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Abstract: In this paper, we present a quantitative performance investigation and repeatability assess-
ment of a mobile robotic system for 3D mapping. With the aim of a more efficient and automatic
data acquisition process with respect to well-established manual topographic operations, a 3D laser
scanner coupled with an inertial measurement unit is installed on a mobile platform and used to
perform a high-resolution mapping of the surrounding environment. Point clouds obtained with
the use of a mobile robot are compared with those acquired with the device carried manually as
well as with a terrestrial laser scanner survey that serves as a ground truth. Experimental results
show that both mapping modes provide similar accuracy and repeatability, whereas the robotic
system compares favorably with respect to the handheld modality in terms of noise level and point
distribution. The outcomes demonstrate the feasibility of the mobile robotic platform as a promising
technology for automatic and accurate 3D mapping.

Keywords: mobile robot; 3D mapping; laser scanner; mobile mapping system; point cloud comparison

1. Introduction

Nowadays, acquiring and recording high-resolution 3D information of internal and
external environments is crucial in the study and analysis of both buildings and human
settlements [1]. This need is highlighted by the United Nations 2030 Agenda for Sustain-
able Development, which has underlined the importance of making cities and human
settlements inclusive, safe, resilient and sustainable [2]. In detail, Sustainable Development
Goal 11 (SDG11) indicates the targets of enhancing inclusive and sustainable urbanization
as well as protecting and safeguarding the world’s cultural and natural heritages. At the
same time, SDG11 outlines the aim of substantially increasing the number of cities and hu-
man settlements adopting and implementing integrated policies and plans toward resource
efficiency, adaptation to climate change and resilience to disasters. In this framework,
the availability of efficient and cost-effective surveying techniques for semi-structured or
unstructured environments is essential, especially where external methods for localization,
such as a Global Navigation Satellite System (GNSS), are not always available.

The surveying of civil structures, usually performed by means of classical mapping
technologies, such as Photogrammetry and Terrestrial Laser Scanning (TLS), has been
revolutionized in recent years by using portable Mobile Mapping Systems (MMSs) [3].
Trolley, backpack and handheld devices [4] can be easily carried by a person acquiring
accurate 3D data of surrounding environments by simply walking through the area of
interest, as shown in [5]. The core of this surveying technology is Simultaneous Localization
and Mapping (SLAM) algorithms, thanks to which 3D models of the environment can be
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obtained without requiring a GNSS signal. Initially developed by the robotics community
to allow the autonomous navigation of a mobile platform in an unknown environment [6],
SLAM methods are now also employed to estimate the trajectories of moving devices (RGB
cameras, laser scanners and other active sensors) while acquiring accurate maps of an area
of interest [7].

Several studies examined the advantages and disadvantages of portable MMSs in
diverse test fields, as demonstrated by flourishing literature on the topic [8]. For example,
in [9], a wearable mobile laser system was evaluated for the indoor 3D mapping of a
complex historical site, whereas in [10], different handheld mobile solutions were tested
for the 3D surveying of underground built heritage. Moreover, in [11], the performance
of a handheld laser scanner was investigated in different outdoor scenarios, such as the
surveying of a building façade and a mountain torrent. These studies reported accuracies
ranging from a few centimeters to 10 cm for the surveying of indoor environments and
urban areas with portable MMSs.

Mapping sensors are also adopted to inspect constructions or manufactured parts
and identify possible discrepancies between as-built workpieces and their nominal specifi-
cations [12]. The data acquired by portable mapping devices are essential for creating a
Building Information Model (BIM) according to the as-built condition of a structure [13–15].
For example, in [16], an approach for the semi-automated generation of a parametric BIM
for steel structures based on TLS data was presented. Furthermore, surveyed data recently
proved to be fundamental in supporting functional and occupancy analyses of buildings in
challenging situations, such as the COVID-19 pandemic [17].

The reliability and completeness of 3D information on buildings and human settle-
ments could be improved, and acquisitions could be automated by mounting mapping
devices (e.g., laser scanners and RGB-D cameras) on robotic platforms. Such a platform
can be steered remotely or can autonomously perform the required surveying of an area of
interest, optimizing the acquisition process.

