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Abstract: Rule-based traditional motion planning methods usually perform well with prior knowl-
edge of the macro-scale environments but encounter challenges in unknown and uncertain environ-
ments. Deep reinforcement learning (DRL) is a solution that can effectively deal with micro-scale
unknown and uncertain environments. Nevertheless, DRL is unstable and lacks interpretability.
Therefore, it raises a new challenge: how to combine the effectiveness and overcome the drawbacks
of the two methods while guaranteeing stability in uncertain environments. In this study, a multi-
constraint and multi-scale motion planning method is proposed for automated driving with the
use of constrained reinforcement learning (RL), named RLTT, and comprising RL, a topological
reachability analysis used for vehicle path space (TPS), and a trajectory lane model (TLM). First, a
dynamic model of vehicles is formulated; then, TLM is developed on the basis of the dynamic model,
thus constraining RL action and state space. Second, macro-scale path planning is achieved through
TPS, and in the micro-scale range, discrete routing points are achieved via RLTT. Third, the proposed
motion planning method is designed by combining sophisticated rules, and a theoretical analysis
is provided to guarantee the efficiency of our method. Finally, related experiments are conducted
to evaluate the effectiveness of the proposed method; our method can reduce 19.9% of the distance
cost in the experiments as compared to the traditional method. Experimental results indicate that the
proposed method can help mitigate the gap between data-driven and traditional methods, provide
better performance for automated driving, and facilitate the use of RL methods in more fields.

Keywords: motion planning; automated driving; reinforcement learning; reachability analysis

1. Introduction

The industrial demand for automated driving technology is increasing, and this
technology has made remarkable progress in providing promising transportation to our
lives [1,2]. However, vehicle motion planning for automated driving needs further de-
velopment which considers multiple constraints in sparse information environments; in
these environments, macro information is known and micro information is unknown and
uncertain, especially for safe, effective, and precise motion planning. In automated driving,
a real traffic environment is full of uncertainty due to information incompleteness, traffic
disturbances, and other factors such as the incomplete information provided by vehicle
sensors and the disturbances of obstacles, which lead to complex traffic environments that
may be difficult to predict in real time [3].

Various of traditional motion planning methods (non-data-driven methods) use heuris-
tic algorithms [4], sampling-based methods [5], and rule-based methods [6,7] for automated
driving. Although these methods perform well via solid mathematical models in terms of
robustness, interpretability, and stability, they still need considerable human knowledge in
advance; therefore, modeling the complex and uncertain environments using these models
is difficult, and these models might not perform well under unknown and uncertain envi-
ronments. However, reinforcement learning (RL) (data-driven methods) [8–10] does not
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need a lot of human knowledge in advance and may perform better in unknown and un-
certain environments via trial-and-error learning, which can model complex environments
using data-driven methods [11]. For example, AlphaGo shows superior performance via
RL [12] as compared to humans in the Game of Go, which is one of the most challenging
games that exist; Gu et al. provided a multi-agent RL method that could teach multiple
robots how to run in a multi-agent system while considering the balance between the robots’
rewards and safety, in which an agent not only needs to consider its own reward and other
agents’ rewards, but also its safety and other agents’ safety in unstable environments [9].

Indeed, agents using RL methods can learn how to automatically navigate a vehicle
via exploration and exploitation [13,14]. Therefore, combining RL with traditional methods
is significant as it can achieve better performance in uncertain environments for vehicle
motion planning. However, how to combine traditional methods with RL and consider
safe, effective, and precise motion planning while leveraging the advantages of these two
methods and overcoming their shortcomings is a challenge. In this study, a strategy is
proposed in which RL is constrained, thus leveraging traditional methods such as the
topological path search (TPS) and the trajectory lane model (TLM) to achieve safe, effective,
and precise motion planning (named RLTT).

Several key issues need to be solved in this study: First, the routing points need to
be considered in a dynamic model of vehicles, which can make motion planning more
reasonable and closer to actual environments. Second, how to transform between RL and
the topological path needs to be resolved because RL is a trial-and-error algorithm in
which the search for paths for large-scale areas with respect to the search time is difficult.
On the contrary, the method of TPS can easily and effectively plan a path for large-scale
areas. Third, how to build a dynamic model for automated driving and provide dynamic
constraints that can render safer, more effective, and more precise motion planning should
be considered.

To settle the mentioned problems, we first propose a planning hierarchy framework
with three levels, as shown in Figure 1. The first level is for macro-scale planning via TPS,
and the second level is the RL method used for micro-scale planning; the differences between
macro-scale and micro-scale planning can be found in reference [15]. The third level is TLM,
which can make motion planning more precise and closer to actual environments. Second, we
take into account that solving the interpretability and instability problems of deep learning
(DL) is difficult because DL’s ability is known, but its operations are unknown. Thus, from
the perspective of the traditional methods, TPS and TLM are leveraged to ensure safety and
to constrain the RL search space, where motion planning can be stabilized by combining their
advantages and overcoming their shortcomings. Third, for uncertain environments such as
an uncertain obstacle, RL is used to explore dynamic and uncertain environments, and then
multiple constraints are considered and the safety range is set through a safe TPS buffer.

The contributions of our proposed method and model are as follows:

• The RLTT method along with a theoretical analysis is proposed for automated driving,
in which a novel planning hierarchy framework of three levels and a multi-scale
planning based on TPS, RL, and TLM are introduced.

• Multiple constraints of vehicles are considered, such as the dynamic constraints of
vehicles, smooth constraints, and safety constraints, thereby making motion planning
more reasonable and closer to actual scenarios.

• Uncertain environments are also considered in the proposed planning method, which
achieves superior performance as compared to related works.

• Safe and efficient motion planning for automated driving is achieved. The RLTT
method, by combining traditional methods and RL, can perform well under sparse
information environments and multi-scale planning environments.
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Figure 1. A framework of the RLTT method: a planning hierarchy framework of three levels for
motion planning with data flow.

