
method for a wheeled inverted pendulum vehicle applied to specified trajectories. The controller in [32] is
implemented using a trajectory tracking controller considering a linear model of WIP. The article in [33]
presents the design and the experimental validation of a novel 3-degree-of-freedom (DOF) pendulum-like
cable-driven robot capable of executing point-to-point motions by leveraging partial feedback linearization
control and on-line trajectory planning based on adaptive frequency oscillators (AFOs). A diffeomorphism
technique is used in [33] to remodel the nonlinear plant model. All of the aforementioned studies have
demonstrated good results with respect to their control objectives. However, the contribution of the
current result focuses on finite-time state estimation of a dual-parallel underactuated inverted pendulum
system in the presence of input-multiplicative parametric uncertainty in the dynamic model. The current
result is motivated by practical implementation scenarios where only position encoders are available for
feedback measurements.

1.3. Contribution

The nonlinear inverted pendulum control techniques summarized in Section 1.2 have been shown to
be effective in achieving their respective control objectives. However, these examples require fairly precise
knowledge of the dynamic model and/or the actuator model, which might be difficult to obtain in practice
due to parameter variations and unmodeled nonlinearities, for example.

In this paper, a sliding mode observer (SMO) is presented, which is rigorously proven to achieve
finite-time state estimation for a dual-parallel underactuated cart inverted pendulum system in the
presence of parametric uncertainty. The observer design is fundamentally motivated by practical
implementation considerations, where only position encoders are available for feedback measurements.
A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided,
which proves that finite-time estimation of the complete system state can be achieved in the presence of
input-multiplicative parametric uncertainty. Specifically, based on the assumption of partial knowledge of
the system parameters, a set of gain conditions is derived, within which finite-time state estimation can
be proved. As a proof-of-concept, the proposed observer is applied to closed-loop control systems using
both SMC and LQR controllers. To demonstrate the performance of the proposed sliding mode estimation
strategy, a comparative numerical simulation study is provided, which demonstrates the performance of
the proposed observer design when applied to closed-loop systems using both LQR and standard SMC.
The numerical comparison study clearly shows the performance improvement that can be achieved by
formally incorporating the input uncertainty compensator in the observer.

The major contributions of this paper are as follows:

1. An SMO design is proposed for a dual-parallel underactuated system, which is shown to achieve
finite-time state estimation in the presence of input-multiplicative parametric uncertainty.

2. Detailed numerical comparison study of the proposed SMO as part of closed-loop control systems
using LQR and SMC, which clearly demonstrate a significant performance improvement is achieved
using the proposed SMO with uncertainty compensation element.

3. Detailed numerical data quantifying the performance improvement achieved using the proposed
SMO under conditions with up to 20% parameter deviations. Numerical results were obtained under
ten randomized iterations of parameter deviations.
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1.4. Organization of the Manuscript

This paper is organized as follows: Section 2 presents the mathematical model of the inverted cart
pendulum and the model properties. The proposed SMO design is detailed in Section 3. Section 4 details the
sliding mode control law utilized as a proof-of-concept and the stability analysis is summarized in Section 5.
The results obtained in the simulation are presented in Section 6. In the last section, the conclusions are
presented along with a summary of future work.

2. Dynamic Model and Properties

In this section, the dynamic model of the inverted pendulum is described, and the model is re-cast in
a form amenable to observer design with input uncertainty compensation. To facilitate the subsequent
observer design and analysis, a list of symbols is provided below.

2.1. List of Symbols

Mc : Mass of the cart
m : Mass of the pendulum bob
l : Rod length
h(t): Horizontal displacement

θ(t) : Angular displacement
F(t) : Control force applied to the pivot.
k1, k2, k3, k4, Z0, λ, ε : Control gains
m11, m12, β1,1, β1,2, β2,1, β2,2 : Observer gains

2.2. Inverted Pendulum Dynamics

The dynamic model of the inverted cart pendulum shown in Figure 1 can be expressed as [36]

ḧ =
F−mg cos θ sin θ + mlθ̇2 sin θ

Mc + m sin2 θ
(1)

θ̈ =
(Mc + m)g sin θ − F cos θ −mlθ̇2 sin θ cos θ

Mcl + ml sin2 θ
(2)

where Mc ∈ R+ is the mass of the cart, m ∈ R+ is the mass of the pendulum bob, l ∈ R+ is the rod
length, θ(t) ∈ R is the angular displacement from the vertical axis, h(t) ∈ R is the horizontal displacement,
and F(t) ∈ R is the control force applied to the pivot in the horizontal direction.