Today, mobile robots are being increasingly applied to mapping, and the importance
of surveying automation is confirmed by a wide variety of applications in several different
fields. Mobile platforms are indeed suitable for explorations and inspections in hazardous
and challenging environments [18,19] and are used for inspections in disaster situations
and rugged environments [20] instead of humans, ensuring safety and repeatability. In
the agricultural field, both wheeled and tracked mobile vehicles are employed for orchard
mapping and precision farming [21,22], harvest supporting and 3D mapping in green-
houses [23] as well as the detection and segmentation of plants and the ground [24]. A
survey of localization and mapping by robots in agriculture and forestry is available in [25].

Mobile robots are also employed for the mapping of archaeological and cultural
heritage sites, as shown in [26,27]. Finally, the digitalization of buildings is another relevant
application of mobile systems based on robotic platforms and autonomous vehicles [28].
For instance, in [29], a large-scale 3D model of buildings was obtained by using multiple
cooperative robots and by considering several criteria, such as visibility between robots,
error accumulation and efficient traveling. A review on autonomous mobile systems for
the digitization of buildings can be found in [30].

A fundamental aspect of autonomous mobile scanning systems is the quantitative
evaluation related to a resulting 3D model. Indeed, the quality of a final point cloud is
a pillar in regards to extracting the metric information of a scene and, possibly, a BIM
model. Moreover, a realistic model is not guaranteed if the precision of a 3D map is not
evaluated properly [30]. By considering handheld MMSs, and more generally standard
geomatics surveying techniques, the acquired data are usually compared with already
available ground truths obtained with more accurate surveying technologies, such as TLS
(e.g., in [8,31]).

When moving to mobile robotic systems, only a paucity of works deal that with
robot-based 3D mapping report comparisons with ground truths. For instance, in [32],
previously acquired scans were assumed as ground truths, and the deviation angle from
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each reference axis in degree and the root mean-square error (RMSE) in meters were
measured. Furthermore, in [33], rotational and translational estimation errors verified
the accuracy of 3D mapping performed by a simulated mobile robot in multiple outdoor
environments. However, as reported in [30], a high percentage of mobile scanning methods
available in the literature did not provide reports concerning the accuracy of 3D maps
obtained against ground truths.

Another important aspect that requires proper attention is survey repeatability, defined
as the variation that can be expected in a final 3D model when mapping the same area under
similar conditions (i.e., using the same scanner device, moving platform and trajectory)
within a short time interval [34]. While comparing a single resulting map with a ground
truth provides an estimate of accuracy and systematic errors, assessing repeatability allows
one to quantify the model precision and uncertainties that can significantly influence
change-detection analyses [35].

A preliminary comparison of handheld and mobile robotic mapping systems was
discussed in [36]. However, in that work, no comparison with a ground truth was shown
and only one survey did not guarantee a repeatability and reliability assessment.

In this paper, we present the performance and repeatability assessment of a mobile
robotic system for 3D mapping. In detail, we used the commercial HERON Lite system
composed of a 3D laser scanner coupled with an Inertial Measurement Unit (IMU), which
realizes the high-resolution mapping of a surrounding environment and can provide real-
time results. Experimental tests were carried out, performing a survey of the ground floor
of the Rizzi building of the University of Udine (Italy) and considering two approaches:

• Case 1: the acquisition device installed on a mobile robot (referred in the following as
robotic mode (R)).

• Case 2: the acquisition device attached to a telescopic pole and carried manually
(referred to as handheld mode (H)).

Since the main contribution of this work is a comparison of the robotic and handheld
mapping modes, for a fair analysis in both cases, the acquired data were processed with the
same SLAM algorithm and software parameters, i.e., the proprietary HERON Desktop package
provided by the manufacturer of the 3D mapping system.

An analysis of the results shows that the robotic mode compares favorably with respect
to the handheld one and confirms the feasibility of using the robotic system for future
automatic surveys with the aim of supporting renovation projects for sustainable cities.

This paper is an evolved version of a preliminary conference work in [36] and extends
that work as follows:

• The method is validated by comparing the point clouds obtained in both Cases 1 and
2 with a ground truth based on a previously acquired TLS survey.

• The repeatability of the mapping is assessed by performing multiple scans and evalu-
ating the consistency of the results.

• A new experimental setup for the laser scanner installed on the mobile robot is
developed to improve the point of view of the sensor during the robotic mapping.
The higher point of view provides advantages in cluttered environments, limiting
occlusions and data gaps in the model caused, e.g., by furniture.