The remainder of this paper is organized as follows: Related works are introduced
in Section 2; the dynamic model of a vehicle is provided in Section 3; TLM is presented in
Section 4; the method of TPS is introduced in Section 5; the RLTT method for automated
driving is introduced in detail in Section 6; related experiments are described in Section 7;
the conclusion of the paper is given in Section 8.

2. Related Work

The planning for unmanned vehicles has attracted a lot of attention in the automated
driving community [16], especially from the perspective of data-driven methods in complex
environments which are unknown and uncertain.

For example, in [17], Bernhard and Knoll considered uncertain information using
neural networks for automated vehicle planning. Nevertheless, they assumed all infor-
mation about other vehicles to be known, and that this assumption might not be suitable
for real environments. Zhang et al. [18] developed a novel bi-level actor–critic method for
multi-agent coordination. Although their method achieved great success in making quick
decisions regarding automated driving in highway merge environments, this method could
not guarantee the safety of automated vehicles. Nick et al. [19] introduced an algorithm for
clustering traffic scenarios, in which they combined convolutional neural networks and
recurrent neural networks to predict traffic scenarios for the ego vehicle’s decision-making
and planning. However, their method might be unstable for some extreme traffic scenarios
because of the uncertain and imperfect information on some traffic situations, such as
intersection environments. In [20], a safe motion planning for autonomous vehicles based
on RL and Lyapunov functions was proposed, where the reward function was optimized
with respect to agent safety, and the balance between reward and safety was analyzed
by optimizing the probability of collision. Similarly, uncertain environments were also
not considered.

Chen et al. [21] developed an end-to-end method for automated driving using RL and
a sequential latent environment model, which is a semantic bird-eye mask; their methods
were more interpretable than other machine learning methods to some extent. However,
their method may still need to further consider sparse information environments and multi-
ple constraints for automated driving. Tang et al. [22] introduced a motion planning method
for automated driving using a soft actor-critic method [23], in which different strategies
were balanced via the weights of safety, comfort, and efficiency. Zhu et al. [24] developed
a motion planning method to consider the factor of pedestrian distraction based on a
rule-based method and a learning-based method. Their experimental results demonstrated
that the learning-based method may be better at handling the unsafe action problem at
unsignalized mid-block crosswalks than the rule-based method; nonetheless, the learning-
based method may generate unreasonable actions. Wen et al. [3] provided a safe RL method
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for autonomous driving based on constrained policy optimization, in which the risk return
was considered as a hard constraint during the learning process, and a trust region con-
straint was used to optimize the policy. Although they achieved better performance than
CPO [25] and PPO [26] in some scenarios, their method considered risk as an optimization
objective based on neural network learning. This learning process might encounter viola-
tions of the safety constraint, which will not allow for safety to be achieved with high confi-
dence. In contrast to their methods, our method is based on a geometry reachability analysis
and vehicle dynamic verification, which can guarantee safety during automated driving.

Shai et al. [27] presented a sophisticated strategy based on RL which considers
negotiation strategies when the ego vehicle drives in complex environments. Their method
can be divided into two strategies: one strategy that can be learned, and another strategy
associated with hard constraints that cannot be learned (e.g., safety constraints). Although
they tried their best to ensure the safety of automated driving, their method still required an
improvement in adaptability for more complex environments such as a complex intersection
with multiple heterogeneous vehicles and pedestrians. Sarah M. Thornton [28] proposed a
method that leveraged the Markov decision process (MDP) and dynamic programming to
control the vehicle speed for safety, and this method considered uncertain pedestrians at a
crosswalk. However, the method might require improvements in order to consider more
uncertain environments, and the search space may need to be reduced for efficient planning.
Codevilla et al. [29] used condition imitation learning for a high-level command input to
achieve automated driving in simulation environments and for a 1/5-scale robotic truck in
real environments. Although both experiments evaluated the effectiveness of their method,
the method may need to address the need of automated vehicles for human guidance in
sparse information environments.

Moreover, there are many alternative methods available for solving robot motion
planning problems, such as a probabilistic Chekov method for robots that plans via chance
constraints [30], a probabilistic collision constraint planning based on Gaussian probability
distribution functions [31], artificial potential fields for motion planning [32], symptotically
optimal planning for robots on the basis of a rapidly exploring random tree (RRT) [33], direct
sampling for robot path planning derived from RRT [34], a fast marching method for path
planning [35], etc.; although the above methods have shown impressive progress in robot
motion planning research, the methods may need to be further developed for autonomous
driving and consider the features of vehicles and autonomous driving environments.

In this paper, the proposed RLTT is different from the above-mentioned methods
because it can achieve safe and efficient automated driving in sparse information environ-
ments while considering multi-constraint and multi-scale motion planning.

In RLTT, TLM is developed on the basis of the trajectory unit, which was first proposed
for unmanned surface vehicles (USVs) [36–38]. However, USVs are different from auto-
mated vehicles. The freedom of control, navigation environments, and vehicle shapes are
different [15,39]. The trajectory unit may not be suitable for automated vehicles, therefore
developing TLM for automated vehicles is necessary. Moreover, TLM is different from a
lattice planner[40] because a lattice planner is achieved using sample and fit data, which
may require a huge amount of time and more computing power. In contrast, TLM is
achieved via a dynamic model of vehicles in advance. In addition, TPS is proposed to
constrain the RL search space and provide routing points for RL navigation, which can
improve RL efficiency. Finally, the hierarchy framework is proposed by integrating TPS,
RL, and TLM to develop the RLTT method, which can make the proposed method and
model more unified.

3. Problem Formulation

In this study, a constrained RL problem is considered for motion planning; in particular,
uncertain constraints Fun, dynamic constraints Fdy, safety constraints Fsa, and smooth
constraints Fsm are considered.
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3.1. Uncertain Constraints Fun

For the convenience of description, we have provided the following definitions for (1):
Oobstacle denotes the obstacles; Oshape denotes the shape of the obstacles; Oposition denotes
the position of the obstacles; Opart denotes partial information about the obstacles’ positions
and shapes.