Figure 1. Diagram of the cart inverted pendulum.
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The dynamic model can be expressed in state form by defining states as x1 (t) = h (t), x2 (t) = θ (t),
x3 (t) = ḣ (t), x4 (t) = θ̇ (t), which results in a set of first-order ODEs given by

ẋ1 = x3 (3)

ẋ2 = x4 (4)

ẋ3 =
F−mg cos x2 sin x2 + mlx2

4 sin x2

Mc + m sin2 x2
(5)

ẋ4 =
(Mc + m) g sin x2 − F cos x2 −mlx2

4 sin x2 cos x2

Mcl + ml sin2 x2
(6)

y =
[

x1 x2

]T
. (7)

where y (t) ∈ R2 denotes the output vector (i.e., only position encoder measurements are available
for feedback).

The state equations in (3)–(7) can be expressed in compact form as

ẋ = f (x) + g (x) u (8)

y = Cx (9)

where, x = [ x1 x2 x3 x4 ]T ∈ R4, and

C ,

[
1 0 0 0
0 1 0 0

]

and the nonlinear function f (x) ∈ R4 is explicitly defined as

f (x) ,


x3

x4
−mg cos x2 sin x2+mlx2

4 sin x2

Mc+m sin2 x2
(Mc+m)g sin x2−mlx2

4 sin x2 cos x2

Mc l+ml sin2 x2

 (10)

In Equation (8), u (t) , F (t) to standardize notation. To simplify the notation in the subsequent
estimation error convergence, auxiliary functions will be defined as

f1 (x) ,

[
x3

x4

]
(11)

f2 (x) ,

 −mg cos x2 sin x2+mlx2
4 sin x2

Mc+m sin2 x2
(Mc+m)g sin x2−mlx2

4 sin x2 cos x2

Mc l+ml sin2 x2

 (12)

In the presence of parametric uncertainty in the dynamic model, the input matrix f (x) can be
decomposed as the sum of a known, nominal matrix f0(x) ∈ R4 and an uncertain offset matrix
f∆(x) ∈ R4 as

f (x) = f0(x) + f∆(x) (13)
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Then,
f1(x) = f10(x) (14)

f2(x) = f20(x) + f2∆(x) (15)

Note that the equality in Equation (14) simply indicates that there is no parametric uncertainty in
f1(x). The nonlinear function g (x) ∈ R4 is explicitly defined as

g(x) ,
[

g1(x)
g2(x)

]
(16)

where,

g1 (x) ,

[
0
0

]
(17)

g2 (x) ,

[ 1
Mc+m sin2 x2

− cosx2
Mc l+ml sin2 x2

]
(18)

Similarly, as in Equation (13), the input gain matrix g (x) can be decomposed as the sum of a known,
nominal matrix g0 (x) ∈ R4 and an uncertain offset matrix g∆(x) ∈ R4 as

g (x) = g0 (x) + g∆(x). (19)

Then,
g1(x) = g10(x) (20)

g2(x) = g20(x) + g2∆(x) (21)

By substituting Equations (13) and (19) into Equation (8), the dynamic model can be rewritten as

ẋ = f0(x) + f∆(x) + g0 (x) u + g∆(x)u. (22)

Property 1. Based on the definitions in Equations (7)–(16), it follows that the first and second partial derivatives of
f (x), g (x), and y (t) with respect to x (t) exist and are bounded, provided x (t) is bounded.

Property 2. The denominators of the expressions in f2(x) and g2(x) in Equations (12) and (18) remain positive for
all x(t) ∈ R4, so the open loop dynamics remain singularity-free for all x(t) ∈ R4.

Assumption 1. The initial condition for the state x(t) lies in the bounded region x(0) ∈ X0 ⊂ R4.

3. Observer Design

In this section, an observer design is presented, which estimates the full state x(t) of the uncertain
system described in Equation (22) using only the measurable output y (t). The analysis presented here
provides the detailed derivation of observer gain conditions under which a sliding mode estimator can be
proven to achieve finite-time state estimation in the presence of parametric uncertainty in the input gain
matrix in Equation (8).

To facilitate the following estimator design and convergence analysis, the state vector x (t) will be
decomposed as

x (t) =
[

XT
1 (t) XT

2 (t)
]T

(23)
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where X1 (t) ,
[

x1 (t) x2 (t)
]T
∈ R2 and X2 (t) ,

[
x3 (t) x4 (t)

]T
∈ R2.

