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Abstract: Loss of hand functions, often manifesting in the form of weakness or spasticity from condi-
tions like stroke or multiple sclerosis, poses challenges in performing activities of daily living (ADLs).
The broad area of rehabilitation robotics provides the tools and knowledge necessary for implement-
ing efficient restorative therapies. These therapies aim to improve hand functionality with minimal
therapist intervention. However, the human hand evolved for various precision and power gripping
tasks, with its intricate anatomy featuring a large number of degrees of freedom—up to 31 —which
hinder its modeling in many rehabilitation scenarios. In the process of designing prosthetic devices,
instrumented gloves, and rehabilitation devices, there is a clear need to obtain simplified rehabilita-
tion-oriented hand models without compromising their representativeness across the population. This
is where the concept of kinematic reduction, focusing on specific grasps, becomes essential. Thus, the
objective of this study is to uncover the intra-finger dependencies during finger flexion/extension by
analyzing a comprehensive database containing recorded trajectories for 23 different functional move-
ments related to ADLs, involving 77 test subjects. The initial phase involves data wrangling, followed
by correlation analysis aimed at selecting 116 dependency-movement relationships across all grasps.
A regularized generalized linear model is then applied to select uncorrelated predictors, while a linear
mixed-effect model, with reductions based on both predictor significance and effect size, is used for
modeling the dependencies. As a final step, agglomerative clustering of models is performed to further
facilitate flexibility in tradeoffs in hand model accuracy/reduction, allowing the modeling of finger
flexion extensions using 5-15 degrees of freedom only.

Keywords: robotic rehabilitation; grasp-oriented hand kinematics reduction; activities of daily
living; dependency-movement relationship; hierarchical clustering

1. Introduction

The worldwide increasing occurrence of the hindrance of hand functions, often
caused by conditions such as stroke or multiple sclerosis, poses challenges in performing
activities of daily living (ADLs) and represents a growing societal challenge. Ensuring
timely, frequent, and intensive administration of physical therapy, crucial for effective
recovery, is challenging [1]. The recent literature suggests that utilizing robotic-assisted
rehabilitation emerges as a viable solution to this issue, with minimal therapist interven-
tions [2]. The human hand, characterized by its intricate anatomy featuring up to 31 de-
grees of freedom (DOFs) [3], evolved to perform various precision and power gripping
tasks. However, designing prosthetic devices, instrumented gloves, and rehabilitation de-
vices to mimic anthropomorphic hand features entirely is not feasible due to the high di-
mensionality of the kinematic problems, spatial constraints, and hand dexterity.

Robotics 2024, 13, 82. https://doi.org/10.3390/robotics13060082

www.mdpi.com/journal/robotics



Robotics 2024, 13, 82

2 of 24

Therefore, one of the primary challenges in designing hand robotic rehabilitation devices
involves selecting appropriate movement subsets or grasp typologies to optimize the re-
covery of ADL. Kinematic models should incorporate the minimal possible number of
DOFs while fully satisfying the intended functionality and possessing the capability to
accurately predict grasping types essential for performing ADLs, such as opening a bottle,
using a knife, or holding a pen [4].

To develop reduced and representative kinematic models, conducting research and
comprehending hand kinematics through experimentally recorded hand movements is
imperative [5]. In [6], the authors implemented a musculoskeletal model of the upper ex-
tremity, including the wrist, index finger, and thumb, while the authors in [7] extended
the research to include other fingers, both using OpenSim [8]. Authors in [3] utilized the
AnyBody Modeling System™ to implement a comprehensive model. The intention of the
mentioned studies was primarily to present detailed hand models for comprehensive
musculoskeletal research, rather than focusing on reducing the DOFs. In the studies [8,9],
reduced kinematic models were presented. Still, they were based on a limited number of
subjects, usually less than 10, while the considered grasps were divided into prismatic and
circular types only. In [10], the authors developed a pneumatically driven soft robotic
hand based on a kinematic model derived from experiments conducted on only six sub-
jects. They relate proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints
linearly. In [11], the authors characterized fingertip trajectories during reach-and-grasp
studies on 10 healthy subjects performing five different grasps. Using correlation analysis,
they found the approximate linearity in the relationship between PIP and metacarpoph-
alangeal (MCP), as well as DIP and PIP joint angles. However, they obtained a relatively
low PIP-DIP slope of 0.3, compared to [9,10], which suggested a higher PIP-DIP slope of
%. In [12], the authors focused on hand model kinematic reductions using principal com-
ponent analysis (PCA), but with six subjects grasping cylinder shapes only. The study
conducted by [13] involved 22 subjects, which facilitated grouping 26 grasps with similar
kinematics related to ADLs, and identifying five sparse hand synergies using PCA. In [14],
24 subjects participated in 24 ADLs, utilizing PCA with Varimax rotation to minimize the
number of DOFs in each synergy, resulting in truly sparse synergies. Two core synergies
associated with PIP and MCP finger joint flexions were identified. Conversely, Ref. [15]
argues, based on data from six subjects grasping nine objects, that the commonly used
PCA method in synergy detection fails to reveal sparse synergies, instead utilizing a com-
bination of all available DOFs. Consequently, alternative methods such as 1 regularization
and sparse dictionary learning have been proposed.

The focus of this study is to present grasp-oriented intra-finger dependencies, aiming
to obtain relatively accurate yet simple and applicable sparse models of human hand
movements. If successfully developed, these models would enable the development of far
more versatile and anthropomorphic robotic rehabilitation devices and prosthetic hands.
For modeling joint dependencies during grasping, we utilized the largest known database
of human hand movements [16], comprising synchronously collected values of joint an-
gles in degrees [4]. These data encompass 77 test subjects performing 23 different func-
tional movements (grasps) related to ADLs. Due to the variety of subjects and grasps pre-
sent in the database, authors analyzing synergies using the same dataset and PCA ap-
proach [17] obtained 12 synergies to account for only 80% of the variability, a much higher
number than presented in the recent literature. However, since each synergy is a linear
combination of all available DOFs, implementing all 12 synergies for prosthetic or reha-
bilitation device design or control is a complex task. Thus, we attempted to complement
the synergy-based approach by introducing simpler 1-to-1 joint dependency relations.

The first step of the approach involved decoupling each grasp into its constituent
joint movements and focusing only on 16 finger joints performing flexion/extension. Due
to the hand anatomy, these joints cover most of the hand’s ranges of motion (ROM) [18].
Then, the dataset was prepared using summary statistics and joint anatomical ROM. We
grouped the prepared constituent joint movements into pairwise intra-finger joint
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dependencies, followed by computing correlation matrices between the pairs belonging
to each finger, to achieve an insight into possible relationships. Based on correlations, we
identified 116 highly to very highly correlated dependency-movement relationships for
modeling (i.e., motions belonging to certain grasps). Each relationship is modeled using a
regularized and relaxed generalized linear model (GLM) [19] for uncorrelated predictor
selection. The selected predictors are then used in a weighted linear mixed-effects model
to include both subject random-effects and dependency fixed-effects. The models are fur-
ther reduced using both predictor significance and effect size. Subsequently, we con-
ducted agglomerative model clustering based on similarity to reduce the number of nec-
essary models for kinematic reduction from 116 to the proposed 30. Finally, we synthe-
sized the results by presenting the remaining independent DOFs for finger flexions/exten-
sions during each of the 23 grasps.
Following the described approach, our study achieved several key contributions:

¢  Weintroduced refined procedures for data wrangling, generating a meticulously cu-
rated dataset for the comprehensive modeling and analysis of human hand move-
ments.

e Our novel approach to modeling intra-finger dependency-movement relationships
enabled the establishment of motion patterns for each dependency across all subjects.
It generated interpretable and sparse, yet accurate, integrated models. Additionally,
it significantly reduced the total number of DOFs involved in grasping for all inves-
tigated functional movements.

e  Applying hierarchical model clustering enabled flexibility in reducing the number of
models capable of describing all 116 identified dependencies with a desired error
margin. Based on the similarity in coefficients, we proposed 30 such model clusters.