Definition 1. In uncertain environments, since information about an obstacle shape cannot be fully
observed, Oobserve is used to denote partial information about the obstacles that the agent observes.

Oshape ∪Oposition = Oobstacle ⊇ Opart ⊇ Oobserve. (1)

3.2. Dynamic Constraints Fdy

Dynamic constraints Fdy can be defined as the dynamic model of vehicles, which is
briefly shown in Figure 2. In this paper, a kinematics model, steer command, and heading
angle are considered. The kinematics model is briefly introduced in this study [41,42]. In
general, the steer command range is set to approximately −30◦ ∼ 30◦, or to −40◦ ∼ 40◦ for
other settings, and the setting of the steering command of our method is suitable for and
can be applied to real vehicle experiments.

The driving speed at the axle center of the rear axle is vr. (Xr, Yr) represents the
coordinates at the axis of the rear axle, and ϕ represents the heading angle.

vr = Ẋrcosϕ + Ẏrsinϕ. (2)

The kinematic constraints of the front and rear axles are as follows: δ f represents the
front wheel steering angle, which is similar to the steering command, and it is used to name
the steering command here.{

Ẋ f sin(ϕ + δ f )− Ẏf cos(ϕ + δ f ) = 0
Ẋrsinϕ− Ẏrcosϕ = 0,

(3)

where l indicates the distance between the rear axle and the front axle (wheelbase), w
represents the yaw rate, and R denotes the turning radius of the vehicle. The geometric
relationship between the front and rear wheels is as follows:{

X f = Xr + lcosϕ

Yf = Yr + lsinϕ,
(4)

{
R = vr/w
δ f = arctan(l/R).

(5)

According to the analysis above, the kinematic constraints can be briefly summarized
in Equation (6): Ẋr

Ẏr
ϕ̇

 =

cosϕ
sinϕ

0

 ∗ vr +

0
0
1

 ∗ w. (6)
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Figure 2. A briefly diagram of the vehicle dynamic constraints.

3.3. Safety Constraints Fsa

The safety distance is Dsa f ety, and the distance between the point of motion planning
Ppoint and obstacles Oobstacle is Dp.

Definition 2. The safety constraints (Fsa) are represented by Equation (7):

Dsa f ety ≤ Dp. (7)

3.4. Smooth Constraints Fsm

The motion planning points are represented by the set P,
N
∑

n=1
pn ⊆ P. The two adjacent

points are p1 and p2. The two-steer angle difference of any two adjacent points is δnormal .
The limitation of the two-steer angle difference of any two adjacent points is δlimitation,
where δlimitation is set to smoothen the steer angle.

Definition 3. The smooth constraints Fsm can be represented by Equation (8):

δnormal ≤ δlimitation. (8)

In conclusion, we need to find a proximal optimal motion planning set Pop for vehicles
that can also simultaneously satisfy the constraints Fun, Fdy, Fsa, and Fsm.

Definition 4. The objective needs to satisfy the following constraints, which can be formulated
as follows:

Pop ⊆
(

Fun ∩ Fdy ∩ Fsa ∩ Fsm

)
. (9)

4. Trajectory Lane Model

The trajectory lane model (TLM) can be considered as a bridge that connects the
routing planning and the dynamic constraints of a vehicle, thus allowing the motion
planning to become closer to actual environments, as shown in Algorithm 1. TLM is
constructed according to the dynamic model of the vehicle, and relative TLM rules are
introduced to achieve effective and precise motion planning.
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Algorithm 1: Generating Trajectory Lane.

Input: The acceleration a, velocity v, position (x, y), front wheel steering angle δ,
differential time dt, interval time T, heading angle ψ, wheelbase f rlen, i
← 0, t← 0;

Output: Trajectory lane model m;
for i do

i← i + 1;
x′ ← x + v ∗ cos(ψ)dt;
y′ ← y + v ∗ sin(ψ)dt;
ψ′ ← ψ + (v/ f rlen) ∗ δ ∗ dt;
v′ ← v + a ∗ dt;
x ← x′, y← y′, ψ← ψ′, v← v′;
t← t + dt;
if t <= T then

Break.
end

end

4.1. Rules Design

Based on the analysis above, the following rules have been designed:

• Rule one: The trajectories of each of the actions are equal in length. This is for the
continuous, regularized, and easily spliced trajectories.

• Rule two: Each trajectory has only one steer command, except for the start and end
steer commands; this is for the smooth steer. The relative angle (steering angle)
between two adjacent points is not greater than one degree; this is for generating a
smooth trajectory.

• Rule three: The trajectory of each action has the same speed; this is for those with
equal length. At the start and end of the trajectory, the condition is the same.

4.2. Analysis of TLM

According to the rules above and the dynamic model of a vehicle, TLM can be con-
structed. The introduction of the construction of the TLM m can be found in Algorithm 1, in
which several types of TLMs are constructed on the basis of the constraints of the action and
the state space.

(1) TLM—type one: This is the simplest type, which only has eight direction actions,
and it can be seen in Figure 3a. This kind of TLM does not have sufficient actions to achieve
motion planning, and the model can not achieve curve turning.

(a) (b)

Figure 3. Straight-line trajectory lane and semicircle trajectory lane models. (a) Straight-line trajectory
in 8 action directions. (b) Semicircle trajectory in 16 action directions.
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(2) TLM—type three: This type of TLM, with 16 direction actions, has more actions than
the first type, which has eight direction actions (as shown in Figure 3b). It can comprise the
second type, including four direction-action positive semicircles and four direction-action
negative semicircles (as shown in Figure 4b). This type of TLM still does not have sufficient
actions to achieve motion planning, and sometimes this type of TLM for motion planning is
locally optimal.

(a) (b)

Figure 4. Semicircle trajectory lane model. (a) Negative semicircles in 12 directions based on 8 actions;
(b) A 24 direction-action TLM.