Based on these definitions,
Ẋ1 = f1(x) = X2 (24)

Ẋ2 = f2(x) + g2(x)u (25)

In the following observer design and analysis, the sgn(∗) operation is taken component-wise on the
vector argument; and | ∗ | denotes the standard 1-norm. The sliding mode observer that estimates the full
state x (t) for the uncertain cart inverted pendulum dynamic system in Equation (8) can be designed as

˙̂x = M(x̂, u)sgn
(
Ψ(t)− x̂ (t)

)
+ f0(x̂) + g0 (x̂) u (t) (26)

where x̂ (t) =
[

X̂T
1 (t) X̂T

2 (t)
]T
∈ R4 denotes the estimate of x (t), f0(·) is introduced in Equation (13),

g0(·) is introduced in Equation (19), and M (x̂, u) ∈ R4×4 denotes a positive definite, diagonal sliding gain
term, which can be expressed as

M(x̂, u) = diag [m1(x̂), m2(x̂, u)] (27)

where m1 (x̂) , m2 (x̂, u) ∈ R2×2, denote subsequently designed sliding gain terms, and diag(·) denotes a
diagonal matrix containing the vector argument.

To facilitate the subsequent convergence analysis, the control gains m1(x̂) and m2(x̂) are designed to
satisfy the inequalities.

m1 > sup
x∈X0

‖X2(t)‖ (28)

m2(x̂, u) =

[
β1,1 0

0 β2,1

]
+

[
β1,2|u| 0

0 β2,2|u|

]
(29)

where the auxiliary gain terms βi,j, for i, j = 1, 2 are selected to satisfy

min{β1,1, β2,1} > sup
x∈X0

‖ f20(x)− f20(x̂) + f2∆(x)‖∞ (30)

min{β1,2, β2,2} > sup
x∈X0

‖g20(x)− g20(x̂) + g2∆(x)‖∞ (31)

Additionally in Equation (26), Ψ(t) = [ψT
1 (t), ψT

2 (t)]
T ∈ R4 is defined via the modified recursive

form [37].
ψ1(t) = X1(t) (32)

ψ2(t) = m1(x̂)
{

sgn
(
X1(t)− X̂1(t)

)}
eq

(33)

where, {sgn (·)}eq denotes a continuous “equivalent value operator” of the discontinuous signum
function [38], which can be obtained via low-pass filtering of the signum function.
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Note that the observer equations for
·

X̂1 (t) will not include u (t), whereas the equations for
·

X̂2 (t)
include u (t) based on Equations (16) and (19).

˙̂X1 = m1(x̂)sgn
(
ψ1(t)− X̂1(t)

)
(34)

˙̂X2 = m2(x̂, u)sgn
(
ψ2(t)− X̂2(t)

)
+ f20(x̂) + g20(x̂)u(x̂) (35)

By designing the observer gain matrix M(x̂, u) according to the sufficient conditions in inequalities
Equations (26)–(31), it will be shown that the sliding mode observer in Equation (26) achieves finite-time
estimation of the state x (t) using only measurements of the output signal y (t).

Remark 1. (Observer Gain Matrix M(x̂, u)) The observer gain matrix M (·) introduced in Equation (26) can
include the state estimate x̂ (t) in general. However, this is not a requirement; and the subsequent estimator
convergence proof can be carried out for the case where M (·) depends only on the measurable control input u (t)
and constant observer gains, provided Property 1 and Assumption 1 are satisfied.

Remark 2. (Observer Gain Selection) Based on the boundedness of the initial condition set X0 (see Assumption 1),
the observer gain matrix M can be selected to ensure that x̂(t) = x(t) after some finite time t1, where t1 can be made
arbitrarily small.

Assumption 2. The initial estimation errors are bounded such that:

X̃1(0) = X1(0)− X̂1(0) < ε1 (36)

X̃2(0) = X2(0)− X̂2(0) < ε2 (37)

where ε1 ∈ R+ and ε2 ∈ R+ are known bounding constants.

Preliminary results show that Assumption 2 is mild in the sense that the proposed estimation and
control method performs well over a wide range of parametric uncertainty in the f (x) and g (x) matrices.

Theorem 1. Provided Assumption 2 is satisfied, the sliding mode observer in Equation (26) assures that the
states and estimates remain bounded, and that finite-time estimation of the state x(t) is achieved in the sense that
x̂(t) ≡ x(t) for t ≥ t1, where t1 < ∞.

Proof. The estimation error can be defined as

x̃ (t) , x (t)− x̂ (t) . (38)

The estimation error dynamics can be obtained by taking the time derivative of Equation (38) as

·
x̃ (t) = ẋ (t)− ˙̂x (t) . (39)
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By utilizing Equations (22), (23), (26) and (27), the estimation error dynamics for X̃1 (t) and X̃2 (t) can
be expressed as

·
X̃1(t) = X2(t)−m1(x̂)sgn

(
X1(t)− X̂1(t)

)
(40)

·
X̃2(t) = f20(x)− f20(x̂) +

[
g20(x)− g20(x̂)

]
u(x̂) (41)

+ f2∆(x) + g2∆(x)u(x̂)−m2(x̂, u)sgn
(
ψ2(t)− X̂2(t)

)
where g20 (x) ∈ R2 is defined in Equation (21).