2. Materials and Methods

The analysis in the performed study is based on the publicly available NinaPro multi-
modal database [16], which comprises a large dataset of human hand movements [4]. It in-
cludes kinematic data from 77 healthy subjects acquired with a Cyberglove-II fitted with 22
resistive sensors. A linear relationship is assumed between the output and the measured angle
for all the sensors. The experiment comprises two exercises: (1) basic movements of the fingers
and (2) grasping and functional movements. In this chapter, we outline data wrangling pro-
cedures to curate the dataset, modeling methodology, and error metrics.

2.1. Data Relabeling

The dataset was released as part of three multimodal datasets, each with different
sampling rates (DB1: 100 Hz, DB2: 2 kHz, and DB5: 200 Hz), including calibrated kine-
matic data from 27, 40, and 10 subjects, respectively [4]. It should be noted that both hand
configurations and functional movements in the DB1 database needed to be relabeled (2
— 1 and 3 — 2, respectively) due to incorrect numbering. Additionally, since several da-
tabases have been stitched together, the subject numbering does not coincide with that in
DB9_Index [16], so it has also been relabeled. Forty different hand movements have been
recorded, along with an additional rest position. Two exercises from [4] are included: Ex-
ercise B, labeled (1), and Exercise C, labeled (2).

Exercise B(1):

e  8isometric and isotonic hand configurations;
e 9 basic movements of the wrist.

Exercise C(2):
e 23 grasping and functional movements (everyday objects).

In the original DB2 dataset, with subjects numbered 28 to 67, the movements for Exercise
2 (referred to as restimulus in the original dataset) had to be renumbered from 1. This was
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achieved by subtracting 17 from each exercise ID number. The cleaned data is saved for each
subject and exercise in a separate .parquet file format (see Table 1 for identifiers).

Table 1. Identifier table for the cleaned dataset.

Subject Laterality Gender Age Height Weight Exercise Movement Repetition

Right Mal
1-77 Handed, Left axe 22-45 150-192 44-105 1,2 1-23 1-6
male
Handed

The cleaned data is then concatenated by rows into one file (s1-77_e1-2.parquet), con-
sisting of 183,773,343 data points and 22 features containing joint angle values (joint
names: Carpometacarpal (CMC), Metacarpophalangeal (MCP), Interphalangeal (IP),
Proximal Interphalangeal (PIP), Distal Interphalangeal Joint (DIP), WRIST; finger num-
bers: 1...5; the notation “f” for flexion/extension, “a” for abduction), along with 9 identifier
column, as shown in Table 1.

2.2. Data Preprocessing

The dataset is analyzed using Apache Spark 3.1 in conjunction with the tidyverse
package [20] and its R interface, sparklyr [21]. It is important to note that the data prepro-
cessing step is crucial, particularly given the inherent errors in this type of experimental
data acquisition, which can result in certain data points representing anatomically impos-
sible movements. In the first step, all not available (NA) values in the dataset are isolated,
which leads to the conclusion that the abduction/adduction difference between the index
and middle finger contains only NA values. In [4], it is mentioned that those measure-
ments were not included due to sensor noise. Therefore, the MCP2_a column is also omit-
ted in this study. In the resulting dataset, only distinct rows are retained. This decision is
made due to the data being sampled over time without timestamps, where certain points
were likely duplicated multiple times.

In the second step, only Exercise 2(C) is isolated because it contains grasps and func-
tional movements. All abduction/adduction movements are dropped because they con-
tain angle differences between two adjacent fingers, rather than an absolute finger devia-
tion from the reference point. The rest position is also dropped, reducing the dataset to 25
columns and 50,866,742 rows.

The dataset is further grouped based on subject motion and joint angle. Boxplot data
is then generated, including the number of observations (1), as well as the minimum, max-
imum, mean, median, 1st (Q1), and 3rd (Q3) quartiles. Additionally, the interquartile
range (IQR) is calculated as the difference between the cutoff values for the lowest 25%
(Q1) and the highest 75% (Q3). The boxplot data is presented at the subject level, disre-
garding different repetitions, but separately for each joint angle associated with a certain
movement. The boxplot data for Exercise 2 are detailed in Table 2. Each subject’s median
joint angle is used to construct the boxplots in Figure 1a,b.

Table 2. Exercise 2 boxplot data explanation.

Movement  Joint Angles Subject Boxplot Data
1 CMC1_f 1 n, min, max, mean, median, Q1, Q3, IQR
. . mean IQR,
1 CMCl1_f 2 n, min, max, mean, median, Q1, Q3, IQR . .
1 median of medians
1 MCP1 1 n, min, max, mean, median, Q1, Q3, IQR
. . mean IQR,
1 MCP1 2 n, min, max, mean, median, Q1, Q3, IQR . .
1 median of medians
2 CMC1_f 1 n, min, max, mean, median, Q1, Q3, IQR
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Figure 1. Example steps for joint angle data preprocessing (colors correspond to movements): (a)
DIP3—calibrated data, (b) MCP2_f—calibrated data, (c¢) DIP3—filtered to anatomical ROM and
small samples removed, (d) MCP2_f—filtered to anatomical ROM and small samples removed, (e)
DIP3—outliers removed using iterative 1.5 IQR rule, (f) MCP2_f—outliers removed using iterative

1.5 IQR rule.

Only examples containing DIP3 and MCP2_f data are shown, while complete box-
plots can be found in the main authors” GitHub repository [22]. From Figure 1a, it is evi-
dent that nearly all median joint angle values fall outside the anatomical angle range.
Therefore, it can be concluded that a negative sign has been used for the DIP3 flexion
angle. The same observation applies to CMC5, DIP4, and DIP5. The authors of the data-

base [4] also stated that:
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“DIP sensors provide reliable angles when a subject’s hand size is large (i.e., when the
glove properly fits the hand). They may provide partial results when the hand of the
subject is small. Therefore, attention needs to be taken when using the information.”

The same restriction applies to this work. The range of median values for the other
joint angles typically aligns with the anatomical range, as demonstrated by the MCP2_{
example in Figure 1b. Upon examination of the diagram depicting median joint values for
PIP3 and PIP4, it is observed that many measurements fall outside the anatomical range.
However, this phenomenon is most likely attributed to sensor noise and hand anthropo-
metrics [4].

The next preprocessing step is to obtain only “valid” data, that is, the data located
inside the anatomical range. Therefore, in Figure 1c,d, the sign of the previously men-
tioned joint angles data is reversed, and all invalid values (i.e., those outside of anatomical
ROM according to Table 3) are filled with NA values. The rationale behind filling invalid
data with NA, instead of dropping the entire row (observation), is to conserve the data as
much as possible for later inferences, since one noisy sensor reading does not imply that
all other readings were noisy too.

Table 3. Anatomical ROM of digits [2,6,9].