(3) TLM—type four: This type of TLM, with 24 direction actions, has more actions than
the second type and can comprise the second type and 8 direction-action trajectories near
the maximum rudder angle along the x and y axes; this can be seen in Figure 4b. This type
of TLM is similar to the third type, and sometimes the type of TLM for motion planning is
also locally optimal.

(4) TLM—type five: This type of TLM, with 40 direction actions, has more actions than
the third type and can comprise the third type and 8 direction-action smooth semicircles
(Figure 5a); this can be seen in Figure 5b. To some extent, this type of TLM has sufficient
actions to achieve motion planning and can achieve proximal optimal motion planning.
Figure 6 shows the 40 direction-action TLM with one example of a smooth circle. A
theoretical analysis is provided in Lemma 1, which can prove that type four is the proximal
optimal trajectory; in Theorem 1, completeness of trajectory space is proved.

(a) (b)

Figure 5. Semicircle trajectory lane model. (a) A 32 direction-action TLM. (b) A 40 direction-action TLM.
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Figure 6. A 40 direction-action TLM, with one example of a smooth circle.

Lemma 1. The proximal optimal type of TLM for motion planning can be considered to be TLM’s
type five, where the TLM has 40 search directions for motion planning.

Proof. Taking type one of TLM as an example, it can be transformed into the optimal
distance problem.

A trajectory is T = {p1, p2, · · · , pi, · · · , pn}, a point i is pi = {ti, xi, yi, δi, vi, ai}, the
distance between any two adjacent points is di,i+1 =

√
(xi+1 − xi) + (yi+1 − yi), the set of

trajectories in the space is expressed as T = {T1, T2, · · · , T j, · · · , Tm}.
The trajectory Tj can be presented as yj

i = Aj(xj
i)

2 + Bjxj
i + Cj, Aj, Bj, and Cj are the

correlation coefficients. According to the law of a triangle, the sum of two sides is greater
than the third side. j denotes the trajectory type, jh denotes the h trajectory of the j trajectory
type, ijh denotes the i point of the h trajectory of the j trajectory type.

dj0
ij0 ,ij0+1

=

√
(xj0

ij0+1
− xj0

ij0
)2 + (yj0

ij0+1
− yj0

ij0
)2

=

√
(xj0

ij0+1
− xj0

ij0
)2 +

[
(Aj0(xij0+1)

2 + Bj0 xj0
ij0+1

+ Cj0)− (Aj0(xj0
ij0
)2 + Bj0 xij0 + Cj0)

]2

∀ 0 ≤ ij0 ≤ nj0 , 0 ≤ jh ≤ mjh ,

(10)

dj1
ij1 ,ij1+1

=

√
(xj1

ij1+1
− xj1

ij1
)2 + (yj1

ij1+1
− yj1

ij1
)2

=

√
(xj1

ij1+1
− xj1

ij1
)2 +

[
(Aj1(xj1

ij1+1
)2 + Bj1 xj1

ij1+1
+ Cj1)− (Aj1(xj1

ij1
)2 + Bj1 xj1

ij1
+ Cj1)

]2

∀ 0 ≤ ij1 ≤ nj1 , 0 ≤ jh ≤ mjh ,

(11)

According to the law of a triangle, the sum of two sides is greater than the third side.

dj0,1

ij0 ,ij0+1,ij1 ,ij1+1
=

√
(xj1

ij1+1
− xj0

ij0
)2 + (yj1

ij1+1
− yj0

ij0
)2

=

√
(xj1

ij1+1
− xj0

ij0
)2 +

[
(Aj1(xj1

ij1+1
)2 + Bj1 xj1

ij1+1
+ Cj1)− (Aj0(xj0

ij0
)2 + Bj0 xj0

ij0
+ Cj0)

]2

∀ 0 ≤ ij0 ≤ nj0 , 0 ≤ ij1 ≤ nj1 , 0 ≤ jh ≤ mjh .

(12)

dj0,1

ij0 ,ij0+1,ij1 ,ij1+1
< dj1

ij1 ,ij1+1
+ dj0

ij0 ,ij0+1
, (13)

Dj0 =
nj0

∑
i

dj0
ij0 ,ij0+1

, (14)

Dj1 =
nj1

∑
i

dj1
ij1 ,ij1+1

, (15)
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Dj0,1 =
nj0,1

∑
i

dj0,1

ij0,1 ,ij0,1+1
, (16)

Dj0,1 < Dj0 + Dj1 . (17)

In addition, this is similar to other types of TLMs and curve constraints (or steering
smooth constraints), and the fifth type of TLM can be proven to be the proximal optimal
TLM for motion planning. With an excessive number of trajectories, the search complexity
will be large, and the fifth type of TLM will be sufficient for the trajectory probability.
Completeness of trajectory space is subsequently proven.

Based on the Minkowski inequality and its sum [43], we can observe that Dj0,1 is the
proximal optimal trajectory, and the fifth type is the proximal optimal TLM.

Theorem 1. Completeness of trajectory space: any target point in space Rn can be reached using

TLM. The number of optimal trajectory circles to cover the convex hull P′ is N
d√
βi

2

, in which the
number of vertices of the convex hull P′ is N, the diameter of a convex hull P′ is d, and the radius of
any circle of the proximal optimal TLM is βi.

Proof. It can be transformed into the completeness of the quadratic equation problem.

m

∑
i=1

λizi where λi ≥ 0 and
m

∑
i=1

λi = 1, (18)

conv(P′) :=
{

convex combinations of z1, . . . , zm ∈ P′ for m ∈ N
}

. (19)

Based on Caratheodory’s theorem [44], we can observe that for any point pi in a convex
hull P′, pi can be covered with a set of less than nd points in the convex hull P′, nd is the
dimension of the convex hull P′, and this will depend on the dimension of the convex
hull P′, P′ ∈ Rn, whose proof can be seen in reference [44]. Derived from Caratheodory’s
theorem, an approximate Caratheodory’s theorem is proposed [45], which does not depend
on the dimension of the convex hull P′. We prove the space completeness of the trajectories
of the TLM based on the approximate Caratheodory’s theorem.

xi (i ⊆ N) is any point that belongs to a convex set T′, with the set being bounded by a
circle (its diameter is within 1) and an integer k. The proximal optimal TLM, which can
be regarded as three different circles, is shown as Figure 7a; these three circles can cover
any reachable areas under vehicle dynamic constraints, implying that the proximal optimal
TLM can achieve the completeness of trajectory space for motion planning.