The remainder of the paper is organized as follows: In Section 2, the materials and
methods used in this work are described, whereas in Section 3, the experimental results are
presented. A discussion of the results is given in Section 4. Finally, the paper is concluded
in Section 5.

2. Materials and Methods

In this section, we first present the system setup and the sensor characteristics, then
we describe the procedure for the experimental data acquisition and processing. Finally,
the acquisition of the ground-truth point cloud is illustrated.
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2.1. System Setup and Sensor Characteristics

The experimental evaluation was carried out using the portable MMS HERON Lite
by Gexcel srl [37]. This device is composed of a Velodyne Puck LITE laser scanner [38]
coupled with an Xsens MTi inertial sensor [39], the data from which were used for the
system trajectory estimation. Sixteen channels characterize the scanning head and emit
infrared laser beams at a wavelength of 903 nm, allowing one to acquire 300,000 points/s
in a single return mode at a maximum distance of 100 m and to cover a 360◦ horizontal
field of view and a 30◦ vertical field of view. The sensor head is connected to a battery and
a control unit for data storage and real-time processing. According to the manufacturer’s
specifications [37], the employed system ensures a precision of 3 cm and a final global
accuracy of 5 cm. However, this can be downgraded to 20–50 cm depending on the followed
trajectory and the geometry of the scanned environment, which can significantly influence
the results of the SLAM algorithm, as shown in [11].

In its standard configuration, the HERON Lite system is a handheld device; thanks to
a telescopic carbon-fiber pole, it can be manually carried by a surveyor during mapping
operations, as shown in Figure 1a (Case 2). In our experiments, the HERON Lite device
was also installed on a mobile robotic platform with an angle of approximately 30◦ between
the vertical direction and the laser rotation axis (Case 1). Unlike the previous work [36],
the scanning head was fitted on a custom aluminum support at a height of about 1 m from
the robot base (Figure 1b). This new setup ensured a more adequate point of view of the
scanning head, limiting unreliable measurements (at a range of <1 m) of the floor and
providing advantages in cluttered indoor environments.

(a)

Sensor head
(Velodyne Puck

LITE laser scanner
and XSens MTI

IMU)

Aluminum frame

Neobotix MP-500
mobile robot

(b)

Figure 1. (a) HERON Lite system carried manually (with the main components highlighted) and
(b) installed on a Neobotix MP-500 mobile platform.

Regarding the mobile platform, we adopted the MP-500 robotic system by Neobotix
GmbH [40], which is equipped with two drive wheels, an undriven castor wheel and
a SICK 2D laser scanner used for safety purposes. The platform has dimensions of
81.4× 59.2× 36.1 cm, a payload of 80 kg and maximum speed of 1.5 m/s. This mobile
robot is usually employed for autonomous transportation operations in industrial environ-
ments, surveillance and part handling within large areas and measurement of physical data
(e.g., temperatures and gas concentrations) in indoor environments. During the surveys,
the mobile robot was steered remotely using a wireless joystick.
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With the HERON Lite system, a preliminary map of a scanned environment can be
obtained in real time and visualized on the screen of the control unit. However, for an
accurate and dense 3D model, data post-processing via the software HERON Desktop [41]
is required. Indeed, the raw data of this system are saved in only proprietary file formats
and cannot be exported for processing with alternative algorithms.

In detail, with the proprietary package, the trajectory and the map are computed in a
three-stage pipeline. The first step, called Odometer, implements an online SLAM algorithm
to retrieve a preliminary estimate of the sensor trajectory. This approach computes the
pose of each cloud (a single 360◦ scan) by aligning it to the previous ones via the Iterative
Closest Point (ICP) algorithm [42]. In this stage, IMU data provide a rough tentative pose
of the scanner. Since this method is prone to drift accumulation, a subsequent refinement
is needed. To this end, the Create Maps step (named in the proprietary software interface)
splits the full trajectory into Local Maps, which are subsequently treated as internally
rigid point clouds. The latter represent the inputs for the final stage, known as Global
Optimization, which corresponds to a full SLAM method [43]. With this approach, it is
possible to consider loop closures (if any) along the trajectory (i.e., resurveyed areas) that
are treated as consistency constraints in the global registration process among all the local
maps. In this way, error accumulation along the trajectory is minimized, resulting in more
accurate 3D point clouds of the surveyed environment. Finally, the obtained complete map
can be automatically filtered to remove moving objects (e.g., walking people), applying a
process called Clean Data.

