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Abstract: Among different biological methods used for advanced wastewater treatment, membrane
bioreactors have demonstrated superior efficiency due to their hybrid nature, combining biological
and physical processes. However, their efficient operation and control remain challenging due to their
complexity. This comprehensive review summarizes the potential of artificial neural networks (ANNs)
to monitor, simulate, optimize, and control these systems. ANNs show a unique ability to reveal and
simulate complex relationships of dynamic systems such as MBRs, allowing for process optimization
and fault detection. This early warning system leads to increased reliability and performance.
Integrating ANNs with advanced algorithms and implementing Internet of Things (IoT) devices and
new-generation sensors has the potential to transform the advanced wastewater treatment landscape
towards the development of smart, self-adaptive systems. Nevertheless, several challenges must be
addressed, including the need for high-quality and large-quantity data, human resource training, and
integration into existing control system facilities. Since the demand for advanced water treatment
and water reuse will continue to expand, proper implementation of ANNSs, combined with other
Al tools, is an exciting strategy toward the development of integrated and efficient advanced water
treatment schemes.

Keywords: membrane bioreactors (MBRs); artificial neural networks (ANNs); wastewater treatment;
monitoring; modeling; optimization; control; deep learning; Internet of Things (IoT)

1. Introduction

Wastewater management, treatment, and reuse have become crucial processes for
the protection of the environment and public health. Rapid industrialization, along with
urbanization, has consistently increased both the volume and complexity of produced
wastewater [1,2]. This is because wastewater is now composed of a variety of synthetic xeno-
biotic substances. Therefore, there is an emerging need for the development of advanced
wastewater treatment technologies that will facilitate water purification and reuse [1,2].
Among these technologies, membrane bioreactors (MBRs) present a very interesting strat-
egy for advanced wastewater treatment, as they incorporate the “green” aspect of biological
degradation with the advantages of membrane separation [3-5]. They demonstrate high
performance and produce high-quality effluent suitable for various uses [4,5].

In contrast to conventional aeration systems such as activated sludge, MBRs demon-
strate several advantages. These include higher efficiency and effluent quality, improved
sludge retention time, lower sludge production, and higher nutrient removal. Moreover,
MBRs can handle higher organic loads, increasing the possibility for use in various indus-
trial applications in addition to the treatment of domestic wastewater [3-6].

However, the operation and maintenance of MBRs present several challenges that
prevent their widespread industrial applications. These include issues related to membrane
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fouling, high energy consumption, and difficulties in maintaining process stability. There-
fore, efficient optimization and control strategies must be developed to overcome these
challenges [6-9]. Moreover, these strategies must have the capability to adapt to different
operating conditions and influent fluctuations, a common phenomenon in wastewater
engineering problems. Like any optimization and control problem, the efficient develop-
ment of solutions requires a thorough understanding of the system, with emphasis on the
interactions between the physical, chemical, and biochemical processes [8,9].

In recent decades, artificial intelligence, and in particular artificial neural networks
(ANN), have demonstrated their ability to simulate, optimize, and control very complex
systems in different fields, including several applications in environmental engineering
and wastewater treatment [10,11]. Indeed, ANNs can understand linear or nonlinear
correlations between input and output variables, and they are also capable of learning from
past data [10,11]. Therefore, they are strong candidates for the development of strategies
for the prediction and control of an MBR system [12,13]. The aim of this critical review is
to provide a comprehensive overview of ANN applications in MBR systems, such as the
optimization of efficiency and energy consumption, the prediction of membrane fouling,
and the detection of faults or malfunctions. Moreover, the limitations and advantages of
neural network applications in MBRs are discussed, and directions for future research are
proposed.

2. Fundamentals of Membrane Bioreactors (MBR)
2.1. Basic Principles of MBR Systems and Types of Configurations

MBRs are an integrated advanced wastewater treatment technology that combines
organic matter and nutrient biodegradation with separation provided by using a membrane
module. In these systems, the microorganisms are capable of degrading organic matter and
nutrients similar to the conventional systems of activated sludge, while the membrane acts
as a physical barrier for both substances—solids and biomass—allowing the discharge of a
purified, high-quality effluent. The main MBRs components are the aeration tank, where
biodegradation occurs, and the filtration unit (either microfiltration or ultrafiltration) [7].

MBR systems are divided into two different groups: (i) submerged and (ii) side stream.
In submerged systems, the membrane module is immersed inside the biological aeration
reactor (tank), making this type of design more compact with a reduced footprint. The
strategies usually applied to prevent membrane fouling include vacuum or gravity-driven
filtration, with periodic backwashing and air scouring [3,7-9]. By contrast, in the side
stream configuration, the membrane module is in a different tank and the mixed liquor is
continuously circulated by a high-pressure external pump. Although a side stream setup
allows greater flexibility regarding membrane cleaning and maintenance, higher crossflow
velocities are required to control fouling [3,7,9].