Thumb —Finger 1 [°] Fingers 24 [°] Finger 5 [°]
CMC1_f MCP1 IP1 MCP_f PIP DIP CMC5 MCP5_f PIP5 DIP5
-15+ 50 -40+45 -5+75  -30+90 -5+120 -5+90 0+15 -30+90 -5+135 -5+90

The data for each joint angle is aggregated next, per joint type and motion, and the
boxplot data are calculated. Then, the mean IQR, averaging all subject IQRs, is calculated
to determine the angular range in which 50% of each joint movement is expected to occur
(see Figure 1). Data filtering is performed due to the lack of diversification for proper
modeling using the following criteria:

° If the sample size is too small (n < 100), fill with NA values;
e If a too-small part of the entire motion is captured (IQR share =

with NA values.

subject IQR < 0.5), fill
mean IQR

The first phase of filtering resulted in the removal of a large number of outlier values,
as evident by comparing the example diagrams in Figure 1la-d. However, a significant
number of outlier values still remain in the data, prompting the incorporation of a second
elimination phase. This phase involves an iterative procedure, where the 1.5 IQR rule [23]
for outlier detection is applied. Joint angle data is once again aggregated per joint type
and movement, and medians per subject are used to calculate grouped IQR, as well as the
1st (Q1) and 3rd (Q3) quartiles. Subsequently, all subject median angles falling outside the
range between Q1 — 1.5 IQR and Q3 + 1.5 IQR are deemed outliers and removed from the
dataset. Data is processed through 6 iterations to remove all outliers, as shown in the ex-
amples in Figure le,f.

2.3. Data Analysis and Sampling

The representativeness of each subject in the entire dataset is also investigated using sub-
ject-movement contingency tables for each finger. A condensed table showing the distribution
of observations across fingers and subjects is presented in Figure 2. The shape size represents
the remaining number of movements (1-23) per subject and for each finger, while the shape
fills denote the average number of observations per each movement. It is evident that a clear
imbalance exists in the dataset. Specifically, the first 27 subjects, as well as subjects numbered
68-77, typically have up to 3000 observations per movement (including repetitions). In con-
trast, subjects 28-67, belonging to the second database, usually have between 20,000 and 60,000
observations per movement. This imbalance could pose challenges when using models based
on the entire dataset without appropriate sampling strategies.
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Figure 2. Subject-fingers contingency tables after data preprocessing.

Examining Figure 2 further, it is evident that in the case of certain subjects (e.g., sub-
jects 14 and 38), a notable portion of the data was eliminated during earlier preprocessing
stages. Additionally, due to the same reason, subjects 1-15 will have minimal impact on
little-digit joint dependency modeling. To minimize the effect of unbalanced data and re-
tain variability and generalization ability, it is therefore decided that dependencies will be
observed on a repetition level, and each subject repetition will be used as a self-sufficient
unit for data analyses.

For further analysis and modeling, a total of 18 intra-finger dependencies are identi-
fied, taking into account only 16 finger joints performing flexion/extension, as presented
in Table 4. The dependencies are obtained as a combination of all joints comprising a single
finger. For the movement basis, a joint closer to the root of the kinematic chain is always
selected.

Table 4. Investigated inter-finger dependencies.

Thumb—Digit1 Index—Digit2 Middle—Digit3 Ring—Digit4 Little—Digit5
CMC5—MCP5_f

MCP1—IP1 ~ MCP2_f—PIP2 MCP3_f—DIP3 MCP4_f—DIP4 gﬁg@ _[1311113’;’
CMCI_f—MCP1 MCP2_f—DIP2 MCP3_f—PIP3 MCP4_f—PIP4 .=
CMCI_f~IP1  PIP2—DIP2  PIP3—DIP3  PIPA—DIP4 | "m0 oo

PIP5—DIP5

Correlation matrices, which serve as indicators of linearity, are generated for all flex-
ion/extension joints belonging to the same finger, as well as for each motion, subject, and
repetition separately, using the procedure outlined in Figure 3. It should be noted that
71,328 correlation coefficients (r) are obtained, ranging between -1 and 1, with between 56
and 358 coefficients present for each joint dependency. This provides, in the authors’ opin-
ion, sufficient statistical power to conclude the nature of the dependency. The significance
level for the correlation coefficients was set to 5%.

Finger
1

5

4

Restimulus Subject  Repetition Corr matrix... MCP_f PIP DIP
1 1 1 N | r r
/) /7 /> MCP_f | r 1 r r
23 77 6 PIP r 1 r
DIP T r

Figure 3. The procedure of obtaining correlation matrices.

Two examples of investigated intra-finger dependencies for the third and fifth digits
are presented in Figure 4a,b. All obtained correlation coefficients related to a single finger
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PIP3 — DIP3

MCP3_f — PIP3 { + = oo e e

MCP3_f — DIP3

dependency and a single movement are summarized using boxplots, and their median
values are calculated. Only highly correlated dependencies (absolute median r > 0.7), iden-
tified using the recommendations from [24], are highlighted using a color map. The right
diagram in Figure 4a,b shows boxplot examples with outliers removed using the iterative
IQR rule, resulting in the removal of 4037 outlier values, while leaving 67,291 correlation
coefficients. Complete diagrams for all fingers and movements can be found in the main
authors” GitHub repository [22].

Pearson's correlation coefficient (r)

Finger 3 Finger 5
Absolute median correlation EEEEENC Movement: 2 — with outliers Movement: 2 — 1.5 IQR rule
0.7 0.8 0.9 1.0
Movement: 21 — with outliers‘ Movement: 21 — 1.5 IQR rule PIP5 — DIP5 | — I———— —
MCP5_f — PIP5 st eeee—ilH —+
— —

MCP5_f — DIP5 { — I——— —
-—{ Bl CMC5 — PIP5 - -—— - —
CMC5 — MCP5_f coeme e —— R —am

CMC5 - DIP5 | — I —

-10 -05 00 05 1.0-1.0 -05 00 05 1.0 -10 -05 00 05 1.0-1.0 -05 00 05 1.0

Pearson's correlation coefficient (r)
(a) (b)

Figure 4. Example of intra-finger correlation dependencies before and after 1.5 IQR outlier removal:
(a) finger 3 dependencies during movement 21, (b) finger 5 dependencies during movement 2.

Next, only dependencies with an absolute median correlation coefficient greater than
or equal to 0.7, highly and very highly correlated, per [24], are investigated. After visually
inspecting the scatter plots, it is concluded that some repetitions only partially describe
motion, lacking completeness. Two additional sampling methods, previously mentioned,
are applied, but this time at the repetition level rather than the subject level:

e  Repetitions with too-small ROM, compared to median dependency-movement, are
discarded: IQR share = - repetition IOR < 0.5;
median dependency—movement IQR
e Newly generated outlier values are removed using the iterative 1.5 IQR rule based
on correlation coefficients.

The sampling yields 11,643 usable correlation coefficients. In Figure 5, the depend-
ency-movement diagram assigns each point a median correlation coefficient, illustrating
the grouping of highly correlated intra-finger dependencies per movement.