2.2. Experimental Data Acquisition and Processing

As a case study, the ground floor of the west-wing corridor of the Rizzi building of the
University of Udine (Italy) was surveyed. It is characterized by a square-based plant with
dimensions of 80 m × 80 m and was mapped following a closed-loop trajectory (shown in
blue in Figure 2). Please note that the south part of the corridor was surveyed twice—at
the beginning and at the end of the trajectory. As already mentioned, both the robotic-
and handheld-mode mapping were performed, repeating the survey three times with each
platform. In the following, we refer to the robotic cases as R-1, R-2 and R-3; similarly, the
handheld ones are called H-1, H-2 and H-3.

Table 1 summarizes the main characteristics of the data acquisitions. Please note that
for a fair comparison, all the surveys were processed using the same software parameters
and the same SLAM algorithm (provided by the manufacturer of the system) previously
described. Figure 2 shows an X-ray orthophoto of the mapped corridor extracted from the
R-1 model by projecting the point cloud on the horizontal plane.

Table 1. Main characteristics of the robotic and handheld surveys.

Survey Characteristic R-1 R-2 R-3 H-1 H-2 H-3

Acquisition time 16′24′′ 16′51′′ 16’23′′ 5′37′′ 5′52′′ 5′13′′

Trajectory length (m) 403 399 402 407 401 402
Points number (×106) 133.6 132.3 128.6 65.3 62.9 58.7
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7
 m

42 m

8
0

 m

start end

Figure 2. X-ray orthophoto of the surveyed area (2.5D orthophoto generated from a point cloud
acquired by the robot platform and projected on the horizontal plane). Points falling outside the area
of interest were manually removed. The blue line represents the desired trajectory followed during
the survey, with the circles indicating the starting and end points. The dashed-line rectangle indicates
the south part of the corridor on which the subsequent analyses focused.

2.3. Ground-Truth Acquisition

For a quantitative assessment of the obtained 3D point clouds, we employed a “static”
terrestrial laser scanner (TLS) to acquire a reference model. The instrument was the RIEGL
Z390i system (Figure 3a), a time-of-flight laser scanner with an angular measurement
resolution of 1 mgon, a declared accuracy of 6 mm and a repeatability of 4 mm for single
shots and 2 mm for averaged measures. Thanks to the high accuracy and precision that
can be reached with this scanning device, the TLS point cloud could be considered the
ground-truth model.

In detail, a TLS data acquisition was performed on the south part of the corridor
(corresponding to the dashed rectangle in Figure 2), which has dimensions of 42 m × 7 m.
The TLS instrument was vertically fixed on three positions (2V, 3V and 4V, where V stands
for vertical) along the corridor axis; 2V and 4V were symmetrically placed with respect
to 3V, located in the corridor’s center (Figure 3b). From each scan position, once fixed
to 0.10◦ the horizontal/vertical angular step, a sequence of three panoramic scans was
performed, recording on average 2.84 × 106 points. Moreover, photogrammetric images
taken with a Nikon D200 integrated metric camera were panoramically acquired to color
the TLS scans with RGB values. Each scan sequence was then resampled, keeping the
same angular acquisition resolution; the obtained “mean scans” had a noise, verified
in the correspondence of planar surfaces, of about 2 mm, starting from scan sequences
characterized by a noise of 3 mm. In order to register the three obtained scans, 16 reflecting
disks 5 mm in diameter and 18 reflecting cylinders 10 mm in diameter and height were
suitably placed in the corridor, mainly along the walls (Figure 3b).
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(a) (b)

Figure 3. (a) TLS instrument used for the acquisition of the ground-truth model and (b) network of
reflecting circular targets used for the registration of the three scans (2V, 3V and 4V, where V stands
for vertical and D indicates the targets in the forms of disks).

The 3D coordinates of the reflecting disks were measured using a Leica TCRA 1201+
total station. This is a high precision topographic instrument characterized by a nominal
accuracy of 1′′ (0.3 mgon) for angular measurements and 1 mm + 1.5 ppm for distance mea-
surements. The topographic survey of the TLS targets was conducted from three vertices
roughly coinciding with the TLS stations in order to ensure the best visibility of the targets.
Angular and distance measurements were taken on both the left and right faces of the
instrument and then averaged. In order to refer the topographic measurements of the three
stations to the same datum, in addition to the targets for the scans, two additional stable
references were installed consisting of high-accuracy Leica GPR121 topographic round
prisms, which were accurately measured from each station. The topographic measurements
were least squares adjusted using MicroSurvey STAR*NET v. 7.1 [44], an advanced soft-
ware solution used in the topographic field to estimate the coordinates of surveyed points
together with their precision and reliability, allowing one to identify possible systematic
errors and to verify that the results meet the accuracy requirements.