Next, we will prove the completeness of the trajectory space by using any circle from
our proximal optimal TLM; this is shown in Figure 7b. The set of any convex hull P′ is T′,
the number of vertices of the convex hull P′ is N, the diameter of a convex hull P′ is d, and
the radius of any circle of the proximal optimal TLM is βi. λi is the probability of point pi,
and x is a point within the reachable areas.

P{p = pi} = λi, i = 1, . . . , m, (20)

Ep =
m

∑
i=1

λi pi = x. (21)

Based on the strong law of large numbers, we can obtain the following equation:

1
k

k

∑
j=1

pj → x. (22)
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(a) (b)

Figure 7. (a) Different circles of proximal optimal TLM that cover different points. (b) Covering
areas that satisfy the vehicle’s dynamic constraints using the proximal optimal TLM.

According to the weak law of large numbers, we can compute the variance of 1
k ∑k

j=1 pj,

E
∥∥pj − x

∥∥2
2 = E‖p−Ep‖2

2

≤ E‖p‖2
2 ≤ d,

(23)

moreover, we can observe that

E

∥∥∥∥∥x− 1
k

k

∑
j=1

pj

∥∥∥∥∥
2

2

=
1
k2E

∥∥∥∥∥ k

∑
j=1

(
pj − x

)∥∥∥∥∥
2

2

=
1
k2

k

∑
j=1

E
∥∥pj − x

∥∥2
2.

(24)

Therefore,

E

∥∥∥∥∥x− 1
k

k

∑
j=1

pj

∥∥∥∥∥
2

2

≤ d
k

. (25)

For the random variables, we can have∥∥∥∥∥x− 1
k

k

∑
j=1

pj

∥∥∥∥∥
2

2

≤ d
k

. (26)

Thus, for any radius βi of any TLM circle that satisfies the vehicle constraints, we can
observe that ∥∥∥∥∥x− 1

k

k

∑
j=1

xj

∥∥∥∥∥
2

≤ d√
k
≤ βi, (27)

which is derived from [44], and there are Nk ways to choose k with repetition to cover the
cardinality of N. Thus,

N ≤ Nk = N( d
βi
)2

. (28)

The number of TLM circles to cover reachable areas is N( d
βi
)2

, implying that we can

use the N( d
βi
)2

TLM circles to cover any convex hull P′; the area is also reachable by using
the proximal optimal trajectory circle, which finishes the proof.
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5. Topological Path Search for Automated Driving

For a large-scale and efficient path search, a topological map meant for high path
search efficiency is constructed [46,47]. During the path searching process, the open
geospatial consortium (OGC) is used to make a topological map [48]. OGC defines a simple
feature model that is suitable for efficiently storing and accessing geographic features in
relational databases.

A spatial map comprises nodes, lines, and a surface, which are three elements for
constructing a map: a node is a point that does not have spatial features such as shape
and size; a line comprises a series of nodes, whose spatial features include shape, length,
etc.; the surface comprises closed rings, whose spatial features include shape, area, etc.
In TPS, a node denotes the vehicle, a line denotes the routing path, a surface denotes
the obstacles.

Spatial relationship refers to the spatial characteristic relationship between geographi-
cal entities, which is the basis of spatial data organization, query, analysis, and reasoning.
It includes topological, metric, and direction relationships. Numerous topological relation
expression models have been proposed to represent spatial relationships. In this study,
the nine-cross model [48] is used to represent the space topological relationship used for
the construction of a topological map. This is introduced through Function (29), where A
and B represent two different objects, (ð) denotes the edge of an object, (◦) denotes the
internal part of an object, (−) denotes the external part of an object, and (

⋂
) denotes the

intersection of two objects.
Based on Function (29), the topological relation predicates are defined, which are

Crosses, Disjoint, Within, Contains, Equals, Touches, Intersects, and Overlaps. In this
paper, we leverage Intersects, Disjoint, Touches, and Contains to analyze the topological
relationship shown in Figure 8. For example, [FF ∗ FF ∗ ∗ ∗ ∗] denotes the Disjoint; [FT ∗
∗ ∗ ∗ ∗ ∗∗], [F ∗ ∗T ∗ ∗ ∗ ∗∗], and [F ∗ ∗ ∗ T ∗ ∗ ∗ ∗] denote Touch; [T ∗ F ∗ ∗F ∗ ∗∗] and
[T ∗ ∗ ∗ ∗ ∗ FF∗] denote Contains/Within; [T ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗], [∗T ∗ ∗ ∗ ∗ ∗ ∗∗], [∗ ∗ ∗T ∗ ∗ ∗ ∗∗],
and [∗ ∗ ∗ ∗ T ∗ ∗ ∗ ∗] denote Intersects via the nine-cross model. For two objects in space, a
and b, the intersection value (φ) is denoted by F (False), the value −(φ) is denoted by T
(True); the intersection is represented by 0 when the point is the intersection, by 1 when the
line is the intersection, and by 2 when the area is the intersection. ∗means that f, 0, 1, or 2
can be selected. More specifically, a. Disjoint b means two geometric bodies (a and b) have
no common intersection, thus forming a set of disconnected geometric shapes.

Figure 8. Schematic diagram of the topological path reachability.

After constructing the topological map, the Dijkstra algorithm [49] is used to achieve
an optimal routing planning, and the Euclidean metric is used to measure the distance
between two points, which is provided by Function (30). The algorithm is described in
Algorithm 2, in which Function (29) is used to judge the topological relationship between
obstacles On, the start point S, and the end point E; Function (29) is used to judge the
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topological position relationship between the path point and each point Oij of the ith
obstacle Oi.