Out of 18 defined dependencies, 16 are correlated in at least 1 of the 23 movements.
This leads to the conclusion that flexions PIP5—DIP5 and PIP4—DIP4 are not kinemati-
cally associated during any of the grasping movements present in the dataset. During
movements 2 and 3, respectively, 10 and 11 dependencies are highly correlated. On the
other hand, during movement 15, a high correlation is present only for the PIP2—DIP2
dependency. It can also be concluded that MCP flexion/extension is very frequently cor-
related with PIP flexion/extension for digits 3, 4, and 5, occurring in 18 to 20 out of 23
different movements. For the index finger, the same dependency is highly correlated in
only 7 movements. Additionally, second-digit PIP2 and DIP2 flexion/extension are highly
correlated in 19 movements. Also, it can be concluded that during thumb movement the
incidence of intra-finger relationships is very rare, as indicated by their grouping at the
bottom of the diagram in Figure 5. Only 5 relationships are revealed across 5 movements,
making the thumb the most independent digit, agreeing with [11]. Overall, 116 depend-
ency-movement relationships are therefore identified for further investigation.
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Figure 5. Correlation analysis of joint dependencies and movements where they occur most often.

Examples of frequency distributions for one highly correlated (MCP3_f—PIP3) and
most often occurring dependency, as well as one (CMC5—MCP5_f) with r=0.76 occurring
less frequently, are presented in Figure 6.

Repetition [l 1 Ml 2 W 3 M 4 BN 5 W 6 Repetition [l 1 Il 2 W 3 BN 4 B 5 W
MCP3_f — PIP3, Movement: 3, median r = 0.94 CMC5 — MCP5_f, Movement: 1, medianr = 0.76
60,000 60,000
50,000 50,000
5
= 40,000 40,000
2
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K
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(@) (b)

Figure 6. Data distribution example for dependencies across subjects and repetitions after 1.5 IQR
outlier removal: (a) MCP3_f—PIP3 dependency for movement 3, (b) CMC5—MCP5_f dependency
for movement 1.

Distributions for all dependencies can be found in the main authors” GitHub reposi-
tory [22]. Due to the previously described data preservation techniques, for modeling the
MCP3_f—PIP3 relationship during movement 3, there are as many as 34 subjects, 155 rep-
etitions, and 634,050 observations. On the other hand, for modeling the CMC5—MCP5_f
relationship during movement 1, 20 different subjects, 75 repetitions, and 485,267
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observations are available. It can also be observed that in the first example, there is a bal-
anced number of subjects from DB1 and DB2, and only 4 subjects from DB3 are available.
In the second example, subjects from DB2 constitute a large majority, but this claim cannot
be generalized to the rest of the dependencies.

To validate the captured variation, a summary of the remaining data per depend-
ency-movement is shown in Figure 7. The minimum number of subjects in the subsequent
modeling part is 9 per single dependency-movement relationship, although, in the middle
50% of cases, it spans 19 and 33. The number of repetitions, which will be observed as a
single enclosed data unit, ranges between 25 and 274 per dependency-movement. The
midspread of repetitions per subject is between 3 and 4.5.

Min =9
j medion 23—

Subjects Median =23

Q3 =33

Max =59

. | I | I l | I T YT W W T BN L. .
0 20 40 60
Min =25

. Q1 =66.8
Repetitions | 1 ~*00
Q3 =132.5
Max =274

[ I I I 1 1 [ N I . L.

0 100 200
Min =2
median | o1

;z‘:iulbject Median =4
Q3 =45

.Max =55

2 3 4 5
Count

Figure 7. Summary statistics on the number of subjects (red), repetitions (blue), and median num-
ber of repetitions per subject (orange) across all 116 dependency-movement relationships.

2.4. Machine Learning-Based Intra-Finger Dependency-Movement Relationship Modeling

Traditional machine learning principles are applied to dependency-movement mod-
eling, with a larger portion of the data allocated for training models (~80% of repetitions)
and the remaining reserved for testing purposes (~20% of repetitions). Additionally, an
assumption is made that both the movement reaching phase and the “returning to the rest
position” phase follow the same trajectory. Due to the previously mentioned imbalance
in the data, since each of the three dataset parts is sampled using significantly different
sampling rates, the data is sampled for each dependency-movement relationship in a way
that entire repetitions are set aside, ensuring they belong to different subjects to increase
the representativeness of the models. Additionally, a customized version of stratified sam-
pling is utilized to split the training data into k folds for hyperparameter tuning through
cross-validation. To determine the appropriate number of folds, we consider the mini-
mum number of different subjects (9) and repetitions (25) from Figure 7. A minimum of 5
different repetitions per stratum is deemed sufficient to ensure the necessary set variabil-
ity. The data describing a certain dependency-movement is then split into 5 folds, with 1
fold (20% of repetitions) used as a test set and the rest for 4-fold cross-validation and hy-
perparameter tuning. In the authors’ opinion, the highest representativeness is introduced
in each fold by maximizing the number of different subjects (diversifying repetitions from
the same subject) in each fold, so the stratified sampling is performed using subjects (1-
77) and repetitions (1-6) for each dependency-movement relationship, rather than using
observations directly. The customized version of stratified sampling is performed in the
following way:

1. A vector of fold IDs is generated for each relationship, containing repeating se-
quences in the 1-5 range, with a length equal to the number of repetitions.
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2. The vector of subjects is randomly shuffled, followed by the random shuffling of rep-
etitions belonging to each subject, resulting in a random list of repetitions.
3. Randomly listed repetitions are assigned to folds sequentially.

Using the described procedure, more unique subjects are present in each fold, resulting in
more consistent 4-fold cross-validation compared to simple random repetition folds” as-
signments. Each fold contains, therefore, an uneven number of observations and an ap-
proximately even number of repetitions.

As elaborated above and illustrated in Figure 6, the dataset exhibits imbalances.
However, each repetition must hold equal weight when modeling a certain relationship.
A simple approach that could be applied involves the repetition of observations. How-
ever, this approach would add additional data points to an already very large dataset and
is hence not utilized in this study. Instead, observation weighting is introduced. The pro-
cess begins by counting the total number of observations and repetitions per dependency-
movement relationship. By dividing these figures, the total weight coefficient for each rep-
etition is determined. Then, the number of observations within each repetition is counted,
and each observation is assigned the proper weight w: by dividing the total repetition
weight coefficient by the number of observations counted. The weighting procedure en-
sures that each repetition equally contributes to the model-building process for the de-
pendency.

Three predicting variables are chosen for the modeling process. For each depend-
ency, in addition to the dependee joint, the subject height and weight are also selected. All
variables are transformed using polynomial (second order) and exponential transfor-
mations and fed to the model matrix consisting of all mentioned variables, their first order
interactions, and intercept, totaling 46 terms. The entire model matrix is then standardized
(centered and scaled) by first subtracting the mean from each explanatory variable and
dividing it by its standard deviation to conclude both the variable significance and effect
size. It is important to note that the standardization procedure is performed separately for
each of the 116 modeled dependencies. Also, the dependent variables are standardized
before model fitting.

Two different modeling approaches are employed, the first serving as a baseline and a
variable selection model and the second as a main model for inferring about the modeled
dependencies. For variable selection, a regularized generalized linear model (GLM), imple-
mented in the R library glmnet [19], is used as an extension of ordinary linear regression
(OLS). The GLM model consists of three parts: a linear combination of predictors, probabil-
ity distribution of the dependent variable, and a link function enabling the transformation
of the predictor. For a probability distribution, a normal distribution is used, with the iden-
tity function as a link function, yielding a model in the following standardized form:

y-y 17 X% Xi — X
E( >:.Bso+.351 +...+'35i;+...’
Uy Oyx1 Oxi (1)

y~N(¥,0y),

where E(-) denotes expectation of a random variable, y the dependent joint, x; all previ-
ously described predictors, = variable mean, ¢ variable standard deviation, and S;; the
standardized model coefficients.