By using inequality Equation (28) in Equation (40), the following inequality can be obtained:

·
X̃1 ≤ −κ1sgn

(
X̃1
)

. (42)

where κ1 ∈ R+ is a known bounding constant.
The differential inequality in Equation (42) can be solved to obtain

|X̃1 (t) | ≤ |X̃1 (0) | − κ1t. (43)

Thus, from Equation (43),
X̃1 (t) = 0 for t ≥ t0 (44)

where t0 is a calculable time instant. Hence, X̂1 (t) = X1 (t) for t ≥ t0.

Given that X̃1 (t) = 0 for t ≥ t0,
·

X̃1 (t) = 0; and Equation (40) can be used to obtain

X2(t) = m1(x̂)sgn
(
X1(t)− X̂1(t)

)
(45)

for t ≥ t0. Thus, ψ2 (t) = X2 (t) from Equation (33); and Equations (26) and (41) can be used to obtain

·
X̃2(t) = f20(x)− f20(x̂) +

[
g20(x)− g20(x̂)

]
u(x̂) (46)

+ f2∆(x) + g2∆(x)u(x̂)−m2(x̂, u)sgn
(
X2(t)− X̂2(t)

)
Note that, based on Assumption 2, the observer gains βi,j, for i, j = 1, 2 can be selected to

achieve finite-time state estimation using only approximate knowledge of the system parameters.
Provided inequalities Equations (30), (31) (36) and (37) are satisfied, the solution to Equation (46) can be
upper bounded as

˙̃X2(t) ≤ −κ2sgn(X̃2(t))⇒ (47)

|X̃2(t)| ≤ |X̃2(0)| − κ2t (48)

where κ2 ∈ R+ is a known bounding constant. Since |X̃2(t)| ≥ 0, further, inequality Equation (48) can
be used to prove that X2(t) remains bounded throughout observer operation, provided Assumption 1 is
satisfied. Proof of Equation (48) can be found in [39] and is omitted here for brevity.

Remark 3. (Input Uncertainty Compensation) Note that, based on the design of the observer gain m2 in
Equation (29), the auxiliary observer gains β1,2 and β2,2 serve the specific purpose of compensating for the
input-multiplicative parametric uncertainty present in g(x). Thus, for non-zero values of β1,2 and β2,2, the
observer includes input uncertainty compensation; and zero values of β1,2 and β2,2 represent no input uncertainty
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compensation in the observer. The subsequent simulation results will use this fact to present comparative results that
clearly demonstrate the performance improvement that is attained by employing the input uncertainty compensator
in the observer design.

Figure 2 shows the block diagram of the proposed sliding mode observer and controller system.
The sliding mode controller illustrated here, is detailed in the Section 4.

Figure 2. High level schematic overview of the proposed sliding mode observer and controller system.

4. Control Development

To demonstrate the practical applicability of the proposed sliding mode observer, the observer will be
employed in closed-loop control systems using two different control methods: sliding mode control and
LQR control. For completeness in describing the sliding mode control design tested in the subsequent
simulation results, this section summarizes the structure of the sliding mode control method and the
sliding surface design; both of which are motivated by the objective of stabilizing (h = 0 and θ = 0) the
SIMO inverted pendulum system described by Equations (8) and (9).

4.1. Sliding Mode Controller

To achieve the aforementioned control objective, the observer will be applied to a sliding mode control
law with a periodic switching function defined as [40].

u (t) = Z0 sgn

{
sin
[

π

ε

(
s(x̂(t)) + λ

∫ t

0
tanh (s(x̂(τ)))dτ

)]}
(49)

where Z0, λ, ε ∈ R are control parameters. In Equation (49), s(x̂(t)) = 0 is a sliding surface and
s(x̂(t)) ∈ R is the sliding variable, which is defined based on the state model in Equations (3)–(6) as

s(x̂(t)) =
1
2
(k1 x̂1 + k3 x̂3)

2 +
1
2
(k2 x̂2 + k4 x̂4)

2 (50)



Robotics 2020, 9, 87 11 of 26

where k1, k2, k3, k4 ∈ R are positive, constant control gains. Note that s(x̂(t)) → 0 ⇒ s(x(t)) → 0 ⇒
‖x(t)‖ → 0 for t >= t1 based on Theorem 1.

