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Abstract: Recent advances in deep learning, including the development of AlexNet, Residual Net-
work (ResNet), and transfer learning, offer unprecedented classification accuracy in the field of
machine vision. A developing application of deep learning is the automated identification and man-
agement of aquatic invasive plants. Classification of submersed aquatic vegetation (SAV) presents
a unique challenge, namely, the lack of a single source of sensor data that can produce robust, in-
terpretable images across a variable range of depth, turbidity, and lighting conditions. This paper
focuses on the development of a multi-sensor (RGB and hydroacoustic) classification system for SAV
that is robust to environmental conditions and combines the strengths of each sensing modality. The
detection of invasive Hydrilla verticillata (hydrilla) is the primary goal. Over 5000 aerial RGB and
hydroacoustic images were generated from two Florida lakes via an unmanned aerial vehicle and
boat-mounted sonar unit, and tagged for neural network training and evaluation. Classes included
“HYDR”, containing hydrilla; “NONE”, lacking SAV, and “OTHER”, containing SAV other than
hydrilla. Using a transfer learning approach, deep neural networks with the ResNet architecture were
individually trained on the RGB and hydroacoustic datasets. Multiple data fusion methodologies
were evaluated to ensemble the outputs of these neural networks for optimal classification accuracy.
A method incorporating logic and a Monte Carlo dropout approach yielded the best overall classi-
fication accuracy (84%), with recall and precision of 84.5% and 77.5%, respectively, for the hydrilla
class. The training and ensembling approaches were repeated for a DenseNet model with identical
training and testing datasets. The overall classification accuracy was similar between the ResNet
and DenseNet models when averaged across all approaches (1.9% higher accuracy for the ResNet vs.
the DenseNet).

Keywords: aquatic invasive plants; deep learning; sensor fusion; autonomous robotics

1. Introduction

Recent advances in machine learning frameworks, namely, deep learning, and the
advent of general-purpose parallel processing architectures have created a new paradigm
for remote sensing. Neural networks as a machine learning framework are unique as
compared to classic techniques in their ability to, via adaptation of network parameters
(weights), provide robust function estimation. In fact, it has been shown that a sufficiently
wide, single-layer neural network using a sigmoid nonlinearity can approximate any
continuous function [1]. By selecting the correct weights, a neural network can perform
regression or classification tasks with great accuracy on high-dimensional data. The process
of using data to perform optimization of network weights is referred to as training.
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The computer vision field has advanced significantly since the introduction of AlexNet
in 2012. This neural network utilized five convolutional layers, trained on a graphics
processing unit (GPU) to achieve what was then state-of-the-art performance on image
recognition and classification tasks [2]. Since this proof of concept, much research has been
conducted in the realm of machine vision, that has resulted in neural network architectures
that far outperform AlexNet for machine vision tasks. Research has revealed that convolu-
tional layers act as feature detectors, and increasing the number of stacked convolutional
layers (the network depth) enables better network performance [3]. Furthermore, it was
discovered that while neural networks are valued for their function estimation capabilities,
they often fail to estimate an identity function. The introduction of residual units via skip
connections between layers was presented as a partial solution to this problem, enabling
the training of even deeper convolutional networks [4].

While deep convolutional neural networks exhibit state-of-the-art performance on
machine vision tasks when properly trained, the training process is computationally intense.
The original AlexNet network contained over 60 million tunable weights and took 5–6 days
to train [2]. Adding more convolutional layers to increase the network depth generally
serves to increase the number of weights in the network. In addition, increasing the weight
count of a network requires more data for the network to train on, to prevent overfitting of
the network to training data and improve generalization. Thus, there exists an inherent
tradeoff between the ultimate performance of a neural network and the difficulty of training.

Transfer learning, inspired by the psychology of human learning, aims to reduce the
computational and dataset requirements necessary to generate well-trained neural net-
works by applying knowledge gained from past experiences to new learnings in a similar
domain [5]. A practical example of transfer learning in the field of machine vision can be
seen in convolutional filters. As mentioned, each convolutional layer of a network acts as a
feature detector. Features are aggregated as they pass through successive layers, enabling
emergent features, such as the presence of an object, to be constructed from low-level
features such as the presence of an edge or corner. The features output from the final
convolutional layer can then be used to classify an image. This enables pretrained convolu-
tional layer filters to be shared between image classification tasks, as features such as edges,
corners, and shapes are generally shared between all images. Transfer learning has shown
great success in the domain of autonomous weed control. Classification of RGB images
of eight in situ invasive plant species using transfer learning of a ResNet-50 convolutional
network achieved a test accuracy of 95.7% on a dataset comprising 17,509 images [6].