Several operational parameters affect system efficiency, including organic and nutrient
loading, hydraulic retention time (HRT), solids retention time (SRT), aeration, and mem-
brane flux. HRT and SRT are vital for the system since they represent the residence time of
the wastewater and biomass in the system and, as expected, significantly affect biomass
growth [7-9]. This growth is also affected by the aeration intensity, which describes the dis-
solution of oxygen inside the reactor. It is worth noting that in most systems, the presence
of oxygen serves a dual purpose: (i) promoting the growth of biomass and (ii) preventing
membrane fouling due to the scouring of the membrane’s surface [3,7]. Finally, membrane
flux (i.e., the volumetric flow rate per unit of membrane area) is a vital parameter that
estimates the system’s capacity and impacts both energy consumption and membrane
fouling.

2.2. Challenges in MBR Operation and Maintenance

As already stated, despite their superior efficiency, some problems still prevent the
widespread implementation of MBR systems in the industrial sector. The most important
problem is related to membrane fouling. Gradual membrane clogging leads to increased
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transmembrane pressure, reducing the flux and consequently requiring more frequent
membrane cleaning or even replacement. Several factors contribute to membrane fouling,
such as organic matter accumulation and organic precipitations. The latter, in addition
to microbial products on the surface or within the membrane pores, can significantly
decrease the flux [4-7]. Another problem, present in conventional aeration systems but
more intensive due to the higher density of biomass in MBR systems, is the increased
energy consumption related to aeration and the additional energy required from the use
of high-pressure pumps [8,9]. In addition, like conventional wastewater treatment plants,
MBRs must be controlled by efficient strategies to maintain process stability under variable
influent characteristics and fluctuations to satisfy the strict legislative limits for the effluent.

3. Overview of Neural Networks
3.1. A Short Introduction to Artificial Neural Networks (ANN)

Artificial neural networks (ANNSs) represent a family of algorithms designed to em-
ulate the functions of neurons in biological neural systems. The architecture of ANNs
includes interconnected neurons (nodes) organized into distinct layers: the input layer for
system input, the output layer for system output, and the hidden layer(s) [10-12]. The
hidden layer, consisting of simple or extremely complex functions, serves as the heart of
the system. Each node computes a weighted sum of its inputs, which is then processed
through a simple or complex activation function to estimate the output. This process equips
ANNSs with the capability to correlate intricate relationships and interactions concerning
input and output functions [11-14].

The applications of ANNs involve a learning process, wherein the system weights
that represent these correlations are adjusted. This is achieved by optimizing the mean
square error between the network’s predictions and the actual measurements—known as
targets [11-14].

3.2. Different Types of ANN Architectures

Several ANN architectures have been proposed to deal with a variety of applications
with special needs. Some well-known and common architectures include feedforward
networks (FFN), recurrent networks (RN), radial basis function networks (RBF), and deep
learning networks (DLN) (Table 1). Feedforward networks, including multilayer perceptron
(MLP), are characterized by unidirectional information flow from the input layer to the
output layer without implementing additional loops for feedback. By contrast, recurrent
networks implement process feedback, providing them with more efficient management of
temporal or sequential data [7,14-16]. Radial basis function networks are characterized by
the use of radial basis functions as activation functions in the hidden layer. This type of
network has the ability to provide a localized response and has demonstrated improved
generalization performance in several applications [15-17]. Finally, deep learning networks,
which consist of multiple hidden layers instead of just one, have become more popular in
recent years due to the vast increase in computational power. They have shown superior
performance in various tasks such as natural language processing and image recognition,
with several applications in medical research [9-11,15,16].