The uncertainties obtained in the final coordinates of the reflecting circular targets
ranged from 0.5 to 4.1 mm along the three axes. Exploiting these points as control points,
the three TLS clouds 2V, 3V and 4V were registered in a global point cloud with RIEGL
RiSCAN PRO v. 1.5, the companion software for RIEGL TLS systems [45], obtaining
residuals with a standard deviation of 4.5 mm along the X axis (corresponding to the
longitudinal axis of the corridor), 2.4 mm along the Y axis and 3.4 mm along the vertical
component Z. These values confirmed that the global TLS cloud could be adopted as a
reference model.

As a last remark, since the robotic and handheld point clouds were expressed in
arbitrary reference frames, the subsequent comparison with the ground truth required a
preliminary alignment to the reference model that was performed with the software JRC
3D Reconstructor (v. 4.3.1) [46] using the ICP algorithm. In addition to the various tools for
point-cloud processing, the chosen software allowed us to directly import the results from
HERON Desktop.

Figure 4 shows the point clouds of the analyzed corridor obtained with the robotic
mapping platform (Figure 4a) and with the TLS (Figure 4b).
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(a) (b)

Figure 4. Point clouds of the analyzed corridor obtained (a) with the robotic mapping platform
(colored by using reflectance values) and (b) with the TLS.

3. Experimental Results

As an initial quantitative evaluation of the point-cloud accuracy obtained with the
mobile robotic mapping platform and with the handheld survey modality, the cloud-to-
cloud absolute distances (C2C) with respect to the ground-truth model were estimated for
each survey using the open-source software CloudCompare (v. 2.11.3) [47].

Figure 5a,b show the outcomes for R-1 and H-1, respectively, whereas Table 2 reports
the mean and standard deviation values for the six analyzed cases. Moreover, graphical
representations of the results in the forms of box plots are shown in Figure 6a. From a visual
inspection, it can be noticed that higher residuals were located in the central parts of the
walls for both the robotic and the handheld surveys, indicating the presence of a relative
deformation with respect to the reference model in this area. In any case, the computed 3D
distances did not exceed 6 cm and were compatible with the accuracy of the instrument
according to the manufacturer’s specifications.

Histogram - C2C distance

0 0.06 0.12

C
o
u
n
t

2.4x105

4.8x105

C2C absolute distances [m]

(a) Robotic mapping.

Figure 5. Cont.
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Histogram - C2C distance

0 0.06 0.12

C2C absolute distances [m]

C
o
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t

1.8x105

3.6x105

(b) Handheld mapping.

Figure 5. (a) Cloud-to-cloud absolute distances computed between the TLS model and the robotic
mapping system point cloud (case R-1) and (b) C2C distances between the ground truth and the
handheld acquisition (case H-1). For grey points, the C2C distance could not be computed due to
data gaps in the TLS model.

Table 2. Cloud-to-cloud absolute distances computed for each survey with respect to the TLS
(ground-truth) model.

C2C R-1 R-2 R-3 H-1 H-2 H-3

Mean (cm) 2.3 2.2 2.2 2.0 2.0 2.1
Std. dev. (cm) 2.5 2.8 2.9 2.7 2.7 3.0

(a) C2C absolute distance. (b) Surface density.

Figure 6. Box-plot representation of the experimental results: cloud-to-cloud absolute distance (a),
and surface density (b) for both the robotic and handheld mapping modes. The central mark indicates
the median, the bottom and top of each box represent the first and third quartiles and the whiskers
extend to the most extreme data points not considered outliers.
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As highlighted in the previous section, the studied corridor is mapped at the beginning
and at the end of the trajectory; the low-distance values revealed by the C2C analysis
represent a confirmation that no relevant residual misalignment is present at the loop
closure. Moreover, the results are consistent among the three data acquisitions with each
platform, indicating a high survey repeatability.