Continual learning, also referred to as lifelong learning, has emerged in recent years
and seeks to autonomously augment network training over time, without retraining over
prior data. A challenge to continual learning is the loss of prior knowledge, which can lead
to catastrophic forgetting. Rostami et al. developed a continual learning computational
model that generates pseudo-data points to replay past experiences, thereby addressing
catastrophic forgetting [7]. Jha et al. applied continual learning to human activity recogni-
tion [8]. Ashfahani et al. proposed an autonomous deep learning methodology, featuring a
self-constructing network structure [9], while Li et al. proposed an immune-system-inspired
classification method [10].

Machine learning also has direct applicability to the management of aquatic invasive
plants (AIPs). Work by Patel et al., utilizing AlexNet, revealed that deep neural networks
can accurately classify submersed aquatic vegetation (SAV) captured in hydroacoustic
imaging [11]. Non-native AIPs, such as Hydrilla verticillata (L.f.) Royle (hydrilla), promote
adverse situations among native aquatic environs and the related infrastructure within
invaded waterways. Since AIPs generally lack natural predation, once established, they
reduce aquatic ecosystem biodiversity through resource competition, displacement, and
habitat disruption of native flora and fauna [12]. Further, the monetary hindrance associated
with AIPs is equally noteworthy, since invasive aquatic weeds regularly inhibit recreational
boating activities, obstruct drainages, limit municipal and hydropower water supply,
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and can reduce waterfront property values [13]. In the United States alone, greater than
100 million dollars (USD) are spent annually for the management of AIPs [14].

Aquatic resource management frequently relies on well-timed monitoring and map-
ping strategies to gauge the presence and abundance of AIPs. In the United States, boat-
based point-intercept sampling protocols remain the standard for documenting the spa-
tiotemporal patterns in the occurrence and distribution of AIPs within invaded waterbod-
ies [15]. However, AIP assessments require a skilled survey crew and substantial time to
complete a comprehensive survey, and the precision and scale of these surveys is highly
dependent upon the time spent evaluating each sample point location. To overcome the
aforementioned hindrances of point-intercept surveys, AIP practitioners are actively pur-
suing recent advances in off-the-shelf remote sensing and photogrammetric technologies,
specifically sUASs (small Unmanned Aircraft Systems) and sonar-equipped aquatic drones.
Recent work has focused on the development of a small fleet of fully autonomous boats
(Figure 1) capable of subsurface hydroacoustic imaging and herbicide deployment (for
vegetation control) [11]. These multihulled vehicles, with a single on-shore operating
station, have been tested in a variety of weather conditions and have demonstrated reliable,
accurate tracking performance with little to moderate wind (4.5 m/s, 10 mph), extended
battery life (estimated at 8 or more hours), and operation speeds of up to 2.3 m/s. Machine
learning classification algorithms, developed as a component of this research, achieved
a classification accuracy of 99.06% after training on four fully submersed plant species
categories (hydrilla, Cabomba caroliniana A. Gray (cabomba), Ceratophyllum demersum L.
(coontail), or “other”). However, these algorithms could not effectively process data from
floating vegetation or SAV at the surface of the water column (i.e., “topped out”), since the
structure of the plant canopy was above the sensing view of the hydroacoustic sensor in
these cases.
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Despite the potential to reduce expenditures associated with AIP surveys, sUAS-based
true-color (RGB) cameras and hydroacoustic (sonar) sensing technologies have limitations
regarding the classification of SAV; neither is consistently proficient at producing robust,
interpretable imagery with variable depth, turbidity, SAV biovolume (percent of water
column occupied with SAV), and poor light conditions. However, each sensing technology
does provide unique opportunities to overcome specific deficiencies of the other. For
example, hydroacoustic sensors can provide a clear view of the lakebed (benthos) and are
unimpeded by environmental factors such as sun glint and turbidity. Unfortunately, the
spatial resolution of hydroacoustic sensing is low, limiting the ability to distinguish plant
features and sense at, or near, the surface of the water column. Conversely, aerial RGB
sensing provides high-resolution images of the upper portion of the water column but is
highly impeded by environmental conditions, specifically water column turbidity, wave
action (fetch), and sun glint.
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Fusing the sensing capabilities of sUASs and aquatic drones could exploit the strengths
of each modality for improved SAV classification accuracy. The objective of this work is
to integrate neural networks, incorporating both hydroacoustic and aerial RGB imagery,
for real-time classification of SAV. Methods will utilize transfer learning, via a ResNet-50
model, with weights pretrained on the ImageNet dataset.

