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Abstract: As educational tools continue to evolve technologically, game-based learning (GBL) has
emerged for its ability to improve specific learning outcomes such as motivation, engagement, and
knowledge acquisition and retention. Despite recent advances with educators incorporating games
and gaming strategies into higher-learning curricula, there is a current void in the literature that
clarifies the critical relationship between GBL implementations and learning outcomes. In this effort,
we build upon previous research by detailing the specification, design, and deployment of a series of
GBL experiential learning interventions intended to improve conceptual understanding of vehicle
dynamics. This implementation should result in positive downstream impacts on safety, both for
the vehicle (i.e., design/interface)—and its driver. In our intervention, we deploy three separate
pilot studies in a graduate engineering vehicle dynamics course, all of which leverage advanced GBL
environments deployed on a high-fidelity motion-based driving simulator. The primary goals of the
pilot studies are to interactively achieve an enhanced understanding of: (i) oversteer/understeer
vehicles at ever-increasing speed; (ii) an optimal cornering strategy subject to the tire conditions of
the vehicle; and (iii) lateral handling and yaw stabilization of a vehicle within an extreme evasive
maneuver at varying entry speeds. The outcomes of the current effort serve to promote a future
Theory of Change for planned best practices to improve human factors and human–vehicle machine
interfaces through authentication of GBL in engineering education on a broader scale.

Keywords: vehicle dynamics; engineering education; vehicle design engineering; vehicle safety;
driver safety; game-based learning; gamification; learning outcomes; experiential learning; modeling
and simulation (M&S); motion simulation; driving simulation

1. Background

Motor vehicle travel remains the primary mechanism for transportation in the United
States, and continues to provide and enable an unprecedented flexibility for human mobil-
ity [1], including persons, goods, and services. However, despite the obvious advantages
of ground transportation, deaths and injuries resulting from motor vehicle travel continue
to be a leading cause of mortality for persons across all age demographics [2]. It has been
previously estimated [3] that upwards of 90% of all negative driving outcomes are the direct
result of some form of human error, and therefore, it remains a national priority to reduce
deaths, injuries, and economic losses from motor vehicle crashes [1]. While the immediate
future holds great promise for improving vehicular safety through widespread deployment
of connected and automated vehicles, (a) both the performance and human acceptance (i.e.,
“trust”) of advanced automation vehicle systems remains unclear; (b) automated vehicles
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can be misused (e.g., challenges related to information management and cybersecurity);
and, prominently, (c) intelligent automation only serves to transfer the burden of error
from “human to human”; i.e., from the vehicle driver to the vehicle designer [4].

As a direct result of these timely published statistics and alarming public health trends,
subject-matter experts in engineering education continue to emphasize the critical impor-
tance of providing students—and tomorrow’s technological leaders—with authentic and
engaging classroom experiences that enrich and enhance our understanding of the real
world. To this end, particularly effective are learning experiences that effectively cultivate
realistic modeling and high-fidelity simulation [5], which together enable real-time observa-
tion of downstream impacts (cause/effect) on a complex system representation [6]. Within
the discipline of transportation engineering (i.e., and particularly within the sub-domains
of dynamics and controls), effective and engaging learning experiences can incorporate
authentic and physics-based mathematical models and accompanying simulations into
conventional instructional methods. These implementations will serve to better clarify the
abstract nature and true behavior of highly-interdisciplinary systems (e.g., motor vehicles)
with concrete hands-on examples [7] that more effectively bridge the gap between exper-
imentation and implementation; between basic theory and real-world application [8,9].
Such educational pathways remain essential towards the systematic improvement of vehi-
cle design, and—as a result—sustainable, long-term trends that are most likely to result in
dramatically improved vehicle (and driver) safety.

Engineering students within these sub-disciplines who have been afforded oppor-
tunities to cultivate virtual hands-on experiences in addition to traditional “chalk and
talk” classroom exercises have demonstrated numerous benefits. These include improved
academic performance [10,11], engineering job performance [12,13], and practical skill sets
that remain highly-coveted by industry [14]. The effectiveness of hands-on, or “experien-
tial” exercises is often attributed to its roots in inductive (active) learning—which begins
with specific observations, experiments, or problems that students experience and analyze,
and proceeds to the generalization of these observations within an abstract or theoretical
framework [15]. Within the virtual simulation realm, hands-on learning effectively com-
bines system synthesis and analysis through interactive tools which empower students to:
(a) modify modeled system parameters, (b) experience resulting system behavior, and (c)
subsequently monitor impact/response “on-the-fly”, and in real-time [16].

Such educational avenues continue to become increasingly attractive to educators for
improving practical experience, as today’s youth are more immersed in gaming. Game-
based learning (GBL) is where trainees explore relevant aspects of gaming in an educational
and collaborative context, and often experience enhanced engagement in such environ-
ments [17–19]. GBL has continually proven to be a convenient domain where students can
safely interact with authentic problems, similar to in a real-life setting. Serious gaming (i.e.,
employing traditional game techniques and “gameplay” to enable a better understanding
of a particular concept), gamification (i.e., employing game mechanics in non-game situa-
tions to enhance motivation and positively influence behavior) [20], and the overarching
notion of serious play—employing task-specific interactions by simulating scenarios in
risk-free physical/virtual environments [21,22] all serve to motivate learners and effectively
couple the novelties of entertainment into a safety-driven context for skill acquisition.

In this paper, we build upon past literature and present a series of targeted inter-
ventions intended to demonstrate the benefits of incorporating advanced modeling and
simulation (M&S), and game-based learning (GBL) into existing engineering curricula. In
this effort, our disciplinary focus remains with vehicle dynamics and system control, and
therefore, applications relevant to transportation engineering. Figure 1 presents a notional
overview of the overall flow of this paper, and emphasizes the various highlights and
novelties of this work. Having now justified the benefits of advanced M&S and GBL in
engineering education from previous literature, our research methodology provides an
overview of our three novel GBL interventions and pilot studies that were implemented
for this work. After that, we present our preliminary results and summarize the major
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outcomes of this effort, which collectively serve to demonstrate enhanced educational
practices and implications towards improving safety—both in terms of vehicle design and
vehicle operation. Finally, we discuss the broader impacts of our contributions, which
include a logic model (or Theory of Change) that outlines a pathway for expanding the
scope of our methodology into other engineering disciplines.

Figure 1. Overall workflow of current effort.

2. Research Methodology

Recent research has demonstrated that through imparting thoughtful experimental de-
sign approaches (i.e., with elements of gaming, and hands-on inductive learning), driving sim-
ulation performance correlates strongly with real-world knowledge and skill-acquisition.
Drivers have been found to navigate similarly for companion on-road and virtual courses
with marginal statistical difference in behaviors (e.g., speed maintenance, hazard antici-
pation, attention maintenance, lane positioning, and mirror checking) [23–26]. Simulators
have further been implemented successfully for identifying and improving the skill of
older adult drivers through targeted training exercises, and such implementations are con-
siderably safer and more economical than on-road testing and evaluation [27–29]. Because
of these advantages, motion simulation has more recently been implemented to develop
and verify human driver models in extreme driving situations, such as evasive maneuvers,
as well as classifying different types of drivers (e.g., cautious or aggressive) and mimicking
human driving behavior [30,31] within a mathematical framework [32].

Past engineering research [33] has successfully demonstrated the inclusion of game-
based M&S educational elements as a core component. A prevailing theme has been
to incorporate novel high-fidelity driving simulation into engineering curricula to offer
improved techniques for driver education and traffic safety. Likewise, a novel component
of recent efforts has been to leverage multiple measure types (e.g., quantitative, qualitative,
self-report, longitudinal) to assess trainee performance, assess knowledge transfer, and
rate instructional preferences [34]. These research efforts serve as a direct precursor to the
current work, as they demonstrated an educational framework wherein learners optimized
vehicle performance through factor parametrization.