In addition, in recent years, novel approaches such as implicit neural representation
methods have garnered attention. In contrast to conventional NNs, these methods are con-
tinuous and differentiable, and thus are capable of handling diverse signals [18,19]. These
algorithms can offer a more concise representation while enabling smoother parameter-
based data manipulation [18,19]. In the realm of deep learning, new algorithms such as the
transformer neural network have attracted the attention of researchers due to their ability
to handle long-range dependencies [20]. These models comprise an encoder—decoder
architecture based on attention layers, allowing the concentration to be focused on specific
data or elements using contextual information [20-22].
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Table 1. Artificial neural network architectures for MBRs.
Neural Network Implementation into o e
Architecture MBR Systems Strengths Limitations Ref.
Easy implementation and
Suitable for modeling static training, widely used in MBR ~ Unable to capture
Feedforward neural . . . . .
relationships between inputs systems, good for revealing temporal dependencies  [11-14]
networks (FNNs) . . . o .
and outputs and simulating non-linear in time series data
relationships
Can decrypt temporal More complex than
Capable of modeling dynamic Yb P FNNs. Usually longer
Recurrent neural . . : dependencies, useful for the . )
relationships between inputs L training time and more  [12-14]
networks (RNNs) . . prediction of membrane ..
and outputs in time-series data . . training data are
fouling and aeration control
needed
Can implicitly represent
complex geometries and S .
Implicit neural functions, required for Better generalization and Lur.ut.ed mterpre’Fablhty.
. . . Training and tuning are  [18,19]
representation methods modeling complex structures compact representations .
challenging
and processes such as MBR
systems
Able to capture long-range Parallelizable architecture, Slgmﬁcan.t
. . computational
Transformer dependencies and patternsin  useful for large-scale MBR .
. . . . resources are required.  [20-22]
architectures sequential data and spatially systems and the process of big .
L May need extensive
distributed data data .
hyperparameter tuning
. Can process spatially Can .1dent1fy / smru}late local Spatial data are rarely
Convolutional neural structured data, such as spatial dependencies, useful . ..
. . L . . available. Limited [11-13]
networks (CNNs) images or spatially distributed  for fouling detection and . .
- applications in MBRs
sensor data analysis
. . . Large dataset needed,
Deep Learning, (deep Capable of modeling complex, Can capture higher-order hieh computational
feedforward networks,  high-dimensional relationships  interactions. Improved & p [12-14]

deep RNN)

between input and output

accuracy and performance

cost, and longer
training time.

3.3. Supervised and Unsupervised Learning

Regarding their training, ANNs can be divided into two distinct categories: (i) su-
pervised and (ii) unsupervised algorithms. The selection is sometimes dictated by data
availability combined with the specific nature of the application. Supervised learning
involves the use of a set of training data consisting of input-output pairs, where the output
corresponds to the desired target value for each input [10-15,17]. The optimization of
the ANN refers to the iterative adjustment of network weights to minimize the observed
difference between predicted and target data. Several techniques are used, such as gradient
descent, backpropagation, and others [16]. In contrast, unsupervised ANNs do not use any
labeled training data. The ANN attempts to uncover correlations and patterns from the
input without explicit supervision. Some common unsupervised algorithms include cluster-
ing, dimensionality reduction, and techniques such as self-organizing maps and principal
component analysis (PCA). Unsupervised algorithms have demonstrated their ability in
different areas, including engineering, environmental science, and even finance [10-14,17].

Currently, different types of ANNSs have been successfully applied to a wide range
of problems in fields such as engineering, medicine, finance, and environmental science,
mainly due to their ability to simulate complicated systems and generalize even from
limited or restricted data while adapting to different conditions [11,12]. Environmental
science, due to the complexity of the biotic and abiotic systems involved, has used ANNs
to monitor and predict water quality and quantity, to forecast pollution, and to estimate
ecological impact assessments [10,11]. A concise comparison of ANNs with other Al
techniques is summarized in Table 2.
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Table 2. Comparison of ANNs with other Al technologies in MBR implementation.

Al Technique

Advantages Disadvantages Ref.

Neural networks

Fuzzy logic

Genetic algorithms

Model predictive control
(MPC)

Suitable to reveal and model complex

. . . A signifi f
non-linear relationships; has significant amount o

representative data for training is

demonstrated superior efficiency for - . . [10-12]
. L - required. Sensitive to noise and
various MBR applications (fouling overfittin
prediction, control, fault detection) &
- . . Expert knowledge is required for the
Decision-making via a more design of fuzzy rules. Possibly low
human-like approach. Can handle & Y ) Y [10-13]
. - performance for very complex
uncertainly and inaccurate data
systems
Well-known and high-performance
optimization. Applicability to Usually, a large number of iterations
multi-objective optimization is required, slow convergence, and [11,13,14]
problems. Can adapt to dynamic high computational cost.
conditions
Suitable to handle multivariable A mathematical model of the system
systems with several constraints, and  is required. Usually has high [12-14]
estimated optimal solutions for computational cost. Maybe not be
control. efficient for dynamic systems.

3.4. Applications of Neural Networks in MBR Wastewater Treatment

(i) Neural network-based predictive modeling—Predicting membrane fouling

One of the dominant problems prohibiting MBR implementation is membrane foul-
ing [23-25]. Therefore, it is essential to have an accurate prediction of fouling to allow
proactive fouling control and, consequently, optimal operation of advanced wastewa-
ter systems [26-28]. It is not surprising, then, that several studies have investigated the
use of ANNSs to reveal and simulate the complex correlations among operational condi-
tions, biomass, and fouling indicators, such as transmembrane pressure, flux, and fouling
rate [23-30]. Table 3 summarizes the most important studies related to the application of
ANN s for the prediction of membrane fouling.