2. Materials and Methods
2.1. Training Set Image Generation

Aerial RGB images were acquired during monthly surveys of Lake Mann (Orange
County, FL, USA) and Lake Sampson (Bradford County, FL, USA) using a quadrotor-type
unmanned aerial vehicle (UAV, SZ DJI Technology Co., Ltd., Shenzhen, China). Images
from each survey were stitched into orthomosaic images of each lake using commercial
software (DroneDeploy, San Francisco, CA, USA). The orthomosaic images were then
downloaded with a ground sampling distance (GSD) of 3 cm and processed using the
Mapping toolbox of MATLAB R2021a (MathWorks, Natick, MA, USA). Each orthomosaic
and associated GPS positional data were converted into an array of indexable RGB pixel
values. Figure 2 shows the fully processed orthomosaic of one survey on Lake Mann. The
monthly surveys of Lake Mann and Lake Sampson included hydroacoustic imaging in
concert with the RGB image collection. Hydroacoustic data collection was conducted using
a boat-mounted Lowrance sonar unit (Navico, Egersund, Norway) integrated with GPS
(±2 m accuracy) and the transducer set at 10 pings per second at 200 kHz with a 12◦ cone
aimed in the nadir position. Individual hydroacoustic images were generated from sonar
data, as in [11].
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Aquatic vegetation was identified at the species level via point grid surveys, with
SAV destructively sampled using a modified four-tine rake on an extendable pole at each
georeferenced point. Abundances were scored qualitatively with a rank of 1–3 based on
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“rake fullness” according to the protocol developed by Hauxwell et al. [16]. Data attributes
were transferred via cellular network communication and stored electronically. The point
intercept data were partitioned into three main groups: those noted to contain hydrilla,
those that contained aquatic species without hydrilla, and those with no aquatic vegetation.
Each set of georeferenced points was processed via a MATLAB script to find the nearest
neighbor of the RGB geospatial data. Finally, 256 × 256 images were cropped from the
RGB grid, centered at the indexes found to be closest to the point grid locations. Labels
were generated for each image: “HYDR” for images of point grid locations where hydrilla
was found, “OTHER” for images that contained aquatic vegetation but not hydrilla, and
“NONE” for images that contained no aquatic vegetation. Data processing in this manner
yielded approximately 1000 images per each corresponding orthomosaic/point-grid-survey
and required less than 10 min.

2.2. Neural Network Training

Network training was conducted using a multistage approach. First, convolutional
neural networks were trained for classification individually on data for RGB images and
hydroacoustic images. Of the total image pairs generated, 15% were allocated for testing.
The remaining 85% of image pairs were partitioned into 80% for training and 20% for
validation. Following [6], a transfer learning approach was employed to enable training
of a network with a large number of weights without substantial overfitting. For training,
the TensorFlow Keras framework was utilized due to its popularity, ease of development,
and the availability of pretrained networks for transfer learning. A ResNet-50 model with
weights pretrained on the popular ImageNet dataset was selected as the basis for transfer
learning. The convolutional weights were loaded, while the final, multilevel perceptron
layer that performs classification on the extracted features was replaced. The pretrained
multilevel perceptron layer was replaced with a feature classification pipeline consisting
of 2D average pooling, feature flattening, fully connected layers of dimensions 1000 × 10
and 10 × 3, and a final output Softmax layer. During training, the preloaded convolutional
weights were frozen, to prevent any changes being made during backpropagation. Training
was conducted for a minimum of 25 epochs using the Adam optimizer with a learning rate
of 0.001 and early stopping and dropout to lessen overfitting. Figure 3 shows training and
validation loss curves for RGB and hydroacoustic neural network training.
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The datasets generated for both the aerial RGB images and the hydroacoustic images
were unbalanced, with a disproportionate number of images from the “OTHER” class.
Using standard log losses for training, the network would likely tend to overpredict the
“OTHER” class to minimize training loss. In response to similar unbalanced datasets in
computer vision applications, Lin et al. introduced the concept of focal loss, a modification
to the standard log loss formulation, FL(pt) = −(1 − pt)