The lynchpin for our research methodology is on the infusion of advanced M&S and
GBL within the domain of transportation engineering for road vehicle dynamics education.
Furthermore, our framework for systematically instituting a series of “official” proving
grounds test, track configurations, and vehicle maneuvers for experiential learning pro-
vides a uniquely authentic opportunity for hands-on real-world training, and serves as a
substantial improvement over related efforts from the literature. If successfully demon-
strated and implemented in this context, GBL can substantially enhance passive classroom
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instruction, and nurture a deeper understanding of the physical feel of the dynamics of a
vehicle under specified conditions. These inherent benefits could result in positive down-
stream learning outcomes among engineers in training, including critical acquired skills
for vehicle engineering design (e.g., control systems, vehicle stability systems), as well as
an enrichment of knowledge relating to vehicle operation in “extreme” conditions, both of
which serve to improve transportation and roadway safety in the long term.

Note that this study was approved on 16 August 2018 by the ethics committee of 030
University at Buffalo Institutional Review Board (IRB) with the code STUDY00002749.

2.1. Experimental Facilities and Design

Our high-fidelity driving simulator provides a valid test environment for game-based
learning in engineering dynamics education, and to accommodate gamification-based
human performance measurement within a variety of driving scenarios. For a notional
summary of our input/output (I/O) pipeline, refer to Figure 2; for additional technical
details, refer to [35].

Figure 2. Input/output (I/O) rendering components for game-based learning (GBL) in engineering dynamics education.

Our hardware system has been constructed largely in-house, using commodity hard-
ware, and is anchored by a six degree-of-freedom electrically actuated motion platform
(and a driver/passenger Ford Sedan cabin) manufactured by Moog, Inc. (East Aurora,
NY, USA). The driver supplies inputs using a spring-resisted steering wheel, rear-wheel
paddle shifters (for parametric adjustments during the driving interventions), and pressure-
modulated floor pedals (gas, brake). Our fully-immersive display system consists of a
continuous cylindrical 16′ diameter, 6′ high display screen mounted such that the screen
center lies at the approximate midpoint of the driver’s viewpoint. Each of the six visu-
alization channels is front-projected with an HD LCD projector, featuring a widescreen
ultra extended graphics array (WUXGA; 1920 × 1080) resolution. When the scene graphics
are edge-blended and warped to the curved surface of our cylindrical display plane, the
resulting cumulative display resolution is 11,520 (circumference) × 1080 (height) pixels.
For aural cueing, we employ a stereo 2.1 (front-left, front-right, and subwoofer) channel
external sound system powered by a desktop audio amplifier. A single PC (CPU/GPU)
drives our entire simulator arrangement, consisting of a tower graphics workstation with
dual-core 2.16 GHz Intel Xeon processors, 16 GB Memory, and an GeForce 2080 GTX graph-
ics processor, manufactured by Nvidia (Santa Clara, CA, USA). Our simulator (software)
environment was developed in-house, using Microsoft Visual Studio and C++. Our pro-
gramming framework includes DirectX DirectInput for input capture, as well as OpenGL
(graphics), OpenAL (audio), and TCP/IP Sockets and Win32-ported Posix multithreading
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(motion) for output rendering. Likewise, refer to Figures 3 and 4 for depictions of our
physical simulator arrangement.

Figure 3. Simulator (display system).

Figure 4. Simulator (motion platform).

For all three experimental GBL interventions that were specified, designed, and
implemented for this work, we programmed the simulator to collect a series of quantitative
data, including the drive path coordinates for each driver during their entire excursion
(captured at 20 Hz) as well as a score sheet printout that summarizes primary statistics
from each driving experiment (e.g., steering wheel and foot pedal inputs, lap counters,
maximum and average speed, force, acceleration, and other engineering dynamics data
specific to each intervention, and other measured driver actions and behaviors that result
in adverse events, such as cone strikes or vehicle spinouts).

2.2. Skid Pad Intervention

A skid pad [36] is a classic proving ground facility that consists of a circular track
with a defined radius. A skid pad is typically used to determine the “understeer gradient”
of a vehicle, as well as its maximum lateral acceleration capabilities. During a skid pad
test, a vehicle is slowly and steadily accelerated until it reaches a cornering speed where
the outermost tires on the vehicle begin to lose traction. For an “understeer” vehicle,
increasing speed beyond this threshold causes the front tires to start sliding, creating
a “plowing” trajectory toward the outside or the skid pad. For an “oversteer” vehicle,
the rear tires start sliding, which can cause the vehicle to spin nose-inward. In either
case, the net lateral force of the tires can no longer hold the vehicle in the corner, and the
driver must decrease speed to regain control. At this juncture, the speed of the vehicle
can be recorded, and based upon the well-known equation for centripetal acceleration
(v2/r), the “handling” capabilities of the vehicle (i.e., in terms of lateral G-forces) can be
derived [37,38]. The maximum centripetal acceleration a vehicle can produce, as well as the
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understeer/oversteer characteristics, are primarily a function of the relative lateral stiffness
of the front and rear tires (i.e., the cornering stiffness) and the frontal weight distribution of
the car. Refer to Figure 5, which depicts a real-world (physical) skid pad facility located at
the BMW Performance Center.

Figure 5. Skid pad (BMW Performance Center).

Our GBL skid pad [39] interactively teaches students about the understeer and over-
steer characteristics of road vehicles, and specifically how these characteristics depend on
the longitudinal position of the vehicle’s center of gravity (CG), or weight distribution. A
radius on the skid pad is clearly specified for the students to follow. In addition to being
able to steer, brake, and accelerate, the students are able to utilize wheel-mounted paddle
shifters to adjust the longitudinal CG position of the vehicle. Changing the CG position
modifies the handling characteristics of the vehicle, and therefore its maximum speed po-
tential while cornering. Moving the CG toward the front of the vehicle increases understeer
characteristics, and stabilizes the vehicle’s yaw motions; whereas moving the CG toward
the rear of the vehicle increases oversteer characteristics, and destabilizes the vehicle’s yaw
motions. Both configurations result in a sub-optimal maximum cornering speed. Hence
for optimality, trainees need to modify the CG position towards the intermediate “neutral
steer” condition. In our GBL experiment, students were given two minutes to achieve
this goal, all the while increasing speed to go as fast as they could while remaining on a
constant-radius circular trajectory.

Within the simulator, identifying neutral steer involves intuitive adjustment of the CG
by kinesthetic “feel” and discovery to comprehend its resulting impact upon overall vehicle
handling. Note that embedded within our GBL skid pad, we designed and implemented
on-screen gaming elements to guide the learner towards their training goal (i.e., neutral
steer)—which typically permits an optimal balance of maximum speed and vehicle control.
These gaming elements are explained as follows:

The steering wheel indicator visually quantifies how much drivers are turning their
hands, noting that at neutral steer, trainee steering is reduced (i.e., hands in a fixed-position).

The travel speed gauge guides drivers towards obtaining their optimum speed on the
chosen radius, guided by green/yellow/red color-coding, while the current travel speed is
shown digitally to the right of the contour gauge.

The (CG) and tire stiffness distribution meter guides trainees towards a “balanced”
vehicle based upon tire/weight distribution, front-to-rear. The meter tire colors change
relative to their individual saturation levels, ranging from 0% (unsaturated; green) to >6%
(saturated/beyond; red), to intermediate (e.g., yellow/orange).

The radar map displays the current location (and heading) of the driven vehicle
relative to the roadway, surrounding cones, and remainder of the GBL virtual world
training map.
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The heading pathway lies within the 3D viewport itself, and can be seen a series of
colored spheres that guide the driver and change color in real-time according to compliance:
green represents on-center; red indicates far off-center, with intermediate colors (e.g.,
yellow/orange) indicating partial pathway satisfaction.

The scoring meter was implemented to provide an overall gamification “rating”
(0–100% scale) based on compliance to speed, heading, and neutral steer proximity. This
“rewards” system was instituted to engage and motivate drivers to comply with the goals
of the experiment in direct pursuit of its primary training objective.

Refer to Figure 6, which illustrates the forward driver view of the completed skid
pad GBL training environment, with all gaming elements depicted and labelled. Likewise,
Table 1 provides a summary of the skid pad intervention and its surmised broader impacts
on transportation safety.