A previously set goal is to obtain sparse models, so lasso regression [19] is used to
tackle the correlations between variables and promote sparsity in selecting predictors. A
coefficient approximation is implemented as a minimization problem with a negative log-
likelihood term, as well as a regularization term using the hyperparameter A and the 1
norm of the sum of the coefficients [19]:

AllBso + By + -+ B + - [l )

Another employed strategy, i.e., relaxation of coefficients during GLM fitting, in-
volves fitting both regularized lasso and ordinary least-square (OLS) regression (without
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regularization), using the same subset of predictors selected by the lasso. Subsequently, a
convex combination of coefficients is utilized to obtain the relaxed coefficients:

B (A y) =B + (1 = y)BPS, 3)
relax

where f{ represents the relaxed coefficient, y the mixing parameter, B! the regular-
ized coefficient, and B?*S the coefficient obtained through OLS fitting. By applying this
strategy, some of the parameter shrinking due to lasso is undone (relaxed) and better es-
timates for the coefficients are explored. A final GLM strategy involves penalizing specific
predictors to ensure their consistent retention in the final output.

The second model, utilized as the final one for inferring dependencies, is a linear
mixed-effect (LME) model, implemented in the R library /me4 [25]. It is selected due to the
natural grouping of the data by subjects, as observed during visual inspection, and by
incorporating previous knowledge from experiments (involving one glove size but differ-
ent subject hand sizes) conducted in [4]. The respective modeling procedure involves ini-
tially grouping the data to account for random effects and then conducting linear regres-
sion with fixed effects to address the remaining residual variance. The selected type of the
LME model is a random intercept with fixed slopes, where each subject represents a single
level in the multilevel modeling or a random effect. Therefore, for each subject (denoted
as a set 5), we compute its intercept term, while the slopes are computed as an estimate
for the entire population. The relation describing the used LME model is:

Xi — X .
tot B —+ - J €S 4

x1 pai

y-y X1 — Xq
—:ﬁsoj + Bs1
Oy

where the same nomenclature as in (1) applies, with the alteration in standardized inter-
cept terms fso; referring to the j-th subject. Considering subjects as a random effect, and
assuming the underlying data is representative of the population, we can estimate the
mean and variance across the subject intercept terms. This information enables us to make
reasonable predictions about the subjects who were not part of this study.

After detailing data splitting, stratified sampling, cross-validation, weighting, stand-
ardization, and modeling strategies, the comprehensive procedure for obtaining sparse
and representative models is elaborated next. The following comprehensive modeling
procedure is applied to each dependency-movement relationship. Due to the inclusion of
randomized stratified sampling in the modeling process, the entire process is repeated in
10 runs to assess the degree of variation in the selected predictors and the obtained coef-
ficients in the LME model. The variation in the obtained coefficients and the selected pre-
dictors is extremely small, and the resulting models are selected using:

e  Primary criteria: selecting a model with similar coefficient values consistently occur-
ring across different runs,

e  Secondary criteria: selecting a model with the lowest error metrics (as described in
the Results and Discussion sections).

During GLM modeling, a regularization tuning parameter A is varied in a grid of 100
values ranging between 0.05 and 0.1. For tuning the hyperparameter v, five values span-
ning between 0 (complete relaxation) and 1 (no relaxation) are selected. During the 4-fold
cross-validation, the resulting model is not chosen as the one with the minimum mean
cross-validated error but rather as the most regularized (sparse) model for which the
cross-validated mean error is within one standard deviation from the minimum mean er-
ror. Additionally, observation weights are supplied to GLM models. The GLM model fit-
ting is conducted by using maximal likelihood estimation, with linear, polynomial, and
exponential transformations of the dependee joint being penalized to ensure they are al-
ways retained in the resulting model for consistency. Large sample sizes (ranging from
84,000 to 740,000 observations in the training dataset, as shown in Table S1 in the Supple-
mentary Materials) and the introduction of variable standardization help reduce the prob-
lem of multicollinearity by decreasing standard errors.
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After identifying the influential predictors and establishing a baseline GLM model,
the LME model is constructed using initially the same predictors, along with the same 4
folds utilized during GLM cross-validation. Typically, a prerequisite for LME modeling is
to have at least five distinct levels for random effects, which is fulfilled by a minimum of
9 different subjects present in each subset of the training dataset (the median value is 23
subjects, whereas the maximum is 58). To align with one of the key objectives of the paper,
which is to introduce reduced and simplified models, reductions in the LME model are
determined by both the effect size and its statistical significance. Given that regression
coefficients are standardized, the model can be simplified, as one standardized regression
coefficient often has a significantly smaller magnitude compared to another. Standardized
coefficients can therefore be compared similarly to correlations, where higher values im-
ply stronger practical relationships between variables. The cutoff level for effect size,
based on Cohen’s guidelines [26], is set to retain only medium (0.30-0.49) and large (>0.50)
effect size predictors in the reduced model, while the significance level is set to retain only
highly significant predictors (p-value < 0.001).

By interchangeably selecting the highly significant subset of predictors and the sub-
set with a medium to high effect size, three iterations are required during the model re-
duction process to obtain the final model. After obtaining the final reduced LME models
and reporting them according to [27], the rationale for grouping data by subjects is vali-
dated by computing the intraclass correlation coefficient (ICC). The latter compares the
variance of the random effect (subject intercept) g2 to the total variance (the sum of the
random effect 62 and the residual variance ¢;?) within the model as

e =—2% ®)
"~ 02 + o2
Thus, the ICC coefficients inform about a percentage of variance that can be explained
using random effects (subject-to-subject variations), which implies the reliability of the
modeling approach. Guidelines according to [28] can be adopted, where values

e  <0.5indicate poor reliability,

e 0.5-0.75 indicate moderate reliability,
e 0.75-0.9 indicate good reliability,

e >0.9 indicate excellent reliability.

2.5. Error Metrics

To validate the models, two error metrics are used, both weighted to balance the da-
taset. Since the data contained outliers, as an absolute error metric for evaluating the mod-
els, the weighted mean absolute error (WMAE) is selected:

n
i=1 Wi —

n
1 R
WMAE = Z w;ly; — Jil, (6)
=1

where n represents the length of the train or test dataset, w; the previously computed
observation weight, y; the observation of the dependent joint, and ¥; the predicted de-
pendent joint value. Another, relative metric, called double-weighted mean absolute per-
centage error ((WWMAPE) is used:

Yisawilyi — 3il

WWMAPE = : 7
Lawilyil @

with the same nomenclature as in (6). WWMPAE is chosen since the metric behaves well
for smaller, larger, and close-to-zero joint angle values.

3. Results

Here we present summary statistics for random and fixed effect predictors, error
analyses, clustering of LME models, and standardized coefficient analyses.
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3.1. Random and Fixed Effect Predictors

The summary statistics on the obtained ICCs and the variance of the random effects
are shown in Figure 8. The median value across all 116 models is 0.78, suggesting good
approach reliability. A total of 4 models have ICCs < 0.5 (poor), 46 are in the range of 0.5~
0.75 (moderate), 51 are in the range of 0.75-0.9 (good), and 15 have ICCs > 0.9 (excellent).
Although the inclusion of random effects in 4 models (23:MCP3_f—DIP3, 4:MCP4_f—
PIP4, 17:MCP4_f—DIP4, 2:MCP2_f—PIP2) is questionable with ICCs < 0.5, the selection
of dependencies for the modeling is performed via mean correlations (see Figure 5), and
they will be kept. The variance of the random effects (subject intercepts) is also repre-
sented as a summary statistic across all 116 obtained LME models. It ranges from 0.16-2.9,
with IQR values between 0.6-1.13. Detailed information is in Table S2.