γlog(pt), where pt is the argmax
probability [17]. This modification provides a simple method for addressing class imbal-
ance, as the loss contribution of each image in the training set decreases as the prediction
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confidence increases. Thus, as the network learns to confidently predict classes that make
up larger portions of the training set, it becomes increasingly difficult to decrease train-
ing loss by increasing accuracy for those classes. For training purposes, focal loss was
implemented with γ = 5.

In order to effectively test the fusion of information from hydroacoustic and aerial UAV
sensors, a combined dataset must be built that consists of hydroacoustic images and UAV
RGB images taken at the same GPS location on the same day. Again, MATLAB was used to
generate a set of matching UAV RGB and hydroacoustic images, with test data selected
across a range of data collection dates. The RGB dataset was partitioned into a roughly
15% set of test data. For each label (HYDR, NONE, and OTHER), each collection date was
selected. Hydroacoustic and RGB image data were read into MATLAB from the dataset,
filtered to only select images from the specified date. For each RGB image, the image GPS
location was compared against the location for each hydroacoustic image, and distances
between candidate pairs were minimized for final RGB/hydroacoustic image pairing.
Figure 4 shows examples of paired RGB/hydroacoustic images for test set data. Empirical
inspection of the generated pairs of RGB/hydroacoustic images indicates accurate pairing.
Aerial RGB images with a clear view of emergent hydrilla are paired with hydroacoustic
images that show vegetation reaching the top of the water column. The results stay broadly
the same as the plant height observed in hydroacoustic images decreases. As plant height
recesses down the water column, the clarity of vegetation in aerial RGB images decreases.
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2.3. Multi-Sensor Classification

After generation of test datasets, techniques for fusion of information from aerial RGB
and hydroacoustic imagery were evaluated. ResNet-50 networks were trained indepen-
dently for RGB and hydroacoustic image classification with identical output structures.
The independently trained networks were then ensembled to generate the final output.
Classic ensemble methods, such as bagging, rely on training multiple neural networks on
subsets of the training data and using test-time voting amongst networks to determine
the final output. Due to the relatively small training dataset size, partitioning the training
data to train multiple models for aerial RGB and hydroacoustic data becomes infeasible.
A second technique, stacking, also involves training multiple networks on the subsets of
training data. In a stacking approach, multiple base models are trained, after which a fully
connected network learns how to fuse the output of these base models. However, this
approach requires that a set of validation data be withheld to train the fully connected
output model [18]. Because of this, stacking, like bagging, requires larger datasets than
were available.

With classic, data-intensive techniques largely infeasible, simpler methods for ensem-
bling of the two networks were considered. First, a simple unweighted average of the two
network outputs with the maximum value (TensorFlow “argmax”) of the prediction vector
was taken to generate a classification. Secondly, a Monte Carlo dropout (MC Dropout)
ensemble was evaluated. MC Dropout presents a means to take advantage of the ensemble
properties of the dropout regularization scheme in order to estimate network uncertainty at
inference time [19]. In MC Dropout, the dropout procedure of applying a binomial mask to
network neurons is applied at inference time as well as training time. The stochastic nature
of neuron masking renders the inference process stochastic and enables an estimate of the
uncertainty to be generated by performing multiple inferences on the same input data.
Weighting of the log-inverse of model uncertainty has shown success in previous work for
ensembling of CNN outputs [20]. Third and finally, a logic-based model utilizes knowledge
of the advantages and disadvantages of each sensor type. A set of conditional statements is
evaluated and used to generate final predictions from the output of each neural network.