Figure 6. GBL skid pad implementation (with embedded gaming elements).

Table 1. Skid pad (experiment summary).

Track Circular proving grounds.

Training goal Vary the CG to optimize understeer characteristics of vehicle.

Theoretical underpinning “Natural steer” provides balance of stability/maneuverability.

Trainer Six GBL elements navigate the trainee towards
concept comprehension.

Broader Impacts on Safety

Students gain an improved understanding of the complex
balance between a vehicle’s (fore-aft) weight distribution,
front/rear tire stiffness, oversteer/understeer characteristics,
and how this combination of factors affect a vehicle’s
dynamics when its cornering limits are approached.

2.3. Triple Curve Intervention

A triangular racetrack can be a useful resource to analyze vehicle dynamics, as in stark
contrast to a traditional “oval” course, a triangle is a six-turn (as opposed to a four-turn)
geometry, which provides a unique set of driving challenges (i.e., more turns, straightaways,
and transitions between these key segments) to achieve mastery, even for experienced
drivers. From the perspective of onlookers, a triangular layout better enables a greater
number of longitudinal sightlines—an angular perspective of vehicles coming from (or
going towards) a particular vantage point. Figure 7 is a real-world depiction of precisely
such a construct (the Pocono Raceway), which is otherwise known as the “Tricky Triangle”
due to its complex geometry (i.e., flat track; sharp turns; low banking).

Inspired by the triangular racetrack depicted in Figure 7, the GBL Triple Curve [37] is
constructed with novice learners in mind, and therefore, is a simplified (i.e., completely
axisymmetric) version that consists of three straight segments joined by three tight (120◦)
corners. Students are given simple directions: to complete as many legal laps (i.e., no barrier
cones struck) as possible within a two-minute window. This task implies that the students
maximize their speed, but maintain control of the vehicle during the critical transitions
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(i.e., straight-to-curve; curve-to-straight), for which students quickly learn that braking is
essential for both speed and control. The conceptual training link is “tire saturation”: the
property that tires generate a limited amount of traction before the vehicle loses control
(and skids out). To achieve an optimal lap time, the student needs to accelerate as much as
possible, but only within the physical limitations of the tires. This is especially important in
corners, where tire traction provides the centripetal force to hold the vehicle in the corner,
and when the tractional demands increase in proportion to the square of the speed of
the vehicle. Within our GBL implementation, the length of the straight segments allows
students to accelerate to approximately 80 mph before entering each successive corner.
However, entering the tight corners at this speed (without smooth braking) will likely
result in an undesirable outcome. Therefore, to make it through this track with the fastest
speed, students must apply braking as they enter corners. The simple geometry of the track,
by design, requires students to assume the same corner over and over again, adjusting
their approach with each entry, each time engaging with the physics of tire saturation.

Figure 7. Triple Curve. (Pocono raceway).

We designed and implemented gaming elements to guide the learner towards their
ultimate training goal (i.e., number of legal laps)—and therefore—an optimal lap time. We
employed two training approaches for the Triple Curve experiment. First, our GBL-based
“gauge” trainer enables visualization of technical guidance to observe if certain learners
might respond to game-based on-screen overlays that would help them navigate towards
optimized performance. These “gauges” include color-coded spheres placed upon the
virtual roadway to simultaneously provide indication of the optimal drive line, as well as
colors to indicate regions of acceleration (green), braking (red), and transition segments
(yellow). Likewise, a vertical gauge was provided (left side of screen) to indicate the
maximum tire slip angles encountered during a turn. The green region (low on the gauge)
is indicative of overcautious driving; the red region (high on the gauge) is indicative of
reckless driving; and the yellow region (middle of gauge) is the “sweet spot” that we
inspired novice drivers to try to achieve during their turns. Refer to Figure 8a, which
illustrates the gauge-training environment. Second, our “ghost” trainer was designed
with a “follow the leader” gaming strategy in mind. In other words, rather than trying
to coach novice trainees on the technical nuances of the racecourse, we simply instructed
them to refer to the expert (prerecorded) “ghost” vehicle that would accompany them on
their drive. In this manner, we aimed to assess if trainees could achieve effective training
by watching/observing, and without any other visual presentation relating to the actual
performance dynamics of the moving vehicle. Refer to Figure 8b, which illustrates the
ghost trainer shown in the red vehicle on the right side of the forward viewport. Table 2
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provides a summary of the Triple Curve intervention and its surmised broader impacts on
transportation safety.

Figure 8. GBL Triple Curve implementation. ((a) gauge/left vs. (b) ghost/right trainers).

Table 2. Triple Curve (experiment summary).

Track Triangular/axisymmetric; three straights joined by three tight
120◦ corners.

Training goal Maximize legal laps (i.e., no barrier cones struck) within a
two-minute window.

Theoretical underpinning Maximize acceleration within tire limitations; cornering is key.

Trainer #1 (Gauge) Visual guidance to navigate trainees towards ideal
course compliance.

Trainer #2 (Ghost) Trainees “follow the leader” to observe/replicate an optimal
racing line.

Broader Impacts on Safety

Students engage with the delicate balance of throttling, braking,
and steering during the transition from a straight to a corner.
Each of these driver “inputs” creates tractional demands for the
tires, which, if applied simultaneously, can push a tire to its limits;
combining braking and steering can easily saturate a tire’s lateral
force capabilities at higher speeds (or even at lower speeds on a
wet or icy road). The simulator exercise affords students the
opportunity to encounter this tractional limitation of vehicles in a
safe setting.

2.4. Moose Test Intervention

In critical instances when drivers face unusual or hazardous driving conditions (e.g.,
inclement weather, high speeds, bumpy roads, vehicle malfunction, evasive reactions to
sudden lateral events), we expect our vehicles to respond predictably and safely—and as
advertised by the manufacturer. Before a vehicle is available on the market, it has to be
tested in extreme conditions to ensure that no manufacturing defects or engineering design
miscalculations (e.g., structural, aerodynamic) will result in unsafe or unpredictable perfor-
mance. The Moose Test is a prime example of a proving ground evasive maneuver [40] and
was conceived and configured to evaluate vehicle tilt stability (i.e., resistance to rollovers)
and related handling performance, which play a critical role in assessing vehicle design
and safety [41]. To standardize and simplify this lane change maneuver, the Association
of the German Automotive Industry (VDA) revised the Moose Test, and transferred it to
the International Standard ISO 3888-2 [42] allowing for reproducible test results. Refer to
Figure 9, which illustrates an actual ISO 3888-2 Moose Test experiment as performed by
the Nissan Corporation.
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Figure 9. ISO 3888-2 Moose Test (Nissan Corporation).

Note that two configurations of the Moose Test exist (“original” and “modified”), each
consisting of three lanes that have cones on either side. The lanes are arranged so as to
induce a double lane change maneuver that has to be completed while coasting with a
specified starting velocity. The time taken for the vehicle to complete the test course is
measured starting from throttle release in the entry lane to when the vehicle passes the exit
lane. The primary variations in the two test tracks consist of dimensional differences that aid
in providing unique testing conditions. Taken together, the two Moose Test variants provide
comprehensive data that can be used to holistically evaluate vehicle performance under
extreme lateral accelerations. Figure 10 is an illustration of the “modified” configuration.

Figure 10. ISO 3888-2 (“modified”) Moose Test configuration.

For our GBL Moose Test implementation [43], students were tasked to complete a grid
of experimental test conditions, where three parameters were varied: (a) moose course
(original vs. modified); (b) approach speed (20/30/40 mph), and (c) electronic stability
controller (ESC) (“on” or “off”). The ESC simulated an electric “steer-by-wire” safety
feature for yaw (heading) stabilization. Such a controller modifies the steering angle at the
front tires, δ, according to Equation (1).