To further investigate the repeatability, C2C distance values were evaluated between
pairs of surveys carried out with the same mapping mode (i.e., R-1 vs. R-2, R-1 vs. R-3
and R-2 vs. R-3 and H-1 vs. H-2, H-1 vs. H-3 and H-2 vs. H-3). The results are reported
in Figure 7, which shows the histograms of the C2C distance distribution for all the
comparisons. The outcomes are also summarized in Table 3. The values of mean and
standard deviation always lower than 1 cm further demonstrate the high repeatability of
both survey modalities.

Observing, instead, the point-cloud density that characterizes the two acquisition
modes, it can be noticed from Figure 8 that the mobile robotic platform guarantees a more
uniform point distribution, whereas the handheld survey is characterized by low density
values on the floor. Moreover, the statistics reported in Table 4 highlight an overall higher
surface density for the robotic mapping cases (mean values ranging from 20,300 points/m2

to 21,043 points/m2), showing a minor variability among the three survey repetitions (as
confirmed by the box dimensions in Figure 6b). This behaviour can derive from (i) the
lower speed of the robot with respect to the walking operator (see the acquisition time
reported in Table 1) and (ii) the constant speed maintained during the robotic acquisitions.

Table 3. Cloud-to-cloud absolute distances computed between pairs of robotic and handheld surveys
for repeatability assessment.

C2C R-1 vs. R-2 R-1 vs. R-3 R-2 vs. R-3 H-1 vs. H-2 H-1 vs. H-3 H-2 vs. H-3

Mean (cm) 0.7 0.7 0.7 0.9 0.9 0.9
Std. dev. (cm) 0.4 0.5 0.6 0.6 0.8 0.6

(a) R-1 vs. R-2. (b) R-1 vs. R-3. (c) R-2 vs. R-3.

(d) H-1 vs. H-2. (e) H-1 vs. H-3. (f) H-2 vs. H-3.

Figure 7. Histograms of the cloud-to-cloud absolute distances in repeated surveys for both the robotic
and handheld mapping modes.
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(a) Robotic mode.
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(b) Handheld mode.

Figure 8. Surface density characterizing the point cloud obtained (a) from the robotic mapping
system (case R-1) and (b) the handheld mode (case H-1).

Table 4. Surface density values.

Density R-1 R-2 R-3 H-1 H-2 H-3

Mean (pts/m2) 20,300 21,043 21,000 16,643 19,255 16,762
Std. dev. (pts/m2) 6267 6989 7685 8724 9694 8916

In addition to a more consistent point density, the point cloud acquired with the
robotic system shows a slightly lower level of noise, confirming the results reported in
our preliminary work [36]. As suggested in [5], this feature was quantitatively assessed
by extracting three patches of the point clouds (one on each wall and one on the floor)
and fitting a plane to each subset. Table 5 reports the Root Mean Square (RMS) of the
distances of the points from the corresponding estimated plane. An average RMS of 1.7 cm
was estimated for the robotic mapping cases, whereas an RMS of 2.0 cm resulted from
the handheld-mode surveys. As expected, the TLS significantly outperformed the mobile
systems. These outcomes can be explained by the fact that the robot performed the survey
at a lower speed and, above all, avoided sudden movements and oscillations to which the
laser scanner was subjected when it was manually carried by a walking person. In this
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regard, Figure 9b clearly shows the oscillations that characterized the trajectory followed by
the scanning sensor in the handheld-mode survey that were not present when the device
was installed on the robotic platform (Figure 9a). Moreover, the data acquired by the IMU
are influenced by the characteristics of the trajectory. Indeed, the IMU data are subsequently
employed in the SLAM process and thus play an important role in the creation of the final
point cloud.

Table 5. Results of the plane-fitting procedure. The RMS of the distances between the points and the
corresponding estimated plane are reported for each patch, giving an indication of the sensor noise.

Plane R-1 R-2 R-3 H-1 H-2 H-3 TLS

Wall #1 (cm) 1.9 2.1 2.2 3.0 2.7 2.6 0.3
Wall #2 (cm) 1.6 1.6 1.8 2.3 2.3 2.0 0.6
Floor (cm) 1.4 1.4 1.4 1.2 1.1 1.2 0.4

(a) Robotic mode.

(b) Handheld mode.

Figure 9. Examples of paths of the acquisition device in the two different survey modes.