Min=0.26
Median=0.78
Q3=0.86

el

Min=0.16
Median=0.83
Q3=1.13

Max=2.9

0 1 2 3
Figure 8. Intraclass correlation coefficients (ICC, red) and variance (blue) of random effects related
to linear mixed-effect (LME) models.

A summary statistic on selected predictors in the final LME models, both significant
and with medium to strong effect, is provided in Figure 9. Four standardized predictors
are identified: linear (lin), polynomial (poly), and exponential (exp) transformations of the
dependee, as well as subject height. Additionally, five standardized interactions (denoted
with “:”) are identified:

. polynomial and exponential transformation of height (poly:height_exp),
° polynomial and exponential transformation of weight (poly:weight_exp),
e  exponential and exponential transformation of height (exp:height_exp),

e linear and polynomial transformation of height (lin:height_poly),

e  exponential and exponential transformation of weight (exp:weight_exp).

If random subject intercept is counted, the average number of predictors per model is 2.5.
Out of the 116 provided models, 83 contain linear, 78 contain polynomial, and 45 contain
both types of coefficients. Additionally, 11 models incorporate other predictors or interac-
tions besides linear or polynomial terms. The comprehensive model coefficient analysis is
presented in Appendix A (Figures Al and A2). After presenting the fixed effect coefficients
for each model, the best approach for dealing with the random (subject) effect is to present
the intercept means across all subjects used for modeling. Those intercepts can be further
generalized and used as an unbiased estimator for the entire population; they are also
represented in Figure A2.

In Figure 10, we present two distinct dependency-movement relationships across a
subset of subjects and repetitions, used for both training and testing data to visually vali-
date the LME modeling approach: one with a higher correlation coefficient (3:MCP3_f—
PIP3) and the other with a lower one (12:MCPF4_f—DIP4). A clear, natural grouping of
the data based on subjects is evident. Scatter plots for all modeled dependencies and sub-
jects can be found in the authors’” GitHub repository [22].
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lin TR S
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poly:height_exp {0
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poly:weight_exp -
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exp:height_exp —
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exp:weight_exp |
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Figure 9. Summary statistics on selected predictors (colored differently) in the final LME models.
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Figure 10. Examples of LME model fitted to data (blue) with repetitions belonging to train data
(black) and test data (red). Numeration at the top represents the subject ID, and numeration to the
left the repetition ID: (a) MCP3_f—PIP3 dependency for movement 3 (fixed hook grasp), (b)
MCP4—DIP4 dependency for movement 12 (precision sphere grasp).
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3.2. Model Error Metric Analysis

A summary of the statistics on the error metrics is depicted in Figure 11. It is evident
that, when compared to GLM models, the LME models fit the data with much smaller
absolute and relative errors. The absolute WMAE for the LME approach across models
ranges from 2.4° to 16° (median 7.5°) on the test dataset and from 1.8° to 15.2° (median
7.2°) on the train dataset. The relative WWMAPE for the same approach ranges from 11%
to 56.1% (median 27.9%) on the test dataset, and from 8.2% to 57.9% (median 28.7%) on
the training dataset. The detailed graphical results of the error metric analyses are pro-
vided in Appendix A (Figure A3 for WMAE and Figure A4 for WWMAPE), while a de-
tailed table representation for readers’ reference can be found in Table S1.
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Figure 11. Summary statistics on WMAE and WWMAPE error metrics for LME (blue) and GLM
(red) models.

3.3. Clustering Based on Model Coefficient Analysis

Lastly, we perform agglomerative clustering based on standardized coefficients. The
goal is to identify similarities between dependencies across different motions. The clus-
tering is performed using both fixed and random effects from the LME models and by
substituting the missing coefficients with zeros. The distance matrix with pairwise dis-
tances between each of the 116 identified models is computed using Euclidean distance as
a metric for similarities between model coefficients. Then, clustering is performed using
“complete” linkage, where the metric for joining existing clusters is the largest distance
between two dependencies (one from each cluster). The method is also called “farthest
neighbor clustering”. The resulting dendrogram is depicted in Figure 12. The authors es-
timate that 30 color-coded clusters, obtained by cutting the tree at a distance of 0.52, are
appropriate for reducing the number of models. This number was obtained by visually
inspecting the dendrogram in Figure 12, as well as by ensuring that the average absolute
difference between standardized coefficients, when taking into account an average of 2.5
coefficients per model, remained below 0.33. The clustering method not only reduces the
number of models required to describe all kinematic reductions from 116 to 30 but also
the number of models used for the kinematic characterization of each grasp type (see Table
5). The investigation of the finger flexion/extension during all functional movements, ini-
tially involving 16 DOFs, can therefore be reduced by up to 11 DOFs, with a median of 4.
Thus, the remaining flexion/extension grasp models comprise between 5 and 15
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independent DOFs, with a median of 12. Considering model clustering, the number of
reduction models per grasp ranges from one to nine, with a median of four.
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Figure 12. Agglomerative (hierarchical) clustering of models based on the similarity of standardized
coefficients, including a proposed cutoff line (dotted red).
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Table 5. Remaining movement DOFs and reduction models after reductions.
Movement 3 2 1 5 10 12 17 6 8 11 20 9 13 1619 21 142318 4 22 7 15
DOFs reduction 11 10 7 7 7 77 6 6 5 5 4 4 44 4 3333321
# models VII x 2 I x3
x 3 IV x2 IMx2 - - XIXx2XIIx2VIx2VIx2 - Vx2 - - IIx2- - - - - - -
per cluster VIII = 2 Xx2
# reduction models 9 8 6 4 6 7 7 5 5 4 4 4 3 44 3 3333321
DOFs remaining 5 6 9 9 9 9 9 10 10 11 11 12 12 1212 12 131313131314 15
When the models are grouped into 30 clusters, the coefficients for each cluster can be
estimated as the mean values of the standardized coefficients (refer also to Figures Al and
A?2) belonging to the clustered models, as depicted in Figure 13. In the figure, the mini-
mum and maximum coefficient values per cluster are also presented, as are the singular
clusters containing only one model.
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Figure 13. Clustered models with mean, minimum, and maximum coefficient values.

The results of the LME modeling, performed in this work, still show that the major
factor in explaining the variance during the kinematic modeling and the model reduction
of flexion/extension angles is the subject-to-subject variation (modeled as a random effect),
with a median value of 78% variance explained by such “per subject” grouping structure.
This finding could potentially be attributed to the calibration protocol for the database,
which involved a post-processing procedure performed according to [29]. This procedure
utilized 10 subjects and 65 guided movements as the basis for computing sensor gain val-
ues, as referenced in [4], which were used by all subjects. It is also very interesting to note
that the only selected coefficient for “per subject” grouping was intercept, which allows
shifting the data by a constant. So, for each of the 116 developed models in this paper, all
subjects used during the modeling process exhibited a similar pattern during the grasping
motion but shifted by a subject-specific constant.
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4. Discussion

The study described in this work presents a comprehensive investigation of grasp-
oriented intra-finger dependencies, intending to develop accurate yet simple and applica-
ble sparse kinematically reduced models of human hand movements. It is based on the
large open-source database comprising synchronized joint angle values from 77 test sub-
jects performing 23 different functional movements related to ADLs.