δ = δdriver + δsteer−by−wire (1)

where δdriver is the raw steering command provided by the driver, and δsteer−by−wire is the
steering modification provided by the ESC. As implied by the equation, notionally, with the
presence of the ESC, a similar steering output is achieved with less (cumulative) steering
input by the human operator during an evasive steering maneuver. The steering correction,
δsteer−by−wire, continuously updates such that the vehicle yaw rate and sideslip angle are
stabilized about the “intended” path of the driver. This intended path is deduced by the
ESC, according to the driver’s steering angle, δdriver. When yaw moment disturbances are
introduced to the vehicle by a loss of traction at one or more tires, steering corrections
are automatically provided by δsteer−by−wire to help prevent the vehicle from diverging
from the intended path. In this way, the ESC assumes primary responsibility for rejecting
disturbances that might cause the vehicle to lose control (e.g., during a skid), and the driver
focuses on charting an intended path for the vehicle. Such automated systems generally
increase the stability and safety of road vehicles, and are becoming more commercially
popular [44–46].
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In all, there were twelve total combinations of drive parameters (course x2; speed x3;
controller x2) in our experimental grid. Table 3 provides a summary of the Moose Test
intervention and its surmised broader impacts on transportation safety.

Table 3. Moose Test (experiment summary).

Track Straight—with a geometrically-specified double-lane-change
maneuver (ISO 3888-2).

Training goal Experience the Moose Test amidst 12 varying
experimental conditions.

Theoretical underpinning Observe impact of yaw stabilization with three
influential parameters.

Trainer Physically accurate GBL “original” and “modified” road
course implementations.

Broader Impacts on Safety

Students experience the performance of a vehicle during a harsh
evasive maneuver with and without the aid of electronic stability
control. This comparison helps young engineers develop an
understanding of how (and to what extent) such an assistive
controller can help or harm drivers in extreme situations.

The primary objectives of the Moose Test experiment were to (a) expose engineering
dynamics students to an official (“real-world”) extreme vehicle test maneuver by em-
ploying GBL simulation to enhance their overall conceptual understanding; (b) employ
high-fidelity simulation as a means of enhancing the educational experience of engineers;
and (c) explicitly observe the degree of impact of employing a potential impactful safety
feature—electronic stability control (ESC)—on driver performance at various speeds and
geometric conditions. Figure 11 is a depiction of our GBL implementation shown “point of
view” (POV), while Figure 12 presents an isometric top-viewpoint of the “modified” GBL
road course.

Figure 11. GBL Moose Test (point of view (POV)).

Insights gained from these GBL interventions during vehicle performance threshold
and other “extreme event” scenarios can advise how the operation of next-generation
vehicles—and forecasted mechanisms for operator intervention—can be tailored to individ-
ual differences (e.g., age, gender/demographics, driving experience, aggressive tendencies,
past history) within specific driver types. For example, within a properly functioning
autonomous system, safe distance between platooning vehicles can theoretically be min-
imized towards a near-zero spacing gap. However, based upon human tolerances and
driver experience, what is the minimum headway that individual drivers can “tolerate”
(i.e., based on workload, confidence, comfort, safety and acceptance)? Past results [47,48]
demonstrate that most drivers prefer spacing between vehicles by relying on their judg-
ment on distance, rather than on headway (time). As such, simulator-based efforts [49] to
identify human tolerances have the potential to accelerate adoption, and maximize both
safety and effectiveness of tomorrow’s vehicles, and tomorrow’s drivers.
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Figure 12. GBL Moose Test (isometric view).

As a final summary of our overall research methodology, we present Figure 13, which
serves to illustrate and compare the primary performance and vehicle safety implications
of our three experimental interventions. This summary serves as an ideal bridge into our
preliminary findings and results, which are discussed in the next section.

Figure 13. Summary of theoretical underpinnings for each GBL intervention: (a) impacts of oversteer versus understeer [50];
(b) primary tire parameters associated with vehicle sideslip [51]; (c) stable (green) versus unstable (red) braking trajectory
scenarios, resulting from the yaw moment [52].

3. Results and Discussion

In this section, we present the preliminary results from each of our three GBL interven-
tions. Our participant cohort consisted of college engineering students (i.e., senior under-
graduates, and graduate students) who were enrolled in a technical elective (400/500-level)
engineering course entitled Road Vehicle Dynamics (RVD) which covers ground vehicle
dynamics, including the basics of automobile motion, stability, and control. Although
cohort demographics are not formally tabulated here, students in the course (typical partic-
ipant age: 23–25 years; typical driving experience: 3–5 years) consented to participation
in the experiments as a portion of their course experience, and these experiments were
preapproved through the University at Buffalo’s Institutional Review Board (IRB). Data
that was collected is entirely quantitative (i.e., as measured by the simulator) in nature,
as appropriate for the specific nature of each experimental implementation. As a primary
component of our discussion, we outline the broader impacts of our findings with relation
to safety (i.e., related to both drivers/occupants, and vehicle). Our results were tabulated,
analyzed, and reported using Microsoft Excel.

3.1. Skid Pad Intervention

For the skid pad intervention, a total of n = 44 student drivers participated. For the
sake of deployment logistics, four sub-cohorts (each having 11 drivers) were tasked with
the identical exercise of modifying their vehicle’s CG toward a desirable neutral steer
configuration; this state would implicitly enable the completion of as many laps as possible
on a tight circular track (within a two-minute experiment window). Each vehicle was
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initially configured as “oversteer” with the CG intentionally shifted so far aft that the car
was undrivable at all but low speeds. Typically, an oversteer vehicle will tend to rotate (yaw)
nose-in at elevated speeds of greater than approximately 30 mph. Naturally, this unstable
vehicle state encouraged trainees to interactively use steering wheel paddle shifters to
adjust their CG forward and thus immediately counteract the instability. However, shifting
the CG too far forward modified the car to an “understeer” configuration, less sensitive
to steering commands, and therefore unable to maintain the specified radius at elevated
(optimized) speeds. In such an instance, overadjustment of the CG forced students to
subsequently either reduce their travel speed (and suffer slower lap times), or re-modify
the CG toward an optimized “neutral steer” balance point to achieve and maintain a speed
that is optimal for that vehicle.

Figure 14 represents a cumulative plot (decomposed per sub-cohort), and records how
the four student cohorts adjusted the CG of their vehicle as a function of time, depicting the
ratio of front cornering stiffness to front weight distribution. As this ratio approaches unity,
the vehicle approaches its ideal “neutral steer” condition. Therefore, on average, all four
sub-cohorts successfully modified the vehicle CG toward neutral steer in an exponential
fashion. Overall, this observation suggests that trainees consistently engaged with the
effect of the CG on the vehicle dynamics throughout the training exercise. From the
plot, we observed that most students made large adjustments early within the allotted
experimental timeframe to counteract what were obvious (initial) vehicle performance
deficiencies. Then, as sub-cohort students increased speed and gained confidence, they
continued to make more precise compensations to fine-tune and experientially converge
upon more subtle performance gains. It is likely that the observed effectiveness of student
conceptual understanding was directly enabled by experiential (hands-on) GBL. In other
words, through active learning, this intervention provided a unique mechanism for novice
learners to practice inductive reasoning [53]—imparting broader educational impacts on
critical aspects of vehicle operation, performance, and safety—all of which would likely
have been far less effective (and memorable) if conventional passive classroom instruction
had been relied upon exclusively.

Figure 14. Skid pad cohort deviations from neutral steer.
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3.2. Triple Curve Intervention

For the Triple Curve intervention, a total of n = 48 student drivers participated; 24 each
allocated to the gauge/ghost trainer sub-cohorts. To assess quantitative differences in
vehicle cornering performance, and experimental outcomes between the ghost trainer and
gauge trainer cohorts, we first compare the racing trajectories of each group to an ideal
trajectory generated by a small cohort of “expert” drivers. These results are displayed
for each sub-cohort (expert/gauge/ghost) using a (green/red/blue) color-coding scheme,
respectively. Figure 15 compares results for all three cohorts that relate primarily to laps
and errors. As illustrated in the plot, total laps (attempted) were comparable across
cohorts, but both student (gauge/ghost) cohort averages were higher than that achieved
by the expert driver. Likewise, overall distance travelled (in miles) was comparable across
cohorts. Most compelling about this figure are the remaining two series: notably, the
expert driver achieved more legal laps than either of the (averaged) student cohorts,
with the ghost cohort slightly outperforming the gauge cohort. Similarly, the expert
driver drove without any cumulative errors (e.g., which included cone nicks/minor; tree
strikes/moderate; and vehicle spinouts/major); while both student cohorts demonstrated
errors during their drives, with the ghost cohort demonstrating a slightly higher number.
The primary takeaways from this chart are that the expert driver demonstrated a consistent
and conservative approach towards the primary training goal (# legal laps); the students
were more aggressive and less effective at achieving this goal, with the ghost cohort
performing better overall (than gauge), but with a “risk vs. reward” aggression that
resulted in a higher likelihood for critical driving mistakes. Figure 16 offers companion
results for the same cohorts (primarily relating to speed), with all three series reporting
as comparable. As shown, the fastest laps for all three cohorts were approximately 24.0 s,
average speeds were in the vicinity of 63.0 mph, and maximum speeds (achieved in the
straightaway sections) were recorded to be just over 80.0 mph.