For example, according to the work of Chen et al. [24], RBF ANNs demonstrated
higher efficiency than the advanced XDLVO approach to quantify the interfacial energy of
a randomly rough membrane surface in an MBR system. In another interesting study [20],
the authors used a multi-layer perceptron and radial basis function artificial neural network
(MLPANN and RBFANN) with weights optimized by a genetic algorithm to simulate
transmembrane pressure (TMP) and membrane permeability (Perm). Both MLPANN and
RBFANN models showed superior accuracy, while the GA-optimized ANN exhibited
significantly improved results compared to a network used in the conventional trial and
error calibration.

Hamedi et al. [28] examined the simulation of membrane fouling resistance through
the application of different algorithms, including artificial neural networks (ANNSs), gene
expression programming (GEP), and the least square support vector machine (LSSVM),
while the particle swarm optimization (PSO) algorithm was used to enhance the perfor-
mance. According to the researchers, the combination of ANN-PSO demonstrated higher
efficiency than the ANN-MLP approach. However, the use of LSSVM outperformed the
other examined models in terms of MSE and R?. In another study [29], a backpropagation
feedforward network was used to estimate the COD removal and the TMP of an MBR as
output, while the MLSS, hydraulic time, and time served as the inputs. The optimized
network consisted of 17 hidden neurons, while according to the sensitivity analysis using
the cosine amplitude method, all three inputs have an effect on both COD removal and
TMP.
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Table 3. ANN applications for the prediction of membrane fouling.
Scope Model Used Input Output Results Ref.
. e Three probe liquid RBF ANN demonstrated
Efficient quantification . . . . . .
of interfacial energ Radial basis function contact angles, zeta high regression coefficient
Y (RBF) artificial neural ~ potential of sludge Interfacial energy and accuracy with a lower  [24]
related to membrane .
fouling network foulants, and computational cost that
separation distance XDLVO approach
Satisfactory performance.
Prediction of Back propagation pH, alkalinity, From all variables
membrane fouling in " ﬁcfi’al Eelglral MLSS, COD, (IN), o examined the use of 5]
an anoxic—aerobic network (NH4-N), (NO3-N), TNin—TNegt, TPin—TPan,
MBR and TP and Nitrate,,,—Nitrateqg
exhibited high correlation
Multi-layer perceptron LPANN and RBFANN
and radial basis . .
. . o showed superior efficiency
Evaluation and function artificial . .
. . . TMP and towards the simulation of
prediction of neural networks Time, TSS, CODin, .
L membrane TMP and permeability [26]
membrane foulingina (MLPANN and SRT, MLSS 1 .
. permeability The GA-optimized ANN
submerged MBR RBFANN) combined :
. . increased the ANN
with genetic accurac
algorithms y
Artificial neural LSSVM demonstrated
network (ANN), gene higher performance. The
Prediction of expression MLSS, TMP, . . . transmembrane pressure
. . filtration resistance
membrane fouling programming (GEP),  permeate flux, and (RY) and permeate flux were [28]
resistance in MBRs. and least square temperature the most important inputs
support vector affecting the membrane
machine (LSSVM) fouling resistance.
Q, aeration ratio ANN performance was
Simulation of the Back propagation A/O, . notas stable as that of the
membrane foulin artificial neural concentration of mathematical model;
. & L. EPSS, TMP however, it had better [30]
under sub-critical flux ~ network optimized by .
conditions genetic algorifhms concentration of accuracy under
EPS, initial TMP, intermittent aeration

and operating time

conditions

In another study [30], the researchers compared a mathematical and ANN model for

the simulation of membrane fouling under sub-critical flux conditions. According to the
results, although the stability of the mathematical model was better, the ANN showed
higher accuracy under intermittent aerated conditions.

Indeed, supervised ANN training with historical data allows the algorithms to predict
the onset of fouling and to provide valuable insights regarding the factors that contribute
to membrane fouling [25-28]. Based on these results, operators have the opportunity to (i)
adjust the operating conditions and (ii) apply preventative measures or design a cleaning
strategy [23-30].

(ii) Estimating Effluent Quality Parameters

Since water demand is always increasing and the reuse of wastewater has become a ne-
cessity, legislation regarding wastewater discharge has become stricter. Today, wastewater
treatment plants have an obligation to monitor several parameters—water quality indica-
tors such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), total
nitrogen (TN), and total phosphorus (TP), to mention a few [31-34]. The application of neu-
ral networks to simulate/predict these parameters in the effluent quality of MBR systems
has shown superior efficiency based on system inputs such as influent physicochemical
characteristics, operating conditions, and environmental factors [32-34].
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The study of Bagheri et al. [32] applied a hybrid multilayer perceptron and radial
basis function artificial neural network—genetic algorithm (MLPANN-GA and RBFANN-
GA) for the prediction of BOD, COD, TN, and TP in a submerged membrane bioreactor,
while influent BOD, influent COD, influent TN, or influent TP, sludge retention time (SRT),
mixed liquor suspended solids, membrane permeability, and transmembrane pressure
were used as the inputs. Both MLPANN-GA and RBFANN-GA models demonstrated
superior accuracy between predicted and experimental values, while it was evident that
the use of GA significantly improved the accuracy.