The method serves as a supplement to the extensively researched synergy-based PCA
methods [11-14,17], intending to further alleviate control challenges and reduce the num-
ber of required actuation mechanisms. Since only intra-finger dependencies have been
investigated in the paper, the proposed method views joint dependencies from a different
perspective in terms of simpler and easier-to-implement 1-to-1 joint relationships, consid-
ering only joints located physically close to each other. Authors analyzing the same large
dataset using a PCA-based approach [17] obtained a large number of 12 synergies to ac-
count for only 80% of the variance during grasping. Designing devices based on all of
those synergies would be extremely challenging since existing devices typically utilize
only 1-3 synergies [30,31]. Furthermore, there is a downside to the mechanical aspect of
implementing PCA-obtained synergies. Devices based on synergistic control typically re-
tain all degrees of freedom (DOFs) while reducing only the control aspect, leading to chal-
lenges in complex device design and necessitating trade-offs due to limited space for ac-
tuator placement. For instance, in [30], the authors omitted five joint actuators (all DIP +
IP) and fixed the joints due to this constraint. Conversely, in [31], only the first postural
synergy was used during device design, explaining 60% of the movement variance, re-
sulting in evident reductions in DOFs. However, significant residual variance remained
during the investigated activities of daily living (ADL) grasps. The mechanical design of
the synergy was implemented as a multichannel pulley, with some compliance added to
the transmission. The anthropomorphism of both designs could be further enhanced for
certain grasps by introducing customized transmission elements using relationships pro-
posed in this paper. Our methodology also enables the design of single-finger actuators
as independent units, in contrast to synergies that involve multiple finger joints.

We initially introduced data wrangling techniques to curate the dataset. By focusing
on finger flexion/extension movements and employing rigorous data preparation tech-
niques, we identified 116 highly to very highly correlated dependency-movement rela-
tionships across all grasps. Subsequently, each relationship was modeled using a regular-
ized and relaxed GLM for uncorrelated predictor selection. This was followed by further
refinement by employing, as the final modeling technique, a weighted LME, where model
reductions were based on both predictor significance and effect size. Both models were
validated using the WMAE and WWMAPE metrics. For the final reduced LME models on
the test datasets, the absolute WMAE ranged from 2.4° to 16° (median 7.5°), while the
relative WWMAPE ranged from 11% to 56.1% (median 27.9%).

Through the use of hierarchical model clustering, we attained flexibility in reducing
the number of models capable of describing the identified dependencies. This was
achieved while maintaining the error margin, quantified by the Euclidean distance be-
tween standardized coefficients, to a lower value than 0.52. That is, starting from 116 mod-
els, the approach allowed a reduction down to 30 models. While all the data preparation
and processing steps must be conducted offline, the resulting models are suitable for real-
time implementation in rehabilitation devices and prosthetic hands. We synthesized the
results by presenting the remaining independent DOFs for the fingers’ flexions/extensions
during each of the 23 ADL grasps. Notably, the trajectories involved in different functional
movements exhibited numerous correlations, allowing for a significant reduction in the
total number of DOFs, with certain grasps requiring 5-15 DOFs (median 12) for kinematic
characterization. This validation aligns well with the authors’ initial assumption regard-
ing the application of grasp-oriented models during the rehabilitation procedures.

While the authors aimed to concisely present both the methodology and results for
reducing grasp-oriented hand kinematic models, the complexity of the underlying
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problem and the wide variety of 21 ADL grasps led to the identification of as many as 30
clustered reduction relations. Some grasp models, including holding and cutting with a
knife, turning a screwdriver, prismatic and tip pinching, prismatic four-finger grasp, and
parallel extension grasp, posed greater challenges for reduction. The reduction in DOFs
for these grasps ranged between 1 and 3. Thus, alternative approaches may be necessary
to simplify the design of rehabilitation devices or prosthetic hands for such grasping
types. Although the study analyzed a large number of subjects and grasps, the identified
dependencies may not fully represent the diversity of hand movements across the entire
population, as hand coordination can vary among individuals.

The direction for further research, along with an additional limitation, involves ex-
ploring inter-finger joint dependencies. The intention is to present these dependencies us-
ing the devised methodology and prepared dataset in this paper. Such a study could offer
additional assistance in the development of anthropomorphic devices, leading to further
reductions in the DOFs and simplification of design and control complexity.

Overall, this study lays the groundwork for future research in the field of prosthesis
design and hand rehabilitation. It offers in-depth insights and structured methodologies
that can contribute to the advancement of robotic rehabilitation devices.
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Appendix A. LME Model Coefficients’ Detailed Analysis and Model Error Metric
Analyses

Figures Al and A2 provide standardized values of obtained LME model coefficients
across all 116 dependency-movement relationships. Combining the same modeled de-
pendency-movements in Figures Al and A2 gives a complete picture of the coefficients.

Figure A2 separates only linear (lin) and polynomial (poly) coefficients, with the in-
clusion of the mean subject intercept as a random effect for all 116 models. Dependencies
in Figure Al, besides lin and/or poly, include up to seven additional model coefficients.
The following predictors proved both significant and with medium-to-high effect:

° Subject height or its transformed interaction with other predictors in 9/116 models,
e  Transformed subject weight in interaction with other predictors in 4/116 models.

For potential model coefficient users, the authors recommend standardizing the variables
before using the coefficients and then back-transforming the scaling and centering on the
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Standardized coefficient

HOFNWRUON®©

dependent variable y using either the self-acquired means and standard deviations or Ta-

ble S3 in the Supplementary Materials.

Figure A3 depicts the detailed analysis of the weighted mean absolute error (WMAE),
while Figure A4 shows the overall results of the weighted mean absolute percentage error
(WMAPE) on the train and the test datasets for all 116 identified models using both GLM
and LME methods. The error metric is calculated according to Equations (6) and (7) pro-
vided in the main text. For readers’ convenience, a table representation of these results is

provided in Table S1 within the Supplementary Materials.