Figure 15. Triple Curve (laps/errors).

Figure 16. Triple Curve (speed).

Figure 17 continues the Triple Curve analysis by comparing the racing trajectories
of student (gauge/ghost) cohorts to that of the expert driver, and implements the same
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color scheme. For the expert driver, a single trajectory is shown; for the student cohorts,
the cohort-averaged upper/lower bounds are depicted to illustrate the respective ranges
of data collected. The expert driver (green) tends to hold an outside lane position in the
straight sections, brakes into a tight radius through the apex of each corner, and then
transitions again strategically to an outside lane position. The ghost trainer (blue) and
gauge trainer (red) cohorts share similar characteristics to the expert driver, however the
key difference observed is the variability of driver behavior at the exit of each corner, as
indicated by the widening of the cumulative cohort drive paths (i.e., upper/lower bounds).
This is indicative of novice trainees (from both student cohorts) reaching the tire saturation
limits and subsequently losing control at the later stages of each corner. This behavior
is observed to be more pronounced with the ghost trainer cohort (blue), whose bounds
completely engulf the gauge trainer bounds.

Figure 17. Ghost trainer vs. gauge trainer race trajectories (with upper/lower bounds).

Detailed cohort performance behavior is dissected in greater detail with a G−G
diagram [54] (Figure 18)—a traditional graphical mechanism for assessment of cornering
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performance by displaying longitudinal acceleration (i.e., throttling/braking forces) as a
function of lateral acceleration (i.e., centripetal forces). Both series are plotted in units of
G-force (i.e., the acceleration of gravity, which is 32.2 ft/s2), hence the name of the diagram.
Ultimately, the diagram is instituted to verify that the driver is operating the vehicle to
its full potential. As observed, the expert driver (green) enters the corner with controlled
aggression, and then, smoothly, reduces braking force to approximately −0.22 g’s of lateral
acceleration, as the longitudinal acceleration obtains a corresponding maximum of−1.8 g’s.
Subsequently, the brakes are gradually released and the throttle is introduced as the lateral
acceleration works back toward zero, and the vehicle begins to straighten out. Notice that
both the gauge trainer and ghost trainer cohorts employ considerably less deceleration
going into the corner than the expert driver. The lateral acceleration for the ghost trainer
cohort reaches a minimum of −0.17 g’s, and the gauge trainer cohort brakes even less,
with a maximum of approximately −0.1 g’s. Because both cohorts, on average, brake too
little and too late into each corner, they enter the apex with too much speed. As a result,
a peak longitudinal acceleration in excess of a safe −1.8 g’s is observed, and this pushes
the front tires beyond their saturating slip angles. This means that the vehicle cannot turn
any further (i.e., given its current speed and heading angle) with continued and increased
attempts at steering.

Figure 18. Ghost vs. gauge G−G diagram (averaged across all cornering).

In Figure 18, it is also clear that the contour of the acceleration profile for the ghost
cohort spans a greater range than that observed for the gauge cohort, indicating larger
magnitudes of accelerations—and more aggressive cornering. The greater uniformity
of performance across the gauge cohort can likely be attributed to the more systematic
GBL training elements that were provided to those drivers: a visible (suggested) racing
line, brake/throttle cues, and a tire slip angle heads-up contour display. While the ghost
trainer cohort could deduce a racing line by following the ghost vehicle on the track, this
friendly competitor vehicle outpaced most drivers, and quickly left their immediate field
of view. Additionally, the implied incentive to “race” the ghost vehicle likely encouraged
a more aggressive racing strategy beyond their simulated driving capabilities (and one
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that is unsafe for novice drivers), resulting in the larger overall variation in observed
performance behavior.

3.3. Moose Test Intervention

For the Moose Test intervention, a total of n = 24 student drivers participated. To quan-
tify simulator performance in navigating the Moose Test courses, each driver’s deviation
from an ideal path was calculated, as depicted in Figure 19.

Figure 19. Lateral deviations as a metric for quantifying Moose Test performance.

Along the length of each course, the squared lateral deviation from the ideal trajectory
was calculated and summed to provide a cumulative score (i.e., with a zero-score being
optimal). Thus, the simulator score, J, is defined by a simple mathematical model defined
in Equation (2).

J =
P

∑
i=1

(yi − y∗i )
2∆x (2)

Here, yi is the lateral position of the vehicle, yi* is the ideal lateral position, and
∆x is the longitudinal discretization interval for the course (summed across a total of P
intervals), implemented for normalization. Each driver navigated both the original and
modified Moose Test courses at entry speeds of 20, 30, and 40 mph; with and without
(yaw stabilization) electronic speed control (ESC). To demonstrate the scoring procedure,
Figure 20 offers sample representative data, at all three entry speeds, for the modified
Moose Test course.

To evaluate the effect of electronic speed control (ESC) on each driver, at each entry
speed, we calculated percent improvement in score (with assisted control). Table 4 presents
average cohort scores for both the original and modified Moose Tests, at all three entry
speeds, both with and without ESC. Again, note that a score of “0.0” is optimal, indicating
null deviation (per unit time) from the ideal trajectory through each course. From this table,
as expected, we observe a general upward trend in score with entry speed. However, note
that for the original Moose Test, scores tended to decline from 20 to 30 mph (i.e., likely due
to insufficient cohort size), before dramatically increasing for the 40-mph experiment. In
addition, note that scores generally increased (improved) with the presence of the ESC, but
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that tendency tended to have a strong correlation with driver skill (as is discussed shortly),
and the severity of improvement varied with entry speed.

Figure 20. Simulator trial (sample data) for the modified Moose Test.

Table 4. Cohort average simulator score summary (lower scores indicate better performance).

20 mph 30 mph 40 mph

Original (no ESC) 4364 2899 8037
Original (with ESC) 1627 886 2046
Modified (no ESC) 671 2607 8016
Modified (with ESC) 367 1403 2982
Original (no ESC) 4364 2899 8037
Original (with ESC) 1627 886 2046
Modified (no ESC) 671 2607 8016
Modified (with ESC) 367 1403 2982

Figures 21 and 22 depict improvement as a function of speed for the original/modified
courses. The horizontal axis reports the simulator score obtained without the presence
of ESC, which ranges from 0.0 on the far left (i.e., a perfect driving rating), to 50,000 on
the far right (i.e., a highly-flawed driving rating); note that this axis is plotted not linearly,
but logarithmically. The simulator score without ESC can be considered a measure of the
driver’s natural (simulator) driving ability. Therefore, data points farther to the left are
indicative of drivers with higher skill. The vertical axis depicts percent improvement with
the presence of the ESC, ranging from −500% (i.e., indicative that driver scores declined
with the presence of the ESC) up to 100% (i.e., the threshold which would indicate dramatic
improvement with the presence of the ESC). Note that the vertical axis is presented on
a linear scale. For the lower speeds evaluated in our experiment (i.e., 20 and 30 mph),
drivers with a better (lower) unassisted score were observed to perform worse with the
assistance of ESC. This trend is indicated by the red and blue markers (for both original and
modified Moose Tests) demarcated predominantly on the lower portion of the plot, below
the 0% line on the Y-axis, and towards the left-hand side of the chart. However—those with
inferior (higher) scores without ESC improved significantly with assisted (ESC) control.
These drivers are demarcated by the red/blue markers towards the top-right corner of
the charts (for both original and modified Moose Tests). Not surprisingly, at 40 mph (i.e.,
the green markers, on both charts), almost all drivers clearly benefited from the assisted
control (ESC). This is demarcated by the markers appearing, almost predominantly, across
the top band on the chart (above the 0% axis line).
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Figure 21. Percent improvement with electronic stability controller (ESC). (original Moose Test).