Remark 4. (Engineering design trade-off using SMC) From a control design perspective, standard sliding mode
control (SMC) is a widely used technique for compensating for model uncertainty and bounded disturbances; however,
chattering is a well-known drawback that is inherent in standard SMC. Note that the reduction of chattering is a
subject of future work and is not the focus of the current result.

5. Stability Analysis

Theorem 2. The sliding mode control law in Equation (49) drives the system in Equations (8)–(16) to the sliding
manifoldM , {x(t) : s(x) = 0} in finite time provided the sufficient controllability condition

∂s (x̂)
∂x̂

g(x̂) 6= 0 (51)

is satisfied for t ≥ 0 and x̂ (t) ∈ Rn, and where the control gain terms Z0 and λ are selected to satisfy the
bounding condition ∣∣∣∣∂s (x̂)

∂x̂
g(x̂)Z0

∣∣∣∣ > ∣∣∣∣∂s (x̂)
∂x̂

f (x̂)
∣∣∣∣+ λ + δ (52)

for some δ > 0.

Proof. Proof of Theorem 2 can be found in [40] and is omitted here to avoid distraction from the main
result of the current work.

Remark 5. Inequality Equation (52) does not necessarily need to be fulfilled globally for all x̂ (t) and t, but only
in the bounded neighborhood which contains the trajectory. It can be guaranteed that all closed-loop trajectories
remain in a bounded neighborhood, under the standard assumption that the upper bound on the initial condition set
is known (see related Assumptions 1 and 2).

Remark 6. (Controllability Condition) It should be noted that the controllability condition in Equation (51) is a
sufficient, not necessary, condition to ensure that the system remains controllable throughout closed-loop operation.
The subsequent simulation results show that the control objective is achieved even in instances where Equation (51)
is temporarily violated.

Remark 7. In the subsequent simulation section, the discontinuous signum function is approximated using a
hyperbolic tangent (tanh) function, which is shown to achieve estimator and controller convergence of the discretized
simulation model.

6. Simulation Results

A detailed numerical simulation was created using Matlab/Simulink to demonstrate the performance
of the proposed observer/control system. The details of the simulation software are summarized in
Table 1. The simulation is based on the state space equations given in Equations (3)–(7), where the nominal
values for the physical parameters of the inverted pendulum plant model are summarized in Table 2.
The sliding mode observer is designed based on Equations (26)–(33), where the observer gains are selected
as summarized in Table 3. The control gains were selected manually to achieve the desired response.
Specifically, the control gains were tuned to achieve the best possible trade-off between regulation/tracking
accuracy and control effort required.
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Table 1. Software details.

Software Version Settings

MATLAB/Simulink R2017b

Simulation/Model configuration Parameters / Solver Options

Type : Fixed step

Solver : ode4 (Runge-Kutta)

Fixed step size : 0.001

Table 2. Nominal parameter values.

Mc = 3.5 kg
m = 0.32 kg
l = 0.44 m

g = −9.8 m/s2

Table 3. Observer gains.

Gain LQR SMC

m11 2 2
m12 2 2
β1,1 0.01 0.02
β1,2 1.9 0.05
β2,1 0.1 0.1
β2,2 0.5 0.5

By leveraging the previous discussion in Remark 3, the simulation shows a comparison study
of control system performance with input uncertainty compensation in the estimator design against
the performance without the input uncertainty compensation for three different scenarios: (1) LQR
regulation control, (2) sliding mode regulation control, and (3) sliding mode trajectory tracking control.
To provide a realistic demonstration of the closed-loop system performance under parametric uncertainty,
each control system was simulated for 10 iterations of randomized parametric uncertainty in the plant
model (i.e., using the Matlab rand function). Each scenario was tested over six different levels of
randomized uncertainty: 5%, 7%, 10%, 15%, 18%, 20% (i.e., x% uncertainty means munc = m ± x%).
The average mean squared error (MSE) over the 10 iterations was then calculated for each of the six levels
of uncertainty for the two cases: (1) estimator with compensation and (2) estimator without compensation.

6.1. Regulation Control Using LQR and SMC

The proposed observer was tested in closed-loop regulation control systems using both LQR and
SMC controllers. To illustrate the performance of the observer in the presence of parametric uncertainty,
Figures 3 and 4 show Monte Carlo-type results of 10 randomized iterations for the closed-loop LQR and
SMC control systems, respectively, with and without the input uncertainty compensator in the observer.
The example LQR results in Figure 3 were obtained using the weighting matrices Q = [100 0 0 0; 0 5 0 0; 0 0
100 0; 0 0 0 5]; and R = 2. Similar LQR results were obtained using various other selections of weighting
matrices and were omitted here to adhere to page constraints. To summarize the results over six levels
of parametric uncertainty, a bar graph of the average MSE is shown in Figure 5 and the corresponding
MSE and RMS values are given in Table 4. The results in Figure 5 clearly show the improvement that
is achieved using the observer with the uncertainty compensator in both the LQR and SMC systems.
Figures 6 and 7 show the time evolution of the estimation error over the entire simulation time. Figure 8
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shows the time evolution of the control input during closed-loop operation. Please note that the focus of
the current result is on reliable finite-time estimation under parametric uncertainty, and chattering in SMC
was not addressed.