Wexp W exp:weight_expMlin:height_poly poly:weight_exp
Mexp:height_exp M height M poly:height_exp
3 |
© |
| X < o 0 |
2 2 o g < " i e N < & 1
= 2 2 g s g = 5 2 EEE |
| _| 1 I © = a a el a 7 - | |
- - - u © | 1 1 = 1 o o e |
o = I ~ — w3 S " 5 ~ - ~ S a N3 ~ = a a < |
e — — — — | ghil 8 & 5 & § @ & @& ¢ o S 2 |
; S e P : ‘ |
= mm = o 5 = 17E e g omm 3 S e = omm S S =m |
& & & & & S S | = R 5 |
Figure Al. Standardized coefficient values for modeled dependencies that comprise linear (lin)
and/or polynomial (poly) and other predictors and interactions: exponential (exp), height, and
o : .
weight (“:” denotes interaction).
I in Bl roly B subjinte
1 CMC1_f - MCP1 1:CMC5 - MCP5_f 1:MCP2_f - PIP2 1:MCP3_f - PIP3 1:MCP4_f - PIP4 1:MCP5_f - PIP5 1:PIP2 - DIP2
0.01 | 0.17 n 0.53 0.02 0.17 L | 0.39 .
0.7 ’» 0.57 _— 0.46 -_—
0.6 1 1.43 I 0.79 —— 0.67 _—— 0.47 L} 0.51 | 0.33 -
Z8 CMCS MCP5_f 2:CMCS5 - PIP5 2:MCP2_f - DIP2 228 MCPZ _f - BIP2 2:MCP3_f - DIP3 2:MCP3_f - PIP3 2:MCP4_f - PIP4
0.16 0.05 1 0.08 ] 0.1 0.01 —0.3 - 0.14 L]
:1~0 7_ 042 - 0.75 _ ‘0.57 —-_— ’038 — F.O7 —
0.93 L____| T T T T T T
2:MCP5_f - PIP5 2 FIPZ = DIPZ 2:PIP3 - DIP3 3:CMC5 - MCP5_f 3:CMCS5 - PIP5 3:MCP1 - IP1 3:MCP2_f - DIP2
0.21 - 0.06 1 |0.24 - 0.47 e 0.07 I 0.12 u o
{151 aly | ©. com— 0,54 m—
0.6 — 10.62 —_— 1.52 1.14 1.02 —— 0.96 ——
3:MCP2_f - PIP2 3:MCP3_f - DIP3 3:MCP3_f - PIP3 3:MCP4_f - PIP4 3:MCP5_f - PIP5 3:PIP2 - DIP2 3:PIP3 - DIP3
0.09 ] o lo.01 —0.3 - 0.23 - 0.02 1 0.1 ]
0.59 — }063 _— 1.06 I 0.66 | 1.44
0.87 10.41 -_ 0.32 m. 0.66 —_—
4:MCP2_f - PIP2 4:MCP3_f - PIP3 4:MCP4_f - PIP4 5:CMC1_f - IP1 5:MCP2_f - DIP2 5:MCP2_f - PIP2 5:MCP3_f - PIP3
0.07 ) 0.24 W |—0.2 - 0.01 0.01 0.02 0.22 =
0.62 —_— 0.55 .
0.9 — |0.94 — 0.85 — 1.12 — 1.19 I 0.87 —
B MCP4 _f - PIP4 5:MCP5_f - PIP5 5:PIP2 - DIP2 6:CMC5 - DIPS 6:CMC5 - MCP5_f 6:MCP3_f - PIP3 6:MCP5_f - DIP5
0.11 026 m ‘rO 21 - 0.03 I 0.46 o 0.25 - 0.01 t
0.77 — — 0.73 — 0.38 = 0.84 — 0.65 —
0.78 l 105 1.06 I 0.64 |
6: MCPS _f - PIP5 6:PIP2 - DIP2 7:MCP4_f - PIP4 78 MCPS _f - PIP5 8:MCP3_f - DIP3 8:MCP3_f - PIP3 8:MCP4_f - PIP4
005 0.47 W FO_ 0.15 0.03 I —0.3 - 0.07 1
0.6 0.37 - 0.93 ——
0.7 — ‘O 96 I 0.63 0.58 | 1.19 I
8: MCPS _f - PIP5 8:PIP2 - DIP2 8:PIP3 - DIP3 9: MCP3 _f - PIP3 9:MCP4_f - PIP4 9:MCP5_f - PIP5 9:PIP2 - DIP2
0.21 0.07 1 ’022 ] 025 0.09 ] 0.41 W —0.4 .
1.04 — 138 I 0.47 -_—
0.56 ’0 51 | 0.96 I 0.52 |
10: CMCl _f-1P1 10:MCP2_f-DIP2 10:MCP2_f-PIP2 10:MCP3_f-PIP3 10:MCP4_f-PIP4 10:MCP5_f - PIP5 10:PIP2 - DIP2
0.08 0.22 - ’0.15 n 0.43 W 0.07 1 0.31 Wm 0.32 mm
r0.37 - 0.9 — 0.63 — 0.73 —
0.88 1.02 — 1117 0.89 0.33 - 0.4 -
11:MCP1 - IP1 11:MCP3_f-PIP3 11:MCP4_f-PIP4 11:MCP5_f - PIP5 11:PIP2 - DIP2 12:CMCS5 - DIP5 12:CMC5 - MCP5_f
0.24 W™ —0.6 = {»0.36 - 0.28 W 0.31 W= 0.26 - 0.16 ol
0.55 —_— 0.48 -_— 0.3 - 0.45 L] 0.34 .
0.51 — 10.45 -_— 0.45 0.53 —-— 0.74 —
12.MCP37F- PIP3 12:MCP4_f - DIP4 12:MCP4_f - PIP4 12.MCP57f = [FP5 12:PIP2 - DIP2 13:MCP3_f - PIP3 13:MCP4_f - PIP4
0.1 ] Lo.as mm FO 18 ol 0.29 W 0.33 - 0.04 1 0.12 u
0.94 — 0.7 —— 0.42 - 1.17 0.43 - 0.51 -_—
11.43 I 0.33 0.84 —— 0.78 —
3k MCPS _f - PIP5 13:PIP2 - DIP2 14:MCP3_f - PIP3 14:MCP5_f - DIP5 14:PIP2 - DIP2 15:PIP2 - DIP2 16:MCP3_f - PIP3
—o0.53 mmm ’—0 0.14 n 0.47 0. 64mmmm 0.46
0.54 —_— 0.58 _— 1.83 I
‘o 82 — | 0.95 —

16:MCP4_f - PIP4 16:MCP5_f - PIP5
017 W

’—0.52 —

17:MCP4_f - PIP4 17:MCP5_f - PIP5
0.37 mm 0.24 m

:r—o.sa — F.sz —
0.63 |

19:MCP4_f - PIP4

0.49 mam

1.18 I
20:PIP2 - DIP2

0.27
0.64
0.33

19:MCP5_f - PIP5
—-0.3 mm

0.68 —
21:MCP3_f - PIP3

- 0.12 B
_— 0.99 I
-

22:MCP5_f - PIP5 23:MCP3_f- DIP3 23:MCP3_f-PIP3 23:MCP5_f- PIP5

16:PIP2 - DIP2

-0 gamm—
loos  —
17:PIP2 - DIP2
0.05 1
0.96 I
|oa —
19:PIP2 - DIP2
0.59mmm
0.65  mmmm
\063 _——

21:MCP4_f- PIP4 21:MCP5_f - PIP5

0.24 =
(0.37 —

17 MCP2_f - DIP2 17: MCP2 f- PIP2 17 MCP3_f - PIP3 17:MCP4_f - DIP4
14 o8

0—

1.67

—O. 7mm—
1.22

20:CMC5 - DIPS

0.06
0.5

0.12
os_

0.31 mm
0.57 —

1.49

18: CMCS MCP5_f 18: MCPS f- PIP5
o

0.27
0.68

0.27
0.81

21 PIP2 - DIP2

043
0.7

18:PIP2 - DIP2

0.5 gmm

F.os —

024 m
0.41 -
0.54 —

Fo e

19:MCP3_f - PIP3

0.47 mmm
0.57 —

20: MCP3 f-PIP3 20:MCP4_f - PIP4 20:MCP5_f - PIP5

0.12 ]
0.6 —
0.39 -

22:MCP3_f - PIP3 22:MCP4_f - PIP4

¥ —02 = 0.03 |
0.91 I 0.34 -
0.98 0.77 —
-1 1 -1 [} 1 -1 o 1

0.28 o6 1] 021 M o 1
0.51 — 0.32 - 0.78 — 0.54 —
i 0.55 — l
-1 o 1 -1 o 1 -1 o 1 -1 o 1

Figure A2. Standardized coefficient values for all modeled dependencies that consist of random ef-
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fects—subject intercept (subj_inte) and fixed effects—linear (lin) and polynomial (poly).
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Figure A3. Weighted mean absolute error (WMAE) on train and test datasets across all 116 modeled
dependencies for both GLM and LME models.
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Figure A4. Double-weighted mean absolute percentage error WWMAPE) on train and test datasets
across all 116 modeled dependencies for both GLM and LME models.
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