Figure 22. Percent improvement with ESC (modified Moose Test).

Finally, the average full-circuit trajectories for the drivers were calculated for the
original and modified Moose Tests (shown as data series), along with the ±1 standard
deviation bounds (shown as shaded regions using the same series color). Data for the
modified tests are plotted in Figure 23, as observed trends were similar for both variations
of the ISO 3888-2. Note that the trajectories without the ESC controller are shown in red,
while the controller-assisted (ESC) trajectories are shown in green. As observed within
the sequence of figures, on average, drivers successfully exit the first channel of cones
(shown in blue) and enter the second channel without incident. This tendency is indicated
by the smooth green lines (and the very narrow red band) on the leftmost sides of the
plots. However, upon entering the second channel of cones, drivers tend to overshoot the
lane center. This effect is amplified with increasing speed, where the magnitude of the
overshoot increases, and the peak of the overshoot is pushed further down the course.
This tendency (i.e., the moderate red error bands widening, and the effect amplified with
increasing speed) can be viewed, in all three charts, in the bottom-middle segment of the
plots. To compensate for this overshoot, drivers subsequently had a tendency to make
a dramatic steering adjustment while exiting the second channel of cones, leading to an
even greater overshoot when entering the third channel—and with greater delay. Thus,
in general, the steering commands were too dramatic and were tendered too late. At
20 mph, many drivers were able to manage their error relatively unscathed; at 30 mph,
and especially at 40 mph, almost all drivers were consistently observed to strike either the
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inner or outer cone boundary of the third cone channel. This tendency (i.e., very wide red
bands, greatly amplified with increasing speed) can be seen on the rightmost side of the
chart sequence.

Figure 23. Modified Moose Test per cohort average trajectories at different entry speeds: (a) 20 mph, (b) 30 mph, and (c) 40 mph.

Comparing the trajectories with and without ESC, the control-assisted trajectories
remain closer to the ideal path over the range of tested speeds, and with tighter variance (i.e.,
smaller standard deviation). The ESC attenuates lane overshoots, and damps lateral motion
of the vehicle, helping drivers align the vehicle before exiting the second channel of cones.
However, while the ESC, on average, improves performance on the original and modified
moose maneuvers, we found that drivers with the highest unassisted simulator scores
(i.e., those that were better natural simulator drivers) had a tendency to be detrimentally
impacted by stability control. This general trend was observed at low and moderate speeds;
however, at 40 mph (i.e., the highest entry speed examined), the ESC feature proved to be
universally beneficial.
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4. Conclusions and Future Work

Within the discipline of transportation engineering, a vastly improved comprehension
of how a vehicle functions can be achieved with advanced educational tools to supple-
ment conventional (passive) instructional techniques. In this paper, we presented a novel
research methodology that builds upon previous research in game-based learning (GBL)
by demonstrating hands-on, experiential interventions intended to better educate young
engineers and substantially improve conceptual understanding of vehicle dynamics. In
companion with these interventions, we employed gamification techniques to engage and
motivate cohort trainees to comply with the goals of the interventions towards achieve-
ment of the intended training objective. Our implementation should promote similar
instructional methodologies that result in positive downstream impacts on safety, both for
the vehicles (e.g., controls, designs, interfaces), and drivers and operators of tomorrow’s
automotive technologies.

With our Skid Pad intervention, our goal was to enhance understanding of over-
steer/understeer vehicles at ever-increasing speed. Through our GBL implementation,
students successfully modified the vehicle CG toward neutral steer exponentially, and
consistently engaged with the effect of the CG on the vehicle dynamics throughout the
training exercise. Student conceptual understanding was enabled by experiential (hands-
on) GBL and provided a unique mechanism for students to practice inductive reasoning
in a manner that would likely have been far less effective through passive instruction
alone. With our Triple Curve intervention, our goal was to enhance understanding of
optimal cornering strategies subject to the tire conditions of the vehicle. Overall, when
compared to the expert driver—the students were more aggressive and less consistent at
achieving the primary training goal (i.e., legal laps per unit time), with the ghost cohort
outperforming the gauge cohort, but with a “risk vs. reward” aggression that resulted
in a higher likelihood for critical driving mistakes. This general tendency resulted in a
greater observed uniformity of training performance across the gauge cohort than the ghost
cohort, likely attributed to the explicit GBL training elements that were provided to the
gauge drivers, as opposed to those that had to instead be deduced by the ghost drivers.
Finally, with the Moose Test intervention, our goal was to enhance understanding of lateral
handling and yaw stabilization of a vehicle within an extreme evasive roadway maneuver.
At lower entry speeds, drivers who demonstrated natural proficiency in navigating the
Moose Test maneuver performed worse with the presence of ESC. Rather, those among
the cohort who drove poorly during conditions without the aid of a controller tended to
improve significantly with the presence of ESC. Noteworthy also is that at elevated speeds,
almost all drivers benefited from assisted yaw stability control. This observation suggests
that every driver likely has a transition (speed) threshold where electronic driver assistance
is beneficial.

4.1. Constraints and Limitations of Current Implementation

As with any novel and cutting-edge training implementation, it is important to recog-
nize the inherent constraints and limitations of the GBL implementation towards broader
application. Despite many advantages, simulator-based training also has some noteworthy
drawbacks. For some trainees, it is difficult to overcome the perception that a simulator
is an imitation of reality. This inherent absence of truly “being there” can result in neg-
ative training [55], and acquired skills might not be appropriately applied to real-world
application. Another primary concern is “simulator sickness” [56], a sensory conflict that
can manifest itself through sweating, dizziness, headaches, nausea, and other maladaptive
symptoms. Fortunately, past studies have demonstrated that simulator sickness is less
frequent with younger individuals [57], who were predominant in the cohorts studies here.
Finally, it should be understood that historically, games are not automatically effective
in educational settings. To be successful, they must be rooted in effective pedagogical
practices. In other words, the implementation of “surface characteristics” of gamification
(e.g., badges and rewards), without employing rigorous game design elements, can actu-
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ally inhibit (rather than enhance) student engagement [58]. Under optimal circumstances,
games, however, have long served as a convenient medium for creating a training do-
main whereby students can safely and successfully interact with authentic problems with
real-world implications.

4.2. Future Pathways

The research described in this paper serves as a proof-of-concept for systematically em-
ploying GBL to observe human behavior in varied driving situations and vehicle conditions.
Within transportation engineering, such analyses could enable a greater understanding
of the human−machine interface to provide much-needed insights on human tendencies
and behaviors related to next-generation vehicle technologies. As an example, input shap-
ing [59] is a pure feed-forward, “open loop” control technique to minimize unwanted
residual responses (i.e., vehicle state outputs) to a prescribed input (e.g., a steering com-
mand). Using real-time driving and advanced simulation, deployment of input shaping
could be successfully demonstrated and subsequently implemented to improve human
factors and human−vehicle machine interfaces that will enhance vehicle design safety and
driver control of next-generation connected and automated vehicles.

The research methodology and preliminary findings presented here are intended to
demonstrate a foundation to revolutionize the form/function of content delivery within
future engineering education. Our broader strategic vision is to conceive, develop, and
deploy a wider series of GBL courseware, leveraging advanced modeling and simulation
(M&S) and emergent gamification approaches to improve learner engagement, training
effectiveness, and, ultimately, long-term success rates for vocational preparation. Largely
through the direct influence of our present efforts, in development is a revised engineering
education taxonomy (courseware and assessment standards) that will rigorously incor-
porate game design characteristics that have been consistently associated with positive
learning outcomes [60].