Yacub et al. [33] used different machine-learning models to predict the removal of
nutrients such as ammonium (NH4), total phosphorus (TP), and total nitrogen (TN). The
authors used operating conditions and influent characteristics as separate datasets and
combined them for each target nutrient to assess the efficiency of the different models.
The accuracy was higher for the combination of operating parameters with influent char-
acteristics, while the extreme gradient boosting model (XGBoost) demonstrated higher
performance than the other machine-learning techniques examined.

In another study [34], Abba et al. examined the efficiency of an ANN and multilinear
regression analysis (MLR) model to predict the effluent COD of the Nicosia wastewater
treatment plant. Inlet COD, BOD, pH, conductivity, total nitrogen (T-N), and total phos-
phates were used as the inputs. According to the authors, the use of an ANN resulted in
significantly higher accuracy and performance compared to the MLR model.

In addition, using real-time monitoring, ANN algorithms can facilitate adaptive
control strategies to maintain the operation of the system in a steady state in an efficient
manner and to minimize the risk of regulatory violations [32,33].

(iii) Neural-network-based control strategies

As already discussed, aeration is one of the more vital operating factors in MBRs
since it influences (i) the dissolution of oxygen inside the wastewater and (ii) the scouring
of membranes [35-40]. Therefore, it significantly affects both performance in terms of
pollutant removal and energy consumption and membrane fouling. From this perspective,
ANNSs have been applied for the development of different adaptive control strategies that
use a new generation of sensors and real-time measurements of dissolved oxygen, mixed
liquor suspended solids (MLSS), and membrane fouling indicators such as transmembrane
pressure, to adjust and optimize aeration intensity [35-40]. Additionally, ANNs have the
ability to design new strategies for membrane cleaning using different approaches such as
back washing or chemical cleaning, taking into account the predicted fouling according to
the network and the cleaning frequency balanced with energy consumption and membrane
lifetime [30,32-34].

Preventing eutrophication of aquatic systems largely relies on the limitation of nutrient
inputs; therefore, their effective removal from MBRs is a significant issue [32,33]. Some
interesting ANN applications refer to the use of algorithms to model the nonlinear and dy-
namic systems of biological nutrient removal processes, such as nitrification, denitrification,
and phosphorus uptake [33]. In this application, the algorithms can be applied to hybrid
control strategies to further optimize operating parameters such as SRT, HRT, aeration,
etc., towards the high removal rate of nutrients under different influent characteristics and
loads [32,33]. Therefore, using these control strategies, the MBR system will be capable of
maintaining high performance regarding the removal of nutrients while at the same time
keeping low energy consumption and low chemical usage.

Algoufily et al. [35] designed a prediction tool in Matlab/Simulink that is able to
calculate the membrane total resistance based on deterministic and stochastic models.
The tool was able to predict future TMP cycles based on older TMP performance via an
artificial neural network algorithm. The ANN implementation was successfully used as
a controller to maintain temperature and mixed liquor suspended solids (MLSS) around
their desired setpoints. Alnaizy et al. [36] used an ANN model for advanced neuro-model
predictive control (NN-MPC) of an MBR system. The examined control algorithm showed
excellent servo response characteristics in tracking flux changes while subjected to variable
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constraints (vacuum-to-backwash time ratio). The researchers concluded that NN-MPC is
a feasible strategy for backwashing via NN-MPC.

Chen et al. [37] optimized the energy efficiency of the Ulu Pandan MBR plant using
an ANN. The volume of membrane scouring aeration, the volume of bioprocess aeration,
the volume of mixed liquor transferred into the MBR system, and the volume of treated
water produced were used as inputs, while the ANN adequately predicted the energy con-
sumption per unit permeate product water (kW-hr/m?). In another study, Wahab et al. [40]
used different artificial neural networks (FFNN, RBFNN, and nonlinear autoregressive
exogenous neural network—NARXNN) to model TMP and flux of a submerged membrane
bioreactor (SMBR) with hollow fiber. According to the results, all examined models showed
satisfactory results; however, NARXNN and RBFNN demonstrated the highest accuracy
(>90%), although the latter is characterized by a simpler structure. The implementation of
RBFNN presented the highest closed-loop performance compared with other controllers
and fast performance in the rejection of disturbances.