Figure 3. Time evolution of the state h (t) and θ(t) for linear quadratic regulator (LQR) without uncertainty
compensation (cyan) and LQR with uncertainty compensation (black) during closed-loop operation.

Figure 4. Time evolution of the state h (t) and θ(t) for sliding mode control (SMC) without uncertainty
compensation (red) and SMC with uncertainty compensation (black) during closed-loop operation.
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Figure 5. Average mean squared error (MSE) during closed-loop operation for 10 iterations of randomized
parameter uncertainty using LQR (left) and SMC (right) with and without uncertainty compensation.

Figure 6. Time evolution of the estimation error in states h(t) (top) and θ(t) (bottom) for LQR
without uncertainty compensation (cyan) and LQR with uncertainty compensation (black) over the entire
simulation time.
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Figure 7. Time evolution of the estimation error in states h(t) (top) and θ(t) (bottom) for SMC
without uncertainty compensation (red) and SMC with uncertainty compensation (black) over the entire
simulation time.

Table 4. Mean squared error (MSE) and root mean squared error (RMS) during closed-loop operation for
10 iterations of randomized parameter uncertainty using LQR and SMC (Regulation) with uncertainty
compensation (With C) and without uncertainty compensation (W/o C).

LQR REGULATION
Unc MSE of h(t) MSE of θ(t) RMS of h(t) RMS of θ(t)
(%) W/o C With C W/o C With C W/o C With C W/o C With C

5 0.1214 0.0432 0.04516 0.02842 0.3484 0.2078 0.2125 0.1686
7 0.1216 0.0436 0.04435 0.02798 0.3487 0.2088 0.2106 0.1673
10 0.1175 0.04448 0.04632 0.03572 0.3428 0.2109 0.2152 0.1890
15 0.125 0.04392 0.04838 0.02856 0.3536 0.2096 0.2200 0.1690
18 0.1227 0.04655 0.04595 0.0306 0.3503 0.2158 0.2144 0.1749
20 0.1178 0.04754 0.04362 0.03506 0.3432 0.2180 0.2089 0.1872

Average 0.121 0.044882 0.04563 0.031057 0.34783 0.21182 0.213582 0.176003
Reduction (%) 62.91 31.94 39.10 17.59

SMC REGULATION
Unc MSE of h(t) MSE of θ(t) RMS of h(t) RMS of θ(t)
(%) W/o C With C W/o C With C W/o C With C W/o C With C

5 0.164 0.09204 0.01795 0.01181 0.4050 0.3034 0.1340 0.1087
7 0.1658 0.09162 0.01849 0.01202 0.4072 0.3027 0.1360 0.1096
10 0.167 0.09136 0.01789 0.01201 0.4087 0.3023 0.1338 0.1096
15 0.1735 0.09301 0.01861 0.01208 0.4165 0.3050 0.1364 0.1099
18 0.164 0.09045 0.01791 0.01192 0.4050 0.3007 0.1338 0.1092
20 0.167 0.09048 0.0181 0.01243 0.4087 0.3008 0.1345 0.1115

Average 0.166883 0.091493 0.018158 0.012045 0.408495 0.302475 0.134749 0.109746
Reduction (%) 45.18 33.67 25.95 18.55
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Figure 8. Control input used for LQR (left) and SMC (right) during closed-loop operation without (top)
and with (bottom) uncertainty compensation. Note that the reduction of chattering is not the focus of the
current result.

6.1.1. Various Initial Conditions

This section presents the performance improvement achieved using the proposed observer on the
closed-loop LQR and SMC regulation control systems under four different sets of initial conditions.
To illustrate the performance of the observer for different cases of initial conditions, Figures 9–12 show
Monte Carlo-type results under 10 randomized iterations for the closed-loop LQR and SMC control
systems, respectively, with and without the input uncertainty compensator in the observer. To summarize
the results, bar graphs showing the average MSE are shown in Figure 13 and the corresponding MSE
values are given in Table 5. These results further demonstrate the robustness of the proposed estimator
under 10 randomized iterations of input-multiplicative parametric uncertainty.
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Figure 9. Time evolution of the states h(t) (top) and θ(t) (bottom) for LQR without uncertainty
compensation (left-cyan), LQR with uncertainty compensation (left-black), SMC without uncertainty
compensation (right-red), SMC with uncertainty compensation (right-black) over the entire simulation time
for initial condition x(0) = [1, 1, 0.1, 0.01 ].