Finally, in Figure 10, we report a detail of the point clouds acquired with the two
survey modalities. Thanks to the higher density, the more uniform point distribution
and the slightly lower noise level, in the point cloud retrieved via the robotic mapping
(Figure 10a) the objects visually appear sharper (see, e.g., the baskets and the items hanging
on the walls). This feature could be helpful for the digitization and vectorization processes
that usually follow the point-cloud acquisition.
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1 m 1 m

(a) Robotic mode.

1 m 1 m

(b) Handheld mode.

Figure 10. Detail of thepoint cloud acquired with (a) the robot platform and (b) the handheld mode.
Points are colored according to the local plane inclination for clearer visualization.

4. Discussion

The results reported in the previous section clearly show that, overall, a tight corre-
spondence with the ground-truth model can be noticed for all the obtained point clouds
(mean distances ranging from 2.0 to 2.3 cm), with no significant differences between the
two survey modes. The computed C2C distances are in line with the outcomes provided by
other works in the literature that assessed the accuracies of portable devices carried manu-
ally. In [11], e.g., the HERON Lite system was tested in two different outdoor scenarios,
reporting an average C2C distance of 5.4 cm for the survey of a torrent reach, estimated with
respect to a photogrammetric ground-truth model. Discrepancies higher than 7 cm were
revealed when comparing the point cloud of a building façade provided by the portable
laser scanner with the TLS model. Accuracies ranging from a few to 10 cm for the surveying
of buildings and urban areas with different commercial portable mapping systems were
declared in [5,8,48].

As discussed in detail in [5,11,49], one of the main drawbacks of portable scanning
devices is a high level of noise that affects the resulting point cloud. Experiments carried out
in previous works revealed a sensor noise of 1–2 cm for all the tested commercial systems, a
result that also emerged from the experimental evaluation reported in the previous section
(Table 5). In this regard, the slightly lower level of noise reached with the robotic platform,
which guaranteed a smoother trajectory and limited oscillations, appears to be of significant
importance.

To the best of the authors’ knowledge, no similar works performing a comparison
between handheld and robotic mapping platform can be found in the current literature,
making a direct comparison with the presented results unfeasible. Furthermore, as high-
lighted in [30], several approaches based on robotic platforms for 3D mapping did not
provide any quantitative evaluations of the accuracies of the obtained models, with some
reporting only non-metric information, such as the number of unobserved cells in a scan
position [50]. A limited number of studies provided quantitative details regarding accuracy
and precision. For instance, in [29], the accuracy of a 3D model was evaluated by comparing
the positions of only six corners, obtaining an average error of 23.1 mm, whereas the work
in [32] reported a centimeter accuracy in a registration process between consecutive scans.
More in-depth analyses and comparisons with ground-truth models should therefore be
provided in the future in the field of robotic mapping to promote the evaluation of methods
and platforms.

5. Conclusions

The increasing demand for updated and detailed 3D models of buildings, essential
in any renovation project, is fostering the development of flexible and efficient surveying
techniques. To this end, robotic mapping systems could provide a fundamental aid to
reduce and automate the time-consuming manual work usually required for mapping
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operations. In this paper, we investigated the performance of a mobile remote-controlled
robot equipped with a 3D laser scanner for indoor surveys, focusing on the accuracy and
repeatability that characterized the tested system. Quantitative evaluations showed a
high repeatability and a tight correspondence between point clouds obtained from robotic
mapping and a ground-truth model acquired with a TLS. Moreover, the robot-based
acquisition platform compared favorably with respect to the handheld mode. Indeed, a
higher surface density, more uniform point distribution and lower noise level were shown
in the former case. These outcomes represent a further confirmation that robotic mapping
could be a viable alternative to the well-established surveying mode, reducing the manual
work usually required and, above all, guaranteeing, at the same time, a high quality of
final results.

In the future, our research will focus on automating the surveying carried out with
robotic platforms in order to perform the autonomous 3D mapping of both more-complicated
inner spaces and outdoor environments without relying on human interventions. Further-
more, we will consider the adoption of different scanning sensors capable of providing raw
data to be processed with open-source SLAM algorithms. In this context, different SLAM
approaches will be compared to evaluate their performance in the reconstruction of a reli-
able 3D map. Moreover, additional sensors, such as RGB cameras and GNSS receivers, will
be integrated for further applications in outdoor scenarios, e.g., 3D mapping in agriculture
or in cluttered environments.
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