(iv) Neural Network-Based Fault Detection and Diagnosis

Like most advanced wastewater treatment plants, MBRs are characterized by a com-
plex nature and are therefore subject to faults and disturbances. More analytically, they are
prone to equipment failures and process upsets while the influent composition can dramat-
ically change over time [41-44]. This variability can negatively affect system performance
and stability and increase the times that the system is shut down, increasing the relative
cost. With these considerations in mind, ANNs can be implemented for diagnosis and early
fault detection of the equipment and operation of the system. This application involves
learning the relationships that dictate the normal operation of the system and identifying
deviations from this behavior as potential anomalies [42—44]. Using real-time monitoring of
inputs and outputs such as flow rate, aeration intensity, and effluent quality characteristics,
ANN algorithms have the ability to simulate, predict, and provide early warning signals for
process disturbances or equipment malfunctions [41-44]. Early warning is vital, as it will
allow operators to take action and minimize or even avoid the predicted problems [43,44].

Zhao et al. [43] implemented the Bandelet neural network, which consists of a com-
bination of the Bandelet function, as the activation function, with neural networks for
the prediction of membrane flux, and the flux recovery rate for making proper decisions
regarding membrane cleaning strategies. In addition, the researchers integrated a modified
Bat algorithm to enhance the optimization of the Bandelet neural network. The proposed
combination exhibited higher performance than other state-of-the-art models that were
examined, while according to the presented results, the appropriate cleaning period was
selected from the combined algorithm.

Shi et al. [44] proposed a membrane fault diagnosis method that combines convolu-
tional neural network (ECA-CNN) and attention mechanisms. The proposed addition of a
batch normalization (BN) layer into the CNN network accelerated network convergence
and improved the learning rate and diagnosis efficiency. Compared with other CNN mod-
els, the combined model improves the diagnostic accuracy and decreases overfitting issues,
while the proposed strategy reduces the model complexity and improves the network’s
noise resistance.

Given the complexity of these systems, identifying each malfunction to design coun-
termeasures is not an easy task, even for well-trained operators and engineers. ANNs
could take on the role of fault diagnosis, knowing the patterns and behaviors of different
components or conditions of the systems such as membrane fouling, aeration failure, or low
nutrient concentration [45,46]. Through a comparison of the learned data with real-time
measurements, ANN diagnosis algorithms can isolate the problem, providing valuable
information for troubleshooting and maintenance of the system [45,46].

Figure 1 summarizes the different approaches toward the integration of ANNs into
MBR systems.
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Figure 1. ANN implementation in MBR systems.

3.5. Integration of Neural Networks with Other Advanced Techniques
(i) Hybrid modeling and control approaches

One interesting strategy to enhance the accuracy and robustness of ANNSs is to com-
bine them with other well-established advanced technologies, such as genetic algorithms,
fuzzy logic systems, or even model predictive control. For instance, hybrid models that
integrate fuzzy logic with artificial neural networks can efficiently decipher the non-linear
dynamics governing MBRs, while also incorporating expert knowledge and qualitative
system information [47]. Genetic algorithms are well-established models often used for
optimizing the architecture of ANNs and for tailoring control parameters in the design of
effective control algorithms [26]. Integrating ANN with MPC frameworks will allow for the
prediction and control of MBR systems over a longer timeframe, taking into consideration
the various constraints and uncertainties characterizing the system in question [48].

(ii) Exploitation of Deep Learning

Deep learning, a field of ANN involving multiple hidden layers, has already demon-
strated superior efficiency in various applications, including image recognition and natural
language processing. Implementing deep-learning algorithms such as convolutional neural
networks (CNNSs) or recurrent neural networks (RNNs) could enhance modeling accu-
racy and allow for the design of more robust control systems [43,49]. These systems have
the capability to capture higher-order interactions and temporal dependencies between
inputs and outputs. Future research must focus on the exploitation of deep-learning al-
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gorithms and the challenges obstructing their implementation, such as the requirement
for large datasets, computational complexity, and the interpretability of algorithms and
results [43,49].

3.6. Case Studies of Neural Network Implementation in MBR Systems

In this section, a selection of representative case studies from the aforementioned
categories is briefly discussed to better illustrate the diverse applications of ANN in MBR
systems.

(i) Casestudy 1: Modeling of transmembrane pressure

In their compelling work, Schmitt et al. [24] developed an artificial neural network-
based model for predicting membrane fouling in a pilot-scale anoxic—aerobic membrane
bioreactor (AO-MBR). The model’s output was the transmembrane pressure (TMP), com-
monly used as a membrane fouling indicator, with pH, alkalinity (Alk), MLSS, COD, total
nitrogen (TN), ammoniacal nitrogen (NH4-N), nitrate (NO3-N), and total phosphorus (TP)
serving as input parameters for the algorithm. To identify the most relevant input parame-
ters for predicting the evolution of the transmembrane pressure, the researchers assembled
several groups of these parameters and performed various training procedures under ran-
dom conditions of the ANN weights. Interestingly, according to the results, some frequently
used parameters such as MLSS, COD, pH, and DO exhibited a relatively low correlation
(R% 0.169-0.70) with transmembrane pressure, while the use of TNjn—TNegtf, TPin—TPan,
and Nitrate,,,—Nitrate. demonstrated a significantly higher correlation (R? =0.85). The
authors emphasized the significance of training data, proposing the gathering of data from
different operating runs to prevent overfitting, and suggested that the selection of input
parameters is crucial for advancing the training and optimization of the ANN architecture.