Figure 10. Time evolution of the states h(t) (top) and θ(t) (bottom) for LQR without uncertainty
compensation (left-cyan), LQR with uncertainty compensation (left-black), SMC without uncertainty
compensation (right-red), SMC with uncertainty compensation (right-black) over the entire simulation time
for initial condition x(0) = [0.15, −1, 0.1, 0.01 ].
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Figure 11. Time evolution of the states h(t) (top) and θ(t) (bottom) for LQR without uncertainty
compensation (left-cyan), LQR with uncertainty compensation (left-black), SMC without uncertainty
compensation (right-red), SMC with uncertainty compensation (right-black) over the entire simulation time
for initial condition x(0) = [−1, −1, 0.1, 0.01 ].

Figure 12. Time evolution of the states h(t) (top) and θ(t) (bottom) for LQR without uncertainty
compensation (left-cyan), LQR with uncertainty compensation (left-black), SMC without uncertainty
compensation (right-red), SMC with uncertainty compensation (right-black) over the entire simulation time
for initial condition x(0) = [−0.2, 1, 0.1, 0.01 ].
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Figure 13. Mean squared error (MSE) during closed-loop operation for 10 iterations of 4 cases of initial
conditions using LQR (left) and SMC (right) with and without uncertainty compensation.

Table 5. Mean squared error (MSE) during closed-loop operation for 10 iterations of randomized parameter
uncertainty using LQR and SMC (Regulation) with uncertainty compensation (With C) and without
uncertainty compensation (W/o C) for 4 different cases of initial conditions.

LQR REGULATION
MSE of h(t) MSE of θ(t)Initial Conditions W/o C With C Reduction % W/o C With C Reduction %

Case 1 x(0) = [1, 1, 0.1, 0.01 ] 0.05649 0.01711 69.71 0.02331 0.007758 66.72
Case 2 x(0) = [0.15, −1, 0.1, 0.01 ] 0.00316 0.001015 67.88 0.03001 0.02714 9.56
Case 3 x(0) = [−1, −1, 0.1, 0.01 ] 0.02721 0.01519 44.17 0.02195 0.007832 64.32
Case 4 x(0) = [−0.2, 1, 0.1, 0.01 ] 0.01622 0.0006201 96.18 0.03143 0.02609 16.99

Average 0.02577 0.0084838 69.49 0.026675 0.017205 39.40
SMC REGULATION

MSE of h(t) MSE of θ(t)Initial Conditions W/o C With C Reduction % W/o C With C Reduction %
Case 1 x(0) = [1, 1, 0.1, 0.01 ] 0.07693 0.03594 53.28 0.01481 0.008727 41.07
Case 2 x(0) = [0.15, −1, 0.1, 0.01 ] 0.004334 0.002419 44.19 0.0176 0.01196 32.05
Case 3 x(0) = [−1, −1, 0.1, 0.01 ] 0.03142 0.02597 17.35 0.01307 0.00794 39.25
Case 4 x(0) = [−0.2, 1, 0.1, 0.01 ] 0.009186 0.001317 85.66 0.01832 0.01099 40.01

Average 0.030468 0.0164115 50.12 0.01595 0.009904 38.10
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6.2. Trajectory Tracking Control Using SMC

To further demonstrate the system performance, the proposed observer was tested in a
trajectory tracking control objective using SMC. The SMC in the simulation is based on the design
in Equations (49) and (50), where the control parameters were selected as summarized in Table 6.
The desired trajectory was generated using the Matlab optimization function DYNOPT [41]. Specifically,
the desired trajectory was defined as the minimum-energy trajectory that minimizes the cost function.
The minimum-energy trajectory is used only as a proof-of-concept for tracking control.

J =
∫ T

0

1
2
(Mc + m)x2

3 +
1
2

ml2x2
4 + mlx3x4 cos x2 + mgl cos x2dt (53)

Table 6. Control gains.

k1 = 2 Z0 = 26
k2 = 5 λ = 30
k3 = 5 ε = 0.1460
k4 = 1

Figure 14 shows the time evolution of the optimal trajectory and the states during closed-loop
operation for the 10 iterations of randomized uncertainty. These results further demonstrate the improved
performance that can be achieved using the proposed observer with input uncertainty compensation.
Note that the focus of the current result is on the proof of finite time convergence for a sliding mode
observer in the presence of input-multiplicative parametric uncertainty. To summarize the trajectory
tracking results, Figure 15 shows a bar graph of the average MSE over six levels of parametric uncertainty
and the corresponding MSE and RMS values are given in Table 7. Figure 16 shows the time evolution of
the estimation error over the entire simulation time. Figure 17 shows the time evolution of the control
input during closed-loop operation. Again, the chattering in SMC is not the focus here and is a subject of
future work.