Refer to Figure 24, which illustrates the primary (notional) components of our pro-
posed logic model (i.e., a “Theory of Change”) for authentication of GBL in engineering
education on a much broader scale. This strategic vision will be achieved through the
implementation of extensible instructional components and methodological principles that
will more effectively engage critical thought processes for solving “real-world” problems.
The proposed model is explicitly designed to build specific skills in engaging GBL activities
and metacognitive competence—to increase active learner participation, and promote posi-
tive engagement with instructional materials. We hypothesize that through the execution
of these model elements, we will enable an optimal atmosphere to improve short-term
and long-term learning outcomes, including safety standards within all sub-disciplines of
engineering design.

Figure 24. A Theory of Change in engineering education to enhance design and safety.
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science, technology, and engineering: A review. Comput. Educ. 2016, 95, 309–327. [CrossRef]
9. Amirkhani, S.; Nahvi, A. Design and implementation of an interactive virtual control laboratory using haptic interface for

undergraduate engineering students. Comput. Appl. Eng. Educ. 2016, 24, 508–518. [CrossRef]
10. Jeronymo, D.C.; de Barros Araújo, R.; Coelho, A.A.; Normey-Rico, J.E. An approach for improving student performance in a

feedback systems course for process control education. IFAC Proc. Vol. 2014, 47, 10574–10579. [CrossRef]
11. Jara, C.A.; Candelas, F.A.; Puente, S.T.; Torres, F. Hands-on experiences of undergraduate students in Automatics and Robotics

using a virtual and remote laboratory. Comput. Educ. 2011, 57, 2451–2461. [CrossRef]

http://cyberlaw.stanford.edu/blog/2013/12/human-error-cause-vehicle-crashes
https://digitalcommons.odu.edu/vmasc_books/2
http://doi.org/10.1002/j.2168-9830.2005.tb00833.x
http://doi.org/10.1016/j.compedu.2016.02.002
http://doi.org/10.1002/cae.21727
http://doi.org/10.3182/20140824-6-ZA-1003.01084
http://doi.org/10.1016/j.compedu.2011.07.003


Safety 2021, 7, 30 24 of 25

12. Razali, Z.B.; Trevelyan, J.P. An Evaluation of Students’ Practical Intelligence and Ability to Diagnose Equipment Faults. Procedia
Soc. Behav. Sci. 2012, 56, 42–51. [CrossRef]

13. Nagai, K. Learning while doing: Practical robotics education. IEEE Robot. Autom. Mag. 2001, 8, 39–43. [CrossRef]
14. Bauer, M.; Brooks, K.S.; Sandrock, C. Industry Expectations and Academic Practice in Control Engineering Education—A South

African Survey. IFAC Proc. Vol. 2014, 47, 12226–12231. [CrossRef]
15. Prince, M.J.; Felder, R.M. Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. J. Eng. Educ.

2006, 95, 123–138. [CrossRef]
16. Bencomo, S.D. Control learning: Present and future. Annu. Rev. Control 2004, 28, 115–136. [CrossRef]
17. Choi, B.; Baek, Y. Exploring factors of media characteristic influencing flow in learning through virtual worlds. Comput. Educ.

2011, 57, 2382–2394. [CrossRef]
18. Soo, M.T.; Aris, H. Game-Based Learning in Requirements Engineering: An Overview. In Proceedings of the 2018 IEEE Conference

on e-Learning, e-Management and e-Services (IC3e), Langkawi, Malaysia, 21–22 November 2018; pp. 46–51.
19. Turner, P.E.; Johnston, E.; Kebritchi, M.; Evans, S.; Heflich, D.A. Influence of online computer games on the academic achievement

of nontraditional undergraduate students. Cogent Educ. 2018, 5. [CrossRef]
20. Hughes, A. Gamification Versus Serious Games. 2017. Available online: https://trainingindustry.com/articles/learning-

technologies/gamification-versus-serious-games/ (accessed on 26 November 2020).
21. Rieber, L.P.; Smith, L.; Noah, D. The Value of Serious Play. Educ. Technol. 1998, 38, 29–37.
22. Aldrich, C. Learning by Doing: A Comprehensive Guide to Simulations, Computer Games and Pedagogy in E-learning and Other

Educational Experiences; John Wiley & Sons: San Diego, CA, USA, 2005; ISBN 978-0-7879-7735-1.
23. Meuleners, L.; Fraser, M. A validation study of driving errors using a driving simulator. Transp. Res. Part F Traffic Psychol. Behav.

2015, 29, 14–21. [CrossRef]
24. Mayhew, D.R.; Simpson, H.M.; Wood, K.M.; Lonero, L.; Clinton, K.M.; Johnson, A.G. On-road and simulated driving: Concurrent

and discriminant validation. J. Saf. Res. 2011, 42, 267–275. [CrossRef] [PubMed]
25. Underwood, G.; Crundall, D.; Chapman, P. Driving simulator validation with hazard perception. Transp. Res. Part F Traffic

Psychol. Behav. 2011, 14, 435–446. [CrossRef]
26. Chan, E.; Pradhan, A.K.; Pollatsek, A.; Knodler, M.A.; Fisher, D.L. Are driving simulators effective tools for evaluating novice

drivers’ hazard anticipation, speed management, and attention maintenance skills? Transp. Res. Part F Traffic Psychol. Behav. 2010,
13, 343–353. [CrossRef] [PubMed]

27. Casutt, G.; Martin, M.; Keller, M.; Jäncke, L. The relation between performance in on-road driving, cognitive screening and
driving simulator in older healthy drivers. Transp. Res. Part F Traffic Psychol. Behav. 2014, 22, 232–244. [CrossRef]

28. Lee, H.C.; Cameron, D.; Lee, A.H. Assessing the driving performance of older adult drivers: On-road versus simulated driving.
Accid. Anal. Prev. 2003, 35, 797–803. [CrossRef]

29. Roenker, D.L.; Cissell, G.M.; Ball, K.K.; Wadley, V.G.; Edwards, J.D. Speed-of-Processing and Driving Simulator Training Result in
Improved Driving Performance. Hum. Factors J. Hum. Factors Ergon. Soc. 2003, 45, 218–233. [CrossRef]

30. Saleh, L.; Chevrel, P.; Mars, F.; Lafay, J.-F.; Claveau, F. Human-like cybernetic driver model for lane keeping. IFAC Proc. Vol. 2011,
44, 4368–4373. [CrossRef]

31. Sentouh, C.; Chevrel, P.; Mars, F.; Claveau, F. A sensorimotor driver model for steering control. In Proceedings of the 2009 IEEE
International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 2462–2467.

32. Horak, D.T. Experimental Derivation of Models of Human Drivers Executing Emergency Steering Maneuvers. In Proceedings of
the ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA, 11–13 October 2017; p. V003T33A001.

33. Sarwar, T.; Anastasopoulos, P.C.; Golshani, N.; Hulme, K.F. Grouped random parameters bivariate probit analysis of perceived
and observed aggressive driving behavior: A driving simulation study. Anal. Methods Accid. Res. 2017, 13, 52–64. [CrossRef]

34. Hulme, K.F.; Kasprzak, E.M.; Morris, K.L. Correlation of Game-based Experiential Education to Self-reported Driving and
Learning Styles. In Proceedings of the MODSIM World Conference, Virginia Beach, VA, USA, 25–27 April 2017.

35. Hulme, K.F.; Androutselis, T.; Eker, U.; Anastasopoulos, P. A Game-based Modeling and Simulation Environment to Examine the
Dangers of Task-Unrelated Thought While Driving. In Proceedings of the MODSIM World Conference, Virginia Beach, VA, USA,
26–28 April 2016.

36. Akutagawa, K.; Wakao, Y. Stabilization of Vehicle Dynamics by Tire Digital Control—Tire Disturbance Control Algorithm for an
Electric Motor Drive System. World Electr. Veh. J. 2019, 10, 25. [CrossRef]

37. Gillespie, T.D. Fundamentals of Vehicle Dynamics; SAE International: New York, NY, USA, 1992.
38. Milliken, W.F.; Milliken, D.L. Race Car Vehicle Dynamics; SAE: Warrendale, PA, USA, 1995.
39. Hulme, K.F.; Estes, E.; Schiferle, M.; Lim, R. Game-based Learning to Enhance Post-secondary Engineering Training Effectiveness.