(ii) Case study 2: Nutrient Removal Optimization

In their interesting study, Giwa et al. [31] used back-propagation artificial neural
networks (ANNs) to model results obtained from an electrically enhanced membrane
bioreactor in which aluminum served as the anode and stainless steel functioned as the
cathode. These electrodes were inserted into a submerged MBR that treated medium-
strength wastewater. The removal of COD, PO,3~-P, and NH,*-N were chosen as output
variables, with the examined system able to achieve removal rates exceeding 98%. Utilizing
ANNs s, the correlation of various input parameters, such as mixed liquor dissolved oxygen
(DO), volatile suspended solids (MLVSS), pH, electrical conductivity, CODj,, NH4*-Nj,,
and PO4>~-P;,, was evaluated. After training and optimization, the applied ANN exhibited
high correlation coefficients between experimental and predicted data (r > 0.994).

(iii) Case Study 3: Fault Detection and Diagnosis in an MBR System

To overcome the problem of membrane fouling and maintain efficient and steady
operation in MBR systems, Wu et al. [42] proposed the implementation of a hybrid strat-
egy. Fault identification based on different types of membrane fouling was performed
using a robust deep neural network (RDNN). The authors combined the RDNN with
a restricted Boltzmann machine (RBM) as a decision-making method to determine the
proposed operations. The integration of these two algorithms with sensors demonstrated a
strong correlation between experimental and modeled results. The authors concluded that
the proposed strategy could serve as a warning method for other faults or malfunctions
occurring in similar systems and that additional research is needed in this area.

4. Challenges and Limitations of ANN in MBR Applications

Perhaps the primary challenge hindering the application of various Al technologies,
including ANNSs, in advanced wastewater treatment systems like MBRs is their increased
complexity. Therefore, implementing these systems requires specialized training and exper-
tise from human resources, including operators and engineers. Additionally, all parts of the
Al system—namely ANN design, training, and validation—require a deep understanding



Sci 2023, 5, 31

110f15

of the underlying principles and characteristics of the MBR system. Moreover, selecting the
optimal network architecture, learning algorithms, and parameters is a complex task, often
requiring the implementation of trial-and-error procedures or empirical tuning.

Another critical aspect is the quantity and quality of the obtained data. The accuracy
of the algorithms relies greatly on this data, which should be representative and of high
quality. This can be particularly challenging in real systems that often contain missing
values, malfunctions, communication problems, and dynamic conditions. Moreover, for
technologies such as deep learning, the quantity of data needed creates additional problems
regarding data storage, processing, and management.

Since several MBR units are already in operation, integrating ANNSs with existing units
is of particular importance, although this can be technically challenging. This implementa-
tion requires specialized equipment (hardware) and software, in addition to modifications
to the existing control infrastructure, which can be costly and time-consuming. Another im-
portant consideration is the acceptance of new technologies by the operators and engineers
of the treatment plant. This acceptance may be limited due to increased system complexity,
lack of human resource training, lack of transparency and interpretability of the used
algorithms, and the risks associated with the implementation of these new technologies.

5. Future Directions

The following section summarizes perspectives derived from the current comprehen-
sive review, as illustrated in Figure 2.

ANN implementation in MBR systems: A suggested roadmap for current
trends and future perspectives

Integration of loT
Devices and
Hybrid models Sensors in MBR
combining neural Systems
networks with

other Al techniques

Figure 2. ANN implementation in MBR systems: a suggested roadmap for current trends and future
perspectives.

(i) Hybrid models combining neural networks with other Al techniques

An intriguing strategy for future research involves developing hybrid models that can
combine neural networks with other Al algorithms, including model predictive control,
fuzzy logic, and genetic algorithms. These hybrid models have the potential to demonstrate
higher accuracy, robustness, and improved interpretability than ANNs by combining the
advantages of all the Al technologies used [13,42,46]. For instance, genetic algorithms can
optimize the architecture of ANNs or control and operating parameters to achieve target
goals such as avoiding membrane fouling or minimizing pollutants. Technologies like
fuzzy logic can incorporate expert knowledge, while integration with MPC frameworks
will allow MBRs to predict and control over a longer timeframe, taking into consideration
different constraints and uncertainties in system dynamics.