Table 7. Mean squared error (MSE) during closed-loop operation for 10 iterations of randomized parameter
uncertainty using SMC (Tracking) with uncertainty compensation (With C) and without uncertainty
compensation (W/o C).

SMC TRACKING
Uncertainty MSE of h(t) MSE of θ(t) RMS of h(t) RMS of θ(t)

(%) W/o C With C W/o C With C W/o C With C W/o C With C
5 0.1453 0.005788 0.02985 0.01963 0.3812 0.0761 0.1728 0.1401
7 0.1485 0.004584 0.02251 0.01976 0.3854 0.0677 0.1500 0.1406
10 0.1233 0.004682 0.03194 0.02003 0.3511 0.0684 0.1787 0.1415
15 0.1118 0.005419 0.03198 0.02311 0.3344 0.0736 0.1788 0.1520
18 0.1367 0.005004 0.02999 0.02135 0.3697 0.0707 0.1732 0.1461
20 0.192 0.01245 0.02757 0.02089 0.4382 0.1116 0.1660 0.1445

Average 0.142933 0.006321 0.028973 0.020795 0.376659 0.078024 0.169928 0.144146
Reduction (%) 95.58 28.23 79.29 15.17
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Figure 14. Time evolution of the optimal trajectory (black solid line) and the states h (t) and θ(t) during
closed-loop sliding mode controller operation for the cases without uncertainty compensation (left-purple)
and with uncertainty compensation (right-green) in the observer design.

Figure 15. Average mean squared error (MSE) during closed-loop operation over 10 iterations
of randomized parameter uncertainty using the sliding mode controller with and without
uncertainty compensation.
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Figure 16. Time evolution of the estimation error in states h(t) (top) and θ(t) (bottom) for SMC optimal
trajectory tracking without uncertainty compensation (purple) and SMC optimal trajectory tracking with
uncertainty compensation (green).

Figure 17. Control input used for SMC during closed-loop trajectory tracking control operation
without (top) and with (bottom) uncertainty compensation. Note that the reduction of chattering is
not the focus of the current result.



Robotics 2020, 9, 87 23 of 26

7. Conclusions

In this paper, a sliding mode observer is presented which achieves finite-time state estimation for
a cart inverted pendulum in the presence of bounded disturbances and input-multiplicative parametric
uncertainty. Key features of the result presented here are:

1. Rigorous proof of finite-time state estimation under input-multiplicative parametric uncertainty with
detailed observer gain conditions.

2. A detailed simulation comparison study that illustrates the performance improvement that is achieved
in using the input uncertainty compensation algorithm in the closed-loop system under six different
levels of randomized uncertainty: 5%, 7%, 10%, 15%, 18%, 20%.

3. The percent reductions of MSE over the 10 iterations for each of the six levels of uncertainty are
as follows:

LQR Regulation shows 62.91% reduction in MSE of h(t) and 31.94% reduction in MSE of θ(t) with
the proposed estimator with uncertainty compensation.

SMC Regulation shows 45.18% reduction in MSE of h(t) and 33.67% reduction in MSE of θ(t) with
the proposed estimator with uncertainty compensation.

SMC Tracking shows 95.58% reduction in MSE of h(t) and 28.23% reduction in MSE of θ(t) with the
proposed estimator with uncertainty compensation.

The numerical results clearly demonstrate the performance improvement that is achieved using the
proposed uncertainty compensation technique in the observer.

4. The percent reductions of MSE over the 10 iterations for four different cases of initial conditions are
as follows:

LQR Regulation shows average reduction of 69.49 % in MSE of h(t) and 39.40% in MSE of θ(t) with
the proposed estimator with uncertainty compensation.

SMC Regulation shows average reduction of 50.12 % in MSE of h(t) and 38.10% in MSE of θ(t) with
the proposed estimator with uncertainty compensation.

The numerical results clearly demonstrate the performance improvement that is achieved using the
proposed uncertainty compensation technique in the observer.

5. For completeness in analyzing the performance improvement using the input uncertainty
compensator, the observer is applied to closed-loop systems using both SMC and LQR
control methods.

In all of the simulated cases, a marked improvement is demonstrated by using the proposed estimator
with uncertainty compensation.

Remark 8. (Future Work) Future work will address a rigorous analysis of a practically implementable
chatter-free nonlinear control method, which works in tandem with the sliding mode observer to compensate
for input-multiplicative parametric uncertainty.
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