In Proceedings of the Interservice/Industry Training, Simulation and Education Conference (I/ITSEC), Orlando, FL, USA, 2–6
December 2019.

40. Lampton, C. How Automotive Proving Grounds Work. 2020. Available online: https://auto.howstuffworks.com/automotive-
proving-ground.htm (accessed on 14 December 2020).

41. Schmitt, B. Chrysler Fails Moose Test and Breaks First Commandment. The Truth about Cars (Online News Blog). 2012. Available
online: http://www.thetruthaboutcars.com/2012/07/chrysler-fails-moose-test-and-breaks-first-commandment/ (accessed on
28 November 2020).

http://doi.org/10.1016/j.sbspro.2012.09.630
http://doi.org/10.1109/100.932756
http://doi.org/10.3182/20140824-6-ZA-1003.01406
http://doi.org/10.1002/j.2168-9830.2006.tb00884.x
http://doi.org/10.1016/j.arcontrol.2003.12.002
http://doi.org/10.1016/j.compedu.2011.06.019
http://doi.org/10.1080/2331186X.2018.1437671
https://trainingindustry.com/articles/learning-technologies/gamification-versus-serious-games/
https://trainingindustry.com/articles/learning-technologies/gamification-versus-serious-games/
http://doi.org/10.1016/j.trf.2014.11.009
http://doi.org/10.1016/j.jsr.2011.06.004
http://www.ncbi.nlm.nih.gov/pubmed/22017829
http://doi.org/10.1016/j.trf.2011.04.008
http://doi.org/10.1016/j.trf.2010.04.001
http://www.ncbi.nlm.nih.gov/pubmed/20729986
http://doi.org/10.1016/j.trf.2013.12.007
http://doi.org/10.1016/S0001-4575(02)00083-0
http://doi.org/10.1518/hfes.45.2.218.27241
http://doi.org/10.3182/20110828-6-IT-1002.02349
http://doi.org/10.1016/j.amar.2016.12.001
http://doi.org/10.3390/wevj10020025
https://auto.howstuffworks.com/automotive-proving-ground.htm
https://auto.howstuffworks.com/automotive-proving-ground.htm
http://www.thetruthaboutcars.com/2012/07/chrysler-fails-moose-test-and-breaks-first-commandment/


Safety 2021, 7, 30 25 of 25

42. ISO. ISO 3888-2:2011—Passenger Cars—Test Track for a Severe Lane-Change Maneuver—Part 2: Obstacle Avoidance. 2011.
Available online: https://www.iso.org/obp/ui/#iso:std:iso:3888:-2:ed-2:v1:en (accessed on 28 November 2020).

43. Hulme, K.F.; Estes, A.; Schmid, M.; Torres, E.; Hendrick, C.; Sivashangaran, S. Game-based Proving-grounds Simulation to assess
Driving & Learning Preferences. In Proceedings of the Interservice/Industry Training, Simulation and Education Conference
(I/ITSEC), Orlando, FL, USA, 2 December 2018.

44. Ackermann, J. Robust decoupling, ideal steering dynamics and yaw stabilization of 4WS cars. Automatics 1994, 30, 1761–1768.
[CrossRef]

45. Ackermann, J. Robust Control Prevents Car Skidding. IEEE Control Syst. Mag. 1997, 17, 23–31.
46. Rajamani, R. Vehicle Dynamics and Control; Springer: New York, NY, USA, 2006; ISBN 0-387-26396-9.
47. Hou, Y.; Wan, J.; Zhao, Y.; Hulme, K.F.; Wu, C.; Sadek, A.W.; Qiao, C. The Effect of Intelligent Speed Control System: An

Investigation on Driver’s Acceptance and Minimum Headway. In Proceedings of the ITS World Congress, Detroit, MI, USA, 7–11
September 2014.

48. Hou, Y.; Zhao, Y.; Hulme, K.F.; Sadek, A. A Validated and Integrated Simulation Framework for Human Factors Analyses. In
Proceedings of the Interservice/Industry Training, Simulation and Education Conference (I/ITSEC), Orlando, FL, USA, 1–5
December 2014.

49. Fountas, G.; Pantangi, S.S.; Hulme, K.F.; Anastasopoulos, P.C. The effects of driver fatigue, gender, and distracted driving on
perceived and observed aggressive driving behavior: A correlated grouped random parameters bivariate probit approach. Anal.
Methods Accid. Res. 2019, 22, 100091. [CrossRef]

50. Baffet, G.; Charara, A.; Lechner, D. Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Eng. Pract. 2009,
17, 1255–1264. [CrossRef]

51. The Review Stories—Understeer vs. Oversteer. Available online: https://thereviewstories.medium.com/understeer-vs-oversteer-
90124db12e9b (accessed on 20 November 2020).

52. The Clemson University Vehicle Electronics Laboratory—Electronic Stability Control. Available online: https://cecas.clemson.
edu/cvel/auto/systems/stability_control.html (accessed on 20 November 2020).

53. Sell, R.; Rüütmann, T.; Seiler, S. Inductive Teaching and Learning in Engineering Pedagogy on the Example of Remote Labs. Int. J.
Eng. Pedagog. 2014, 4, 12. [CrossRef]

54. Rice, R.S. Measuring car-driver interaction with the g-g DIAGRAM. SAE Tech. Paper Ser. 1973, 730018. [CrossRef]
55. Deterding, S. Gamification: Designing for motivation. Interactions 2012, 19, 14–17. [CrossRef]
56. Singh, T.; Singhose, W. Input Shaping/Time Delay Control of Maneuvering Flexible Structures. In Proceedings of the 2002

American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, 8–10 May 2002; pp. 1717–1731.
57. Stott, A.; Neustaedter, C. Analysis of Gamification in Education; Simon Fraser University: Surrey, BC, Canada, 2013.
58. Groeger, J.A.; Banks, A.P. Anticipating the content and circumstances of skill transfer: Unrealistic expectations of driver training

and graduated licensing? Ergonomics 2007, 50, 1250–1263. [CrossRef]
59. Stoner, H.A.; Fisher, D.L.; Mollenhauer, M. Simulator and scenario factors influencing simulator sickness. In Handbook of Driving

Simulation for Engineering, Medicine, and Psychology; CRC Press: Boca Raton, FL, USA, 2011.
60. Keshavarz, B.; Ramkhalawansingh, R.; Haycock, B.; Shahab, S.; Campos, J. Comparing simulator sickness in younger and older

adults during simulated driving under different multisensory conditions. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 47–62.
[CrossRef]

https://www.iso.org/obp/ui/#iso:std:iso:3888:-2:ed-2:v1:en
http://doi.org/10.1016/0005-1098(94)90079-5
http://doi.org/10.1016/j.amar.2019.100091
http://doi.org/10.1016/j.conengprac.2009.05.005
https://thereviewstories.medium.com/understeer-vs-oversteer-90124db12e9b
https://thereviewstories.medium.com/understeer-vs-oversteer-90124db12e9b
https://cecas.clemson.edu/cvel/auto/systems/stability_control.html
https://cecas.clemson.edu/cvel/auto/systems/stability_control.html
http://doi.org/10.3991/ijep.v4i4.3828
http://doi.org/10.4271/730018
http://doi.org/10.1145/2212877.2212883
http://doi.org/10.1080/00140130701318723
http://doi.org/10.1016/j.trf.2018.01.007

	Background 
	Research Methodology 
	Experimental Facilities and Design 
	Skid Pad Intervention 
	Triple Curve Intervention 
	Moose Test Intervention 

	Results and Discussion 
	Skid Pad Intervention 
	Triple Curve Intervention 
	Moose Test Intervention 

	Conclusions and Future Work 
	Constraints and Limitations of Current Implementation 
	Future Pathways 

	References