In addition, the safety buffer is set according to topological relationships. Moreover,
the routing path can be achieved by the Dijsktra algorithm using Function (30) based on the
constructed topological map; the Dijskra algorithm can achieve a more optimal path than
other heuristic algorithms, e.g., the A* algorithm, even though it requires more computing
time. However, in this study, the Dijskra algorithm based on TPS could quickly find the
optimal path and satisfy motion planning constraints.A◦

⋂
B◦ A◦

⋂
ðB A◦

⋂
B−

ðA
⋂

B◦ ðA
⋂
ðB ðA

⋂
B−

A−
⋂

B◦ A−
⋂
ðB A−

⋂
B−

, (29)

d(u, v) =
√
(xu − xv)2 + (yu − yv)2. (30)

According to the size of the vehicle maneuver, the size of the safety buffer is set at
8 (m), which indicates that the distance between the path and the obstacles is always 8 (m),
thus making the route planning safe and suitable for motion planning.

Algorithm 2: The method of TPS for automated driving.
Input: The set of obstacles On; the start point S and the end point E, the number of

the ith obstacle of all points OPi, path point MP, i← 0;
Output: Macro-scale routing point MPn;
for i do

i← i + 1;
j← 0;
for j do

j← j + 1;
Compute (29) to judge the relationships between the MP and Oij of the ith
obstacle Oi;

if j = OPi then
Break;

end
end
if j = On then

Break;
end

end
Set the safety buffer and store the topological map;
Call Dijkstra algorithm and compute function (30) for topological path MP, and
add MP to MPn;

return MPn.

6. A Motion Planning Method for Automated Driving

TLM and TPS were constructed in the previous sections. In this section, we will discuss
how to achieve motion planning for automated driving. RL is briefly introduced [8], the
RLTT method for automated driving is then presented in detail, and multiple constraints are
considered in the RLTT method.

TPS is introduced for large and macro-scale motion planning, in which both driving
safety and optimal path planning are achieved via a safety buffer, a topological map, and
the Dijkstra algorithm. A representation of TPS constraints is given in Figure 9a. For
micro-scale motion planning, in which the environment contains uncertain and imper-
fect information, building a model and learning experiences via a data-driven method
is easier than traditional methods; in contrast, when the environment is uncertain, the
environment is difficult to model via traditional methods. Figure 9b shows the represen-
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tation of constraints through RL. TLM can be used for dynamic constraints and smooth
constraints, in which the kinematic model of vehicles and steer constraints as well as the
relative angle between any two adjacent points are also limited; the representation of
TLM is given in Figure 9c. Considering this type of framework and environment is useful
because the perfect environment information cannot be obtained in a real environment
even if advanced sensors are used. The proposed method could aid in the advancement of
automated driving.

Figure 9. TPS, RL, and TLM for automated driving. (a) Representation of TPS constraints. (b) Repre-
sentation of RL constraints. (c) Representation of TLM constraints.

6.1. RL Methods

RL can be typically regarded as MDP, and MDP is presented by a five-object tuple
(S, A, P, R, γ), where S denotes the state space, A denotes the action space, P shows the
probability of transition, R represents the reward once one action is performed, and γ
denotes the discounted factor of the reward. In this study, RL is regarded as the partial
observation MDP, where RL makes an agent interact with the environments through trial-
and-error learning in order to obtain more data about the environments, and the agent can
then learn better about the environments as well as perform better. In particular, RL can
deal with uncertainty problems better than traditional methods. Notably, the most likely
action can be selected in the future environment on the basis of previous exploration. It can
reduce the uncertainty about the environment, which means that more knowledge can be
acquired about the environment, and more certain information can be obtained for future
decision making.

6.2. A Motion Planning Method

First, the TLM and TPS are introduced into the framework, and Q learning is developed
based on the TLM and TPS, providing the constrained RL for safe motion planning.

Second, the transition function f of Q learning is integrated into TLM and TPS. More
specifically, for the transition function f , the input is action a, the current position is Pc, the
angle is A, and the terminal is PT ; the output is the next position Pn, the reward is r, done is
T, and the next angle is An. The transition process is as follows: If the current position Pc
has collided with an obstacle Oobstacle, then return the state s, reward r, done, and angle A;
if the current position Pc has reached the terminal PT , then return state s, reward r, done,
and angle A; at the same time, if angle A and action a are equal to angle At and action at of
the trajectory, respectively, we can obtain the next position Pn ← current position Pc, next
angle An ← angle A, and obtain the related reward r. If the next position Pn has collided
with an obstacle Oobstacle, then return the state s, reward r, done T, and angle A; if the next
position Pn has reached the terminal PT , then return the state s, reward r, done T, and angle
A. Iteratively proceed according to this logic, obtain the related path information, and
return each position’s next position Pn, reward r, done T, and next angle An for further
motion planning.
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Third, the algorithm of Q learning is presented for the path value, which can be seen
in Algorithm 3. Finally, according to the distance of the safety buffer, select the routing
points and call Algorithm 4 for the automated driving motion planning.

Algorithm 3: Q learning method for the path value.
Input: The start point Sij and end point Eij of each segment from the MPn set

(i = 1, 2, . . . , n, j = 1, 2, . . . , n′), S′ represents the reachable points;
Output: The Q(s, a) in each segment;
Initialize the Q value (s, a), ∀ s ∈ S, a ∈ A, set parameter α, γ ;
for episode z = 0 to Z do

Select the action a according to the initial state s and ε-greedy strategy;
while s is not the terminal do

Conduct a, then get reward r, next angle ψ′ and next state s′ according to
transition strategy f , angle ψ, and state s;

if next state s′ ∈ S′ then
Q(s, a)← Q(s, a) + α[r + γmaxQ(s′, a′)−Q(s, a)];
s← s′, a← a′;

end
end
if s is terminal then

Break;
end

end
return Q(s, a).