3. Results

Classification performance was evaluated for the hydroacoustic and RGB ResNets and
each of the different fusion methodologies. Figure 5 shows the confusion matrix resulting
from initial training of the ResNet on hydroacoustic imagery. While the network achieves
overall test set accuracy of 86%, it exhibits an obvious bias towards the “OTHER” class,
largely due to class imbalances in the dataset. Moreover, the network exhibits obvious
difficulty distinguishing between instances of hydrilla and other subaquatic species. This is
illustrated by the poor recall score of 54.4% percent for hydrilla, and the precision score
of 78.7%. However, in the limited test data, the network exhibits strong discriminatory
performance between images with presence of SAV and those with no SAV present. The
network exhibits 72.7% recall, but crucially 94.1% precision for the “NONE” class. These
results fall in line with the expected. Hydroacoustic imagery is excellent at detecting the
presence of submerged objects but gives relatively low image resolution, making detection
of distinguishing features between species difficult.

Figure 6 shows the confusion matrix generated on test data from a ResNet trained on
aerial RGB imagery. The network achieves overall test accuracy of 75%, significantly worse
than the performance seen when utilizing the hydroacoustic imagery. However, crucial to
overall performance is the relative distribution of error between classes and the individual
precision and recall scores. The network achieves 78.6% recall for hydrilla, meaning that it
correctly identified 78.6% of the test images labeled as hydrilla, as compared to 54.4% recall
for hydrilla when utilizing hydroacoustic data. Once again, these results fall in line with
the expected. The relatively high resolution of aerial RGB pictures allows for identification
of SAV near the top of the water column. Misclassifications between images labeled as
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“HYDR” and those labeled none occur when the turbidity of the water prevents SAV from
being visually present in aerial images.
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Figure 7 shows the confusion matrix generated by a simple, average-type bagging
ensemble of the aerial RGB and hydroacoustic imagery. The ensemble has excellent recall
performance for instances of hydrilla, but otherwise performs poorly in terms of precision.
Moreover, the network performs poorly in terms of recall for both the “NONE” and
“OTHER” classes. Examination of the test set confusion matrix for the hydroacoustic
imagery alone reveals the tendency to predict any image with the presence of SAV as
“HYDR”, hence the tendency in an average-based prediction model to overpredict instances
of “HYDR.”
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Figure 8 shows the confusion matrix generated by log-inverse uncertainty weighting
for predictions generated by an MC Dropout type network. Results are nearly identical to
those generated by the simple average ensemble. Again, the tendency of the hydroacoustic-
based pipeline to confidently overpredict instances of the “HYDR” class results in an
ensemble that, based on a weighted average, tends to overpredict “HYDR.”
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Finally, Figures 9 and 10 show the result of a logic-based approach to ensembling the
two image types. The pure logic ensemble utilizes the vertical profile of the water column
and robustness to turbidity of hydroacoustic imagery to accurately predict the presence
or absence of SAV through the “NONE” classification. If SAV is detected through the
hydroacoustic image, aerial RGB imagery is utilized to classify the present species as either
“HYDR” or “OTHER.” The logic/MC combination follows the same procedure but applies
the Monte Carlo dropout approach to predictions before applying the logical procedure.
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Both logic-based approaches vastly outperformed the weighted averaging approaches
presented earlier, with overall test set classification accuracy reaching 84% for the logic/MC
approach. In addition, precision and recall performance were generally improved across
all classes (Table 1).
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To assess performance with another network architecture, network training and testing
were repeated for the six approaches above with the DenseNet model. Identical training
and test datasets and methods were used for both the ResNet and DenseNet models. The
DenseNet architecture yielded lower or nearly equal (within 0.3%) overall accuracy for all
but the average ensemble approach (DenseNet average overall accuracy 69.0% vs. 70.9% for
ResNet). In five out of six approaches, the DenseNet model produced lower classifications
of HYDR (average 14.6% fewer) and higher classifications of NONE (average 8.3% higher)
and OTHER (average 16.3% higher) compared to the ResNet model.
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Table 1. Precision/recall and overall accuracy for each of the approaches.