(i) Advances in ANN Architectures and Training Methods

As these algorithms continue to rapidly evolve, research towards the development
of new architectures and training methods could potentially increase the performance
of such applications. For instance, incorporating different training techniques such as
adaptive learning rate algorithms, regularization methods, or unsupervised pre-training



Sci 2023, 5, 31

12 0f 15

can improve generalization and ANNs convergence [10-14]. Moreover, exploiting new
architectures, including deep neural networks and recurrent neural networks, will enhance
the ability to reveal more complex interactions and temporal dependencies between inputs
and outputs, leading to improved performance for optimization and control.

(iii) Integration of IoT Devices and Sensors in MBR Systems

Integrating Internet of Things (IoT) devices and using advanced, new-generation
sensors in MBRs will enhance real-time monitoring through real data acquisition, enabling
better control and allowing the full potential of ANNSs or similar algorithms to be exploited.
New-generation IoT devices can provide continuous, high-resolution measurements of
many inputs and outputs, including flow rates, aeration, and influent and effluent quality.
These parameters can be used for model training and real-time model updates.

Combining IoT with advanced algorithms such as ANNs will allow the development of
innovative, smart, self-adaptive MBRs capable of autonomously controlling the process and
optimizing their performance, despite the disturbances observed in advanced wastewater
treatment systems.

(iv) Expanding the Scope of Neural Network Applications in Wastewater Treatment

ANN:Ss can also be implemented in other parts of wastewater treatment plants, includ-
ing activated sludge systems, sludge management, anaerobic digestion, and physicochemi-
cal processes such as advanced oxidation systems used as pre- or post-treatment polishing
steps. Implementing ANNSs for monitoring, modeling, and control will allow for achieving
high efficiency and environmental compliance of combined systems. In fact, integrating
ANN s across multiple stages of a wastewater treatment plant will lead to the development
of an integrated (holistic) strategy for optimization that considers the interactions and
trade-offs between different treatment stages and objectives, taking into account several
operational constraints.

6. Conclusions

This mini review summarizes the use of ANNSs as a tool for the monitoring, simulation,
optimization, and control of membrane bioreactors (MBRs). ANNs represent an interesting
strategy, with the capability to identify complex dynamic relationships between inputs
and outputs in MBRs using different architectures such as feedforward, recurrent, radial
basis function, and deep neural networks. ANNs appear to have significant potential
to optimize treatment performance, reduce energy consumption, and extend membrane
lifetimes. Other interesting applications of ANNs include early fault and malfunction
detection, which can improve the reliability of MBRs.

For system monitoring, ANNs have already demonstrated their capability to predict
key parameters such as membrane fouling, permeate flux decline, and effluent quality
indicators, using both operating conditions and wastewater characteristics as inputs. Ac-
curate monitoring can also lead to a better understanding of the fouling mechanism and
proactive optimization of the operating parameters. In terms of simulation, ANNs have
shown very promising results in simulating the complicated interactions governing nutri-
ent removal, biomass growth, and membrane filtration. Additionally, hybrid ANN models
with techniques like fuzzy logic have shown enhanced accuracy in modeling complex
MBR systems. For process optimization, ANN algorithms allowed real-time adjustment of
operating parameters such as solids retention time, hydraulic retention time, and aeration
intensity, leading to lower energy consumption and membrane fouling while achieving
high treatment efficiency. ANNs also facilitate the development of effective and alternative
or combined strategies for membrane cleaning. Regarding system control, ANN algorithms
have demonstrated interesting capabilities for system automation, adaptive aeration and
permeate flux control, and membrane cleaning cycles under fluctuating conditions. ANNs
have shown high potential for fault detection and diagnosis of equipment failure or pro-
cess disturbances. In summary, ANNs are versatile tools that can significantly advance
monitoring, simulation, optimization, and control across different aspects of MBR systems.
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Therefore, incorporating ANNs into MBRs can significantly impact both the efficiency
and sustainability of these systems. These benefits also have social, environmental, and
economic implications in areas such as the protection of environmental quality and the
achievement of sustainable development goals. Moreover, integrating neural networks with
other advanced algorithms can lead to the development of more efficient and sophisticated
systems. By exploiting technologies like deep learning and integrating IoT devices and
sensors, the application of ANNSs across different stages of complex wastewater treatment
plants can push progress beyond the current state of the art and facilitate the development
of new, smart, self-adaptive treatment solutions. However, despite their advantages, several
limitations must be addressed. These include the requirement for high-quality and large
quantities of data, the high complexity of these systems, the need for specialized training of
human resources, and the challenges of integrating these technologies into existing systems,
especially control systems.

As water demand continues to increase, the need for water purification and reuse will
continue to expand in the coming decades. This underlines the growing importance of
artificial intelligence and ANNSs. Implementing these advanced tools and fostering interdis-
ciplinary collaborations among engineers, researchers, practitioners, and policymakers is a
promising start towards designing highly efficient systems for water purification and reuse
with a low environmental and energy footprint.
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