Algorithm 4: Motion planning for automated driving via RLTT.
Input: The start point Sij and end point Eij of each segment from the MPn set

(i = 1, 2, . . . n, j = 1, 2, . . . n′), and vehicle environments (trajectory)
generated via Algorithms 1 and 2;

Output: The command steer of each point δ; the position of each point in each
segment (Xij,Yij); the heading angle ψ of each point during the segment;

Initialize the initial state s (including Sij), heading angle ψ, learning rate α, greedy
strategy parameter ε, call Q learning, and return Q value via Algorithm 3;

while trajectory t not get done do
Append state s into the path and select the action a according to the initial state

s and the greedy strategy;
Add state s into a specific position via Algorithm 3 and append position,

action, and angle into motion planning table f 1;
Conduct a, then obtain reward r, next angle ψ′, and next state s′ according to
the transition strategy f , angle ψ, and state s;

end
for i = 0 to the length of motion planning steps do

Call trajectory lane model;
if angle and action of motion planning f 1 are equal to the angle and action of
trajectory m then

Record the trajectory m;
end

end
return Continuous motion planning trajectory m.

6.3. Motion Planning Examples

A motion planning example of automated driving via RLTT is illustrated in this section.
The problem of motion planning in certain and perfect information environments may be
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easy to solve using the traditional methods such as the sample-based method. However, if
uncertain environments and vehicle constraints are considered, the traditional methods
may not perform well. For example, in Figure 10a, the red circle point represents the start
point, the green circle point represents the end point, and the green arrow represents the
dynamic constraints, including the heading constraints and steer constraints, among others.
When the environment is 65% certain and 35% uncertain, for example, 35% of the obstacles
expand randomly upward or downward by 35%. More specifically, the position and shape
of 65% of the obstacles are certain, and the position and shape of 35% of the obstacles are
uncertain. When the vehicle is navigating, 35% of the obstacles change at random. The
RLTT method can perform well in the environments because it can efficiently and rapidly
explore the unknown world in micro-scale motion planning (blue box (from the S point to
the M point) and purple box (from M point to E point)). More specifically, it leverages TPS
for large and macro-scale routing planning (red box (represented by the black arrow from
the S point to the E point)) and TLM for micro and precise motion planning (deep pink
line). An example is given in Figure 10b, with the motion planning trajectory represented
by the green arrow from the S point to the E point. Furthermore, we provide the complexity
analysis of RLTT in Remark 1.

(a) (b)

Figure 10. Certain and perfect information environments for vehicles. (a) does not consider dynamic
constraints, (b) considers dynamic constraints.

Remark 1. The proximal optimal search time for motion planning with a constrained RL is
as follows:

The search time for TPS is O(M2), where M represents the number of obstacle points; for the
RL search time, the complexity is O(T), where T is the total number of steps [50].

More particularly, the convergence of our method can be guaranteed based on the
Banach fixed-point theorem [51]; for the detailed convergence proof of the constrained
RL, see [52].

7. Experiments

Several experiments were conducted in the same environments, and the results are
analyzed here in detail. First, different RL methods for path search were tested. Sec-
ond, the RLTT method for motion planning was achieved for automated driving. Third,
comparison experiments in certain and uncertain environments have been carried out.
In addition, comparison experiments between RLTT and RL algorithms were provided.
Fourth, comparison experiments between RLTT and traditional algorithms were conducted
to evaluate the effectiveness of our proposed methods. Finally, RLTT for automated driving
motion planning in uncertain corridor environments was carried out to demonstrate our
method’s applicability.

Moreover, all experiments were run on an Ubuntu 18.04 system (Dell PC), in which the
CPU was an Intel Core i7-9750H CPU 2.60 GHz × 12, the GPU was an Intel UHD Graphics
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630 (CFL GT2), the Memory was 31.2 GB; all comparison experiments were conducted under
the same environment conditions, and the computation time in the experiments included
training time and test time. The number of initial iteration steps was 10,000, the learning rate
was 0.1, the epsilon value of the maximizing optimal value was 0.9. For the reward settings,
we set them on the basis of the safety cost, distance cost, and steering cost of the vehicle. If the
vehicle collided with obstacles, the reward was −10; if the vehicle found the target position
with the correct attitude, the reward was 10; the reward for each step the vehicle took along
the straight line was −0.1; for each step the vehicle took along the diagonal direction, the
reward was −0.14; for each step the vehicle took along the oblique curve, the reward was
−0.157; the reward was −0.16 for every turn in the steering action; if the vehicle took each
step along the diagonal and straight direction, the reward was −0.196.

7.1. Different RL Methods for Path Search

Related RL methods for conducting the path planning for automated driving have
been performed, which can be seen in Figure 11. The figure shows that the dynamic
programming (DP) value and policy iterations [8] achieved fewer steps, implying that the
two algorithms can obtain the shortest path for automated driving. Nonetheless, DP value
and policy iterations may be unsuitable for automated driving in uncertain and unknown
environments because the probability and reward transition might not be known, and the
above two methods typically need information regarding the model of environments.

Figure 11. Different RL methods for a path search.

In addition, the Monte Carlo (MC) RL method [8] achieved almost the same number
of steps as the Q learning [53] for automated driving. However, the MC method sometimes
falls into a deadlock during exploration and cannot obtain the desired path due to the
complex environments. The Sarsa method [54] obtains more steps than Q learning because
of its conservative strategy. Because RLTT is a multi-scale method and the safety buffer
constraints of the first level via TPS have been further considered, it is better to develop Q
learning and integrate it into the RLTT framework for automated driving. In the next section,
the experiments of the RLTT method for automated driving are introduced and discussed.