HYDR NONE OTHER Overall Accuracy

Hydroacoustic
ResNet

Recall 54.4% 72.7% 96.0%
86.2% *Precision 78.7% 94.1% 87.0%

RGB ResNet
Recall 78.6% 83.4% 56.5%

75.3%Precision 68.0% 86.3% 71.2%

Average
Ensemble

Recall 97.3% 82.3% 12.7%
72.7%Precision 58.8% 98.9% 80.0%

MC Dropout Recall 96.4% 79.6% 12.7%
71.3%Precision 57.6% 97.8% 80.0%

Logic
Ensemble

Recall 80.9% 92.0% 68.3%
82.5%Precision 79.5% 92.9% 69.4%

Logic/MC
Ensemble

Recall 84.5% 92.9% 66.7%
83.9%Precision 77.5% 92.1% 80.8%

* Despite high overall accuracy, note the disparity in recall between HYDR and OTHER, due to oversampling of
the OTHER class.

4. Discussion and Conclusions

Results indicate that sensor fusion can improve the automated classification of SAV
relative to the performance provided by each of the individual sensing modalities. Acoustic
imaging provided high precision in detecting the absence of SAV at all depths (NONE
class), while neural networks trained on RGB images better distinguished hydrilla from
other SAV. When ensembling outputs from the two modalities, applying logic provided the
most notable improvement in classification accuracy. While not tested for statistical signifi-
cance, combining the MC Dropout approach with logic provided a slight improvement to
overall accuracy.

One area of particular interest was the tendency of the hydroacoustic imagery to
overpredict instances of the “HYDR” class in test set data. Figure 11 shows representative
images selected from the training data for the “HYDR” class images and test data selected
from the “OTHER” class images.

In both images, the lake bottom is visually distinguishable, as well as vertical growth
of bands of SAV beginning at the lake bottom. Due to the image resolution of hydroacoustic
imagery and lack of color information available, little information is present in either image
that can be used to distinguish between each species. Because of this, it is plausible that
the hydroacoustic network learns to classify images fitting the form described above as
“HYDR,” leading to frequent misclassifications. Aerial RGB imagery helps to remedy the
lack of identifying information present in hydroacoustic images due to its much higher
pixel resolution and the presence of color, shape, and depth information present in the
feature-rich RGB spectrum. The result of the fusion of information is a network that is able
to robustly detect the presence or absence of SAV across the range of water column heights,
while also providing relatively high-accuracy classification of SAV near the top of the water
column. However, there exists a range in the water column where classification accuracy
performs poorly. When factors such as lake depth, turbidity, sun glint, wave action, and
plant height render the SAV difficult to view from aerial imagery, hydroacoustic data are
able to effectively identify the presence of SAV but often fail to distinguish between species.
Figure 12 shows an example of test set misclassification, where SAV obscured partially by
wave action and plant depth is identified but misclassified.

Clearly, the growth of hydrilla is still present in the aerial RGB image. However,
the features of the hydrilla growth used by the RGB-based neural network to perform
classification are distorted as light passes through the water column. Consequently, the
combined network is unable to consistently generate the correct classification of “HYDR”
for the image pair shown.
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While current classification performance still leaves room for improvement, the multi-
sensor fusion approach for classification of subaquatic plant species demonstrates the
potential to increase generalization and improve classification performance. Current fusion
of aerial RGB imagery and hydroacoustic imagery exhibits classification performance that
decreases as a function of increasing water turbidity and plant depth within the water
column. However, all sensor data required for classification performance (hydroacoustic
and RGB) are currently collected during a typical mapping operation. Addition of a
third sensor, such as high-definition RGB images taken below the water surface, could
provide the supplementary information needed to provide accurate classification in deeper
water outside of the littoral zones. Alternatively, utilization of hydroacoustic systems with
higher-definition imaging capabilities could potentially provide the same benefits, while
maintaining the same runtime computational complexity and data collection burdens.

At the time of this publication, real-time classification utilizing the sensor fusion
concept of this paper is currently under development. This methodology utilizes a Windows
laptop running MATLAB and Python scripts, for data processing and classification, and a
wireless SD card (Toshiba FlashAir, Toshiba, Tokyo, Japan) to transmit sonar log data from
the sonar head unit to the laptop. UAV-based RGB images are captured asynchronously,
prior to classification, and copied to the laptop hard drive. Tests to date indicate that sonar
data collection and processing and sensor fusion classification can be performed in real time;
however, transmission of sonar log data via the wireless SD card is currently inconsistent.
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