7.2. A RLTT Method for Motion Planning
7.2.1. Macro-Scale Motion Planning

In this section, macro-scale planning (generally, the planning area can be set from
approximately 100 to 2000 (m)) was accomplished via TPS (Figure 12a,b), which represents
the convex obstacle and concave-convex obstacle environments, respectively, in which the
macro-scale planning is represented by the deep pink line and the obstacles are represented
by the red rectangles. The start point and end point are S and S3 in Figure 12a and S′ and
S′3 in Figure 12b, respectively. The safety buffer was set at 8 m, as shown in Figure 12a,b
(denoted by B and the yellow arrow).
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(a) (b)

Figure 12. Macro-scale planning. (a) Convex obstacle environments. (b) Concave-convex obstacle
environments.

7.2.2. Micro-Scale Motion Planning

The micro-scale motion planning (generally, the planning area can be set at approx-
imately 100 m) was achieved, as shown in Figures 13 and 14, where the environment
information is unknown. The start point is the S point and the end point is the E point.
The obstacle is denoted by O. RL was constrained by TPS and TLM, and it was used to
dynamically explore the suitable point from the S to the E points. TLM was used to splice
the RL points, where the smooth and dynamic constraints were considered; the two bottom
obstacles randomly changed within a certain range. In particular, obstacles O3 and O4
randomly changed within the O31 and O41 ranges (as shown in the light blue rectangles);
therefore, the motion planning is different in Figures 13 and 14.

(a) (b)

Figure 13. Micro-scale planning and random obstacle (red rectangle) experiment one. (a) Grid
experiment environments and RLTT method for planning (green rectangle), where the two bottom
obstacle shapes randomly change within a certain range. (b) TLM motion planning (color curve)
according to RLTT planning.

(a) (b)

Figure 14. Micro-scale planning and random obstacle experiment two. (a) Grid experiment envi-
ronments and RLTT method for planning, where the two bottom obstacle shapes randomly change
within a certain range. (b) TLM motion planning according to RLTT planning.
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7.3. Comparison Experiments in Certain and Uncertain Environments

Related experiments were conducted in different environments, which were either
certain (known environment information) or uncertain environments (unknown environ-
ment information), as shown in Figure 15. The environments were the same except for the
random obstacles. The average distance of five uncertain experiments was 54.87 (m), and
the average distance of five certain experiments was 71.98 (m). The experiments showed
that the RLTT method could deal with the uncertain environments well.

Figure 15. Motion planning for automated driving in uncertain and certain environments.

7.4. Comparison Experiments between RLTT and Q Learning Algorithms

We conducted five experiments using the RLTT method and the Q learning algorithm
in unknown environments. The Q learning algorithm is a classic and commonly used
algorithm for vehicle navigation. The computation time of each experiment and the
averaged computation time of the five experiments using the RLTT method and the Q
learning algorithm are shown in Figures 16 and 17, respectively.

Figure 16. Computation time for each experiment on motion planning using RLTT and the Q
learning algorithm.
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Figure 17. Averaged computation time for five experiments on motion planning using RLTT and the
Q learning algorithm.

More specifically, the averaged computation times for the RLTT method and Q learning
for motion planning were 0.325 (s) and 52.279 (s), respectively. In addition, the trajectory
distance when using Q learning is usually greater than that when the RLTT method is used.
We randomly selected one of the five experiments and computed the trajectory distance.
The distance when using the RLTT method was 95.834 (m), whereas that when using the
Q learning algorithm was 126.735 (m). The results indicate that the performance of the
RLTT method was better than the classic RL algorithm, and the RLTT method achieved a
shorter trajectory distance and used less time for the path search as compared to the classic
RL algorithm.

7.5. Comparison Experiments Between RLTT and Traditional Algorithms

This section shows the experiments comparing the RLTT and traditional algorithms
for automated driving motion planning. The adopted traditional algorithm is a hybrid A*
algorithm [55], which was proposed by Dolgov et al. It was developed based on the A*
algorithm [39] by leveraging continuous coordinates to guarantee the kinematic feasibility
of the trajectories and the conjugate gradient descent in order to improve the quality of the
trajectories on the geometric workspace. The hybrid A* algorithm has shown better perfor-
mance than the rapidly exploring random trees algorithms [56,57] and the parameterized
curve algorithms [58] in terms of fast global convergence and optimal global values. It is very
useful and widely used for automated driving since the hybrid A* algorithm can be smooth
and practical for autonomous driving in real-world and unknown environments [55].

The distance of motion planning using the RLTT algorithm was 147.4 (m), which
considered dynamic constraints under the environments with sparse information; on the
other hand, in the same environments, the distance of motion planning using the hybrid
A* algorithm while considering dynamic constraints was 184.0 (m). The experimental
results indicate that our proposed method outperforms the hybrid A* algorithm in terms of
distance.

7.6. Uncertain Corridor Scenarios

We referred to the experimental settings of reference [59] to carry out an experiment on
uncertain corridor scenarios. Figure 18a shows real traffic environments: uncertain corridor
scenarios. Figure 18b shows motion planning via RLTT for an automated vehicle in real
and uncertain traffic scenarios. The red areas denote uncertain objects, where there is a
corridor, some vehicles, and pedestrians crossing the corridor uncertainly. The vehicles on
the main road (as indicated by the light blue arrow) can safely cross the uncertain corridor
scenarios; the distance of motion planning was 61.8 (m).
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(a) (b)

Figure 18. RLTT for traffic scenarios: driving corridors. (a) Real traffic scenario: uncertain corridor
scenario. (b) Motion planning for an automated vehicle in uncertain corridor scenarios.

8. Conclusions

In this study, a constrained RL method along with a theoretical analysis were de-
veloped based on the TLM and TPS methods in order to achieve a multi-constraint and
multi-scale safe motion planning for automated driving in sparse information environ-
ments. The dynamic constraints of a vehicle as well as the smooth constraints, safety
constraints, and distance optimization constraints were taken into account. In addition,
related experiments were conducted to evaluate the effectiveness of our proposed method.
Experimental results indicate that the proposed method is extendable and can be applied to
other types of vehicle navigation and control, such as ground robots for parking maneuvers
and logistics environments. We hope that our RLTT method inspires new research in
robotics development. In the future, we plan to carry out more experiments and aim to
improve the proposed method by performing more complex tasks.
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